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Figure 1: Different ways to complete a Selection and Manipulation task with the proposed interaction model (a) A 3D-ray based interaction controlled by a razer hydra is used (b) Without this device connected, the ray is now controlled with the mouse (c) With the leap motion, another interaction technique is chosen, a 3D-cursor controlled with the user's hand.

INTRODUCTION

In the last years, interest in 3D user interfaces has grown [START_REF] Bowman | 3d user interfaces: new directions and perspectives[END_REF]. For instance, 3D user interfaces include Virtual Environments (VE), serious games or Computer-Aided Design (CAD) applications. They differ from traditional graphical user interfaces (GUI) by including a third dimension to present content and by using a wider range of interaction devices than the traditional set: mouse, keyboard and touch-screen.

With the wide variety of existing interaction devices and the daily emergence of new ones, it is difficult and time consuming for developers to adapt their applications to each possible D R A F T configuration. For instance, in these new devices we can find the Microsoft R Kinect TM , the Leap Motion or the Oculus rift. More than using each time a new SDK, these devices lead developers to redevelop parts of their applications, particularly interaction techniques in order to fit each capability.

Developing an application that takes into account the plasticity property is one solution to deal with these issues. Plasticity is the capacity of an interactive system to withstand variations of both the system physical characteristics and the environment while preserving its usability [START_REF] Thevenin | Plasticity of user interfaces: Framework and research agenda[END_REF]. Code interoperability and usability continuity has to be guaranteed to be considered as plastic. Plasticity has already been well explored in the field of 2D user interfaces, however it has been reported in [START_REF] Lacoche | A survey of plasticity in 3D user interfaces[END_REF] that the problem is even larger for 3D and that no solution meets all the plasticity requirements.

Our goal is to propose new solutions for developers to handle plasticity for 3D user interfaces. In this paper, we focus on interaction techniques. In [START_REF] Bowman | 3D User Interfaces: Theory and Practice[END_REF], an interaction technique is defined as a method allowing a user to accomplish a task via the user interface. It includes both hardware (input/output) and software components. We want to be able to define interaction techniques that will work whatever the target context of use. This context consists in a description of the available devices through a new device model and a high level description of the tasks that have to be performed. This device model aims to describe devices in terms of data they can collect and provide. It differs from classic approaches by also including information such as intrinsic properties, limitations and representation in the real world. Then, the interaction technique model based on PAC and ARCH models gives the possibility to developers to implement interaction techniques independently of devices and of a target 3D framework. This paper is structured as follows: first we recall the plasticity requirements for 3D that our models have to meet. Then, we introduce our new device model used in the context description. Next, we present an extension of the PAC model [START_REF] Coutaz | on object oriented model for dialog design[END_REF] for interaction techniques implementation that ensures independence from the devices and from the target VR framework. Last, we conclude and give directions for future work.

REQUIREMENTS

To handle the plasticity property for interaction techniques, our models have to take into account a set of 3D requirements such as some reported by Lacoche et al. in [START_REF] Lacoche | A survey of plasticity in 3D user interfaces[END_REF]: R1 Ensure code portability. Interaction techniques must be available on many Operating Systems (mobile and desktop). Moreover they need to be possibly integrated or implemented with the main 3D frameworks (for instance, a game engine) and not dependent on a particular one. Indeed, each developer may have his own code database or 3D content in a particular framework. R2 Independence over the devices used. Interaction techniques must work whatever the concrete devices available.

The devices needed by an interaction technique must be defined with a high level description. Alternatives must be possibly defined in case of a compatible device is not found. Moreover, interaction techniques must be aware of the device properties. R3 Handle user and system adaptations. Interaction techniques must be possibly instantiated with an automatic adaptation process, this is adaptivity. However, the user has to be able to modify the interaction techniques with a set of predefined parameters, this is adaptability. R4 Interaction techniques must be configurable at runtime (dynamic adaptation) and between sessions (static adaptation). To ensure usability continuity, context modifications, such as a device plugged or a new task needed, must be recorded. The interaction techniques have to be dynamically adapted according to the context modifications.

A NEW DESCRIPTION FOR INPUTS AND OUTPUTS

In order to perform hardware adaptations and fullfill the second requirement (R2), an accurate description of the input and output devices is needed: this is the device model. Indeed, the adaptation process has to know which devices are available, their capabilities and limitations. This model is needed to perform device selection and adaptation. In the model, inputs devices are considered as the devices that can collect data from the real world. For example, a position, a pressure on a button or a sound acquisition. Regarding output devices, they restitute computer generated values to the real world, for instance an image on a screen or a vibration.

In the literature we can find several classifications about how to perform static or automatic input device selection, such as the Buxton taxonomy [START_REF] Buxton | Lexical and pragmatic considerations of input structures[END_REF] extended later by Mackinlay et al. [START_REF] Mackinlay | A semantic analysis of the design space of input devices[END_REF] and also DEVAL [START_REF] Ohlenburg | DEVAL-a device abstraction layer for VR/AR[END_REF] a device abstraction layer for VR and AR applications. They consider a device as a composition of several input units where each unit is responsible to acquire one kind of data. This kind of classification aims to describe the data provided by input devices units such as the number of degrees of freedom (DoF) of an input value or the property sensed (position, motion, pressure). DEVAL has the advantage to describe a wide variety of device units. It includes more recent devices that can also have output capabilities. For instance, trackers, buttons, haptic feedback, speech and gesture recognition. Less common sensors are also included such as light and temperature sensors. This classification hierarchically structures inputs and outputs units according to their properties. Anyway, this model and the previous ones only define devices with input and output data while it would be interesting to also expose their physical properties in the real physical workspace or their internal properties like refresh rate or accuracy. The graph representation of devices proposed by Lipscomp and Pique [START_REF] Lipscomb | Analog input device physical characteristics[END_REF] and the DEVAL extension introduced by Lindt [START_REF] Lindt | Adaptive 3D-User-Interfaces[END_REF] expose this kind of meta-data. Lipscomp and Pique [START_REF] Lipscomb | Analog input device physical characteristics[END_REF] give the physical characteristics of each device and so a more precise description on how the data is acquired and their limitations. For example, it differentiates bound and unbound inputs as well as isotonic, isometric and elastic ones. In the DEVAL extension [START_REF] Lindt | Adaptive 3D-User-Interfaces[END_REF], three kinds of meta-data can be added to a device unit. First, static devices properties do not change over the time such as the weight of a HMD. Next, configurable devices properties depend on the device setup like the smoothing factor of a tracking de-D R A F T Figure 2: A device is a set of inputs and outputs as well as a collection of physical objects for its real representation.

vice. Finally, runtime properties include performances and device states. The classification into three categories can be discussed because the associated category of a property may change over different devices. For instance, the resolution of an image acquired by a camera can be configurable for some devices such as the Microsoft R Kinect TM while for most of them it is a static value. Moreover, the set of properties introduced in the model does not include enough properties to precisely describe the capabilities of each device. For instance, values boundaries and devices position are not included.

Our device model aims to solve these issues with an accurate description of the devices capabilities, limitations and of their representation in the real world. The model must be extendable because new devices will still appear and they might include new properties not yet included in the current model. The model is described with UML class diagrams, so it is totally editable by any developer who wants to add new properties or a new input or output type. At runtime the properties of a device instance are fulfilled with an XML description file edited with a graphical tool that takes into account the UML diagram. Then, the developer has to complete some functions to fulfill the input data, trigger the outputs when needed and update the dynamic parameters. Moreover, a function has to be implemented in order to tell the system when a new instance of the device is plugged or unplugged. These steps can be done with a device SDK. Static properties have to be fulfilled into the description before execution if needed, for instance the position of a device in the real world. These properties can also be reported into the device SDK to perform its configuration.

In the model, we consider an interaction device as a complex entity that may acquire input(s) and render output(s) and that has a representation in the real world. As shown in Figure 2, the model represents a device as a collection of inputs, outputs and physical objects entities. A device is defined by its name, the name of the SDK used to manage it, its index in the case we use different instances of the device, and a boolean that indicates if it is plugged or not.

The set of physical objects describes the representation of the device in the real world. For example, it gives properties such as a 3D representation of the device if we want to represent it in the virtual world. Its position gives the possibility to a developer to automatically adapt the coordinate system of the tracking values. Moreover, all inputs and outputs are associated to a physical object, this information may help to select an input or an output unit used by an interaction technique. Indeed, for an interaction technique, inputs and outputs that correspond to the same physical object can be preferentially selected. The goal would be to minimize device switchings as well as the homing time of the GOMS model [START_REF] Card | The Psychology of Human-Computer Interaction[END_REF].

Regarding input description, the goal is to describe all possible acquired signals that are currently used in 3D applications. We established a list of three categories that gather these possible inputs: In the model, these different input types include a description of the acquired data, their properties and limitations, and information about how these data are acquired by the device.

•
To do so, we propose to describe each input into two entities.

The "data description" ensures the first need, and the "technology" ensures the second one.

For the two entities of the real value input type described in figure 3, the description reuses the most important properties of previously described taxonomies, especially [START_REF] Lipscomb | Analog input device physical characteristics[END_REF] and [START_REF] Mackinlay | A semantic analysis of the design space of input devices[END_REF], while adding some new ones. Regarding the new properties, three booleans describe the axis on which the value is defined as proposed by Mackinlay et al [START_REF] Mackinlay | A semantic analysis of the design space of input devices[END_REF]. A fourth axis called "none" is also included for values that are not expressed in a 3D coordinate system, for example a temperature. To continue, the semantics lets the developer know which real world data is acquired. For example, it can be the name of a body joint in the case of the Microsoft R Kinect TM . In the "technology" entity, we included a reliability rank of the acquired data between 0 and 1, this property is present for all input types. This value may change at runtime, as some SDK are able to give a reliability score for each value acquired. With the "Techno Real Type" property, we differentiated the values acquired with a distant wireless sensor and with a physical object. For example with optical tracking there is no intermediary for the interaction contrary to a gamepad.
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Figure 4: The description of a force feedback output.

A description of output devices is also included. An output is described by one entity that provides the information about how the data is rendered to the real world. All output types but visual and sound are extracted from the MPEG-V standard [START_REF] Han | Connecting users to virtual worlds within MPEG-v standardization[END_REF]. These types are:

• Visual outputs. They include screens such as monitors and HMDs. They also encompass punctual lights, for instance a gamepad led or a remotely controlled lighting system that modifies the lighting conditions of the real world. • Sound outputs. They stimulate the auditory sense and include devices such as speakers and headphones. • Tactile outputs. They stimulate the touch sense, for example the vibration of a gamepad. • Force-feedback outputs. They apply a force in return of a user interaction in order to simulate a collision with a virtual object. Typical force devices are robotics arms. • Temperature outputs. They modify the temperature of the real world or of a contact point. An example is to control the temperature according to the weather conditions in a virtual world. • Wind output. They change the air speed and direction dynamically. • Scent outputs. They stimulate the olfactory sense.

• Sprayer outputs. They can throw water on a user. It can be used to simulate a virtual rain effect in the real world.

Three properties are common to all output and input types: the name, the refresh rate and a possible associated relative object. For instance, the force feedback type properties are listed in Figure 4. The first three properties are extracted from the description of force feedback devices given by Florens et al. [START_REF] Florens | Force feedback device / force properties[END_REF]. First, the continuous force is the maximum force that can be applied for an unlimited period without damaging the device. Secondly, the peak force is the maximum feasible force. Thirdly, the force resolution gives the quantization step of the force that can be applied. All these values are expressed in newtons. Then, we have extended this description with a boolean for each DoF on which the device can apply a force.

In this section we have introduced an extendable device model to perform device selection and adaptation. Two concrete examples of descriptions of device units types have been given, real values for inputs and haptic rendering for outputs. The other listed inputs and outputs types are also described in the model. We need such a model to adapt the interaction techniques to the hardware configuration (R2). In order to fit R4 the model can be configured before a session and updated at runtime. In the next section, we show how this model is used to perform automatic selection of device units and for device intrinsic parameters adaptations.

PAC AGENTS FOR INTERACTION TECHNIQUES

Having modeled input and output devices, we now focus on the interaction techniques that work independently from any concrete device thanks to this model. Interaction techniques are created in order to complete a high level task needed in the target application. For 3D user interfaces, according to Hand [START_REF] Hand | A survey of 3d interaction techniques[END_REF], these tasks belong to three categories: selection and manipulation, application control and navigation. According to the plasticity requirements, there is a need for a model for interaction technique description that ensures a good portability over the possible target 3D frameworks and an independence of techniques over the interaction devices.

A convenient model could be PAC [START_REF] Coutaz | on object oriented model for dialog design[END_REF] (Presentation-Abstraction-Control), a multi-agent model that ensures a good decoupling between user interface semantics and its concrete implementation. It decomposes an interaction component into three facets:

• the Presentation: it is the concrete implementation of the component in charge of its input and output management, • the Abstraction: it describes the semantics of the component and the function it can perform, • the Control: it ensures the consistency between the presentation and the abstraction.

However, this model has not been designed to perform context adaptation: a PAC agent will be the same whatever the target platforms and users. Therefore, Calvary et al. introduced Compact [START_REF] Calvary | Towards a new generation of widgets for supporting software plasticity: the 'comet[END_REF] (COntext of user Mouldable PAC for plasticity) a specialization of PAC. Compact divides each facet into two parts, the physical part that is dependent from the current context and the logical one which is always the same. For instance, an algorithm used by the abstraction facet can be replaced according to the target platform performances by just replacing the physical part. However, keeping the semantics and algorithms constant whatever the context was the main interest of the PAC model with its presentation facet that deals with it. PAC does not provide a good decoupling between the input and the output management because the Presentation facet includes both. This decoupling is needed in 3D because of the larger set of possible devices. To solve this issue Grappl [START_REF] Green | The grappl 3d interaction technique library[END_REF] describes an interaction technique with a base class that performs semantics and presentation computation. This class is extended by other classes that implement different ways to control the technique with several sets of interaction devices. Compared to PAC, the method does not ensure a good decoupling between semantics and presentation and a good independence to the target 3D framework. Indeed, Grappl uses its own internal scene graph system.

To solve all of these issues we represent the interaction technique model with a PAC model enhanced with ARCH concepts [START_REF]A metamodel for the runtime architecture of an interactive system: The uims tool developers workshop[END_REF]. ARCH proposes to add adaptor components between the different facets of PAC-like models. This model is also considered as a meta-model for other software models by proposing a generic separation between facets of interactive components. ARCH represents an interactive compo- A need is defined with some properties extracted from the device model. As shown some properties can be omitted, only the detailed ones will be used to select the available device units. The last one is tactile feedback, which is optional and can give a vibration feedback when the user collides any 3D object.

nent as a set of facet branches dedicated to specific features such as presentation and data processing. Our model differs from PAC by separating the original presentation facet into two branches as shown in Figure 6. No adaptor component is currently used. The two branches are based on its rendering and device management core functions:

• The rendering facet is the only facet depending on a 3D framework. It handles graphics output and physics. • The logical driver handles input and output devices management. It describes the way the interaction technique is controlled according to a set of interaction device units. The work of the developer is to choose these device units in order to drive correctly the interaction technique. The logical driver describes all required inputs and outputs units according to a set of parameters taken from our device model. Some can be optional if they are not needed for a good usability. The logical driver can be instantiated if these units can be found at runtime. At runtime, the logical driver receives the input data that it needs and it can trigger the outputs. The device units may come from different concrete devices in order to perform device composition. An example of logical driver is given in Figure 5.

Getting the data independently from concrete devices is one of the possibilities given by the logical driver. Nevertheless, it does not ensure the same behavior over all the devices because all do not have the same capabilities and the same intrinsic properties. As the logical driver is associated with device units, it can access each property of our device model. Thus, the possibility to perform adaptation to the intrinsic parameters of each device unit is given to the developer. For instance, in case of a 3D cursor interaction technique for selection and manipulation controlled with a 6-DoF device, if the virtual environment is bigger than the device tracking volume, the user will not be able to reach all parts of the virtual world. One solution consists in using the boundaries of the tracking value to adapt the gain of a 3D cursor displacement.

By using this PAC/ARCH approach we ensure a good decoupling between the interaction technique semantics and its concrete implementation, the independence of the technique over the target 3D framework and OS (R1), over the concrete devices used as well as over the interaction modality used (R2). Indeed, as we can develop multiple compatible logical drivers for the same interaction technique, this interaction technique can be controlled with different modalities. Moreover, in a case of a context modification at runtime, any presentation facet can be exchanged with another one if it is compatible with the interaction technique. This property ensures the possibility to perform static and dynamic adaptations (R4). To do so, as shown in figure 6 a facet is implemented on top of the control facet: the supervision control. This facet is not present in the classic PAC model. This component contains all the types that can be instantiated as a presentation facet for the current interaction technique: a list of all compatible logical drivers and a list of all rendering facets. It also receives the context modifications at runtime and then is able to determine if a presentation facet is still possible in the current context and may ask the adaptation engine for a replacement. For instance, if a device is unplugged from the system, the supervision control may detect that the current logical driver is unusable and therefore ask the system to replace it by another one into its list of compatible ones.

As we said, a PAC agent represents an interaction technique instantiated to achieve a high level task. To represent this relation Grappl [START_REF] Green | The grappl 3d interaction technique library[END_REF] associates each task with a set of compatible interaction techniques. In the same way, in our interaction model, each task derives from a basic task class and contains a list of properties as well as a list of all PAC agents that can complete it. Therefore, the developer is responsible to associate the interaction techniques that can complete a high level task. This compatibility list is exposed to the system to allocate the best interaction techniques according to the desired tasks. At runtime, the abstraction facet is associated to the task description in order to access its properties. This association allows a developer to include some parameters into the task that will be used by the interaction technique. For instance, in a manipulation task we could parametrize the degrees of freedom on which objects can be manipulated.

To illustrate our interaction model, the Figure 6 presents a manipulation task and its compatible interaction techniques in which we detail the 3D ray-based PAC agent. In that case, the presentation facet creates the ray geometry, handles collision detection and performs scene graph modifications according to the control facet requests. The logical driver handles how the ray is manipulated according to different device units. The first one is based on a 3D interaction device that can provide a 6-Dof tracker. The ray base is controlled in position and rotation by the data given by this tracker. A discrete input (such as a button) is used to attach and detach an object to the ray extremity. Two other discrete inputs are used to change the length of the ray, the first one to increase it, the other one to decrease it. It also includes an optional tactile output in order to perform a vibration feedback when an object is caught. This implementation is shown in Figure 1a, the device used is a razer hydra. the rotation of the ray on the X and Y axes in order to control the ray target. The second 2-Dof input is used to increase the ray length when a positive force is applied on the Y axis and decrease it when a negative force is applied. A discrete input is still used for object catching. The last one is based on an input of mouse type with a 2-DoF input in screen space, as shown in Figure 1b. The position is also constant at the center of the user view. To control the ray rotation, we compute the ray target as the intersection point between the far clipping plane and a ray defined by two points, the camera position and the 3D point that corresponds to the mouse position on the near clipping plane. The mouse wheel is used to increase and reduce its length and a discrete state (one button) for object catching. The 3D-ray is one interaction technique that can complete the selection and manipulation task. However, as shown in Figure 6, it is not the only one. The Figure 1c gives another example: a 3D cursor represented by a virtual hand. In that case, the logical driver used consists in controlling a 3D cursor in position and rotation by tracking the user's hand. To catch and object, the user has to close his hand.

In this section we describe our interaction technique model that ensures device and framework independence which allows our toolkit to cover R1 and R2. The creation of interaction techniques and logical drivers and the association with device units can be done automatically. It can also be configured seamlessly at runtime, for instance switching from a device to another one, or trying another interaction technique. Therefore the model also satisfies R3 and R4. An integrated GUI to perform the configuration could reinforce these aspects. The automatic allocation of the interaction techniques and the configuration GUI are topics for future work.

CONCLUSION AND FUTURE WORK

In this paper, we propose two models that meet the requirements needed to handle the plasticity property for interaction techniques in 3D user interfaces. The first one is an extendable device model which includes devices capabilities, limitations and representations in the real world. This model exposes device context changes such as the add of the removal of a device, or properties modifications. The second one is an interaction model that uses the device model, it is based on PAC and ARCH. The approach lets the developer create interaction techniques independently of concrete devices and of a 3D framework.

Future work consists in establishing and adaptation engine that will create the interaction techniques at runtime according to the current context in order to always provide the most suited application. Our models must also be extended in order to take into account different levels of adaptation such as user and content adaptation. Our perspective is to create a tool for developers and designers for the creation of plastic 3D user interfaces. Such a tool is being developed with our models in Mono C# and interfaced with the Unity3D game engine.
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 3 Figure 3: The description of real value input with two entities: the "data description" and the "technology".

Figure 5 :

 5 Figure 5: An example of a logical driver and its device units needs. It controls a fly navigation interaction technique with joysticks. The first needs are two real values that describe the two joysticks needed.A need is defined with some properties extracted from the device model. As shown some properties can be omitted, only the detailed ones will be used to select the available device units. The last one is tactile feedback, which is optional and can give a vibration feedback when the user collides any 3D object.
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 6 Figure 6: The proposed interaction model. The task selection and manipulation is compatible with 3 interaction techniques. The figure represents the PAC agent of the 3D raybased technique. This agent is compatible with three concrete logical drivers. Multiple rendering presentations could be implemented depending on the target 3D framework.

  The second logical driver is based on two 2-DoF force input like joysticks. The position of the ray base is constant and set at the center of the user view, just in front of the main camera. The first 2-DoF input is used to control
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