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Modeling of a Ring Rosen-Type Piezoelectric 
Transformer by Hamilton’s Principle

Clément Nadal, François Pigache, and Jiří Erhart

Abstract—This paper deals with the analytical modeling 
of a ring Rosen-type piezoelectric transformer. The developed 
model is based on a Hamiltonian approach, enabling to obtain 
main parameters and performance evaluation for the first radi-
al vibratory modes. Methodology is detailed, and final results, 
both the input admittance and the electric potential distribu-
tion on the surface of the secondary part, are compared with 
numerical and experimental ones for discussion and validation.

I. Introduction

The emergence of piezoelectric transformers (PTs) co-
incides with the development of ferroelectric ceram-

ics belonging to the perovskite crystalline family in the 
1950s. PTs use converse piezoelectric effect in the primary 
circuit and direct effect in the secondary circuit for ac 
voltage transformation. The first patent for a step-up PT 
was issued to Rosen et al. in 1958 in the well-known device 
today called a Rosen-type transformer [1]. In addition to 
providing small size and weight, PTs offer outstanding 
performance in terms of galvanic insulation, voltage ra-
tio, and efficiency. Due to their obvious characteristics, 
since the 1990s, PTs have been widely used for low-power 
applications and small embedded systems such as ac/dc 
converters dedicated to laptop chargers [2] or electronic 
ballast for fluorescent lamps [3].

Recently, an outstanding interest has been demonstrat-
ed in the plasma generation field. It is true that the use of 
piezoelectric material for spark ignition has been known 
for a long time as attested by various patents about gas ig-
niters [4], [5], but it has only been for about 15 years that 
this material is newly observed as an interesting plasma 
generator. This recent interest is obviously boosted by the 
widespread applications involving cold plasma discharg-
es such as in biological field, dental surgery, and many 
others. The main special features of the PT solution are 
the high-voltage gain capability and the inherent high di-
electric permittivity of the ferroelectric material. Several 
studies have been carried out with common rectangular 
Rosen-type transformers used as a cold plasma genera-
tor in different gases for several configurations [6], [7]. 

Moreover, specific high-voltage transformers have been 
designed with a view to plasma generation [8], [9], leading 
to patented designs [10].

Rosen et al. suggested not only rectangular geometry 
(k31 – k33 mode), but also variants for the disc (kp – k33 )
mode), ring (k31 – k33 mode), and tube (k33 – k33 mode) 
geometries. Detailed modeling of parameters for the rect-
angular Rosen-type transformers could be found (e.g., in 
[11], [12]) and for its thickness-shear modification in [13]. 
Circular geometry of the Rosen-type transformer has not 
been studied up to now in detail. An attempt has been 
made to model the ring-dot transformer (homogeneously 
poled) [14], or the ring-dot Rosen-type transformer equiv-
alent circuit (poled in thickness direction for the primary 
part and in the radial direction for the secondary part) 
[15], or the tube transformer (poled radially in both seg-
ments) [16].

The main aim of the presented work is the development 
of an analytical method based on a Hamiltonian approach 
to study the electromechanical behavior of a ring Rosen-
type PT. A first interesting study was proposed by Lin et 
al. [15] in which an electrical equivalent circuit of PT’s 
vibratory behavior is obtained. From the latter, a para-
metric study was carried out on the geometric dependence 
of the resonance and anti-resonance frequencies. In this 
paper, a different approach is addressed. The idea of this 
article is to formulate the general equations of motion 
with an energetic method. A study of the PT’s electric 
behavior will follow especially in terms of input admit-
tance. The electric potential distribution will be also a 
major point of interest in view of the possible design of a 
cold plasma generator.

Finally, this article contains the following parts: the 
first one will be dedicated to the development of the elec-
tromechanical modeling whose equations are obtained 
from a Hamiltonian approach [12] and solved with the 
standard modal expansion method. The final model will 
be experimentally verified on prepared samples of ring 
Rosen-type transformer and also validated with numerical 
modeling based on the finite element method. The topic of 
the second section will be followed by a discussion on the 
relevance of the developed theoretical approach.

II. Analytical Modeling

A. Structure and Assumptions

1) Geometry: The analytical modeling developed below 
relies on a geometry of a ring Rosen-type PT as illustrated 
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in Fig. 1. The PT is composed of a primary part of inner 
radius R1 and outer radius R2 poled in the thickness di-
rection and a secondary part radially polarized spreading 
from the radii R2 to R3. This architecture of thickness h 
is driven by an ac voltage power supply applied to the 
driving section by means of two annular electrodes. At 
the receiving section, the electric charges generated by 
the direct piezoelectric effect are gathered on a cylindrical 
electrode with radius R3 and height h on the outer edge 
of the ring. Thereafter, the cylindrical coordinate system 
is chosen and its origin is put at the center of the trans-
former.

2) Mechanical Hypothesis: M1: Because the optimum 
performance of this structure is achieved for radial modes, 
the PT is considered as a thin hollow cylinder whose first 
radial modes are taken into account. This assumption 
needs to respect (h ≪ R3).

M2: A purely radial displacement assumption requires 
that the orthoradial displacement is negligible. Further-
more, the radial component of the displacement is sup-
posed to be independent of the θ− and z− coordinates due 
to the axisymmetry and low thickness. As a consequence, 
the following relationships are supposed to be verified:

	 u u r z t u r tr rθ θ= 0 ( , , , ) = ( , ) and .	 (1)

M3: The assumption of a plane stress motion is put 
forward. The normal stress, Tzz, and the shear stresses, 
Tτz and Tθz, are consequently assumed to be zero. The 
last shear stress Tτθ is vanished due to the axisymmetry 
in such a way that

	 T T T Tzz z rz r= = = = 0θ θ .	 (2)

M4: The PT is supposed to be traction-free on its inner 
and outer edges, leading to the following conditions:

	 T r R t T r R trr rr( = , ) = 0 ( = , ) = 01 3 and .	 (3)

3) Electrical Hypothesis: E1: The primary part being 
assumed reasonably thin and supplied from its lower and 
upper faces, the electric field E, deriving from the electric 
potential ϕ, is supposed to be only orientated along the 
z-axis leading to:

	 E = 0 0 ,[ ] ,−φ z
T 	 (4)

where (.),z denotes a partial derivative with respect to the 
variable z and a superscripted T indicates matrix trans-
position.

E2: The primary side is supposed to be respectively 
connected to the potential vp(t) and the ground on its 
lower and upper faces so much that

	 ∀ ∈
=

− ={r R R r z h t v t
r z h t

[ , ] ,
( , = 2, ) ( )
( , = 2, ) 01 2
φ
φ

/
/

p
.

	 (5)

E3: As the secondary part is radially polarized, and 
besides, it is not electroded on its lower and upper faces, it 
is supposed that the electric displacement field D is purely 
radial as follows:

	 D = 0 0[ ] .Dr T 	 (6)

E4: The secondary part is supposed to be connected to 
a load resistance RL so much that

	 ∀ ∈ −z h h r R z t v t R i t[ 2, 2] , ( = , , ) = ( ) = ( )3/ / s L sφ ,	 (7)

where vs and is are the voltage at the terminals of the load 
resistance and the current through it, respectively.

B. Constitutive Relationships

1) Driving Section: As the primary part behaves like an 
actuator, the set of two independent variables (S, E) is 
consequently chosen. These general constitutive relation-
ships are reminded in [17, ch. 2, sec. 8, p. 51, eq. 2.8–5] 
where the material matrices are expressed in accordance 
with the axial polarization of the primary section. The 
application of the hypothesis M2, M3, and E1 on these 
constitutive relationships leads to

	

T c u c u r e E

T c u c u r e E

D e

rr
E
r r

E
r z

E
r r

E
r z

z

= + −

= + −

=

11 , 12 31

12 , 11 31

/

/θθ

331 , 31 33u e u r Er r r
S
z+ +/ ε ,

	 (8)

where the strain-displacement relationships Srr = ur,r and 
Sθθ = ur/r have been used. The bar symbol on the mate-
rial coefficients is a note to use the specific value of the 
radial transverse coupling mode. These coefficients are 

Fig. 1. Structure of a ring Rosen-type piezoelectric transformer.



given in Table I, where σ12
E  and kp are the Poisson’s ratio 

at constant electric field and the material coupling factor 
relative to the radial transverse mode, respectively.

2) Receiving Section: As the secondary part behaves 
like a sensor, the set of two independent variables (S, D) 
is consequently chosen. As reminded in [17, ch. 2, sec. 8, 
p. 51, eq. 2.8–10] and according to M2, M3, and E2, the 
constitutive relationships are reduced to the following ex-
pression:

	

T c u c u r h D

T c u c u r h D
rr

D
r r

D
r r

D
r r

D
r r

r

= + −

= + −

=

33 , 13 33

13 , 11 31

,

/

/θθ

φ hh u h u r Dr r r
S

r33 , 31 33+ −/ β .

	 (9)

The bar symbol on the material coefficients is a note to 
use the specific value of the radial longitudinal coupling 
mode. These coefficients are given in Table II, where σ13

E  is 
the Poisson’s ratio at constant electric field relative to the 
radial longitudinal mode.

C. Determination of Electrical Quantities

1) Electric Field in the Primary Part: For the driving 
section, the electric displacement field is given by the fol-
lowing relationship:

	 D e u e u rz r r r
S
z= 31 , 31 33 ,+ −/ ε φ .	 (10)

In fact, it results from the Gauss’s law verified throughout 
piezoelectric material:

	 D z t A t z B tz z zz, ,= 0 = 0 ( , ) = ( ) ( )⇔ ⇔ +φ φ φ φ ,	 (11)

where Aϕ and Bϕ are two constants of integration func-
tion of the time t. They can be determined from E2 so 
much that the electric potential in the driving section is 
expressed as follows:

	 φ( , ) =
( )

2z t
v t
h z

hp +( ),	 (12)

and the z-axis component of the electric field is

	 E t
v t
hz( ) =
( )

− p .	 (13)

2) Electric Displacement Field in the Secondary Part: 
For the receiving section, the electric displacement field is 
given from the Gauss’s law verified throughout piezoelec-
tric material by

	 D r D D r t
C t

r
r r r r S,

33

1
= 0 ( , ) =

( )
+ ⇔ φ

β
,	 (14)

where Cϕ is a constant of integration function of the time 
t. The latter can be determined from the quantity of elec-
tric charges qs gathered on the edge of the secondary sec-
tion defined as follows:

	 q t D r R t R z
h

h
rs

/

/
d d( ) = ( = , )

0

2

2

2

3 3−∫ ∫−

π
θ

( )
,	 (15)

so much that

	 D r t
q t
rhr( , ) =
( )

2− s
π .	 (16)

D. Lagrangian of the Piezoelectric Transformer

The Lagrangian L of the studied system is the sum of 
two contributions corresponding to the primary and sec-
ondary parts so much that

	 L L L= p s+ .	 (17)

Each term of the previous relationship is classically de-
fined by the difference of a kinetic coenergy T * and a po-

TABLE I. Piezoelectric Material Coefficients of the Radial Transverse Coupling Mode.
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TABLE II. Piezoelectric Material Coefficients of the Radial Longitudinal Coupling Mode.
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tential energy U. If there is no ambiguity on the definition 
of U  in a purely mechanical framework, it differs for a 
piezoelectric system in accordance with the function, ac-
tuator or sensor, accomplished by this one. It can be 
summed up in the following way:

•	Primary part = actuator: To study such a behavior, 
the independent variable set (S, E) has been chosen 
(see Section II-B). The potential energy U  thus identi-
fies with a free enthalpy G2

a so much that the Lagrang-
ian of the primary part is written as follows [18, ch. 2, 
sec. 2.5.2, p. 16, Table 2.1]:

	 Lp p
T T T T T

p

d=
1
2 [ [ ] 2 [ ] [ ] ]

Ω
Ω∫ − + +ρ ε� �u u S S S E E Ec eE S ,			

		  (18)

where ρp and Ωp are, respectively, the mass density 
and the volume of the primary section. This conven-
tion goes hand in hand with a displacement/flux link-
age formulation based on the use of the generalized 
coordinates and velocities (u, λp) and ( , )�u v p , respec-
tively. The expression (18) can be made explicit by 
using the strain-displacement relationships and the 
electric field Ez in the driving section given by (13) 
leading to expression (22). The clamped capacitance 
of the driving section has been defined with the fol-
lowing expression:

	 C
R R
h

S
p =

( )
33

2
2

1
2

ε
π −

.	 (19)

•	Secondary part = sensor: For this function accom-
plished by the secondary section, the independent 
variable set (S, D) has been chosen (see Section II-B). 
The potential energy U  thus identifies with a free en-
ergy F s  so much that the Lagrangian of the second-
ary part is written as follows [18, ch. 2, sec. 2.5.2, p. 
16, Table 2.1]:

	 Ls s
T T T T T

s

d=
1
2 [ [ ] 2 [ ] [ ] ]

Ω
Ω∫ − + −ρ β� �u u S S S D D Dc hD S ,			

		  (20)

where ρs and Ωs are the mass density and the volume 
of the receiving part, respectively. This convention 
goes hand in hand with a displacement/charge formu-
lation based on the use of the generalized coordinates 
and velocities (u, qs) and ( , )�u i s , respectively. The ex-
pression (20) can be made explicit by using the strain-
displacement relationships and the electric displace-
ment field Dr in the receiving section given by (16) 
leading to the expression (23) with ν = ( )11 33

1 2c cD D/ /  
and σ13 13 33=D D Dc c/ . The clamped capacitance of the 
receiving section has been introduced by means of the 
following relationship:

	 C
h

R R
Ss

/
=

2

33 3 2

π

β log( )
,	 (21)
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		  (22)
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		  (23)

E. Application of Hamilton’s Principle

According to [19], a general form of Hamilton’s prin-
ciple applied to a PT is

	
t

t
t

i

f

ext d∫ +( ) ,δ δL W = 0 	 (24)

where δL and δWext are the variations of the PT’s La-
grangian and the work done by external sources and forc-
es on the time interval [ti, tf], respectively. The latter is 
expressed as follows:

	 δ δλ δWext p p R s( ) = ( ) ( ) ( ) ( )t i t t f t q t+ ,	 (25)

with f tR( ) symbolizing a damping force, due to the Joule’s 
first law in the load resistance, expressed by [20, ch. 3, sec. 
3.4.3, p. 74, eq. 3.47],

	 f t
R q t
qR

s

s
( ) =

( , )
−

∂
∂
�
� ,	 (26)

where R q t( , )�s , named the Rayleigh dissipation function, is 
defined by [20, ch. 3, sec. 3.4.3, p. 74, eq. 3.49],

	 R q t R q tL( , ) =
1
2 ( )2� �s s .	 (27)

In the previous relationship, the load resistance RL plays 
the role of a dissipation constant linked with the general-
ized velocity �q s. The system configuration is besides sup-
posed to be known at initial and final times, so that

	
∀ ∈ =

=
r R R u r t u r t

t t
q t

r r[ , ], ( , ) = ( , ) 0
( ) = ( ) 0

( ) =

1 3 δ δ
δλ δλ

δ δ

i f

p i p f

s i qq ts f( ) 0= .

	 (28)

On this basis, by means of integrations by parts on the 
spatial r and time t variables, the stationary of the definite 



integral (24) leads to the equations governing the system 
dynamic. As a consequence, the equation of motion is ex-
pressed for both primary and secondary parts, as follows:

	
c u r t u r t r R R

c u r t

E
r r

D
r

11 1 1 2

33

( , ) ( , ) [ , ]
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
 π

, ,
			

		  (29)

where Bα[ ]f  is an operator defined for α ∈ R by

	 Bα
α

[ ] .f f r f r
frr r=

1
, ,

2

2+ − 	 (30)

As well as the mechanical equation (29), two extra equa-
tions, respectively named actuator and sensor equations, 
are deduced from Hamilton’s principle and take the fol-
lowing form:

	 i t C v t e ru r tr R
R

p p p( ) = ( ) 2 [ ( , )]31 1
2� �− π ,	 (31)
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C v t h u r t
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= ( ) ( , ) ( , )

2

3

33 ,
31− +





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



∫ .	 (32)

Finally, in order that the problem may be well-defined, 
(29), (31), and (32) need to be completed with the bound-
ary conditions (3) and (7) and the continuity relationships 
expressed at the junction between the driving and receiv-
ing sections as follows:

	 u r R t u r R tr r( = , ) = ( = , )2 2
− + ,	 (33)

	 T r R t T r R trr rr( = , ) = ( = , )2 2
− + ,	 (34)

	 φ φ( = , , ) = ( = , , )2 2r R z t r R z t− + .	 (35)

F. Problem Solving

To solve the problem formulated in the previous sec-
tion, following the standard modal expansion method, the 
radial displacement, solution of (29), can be written as 
an absolutely convergent series of the eigenfunctions as 
follows:

	 u r t u r tr
n

r
n

n( , ) = ( ) ( )
=1

( )
+∞

∞∑ η ,	 (36)

where u rr
n
∞

( ) ( ) and ηn(t) are respectively the mass normal-
ized eigenfunction and the modal coordinate of the free-
free PT with an open secondary part for the nth radial 
mode. Thereafter, the infinite subscript (−∞) will be used 
to remind this configuration.

1) Determination of Eigenmodes: The determination of 
eigenmodes is carried out for a free-free PT with a short-
circuited primary part ( > 0, ( ) = 0)∀t v tp  and an open sec-

ondary part ( > 0, ( ) = 0)∀t q ts . Assuming that the mechan-
ical and electrical quantities harmonically evolve, which 
means for the radial displacement that ur(r, t) = 
u r j tr∞( ) ( )exp ω  with j2 = −1 and u rr∞( ) its amplitude at 
the angular frequency ω, the mechanical equation (29) is 
reduced to
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where k1 and k2 are, respectively, the wave vectors within 
the primary and secondary parts whose expressions are

	 k
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ω ρ σp
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c
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2
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ρ
ω ρ δs

s / − ;	 (39)

ur∞ is thus the solution of a classical homogeneous Bes-
sel’s equation of order 1 and v on the primary and second-
ary parts, respectively, so much that

	 u r A J k r B Y k r r R R
C J k r D Y k r rr
u u

u u
∞

+ ∈
+ ∈

( ) = ( ) ( ) [ , ]
( ) ( )

1 1 1 1 1 2

2 2

,
,ν ν [[ , ]2 3R R{ ,	 (40)

where (J1, Jν) and (Y1, Yν) are Bessel functions of the first 
and second kinds of orders 1 and ν, respectively. Au, Bu, 
Cu, and Du are constants of integration. Then, the expres-
sion of the electric potential can be obtained by injecting 
the part of (40) relative to the receiving section into the 
third equation of the constitutive relationship (9) and 
then integrating. Knowing that the primary part is short 
circuited, the electric potential φ

∞
 associated to the mod-

al radial displacement ur∞ is only nonzero on the receiving 
section with the following expression:

	 φ ν ν φ∞ − −+ +( ) = [ ( ) ( )]33 1,
( )

2 1,
( )

2r h C J k r D Y k r Du
h

u
h ,	 (41)

where the function Cµ ν,
( )h , defined by (42), and the identity 

(43) [21, ch. X, sec. 10.74, p. 350, eq. 5] have been used 
with C  being able to be equally substituted by J or Y in 
both relationships.

	 ∀ ∈ + ∫z z z
h
h

z z zhR, ( ) = ( ) ( ),
( ) 31

33
C C Cµ ν ν

µ
ν d .	 (42)

It has to be noted that sµ,v(z) symbolizes in the expression 
(43) the Lommel function of the first kind whose expres-
sion can be found in [21, ch. X, sec. 10.7, p. 346, eq. 10]. 
This function is a particular solution of a Lommel’s differ-
ential equation (i.e., a nonhomogeneous Bessel’s equation 
with a power function as the right-hand side):
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In fact, it remains to determine five constants of integra-
tion (Au, Bu, Cu, Du, Dϕ) and the resonant angular fre-
quency ω of the considered structure. To solve this prob-
lem, the boundary conditions (3) and the continuity 
relationships (33) to (35) have been used. The radial com-
ponent of the stress tensor T rr is deduced from the expres-
sion (40) inserted into the first equations of the constitu-
tive relationships (8) and (9) so that
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		  (44)

The Bessel’s functions in (44) can be expressed by the 
generic forms C1

E  and Cν
D (C being able to be equally sub-

stituted by J or Y) as follows:
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Combining (40), (41), and (44) with the relationships (3) 
and (33) to (35), the following singular system is obtained:
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where M∞( )ω  is a 5 × 5 matrix function of ω. The reso-
nant angular frequency ω∞

( )n  is the nth root of the secular 
equation det ,[ ( )] = 0M∞ ω  which is explicitly given by (47) 
where ξij

n
i
n

jk R( ) ( )= ∞  for ( , ) 1;2 1;3i j ∈ × . The nth mechani-
cal mode shape u rr

n
∞

( ) ( ) and electric potential φ
∞
( )( )n r  are 

defined, for instance, by expressing (Bu, Cu, Du, Dϕ) as a 
function of the remaining constant of integration Au using 
(46) removed one line. The general solution of the pro-
posed eigenvalue problem consequently takes the form 
given by the equations (49) and (50) where 
U A Yn E n

∞
( )

1 11
( )= ( )u/ ξ , Φ∞ ∞

( )
33

( )=n nh U , and α∞
( )n  is defined by 

(47), (48), (49), and (50), see above.

2) Orthogonality of Eigenmodes: Knowing that the nth 
mode shape verifies the spatial equation expressed on 
both primary and secondary parts as follows:
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the multiplication of the previous equation by the mth 
mode shape u rr

m
∞

( )( ) and an integration over the domain 
gives the relationship (52),
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where M M Mnm nm nm( , ) ( , ) ( , )= p s+  with M nm
p
( , ) and M nm

s
( , ) the 

modal masses of the primary and secondary parts for the 
nth mode shape projected on the mth one, respectively, 
whose expressions are
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Furthermore, the second part of the expression (52) can 
be rewritten by considering on the appropriate interval 
the following identities:
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As a consequence, an integration by parts on the space 
variable r and the use of the boundary conditions (3) and 
the continuity relationship (34) lead to a simplification of 
(52) so much that

	 [ ] ,ω∞ −( ) 2 ( , ) ( , ) = 0n nm nmM K 	 (56)

where K K Knm nm nm( , ) ( , ) ( , )= p s+  with K nm
p
( , ) and K nm

s
( , ) the 

modal stiffnesses of the primary and secondary parts for 
the nth mode projected on the mth one, respectively. 
Their expressions are specified by the relationships (57) 
and (58). To show the orthogonality condition, the same 
procedure can be applied for the mth mode leading to
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		  (58)

	 [ ] .ω∞ −( ) 2 ( , ) ( , ) = 0m m n m nM K 	 (59)

Finally, by subtracting (59) from (56) and recalling that m 
and n are distinct modes ( )( ) ( )ω ω∞ ∞≠m n , the symmetry of 
the modal mass and stiffness matrices [see the expressions 
(53) and (54), then (57) and (58)] enables to highlight the 
orthogonality condition of the eigenfunctions so much that
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where δnm is the Kronecker’s delta. By assuming that the 
PT is composed of the same material for the driving and 
receiving sections, which means ρp = ρs = ρ, the mode 
shapes can be normalized according to the modal mass 
normalization criterion (60) defined for this cylindrical 
structure by
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It enables determination of the constant U n
∞
( ) given by (64) 

where the expression (40) giving the modal radial dis-
placement, to simplify the calculus, has been rewritten as 
follows:
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with Cα β, ( )r  defined by
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3) Response to a Harmonic Supply Voltage: In this sec-
tion, the PT is supposed to be supplied by a harmonic 
input voltage vp(t) = Vpcos(ωt). The solution of the me-
chanical equation (29) to this excitation can be expressed 
by means of (36) and the orthogonality condition (60) 
relative to the chosen eigenfunctions. To perform this, 
both equations of the equation of motion (29) are multi-
plied by the mass-normalized mode shape u rr

m
∞

( )( ) and inte-
grated over the primary and secondary sides, respectively. 
The result is shown by (65):
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Then, by using the identity (55) and an integration by 
parts on the space variable r, the ηn t( )-coefficient in (65) 
can be simplified by the following quantity:
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Finally, by invoking the orthogonality condition (60) and 
using the boundary conditions (3) and the continuity of 
the radial stress (34), it results an infinite system of me-
chanical equations as follows:
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where ψp
n
∞

( )  and χs
n
∞

( ) are the electromechanical coupling 
factors within the primary and secondary sides for the nth 
mode shape. 

	 ∀ ∈ − −∞ ∞n e U R R R Rp
n nN* ( )

31
( )

2 1,1 2 1 1,1 1, = 2 [ ( )]ψ π C C( ) ,			
		  (68)

	
∀ ∈ = + −[[

−

∞ ∞ − −n U h h ss
n nN* ( ) ( )

33 2, 31 2, 2, 1, ( ) 2 ( ) ( )χ ξ ξ ν ξ ξν ν νC C( )

CC2, 1 1,( ) ( )
22
( )
23
( )

ν ν ξ
ξξ ξ− − ]]s n

n

.
	

		  (69)

The previous equation can be expressed in function of the 
secondary voltage vs(t) by using the sensor equation (32) 
so much that the equations governing the electrodynami-
cal behavior of the PT are obtained and can be summa-
rized in (70), see above, where the relationship ψ χs

n
s s
nC∞ ∞

( ) ( )=  
has been used. Moreover, a modal mechanical quality fac-
tor Qmn( ) has been added in the mechanical equation in 
(70), which will be able to be experimentally deduced or 
arbitrarily set. It has to be noticed that the radial modes 
are coupled by crossed terms that can be interpreted as an 
extra stiffness in the mechanical equation. The system of 
(70) is uncoupled for an open circuit condition (qs = 0), in 
accordance with the chosen modal basis, in such a way 
that for n ∈ N*:
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	 (71)

It is possible to give the expression of the input admit-
tance Y i vp p p/∞ =  from the actuator and the mechanical 
equations in (71) so much that
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where X n= ( )ω ω/ ∞  is a dimensionless angular frequency 
and Cmn n n

∞ ∞ ∞ 
( ) ( ) ( ) 2

= ψ ωp /  is the motional capacitance of the 
nth radial mode. Thereafter, putting this method into 

practice will need to truncate the modal basis to a few 
modes, for instance N. The required quantities to obtain 
this model are consequently:

•	the first N resonant angular frequencies ( )( )
1,ω∞ ∈

n
n N, 

mode shapes ( )( )
1,ur

n
n N∞ ∈  and mechanical quality fac-

tors ( )( )
1,Qmn n N∈  for an open ring Rosen-type PT,

•	the first N electromechanical coupling factors 
( )( )

1,ψp∞ ∈
n
n N  and ( )( )

1,χs∞ ∈
n
n N  of the primary and second-

ary parts,
•	the input and output clamped capacitances Cp and 
Cs.

III. Numerical and Experimental Validation

To validate the relevance of the previously developed 
analytical modeling, numerical simulations and experi-
mental characterizations were carried out. The numerical 
study takes advantage of a finite element method using 
the ANSYS software. A 2-D study assuming plane stress 
motion has effectively enabled to plot the mechanical 
mode shapes and the distribution of the electric potential 
along a radius of the considered structure. Regarding the 
experimental validation, this one is based on admittance 
measurements with an impedance analyzer (Agilent Tech-
nologies, HP4294A). This validation has been undertaken 
on four samples, named (S1) to (S4), composed of the 
PZT-type material APC841. All the PTs have the same 
dimensions, their differentiation only relying on a differ-
ent intermediate radius, R2 from 10 mm (S1) to 13 mm 
(S4). The geometrical and structural parameters of these 
PTs are itemized in Table III, where ε0 = 8.854 × 10−12 
symbolizes the vacuum permittivity.

First of all, the Table IV allows to compare the reso-
nant frequencies of a ring Rosen-type PT with an open 
secondary part for the first three radial modes and for 
the four considered samples. The results from the analyti-
cal modeling, the numerical simulation and experimental 
measurements are very satisfactory, as confirmed by the 
percent error between the theoretical and experimental 
values (see Error [%] in Table IV). However, it has to be 
noticed that this error increases with the mode rank. It 
is due to the initial assumptions, essentially M1, M2, and 
M3.
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Additionally, the measurements of the input admit-
tance and its theoretical evaluation by the expression (72) 
are presented on a wide frequency range. For readability 
reasons, only experimental and theoretical results of sam-
ples (S1) and (S4) are presented, in Figs. 2(a) and 2(b), 
respectively. Amplitude and phase are plotted on the same 
graph for qualitative comparison between modeling and 
measurements. The computation of the formula (72) has 
been performed for the first N = 100 radial modes. The 
modal mechanical quality factors Q nm( ) have been identified 
with their experimental values for the first three modes 
and set to the material value for the remaining modal 
quantities. The accuracy is quite satisfying with an error 
increasing with the mode rank, even with a greater num-
ber N of radial mode shapes considered for the computa-
tion. It is a typical limitation of the initial assumptions 
when mechanical wavelength is reduced. It tends to dem-
onstrate that the range of interest for this modeling is 
limited to the rank of first modes. Another origin of dis-
crepancy between theory and experiment may be the po-
larization process which does not necessarily ensure a per-
fect radially polarized secondary part. Indeed, to polarize 
the receiving part, a constant potential difference is ap-
plied between the intermediate radius R2 and the outer 
radius R3. As a consequence, because of the cylindrical 
geometry, a spatially variable electric field ( )∝ 1/r  is in-
duced.

Despite this observed disparity, the theoretical ap-
proach enables to thoroughly study the influence of the 

geometric parameters in view of a PT’s design dedicated 
to a specific application. For instance, within the frame-
work of the plasma generation obtained by piezoelectric 
sources (see [22] for more details), it is obvious that the 
electric potential and its distribution are essential crite-
ria for the promotion of ac plasma discharges. Indeed, 
the plasma discharge is strongly dependent on the electric 
field in the gas surrounding the transformer. The voltage 
value obtained on the surface and more particularly at 
the edge of the ring can be the local origin of the ignition 
and the sustainability of the discharge. It is consequently 
function of the radial mode.

Fig. 3 shows the normalized electric potential distribu-
tion on the ring surface along the radius for the first four 
radial modes. Parametric influence of the intermediate ra-
dius R2 is also illustrated in accordance with existing sam-
ples (S1) to (S4). It has to be noted that the developed 
model also gives the opportunity to draw the normalized 
radial displacement from (40). Although the curves in Fig. 
3 do not inform about the absolute voltage value (normal-
ized curves), it is possible to discuss the different modes.

Among the four modes, the second and the fourth are 
particularly interesting. The former reaches the maximum 
voltage at the edge of the ring. Thus, the electric field in 
the gas immediately surrounding the edge could be very 
high. As a consequence, the plasma discharge may appear 
at the edge, all around the ring. Additionally, the fourth 
mode presents two optimum values, positive and nega-
tive. This configuration gives the opportunity to reach 

TABLE III. Material Properties of APC841 Ceramic and Geometric Parameters  
of Ring Rosen-Type PTs.

Definition Value Unity

R1 Inner radius 4 mm
R2 Intermediate radius [10, 13] mm
R3 Outer radius 20 mm
h Thickness 1 mm
ρ Mass density 7652 kg/m3

s E11 Transversal compliance at constant E 11.7 µm2/N

s E12 Transversal compliance at constant E −6.3 µm2/N

s E13 Transversal compliance at constant E −4.2 µm2/N

s E33 Longitudinal compliance at constant E 13.9 µm2/N

d31 Transversal piezoelectric coefficient −100 pm/V
d33 Longitudinal piezoelectric coefficient 280 pm/V
ε33
T Longitudinal permittivity at constant T 1380 ε0 F/m

k31 Transversal coupling factor 0.264
k33 Longitudinal coupling factor 0.679
Qm Mechanical quality factor 1300

TABLE IV. Resonant Frequencies of a Ring Rosen-Type PT With an Open Secondary Side for the First Three Radial Mode, 
Samples (S1) to (S4), Comparison of the Analytical (Anal.), Numerical (Num.), and Experimental (Exp.) Results.

f n∞( ) 
[Hz]

Mode 1 Mode 2 Mode 3

Anal. Num. Exp. Error [%] Anal. Num. Exp. Error [%] Anal. Num. Exp. Error [%]

(S1) 53 056 53 115 51 794 2.4 147 077 145 628 144 737 1.6 265 324 262 029 250 192 5.7
(S2) 53 541 53 594 51 493 3.8 145 074 143 910 142 356 1.9 265 808 262 553 249 187 6.2
(S3) 53 998 54 048 51 445 4.7 143 442 142 545 141 649 1.2 266 026 262 820 250 527 5.8
(S4) 54 418 54 465 51 349 5.6 142 238 141 582 139 037 2.3 265 251 262 229 248 774 6.2



Fig. 2. Theoretical (solid line) and experimental (dashed line) input admittance (magnitude and phase) for samples (S1) and (S4).

Fig. 3. Theoretical (solid line) and numerical (dashed line) electric potential of a ring Rosen-type PT: samples (S1) to (S4), first four radial modes.



very high electric field on the ring surface, especially in 
the illustrated configuration (S3). In such configuration, 
plasma discharge will appear on the ring surface, mainly 
located between R2 and R3. Other modes may also be 
useful to change the plasma patterns. As a consequence, 
by cautiously observing Fig. 3, it clearly appears that the 
intermediate radius and the radial mode shapes can be 
the subject of a future optimization in view of designing a 
PT dedicated to plasma generation with a voltage gain as 
high as possible. Moreover, it has to be noticed that oper-
ating frequency is an essential parameter for the piezoelec-
tric device as well as for the plasma discharge behavior. 
Indeed, the step-up voltage is only efficient close to one of 
the resonance frequencies of the transformer. Likewise, the 
produced ac electric field may strongly affect the plasma 
discharges because of the dynamic behavior of the electric 
charges (sheath formation, ignition, extinction, etc.). As a 
consequence, specific attention will be paid to the optimi-
zation of the resonant frequency and the resulting design 
of the device.

IV. Conclusion

This paper has demonstrated full analytical modeling 
for a ring Rosen-type PT. The application of Hamilton’s 
principle has enabled establishment of the equations gov-
erning the electromechanical behavior of the considered 
structure. The problem has been solved with the classical 
modal expansion method, and the case of a PT with an 
open secondary has been more precisely studied and vali-
dated with numerical and experimental results. With the 
purpose of using this device as plasma discharge genera-
tor, one of the essential pieces of information is the electric 
potential distribution on the surface of the transformer. 
The results have shown that several vibratory modes are 
interesting to investigate and to be specifically the target 
of optimization to increase the electric field. This work 
has been the first step of an extended study that will 
include optimization of design, carrying out deterministic 
methods based on an analytical behavioral model [23], 
and plasma discharge characterizations.
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