INTRODUCTION

The interest for the numerical simulation of the interaction between phase change and uid ow is motivated by the wide range of industrial or natural processes where the understanding and modeling of such coupling are of importance. The organization of an international workshop on Phase Change with Convection, more speci cally dedicated to modeling and validation, reveals the importance of the many developments in this eld, and the need for comparing the numerical procedures and results proposed in the heat transfer and mechanical engineering community. The present paper reports a few conclusions concerning a numerical exercise proposed to compare di erent p h ysical models and numerical procedures applied to a relatively simple phase change problem, where melting is driven by laminar thermal convection in the melt.

This project takes place after several attempts to compare di erent n umerical procedures 1-2]. Existing experimental results are either too limited in the range of parameters 3] or show signi cant di erences between independent studies 4-5]. As a consequence, a purely numerical comparison exercise is proposed, which i s i n tended to provide a set of results in a common framework in order to analyze in detail the characteristics of the numerical solutions in 2D natural convection dominated melting processes, over a wide range of governing parameters. A compilation of the rst results may be found in Bertrand et al. [START_REF] Campbell | Visualization of solid-liquid interface morphologies in gallium subject to natural convection[END_REF]] and the short synthesis proposed in this paper is the second step of such a comparison exercise, based on a larger number of contributions by research teams from di erent countries. These discussion has been presented in the frame of the AMIF Workshop \PCC99" held in Warsaw in June 1999 and of the \MB99" conference on Moving Boundary Problems held in Ljubljana in July 1999.

DESCRIPTION of the EXERCISE

Problem de nition

The problem under consideration deals with melting of a pure substance controlled by natural convection in the melt. One considers a 2D square cavity (height H = width L) initially lled with a solid material uniformly at the melting temperature (T 0 = T F ). At t * = 0 , t h e temperature of one of the vertical walls (the left wall in Figure 1) is raised at a value T 1 > T F , while the other vertical wall is maintained at the initial temperature. The horizontal walls are assumed to be adiabatic and no-slip. The uid ow is supposed to be in the laminar regime, and the thermophysical properties of the material to be constant.

After a pure conduction stage, thermal convection develops in the liquid phase, causing a non-uniform distribution of the heat ux at the interface and a non-uniform displacement o f the melting front.

The problem is characterized by a set of four main dimensionless parameters. The uid phase is de ned by its Prandtl number: Pr= = and the intensity of natural convection is given by the thermal Rayleigh number: Ra = g (T 1 ; T F )H 3 =( ). Given the temperature conditions, the Stefan number de nes the relative importance of the latent heat in the overall energy balance : Ste= C P L (T 1 ; T F )=L F . Finally the global aspect ratio of the enclosure has to be speci ed : A = H=L .

Previous reference results

The above de ned problem has been extensively studied in the last twenty y ears. The existing literature on melting of pure substances driven by thermal natural convection in the melt may be found in various bibliographical compilations [START_REF] Bertrand | Melting driven by natural convection. A comparison exercise: rst results[END_REF][START_REF] Yao | Melting and freezing[END_REF][START_REF] Viskanta | Heat transfer during melting and solidi cation of metals[END_REF] (for an updated bibliography on the Stefan problem in the L A T E X format, contact Prof. B. Sarler : bozidar.sarler@fs.uni-lj.si). However relatively few experimental results have been reported in the literature and most of them have been dedicated to the qualitative demonstration of the e ects of natural convection on the front shape and velocity, or to assess global heat transfer correlations for di erent geometrical arrangements 10].

A limited amount of papers have b e e n d e v oted to the constitution of a set of quantitative results, with a precise de nition of the boundary conditions and of the thermophysical properties of the phase change material in both the solid and the liquid phase, in order to provide a basis for a comparison with numerical simulations. Two classes of phase change materials have been mainly investigated, leading to di erent behaviors, according to the properties of the melt:

1. high Prandtl number liquids (P r 10 2 ), typically para n waxes: octadecane, eicosane 3,11- 12], 2. in the low Pr domain (Pr 10 ;2 ), essentially low melting point metals, such as gallium or tin) [START_REF] Gobin | Melting in rectangular enclosures: experiments and numerical simulations[END_REF][START_REF] Gau | Melting and solidi cation of a pure metal from a vertical wall[END_REF][START_REF] Okada | Analysis of heat transfer during melting from a vertical wall[END_REF]. The experimental data are generally produced to validate the numerical procedures developed by the same authors, but some of them (especially 4]) have been used to test the accuracy of independently developed numerical codes. However, due to the many limitations of these experimental studies, the comparison is mainly qualitative and do not meet the requirements for an accurate validation. The main problem lies in the di culty t o c o n trol the experimental operating conditions, especially for melting of metals, where the uniformity and time evolution of the wall temperatures, or the importance of the lateral heat losses are scarcely well documented. Besides, the corresponding dimensionless parameters are not necessarily suited to a comparison (usually rather high Rayleigh numbers are considered). Moreover, even when temperature measurements are performed in the system, the relevant experimental data are often restricted to the display o f the front position at di erent times: this information has been proved to strongly depend on the experimental method (the comparison in 5] provides an interesting discussion on this problem).

As a conclusion, the existing corpus of experimental data is adapted only to a rst step of the validation of numerical codes, but cannot provide an accurate data base for a quantitative estimation of the computation performance. This appears clearly in the previous attempts to compare distinct numerical methods for the solution of this problem 1,2], where reference to the experimental results by 4] is essentially qualitative.

Proposed test cases

The consequence of the analysis presented above i s t wo fold:

1. in the absence of reference experiments, purely numerical comparisons must be performed, 2. two groups of numerical tests have to be proposed, corresponding to the distinct Prandtl number ranges.

The governing parameters have been estimated using approximate values of the thermophysical properties of tin and octadecane: in the low Prandtl number range, the Prvalue is taken to be 0.02, and in the high Prandtl number range Pr= 5 0 . F or a given geometry (A = 1), the values of the Rayleigh and Stefan numbers correspond to a dimensional height of the enclosure H = 0.10 m and a reference temperature di erence T 1 -T F = 3 o C for tin (Case 2) and 10 o C for octadecane (Case 4), leading to the values displayed in Table 1 (for more details, refer to 6]). In each Pr range, a 10 times smaller Rayleigh number (Cases 1 and 3) is also considered.

In order to limit the number of outputs, the following results are requested : 1. the time evolution of the melted volume and of the average Nusselt number at the hot wall, 2. the position of the melting front and the local Nusselt number distribution at four di erent times (expressed in the dimensionless form = Fo Ste= t Ste=H 2 ) :

-at Pr = 0.02 : t 1 = 4 10 ;3 t 2 = 1 0 ;2 t 3 = 4 10 ;2 t 4 = 1 0 ;1 , -a t P r = 5 0 : t 1 = 5 10 ;4 t 2 = 2 10 ;3 t 3 = 6 10 ;3 t 4 = 1 0 ;2 .

Heat transfer correlations

After the rst attempts to de ne the characteristic scales of the problem, performed by Webb & Viskanta 14] and Beckermann & Viskanta 15], a complete description of the problem and an analysis of the relevant parameters and scaling laws may be found in the paper by Jany and Bejan 16]. This study leads to the heat transfer correlations described in this section.

In the rst stage of the melting process, pure conduction is the dominating heat transfer mechanism. The interface moves parallel to the hot wall, and the time evolution of the front position is given by the classical solution of the Stefan problem (s(t) = 2 p t). Accordingly the Nusselt number decreases like 1 / p t. Then, as the thickness of the liquid layer grows with time, the in uence of convection on heat transfer is felt in the top part of the enclosure and progressively along the whole interface. In this transition regime, the competition between pure conduction and natural convection limits the Nusselt number decrease, which goes through a minimum, and then increases when the heat transfer regime is dominated by c o n vection. Finally the boundary layers in the liquid separate and the average heat transfer reaches a constant v alue.

This analysis was carried out in the high Pr number range, and Jany & Bejan 16] show that the di erent time scales and heat transfer rates are readily expressed in terms of power laws of the Rayleigh number. The same approach m a y be extended to the range of low P r n umbers, where the relevant g o verning parameter is shown to be the dimensionless group Ra Pr.

The scaling laws lead to correlations for the evolution of the average Nusselt number as a function of time ( = F o S t e ) , t h e v alue of the coe cients are identi ed from the results of numerical simulations.

1. In the range Pr << 1 : Nu ( ) = Nu 1 + 1 p 2 2 6 6 6 6 4 1 ;

1 s 1 + 1 ((Ra:Pr) 0:36 0:75 ) 2 3 7 7 7 7 5 :

(1) 2. In the range Pr 1 :

Nu ( ) = 1 p 2 + Nu 1 ; 1 = p 2 s 1 + 1 (0:0175 Ra 3=4 3=2 ) 2 : (2)
where Nu 1 is given by the expressions Nu 1 = 0 :33 Ra 0:25 in the Pr >> 1 range according to B enard et al. 3] and Nu 1 = 0 :29 Ra 0:27 Pr 0:18 in the Pr << 1 range 17], or by the more general correlation proposed by Lim and Bejan 18] for any v alue of Pr :

Nu 1 = 0:35 Ra 1=4 h 1 + ( 0 :143=Pr) 9=16 i 4=9 :

(3)

CONTRIBUTIONS

13 contributions to the benchmark have been received from academic or industrial research groups, and the corresponding authors and a liations are listed in Table 2. Contributions using commercial heat transfer softwares have been requested, and complete sets of results are still expected and will be gratefully acknowledged.

Among the sets of results received, only six contributors have s o l v ed the four problems. Concerning the melting of metals, eight c o n tributions have s o l v ed Case #1, and 12 authors have presented results for Case #2 (2 of them only up to time t 3 ). In the high Prandtl number range, 11 solutions have been proposed for Case #3 and eight for Case #4. A complete description of each method is not possible in the frame of the present paper. The interested reader will nd a short presentation of most methods in 6] and may directly contact the authors. A rapid classi cation of the main aspects of the numerical procedures follows, summarized by a few keywords in Table 3. In addition, typical mesh size and time step are listed in Table 4 when available.

It may be outlined that the contributions presented hereafter are providing a selection of the most popular models and a variety of alternative n umerical procedures. A majority o f contributions have used xed grid or \enthalpy" or one-domain methods (FG), except three (referred as 7,9,13 in Table 2) which h a ve used a front-tracking or transformed grid or two- domain procedures (FT or TG).

One-domain methods (1-6,8,10-12) The common features of these models are the use of the enthalpy f o r m ulation for energy conser-vation and of the primitive v ariable Navier-Stokes equation for momentum conservation. The transition from the solid to liquid phase is treated by a Darcy-like penalization term in the momentum equation depending on the local solid fraction, in all contributions but one, for which this is handled by a strong viscosity v ariation in two-phase volumes. The discretization technique mainly uses the nite volume approach, except two c o n tributions using a nite element technique [START_REF] Viswanath | A comparison of di erent solution methodologies for melting and solidi cation problems in enclosures[END_REF][START_REF] Bareiss | Experimental investigation of melting heat transfer with regard to di erent geometric arrangements[END_REF]. Structured xed grids are used in most cases, with the exception of 10 which uses a moving structured grid to increase the accuracy in the calculation of the ow eld and 3 and 11 where the grid is xed but eventually non structured.

Front-tracking methods [START_REF] Bertrand | Melting driven by natural convection. A comparison exercise: rst results[END_REF][START_REF] Viskanta | Heat transfer during melting and solidi cation of metals[END_REF][START_REF] Okada | Analysis of heat transfer during melting from a vertical wall[END_REF] The common features of these models are the explicit calculation of the front m o vement and the use of some kind of upwinding for discretizing the convective terms. A nite volume procedure with coordinate transformation is used by ( 7,9), while 13 uses a CVFEM approach with an adaptive unstructured grid. The streamfunction-vorticity f o r m ulation is used by 9, while both 7 and 13 solve t h e o w problem in terms of the U-V-P primitive v ariables. The last main di erence lies in the use of the quasi-stationarity assumption by 7, while 9 and 13 solve the full transient ow problem.

PRESENTATION OF THE RESULTS

In the short synthesis presented hereafter, the comparison is made separately for the two ranges of Pr number, and the results are given in terms of the following outputs : 1. time evolution of the average Nusselt number at the hot wall obtained by the contributors. This is compared to the Neumann solution and to existing correlations recalled above, 2. position of the melting front at four di erent times of the process.

The low Prandtl number range (Cases # 1 and #2)

Case # 1 was carried out by e i g h t participants, and all simulations are in good agreement, as can be seen on the time evolution of the average Nusselt number depicted in Figure 2. This is obviously due to the fact that at such a l o w R a n umber, melting is dominated by conduction heat transfer and the evolution is very close to the Neumann solution at Ra = 0. Although no contribution has presented this test, a comparison of the melted fraction evolution with the 2 p t law predicted by the pure conduction solution would have g i v en a useful quantitative element, since some simulations present some local di erences with the analytical solution.

Case # 2 was solved by almost all participants, at least up to t 3 . In this case, the qualitative di erence in the time behaviour of the average Nusselt number already outlined in 6] is clearly shown in Figure 3-a. Two di erent classes of time evolutions are observed. A majority of simulations (1,2,4,5,7,9,12) nd a Nusselt number evolution very close to correlation (1) (remember that this correlation has been obtained using a quasi-stationarity assumption, and the coe cients have been identi ed from numerical results). Even an ampli ed display (Figure 3-b) show s a v ery good agreement of most simulations in this class.

The second kind of behavior (in continuous lines in the gure, to allow for the observation of eventual oscillations) gives a signi cantly higher value of the Nusselt number in given time ranges and present some kind of rapid transient c hange in the evolution. As rst observed in the nite element calculations by D a n tzig 19], and con rmed by a r e c e n tly published stability study 20], this is related to an instability at the end of the conduction regime. This leads to the formation of a multicellular structure and to the successive merging of the upper cells as the melting front a d v ances. The slight quantitative discrepancies between the four solutions leading to this result [START_REF] Campbell | Visualization of solid-liquid interface morphologies in gallium subject to natural convection[END_REF][START_REF] Voller | An overview of numerical methods for solving phase-change problems[END_REF][START_REF] Bareiss | Experimental investigation of melting heat transfer with regard to di erent geometric arrangements[END_REF][START_REF] Okada | Analysis of heat transfer during melting from a vertical wall[END_REF] are probably due to di erences in the order of accuracy of the space or time discretization scheme. This is con rmed by the signi cant di erences on the interface position, especially at time t 3 = 0.04, as shown in Figure 4-a. The interface positions predicted by the latter four methods (plus method 3, which is not in this group, as far as the Nusselt number is concerned) are in fairly good agreement, displaying a shape which indicates the presence of two recirculation rolls. At the level of the rolls, the local heat transfer at the interface, and thus the local front v elocity are higher. These ndings bring a con rmation of the original numerical results by D a n tzig, but it must be noted that this behavior has not still been reported experimentally. I t t h us might be relevant to reconsider some previously published experimental results (see 13], for instance), where it could be possible to nd a con rmation of a two-roll structure on the measured front positions.

It is also interesting to note that among the ve (probably) more correct solutions, there is no clear-cut superiority o f a n y model or procedure over the others (Figure 4-b): 4 of them are using the enthalpy model, 3 out of ve are based on nite volume approximations and structured or non structured meshes, xed or moving grids are equally used in these solutions.

The di erences between the various solutions are slightly smoothed as time proceeds, since the ow regime is monocellular at time t 4 , and the front shapes are qualitatively the same. The solutions allowing the observation of the multicellular regime however lead to a faster displacement in the bottom part of the cavity. This may also be seen on the time evolution of the melted fraction (not shown) the dispersion of the results in terms of the liquid fraction at t 4 is less than 7%.

These results however show that the use of a quasi-steady assumption is not permitted in this case, since the ow structure is in continuous evolution as the interface position moves. Extremely small time step is required to capture the ow pulsations, if one relies on the analysis presented in 20]. It seems also clear from the present results that su ciently ne grids are required to accurately get the multicellular ow structure. This appears clearly from the (limited) quantitative elements shown in Table 4, where information on the time steps and meshes used in the simulations of Case #2 are displayed when available.

As a conclusion of the analysis presented in this section, it seems that the results concerning the description of the dynamics of convective melting of metals from a vertical wall have to be revisited and a more careful and detailed description of the relevant phenomena has to be proposed to the community and con rmed by careful experimental procedures (suggestions may be found in 5]).

The high Prandtl number range (Cases # 3 and #4)

In the high Pr number range, the stability analysis already mentioned 20] shows that no instability ( m ulticellular ow or oscillatory regime) is to be expected in the range of Rayleigh numbers considered here, and the assumptions leading to the scaling laws established by Jany and Bejan 16] are valid.

The results at Ra = 10 7 (Case #3) are displayed in Figure 5-a in terms of the time evolution of the Nusselt number. Although a number of solutions are in a reasonably good agreement i n the average, it is clear that some simulations fail to predict the process, and show unrealistic behaviors. Some of them are much too close to the pure conduction solution, while it is well known that the e ect of convection at such a R a yleigh number already dominates. Other ones present strong oscillations in the Nusselt number history, which m a y be attributed to insu cient space resolution: in this case indeed, the enthalpy f o r m ulation often leads to such \staircase" steps in the progression of the melting front. If we discard the extreme behaviors, the seven remaining results displayed in Figure 5-b are relatively close to each other, but the relative di erences are nevertheless signi cant. In the absence of any reference solution, it is di cult to further quantitatively classify the di erent solutions.

The interface shapes at time t 4 are displayed in Figure 6-a and, as expected, the discrepancies on the local values of the heat transfer are also visible on the melting front position. Interestingly, all methods agree fairly well on the bottom half of the front, while a rather large dispersion may be noticed at the top of the enclosure ( 21% at z = 1), where convective transport is stronger and a good resolution of the dynamic and thermal boundary layers becomes more crucial. Although the selection is arbitrary, 7 among the 11 contributions are in agreement o ver 75 % of the height, and the dispersion at z = 1 drops to 9% (Figure 6-b). These di erences in the upper part of the enclosure are responsible for the dispersion on the melted fraction ( 10% at t 4 for all results, and 5% for the 7 selected contributions, not shown).

Note again that there is no clear segregation between the numerical methods: among the three rightmost front positions, almost superposed in Figure 6-b, we nd two front tracking results and one xed grid method, while one FT and 3 FG methods belong to the cluster on the left. One interesting conclusion of this test is the con rmation that the source of the discrepancies lies clearly more in the space (or time) resolution than in the mathematical description of the problem.

At R a = 1 0 8 , the dispersion on the average Nusselt number (Figure 7-a) is similar to the dispersion observed at 10 7 , and four solutions out of the eight c o n tributions do not display the central behavior. If we arbitrarily discard these solutions (Figure 7-b), the good overall agreement on the Nusselt number time evolution between the remaining solutions still results in a 4.5 % dispersion on the melted fraction at time t 4 (instead of almost 20 %).

Examination of the melting front position at the largest time (t 4 = 0.010) shows a very large variety in the computed shapes of the interface (Figure 8-a). This indicates that, although it corresponds to easily reached experimental conditions, this value of the Rayleigh numb e r i s a very demanding numerical test. In this case, the high velocities (strong convective c o n tribution in the transport equations) and the very thin thermal boundary layers (of the order of 10 ;2 in dimensionless terms) may lead to unrealistic results. In this test also, the front position predicted by four simulations out of 8, represented in Figure 8-b, present a v ery good agreement on the 50 % bottom half of the domain. These correspond to the contributions already selected on the basis of the Nusselt number evolution, giving one more argument for this otherwise arbitrary choice. We m ust underline that the agreement b e t ween these four solutions on the overall shape of the interface is rather qualitative y et, since the dispersion in the front position at the top of the enclosure is still more than 15 % .

Although there is no clear distinction between FT and FG methods in the results of the comparison at high Prandtl and Rayleigh numbers, it must be noted that a similar level of accuracy is obtained with rather lighter grids when FT methods are used. This con rms that the adaptive grids or coordinate transformations allow for an easier description of the thin boundary layers at the interface, where the xed grid techniques require a much ner space discretization.

CONCLUSION

In the absence of any true reference solution to the di erent cases tested in this exercise, it is di cult to pinpoint in detail the origins of the discrepancies. A few conclusions may b e however drawn from the comparison: 1. The simulations at low P r n umber tend to con rm the results by D a n tzig 19], although, to the authors's knowledge, no evidence of such o w structures and instabilities has been reported in melting experiments so far. 2. The computations at high Prandtl numbers globally indicate the same trends, although they may signi cantly di er due to grid re nement or to the order of the discretization schemes. 3. In all comparisons, there is no discrimination, as far as the probably most relevant results are concerned, between xed and transformed grid techniques, nor between classes of discretization methods. 4. In each test, the agreement presented between selected results (Figs. 4-a, 6-a, 8-a) is much better than the comparisons already performed in the past 1-2]. Finally, although many authors have p r o vided information on the CPU time the results have n o t been presented, due to the extreme diversity of processors used in the computations. A complete evaluation of the codes performance will have to include these data.

As a necessary complementary information to the present corpus of results, and in order to evolve t o wards the de nition of a reference numerical solution to this problem, the participants to the benchmark and future contributors shouild perform a few intermediate tests in the next step of the exercise:

1. check for global energy conservation in the process, 2. verify the accuracy of the solutions in the pure conduction limit. The theoretical values of the parameter in the 1D solution ( 1(2) = 0.0705932 at Ste = 0.01 and 3(4) = 0.2200163 at Ste = 0.1 ) give a basis for a quantitative appreciation of the accuracy in this limit, 3. assess grid and/or timestep convergence of the solutions. It might e v entually be necessary to solve i n termediate test problems: -rst, natural convection in an enclosure with a cold vertical wall moving at a prescribed velocity, -second, phase change problems where a steady-state solution exists. Such a situation is met for instance when the cold wall of the cavity i s k ept at a lower temperature than the melting point: this case implies the solution of heat conduction in the solid phase and introduces extra parameters, but experimental veri cation might be easier in the steady state (e.g., see 21]).

Any suggestion or comment will be appreciated. 
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Table 1 .

 1 Parameters of the test cases.

		CASE #2	CASE #4
	Contribution	t	Grid NX NZ	t	Grid NX NZ
	1.	10 ;4	60 60 (R)	* 2 10 ;6	60 60 (R)
	2.	10 ;4	80 80 (R)	|{	|{
	3.	2 10 ;4	41 41	2.5 10 ;6	41 41
	4.	2 10 ;4	40 40	2.5 10 ;5	50 181
	6.	10 ;5	202 202	* 2 10 ;6	122 122
	7.	10 ;3	62 42	10 ;3	62 42
	8.	|{	|{	5 10 ;6	128 128
	9.	2 10 ;4	21 25	2 10 ;5	25 35
	10.	2 10 ;7	128 192	10 ;7	192 192
	11.	10 ;4	100 50 (Q9)	* 10 ;5	200 100
	12.	10 ;6	100 80 (G)	|{	|{
	13.	4 10 ;6 2000 to 7000 4 t o 8 0 10 ;8 1100 to 3200

Table 4 .

 4 Time step and grid size for di erent contributions and cases #2 and #4.

(*) Only Case #3 has been solved.
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