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A method is presented to compute the dielectric function for extended systems using linear response time dependent density functional theory. Localized basis functions with finite support are used to expand both eigenstates and response functions. The electron energy loss function is directly obtained by an iterative Krylov subspace method. We apply our method to graphene and silicon and compare it to plane wave based approaches. Finally, we compute electron energy loss spectrum of C 60 crystal to demonstrate the merits of the method for molecular crystals, where it will be most competitive.

Introduction

The dielectric function (DF) describes the linear response of a solid to external electromagnetic fields [START_REF] Kittel | Introduction to Solid State Physics[END_REF][START_REF] Martin | Electronic Structure: Basic Theory and Practical Methods[END_REF] and so contains infor mation about experimentally observable quantities like optical absorption spectra and electron energy loss spectra (EELS) [START_REF] García De Abajo | [END_REF]. Computing the DF ab initio can be efficiently done within time dependent density function theory (TDDFT). Most approaches in the literature employ plane wave (PW) basis sets [4 8], although several alternatives that use atomic orbital basis sets have been published [9 11]. PWs offer a natural framework for solids, a stable convergence with the basis set size and diagonal representation of some of the relevant operators. On the other hand, the linear com bination of atomic orbitals (LCAO) method allows for an economi cal description of the electronic structure, especially for molecular solids and open nano structures. In this work, we present a method that consistently uses basis sets of finite support both in the initial density functional theory (DFT) and in the subsequent TDDFT cal culation. We directly obtain the electron energy loss function by using an iterative method, thus avoiding costly matrix inversions. We start the derivation from widely used PW formulas to make apparent the connections between PW and LCAO in TDDFT.

Basic theory

The macroscopic DF is given by a spatial average over the inverse microscopic DF [5] ðq; xÞ 1= 1 G 0;G 0 0 ðq; xÞ:

ð1Þ
The inverse microscopic DF is connected to the interacting response function v G 00 G 0 ðq; xÞ

1 GG 0 ðq; xÞ d GG 0 þ v GG 00 v G 00 G 0 ðq; xÞ; ð2Þ 
where v GG 0 4pd GG 0 jGþqj 2 is a Coulomb interaction matrix element between PWs. In the last equation and below in this text we assume summation over repeating indices unless they appear on right hand side of the equations. The interacting response function satisfies a Petersilka Gossman Gross equation [5,6] v GG 0 ðq; xÞ v 0 GG 0 ðq; xÞ þ v 0 GG 00 ðq; xÞK G 00 G 000 ðqÞv G 000 G 0 ðq; xÞ:

Here the non interacting response function v 0 GG 0 ðq; xÞ and the TDDFT interaction kernel K GG 0 ðqÞ appear. In this work, we use the so called RPA approximation K GG 0 ðqÞ v GG 0 for the TDDFT kernel.

The non interacting response function v 0 GG 0 ðq; xÞ has a convenient expression in terms of the Kohn Sham (KS) eigenstates

v 0 GG 0 ðq; xÞ 1 N k X n;m;k ðf n;k f m;kþq ÞU G nm ðk; qÞU G 0 nm ðk; qÞ x ðE m;kþq E n;k Þ þ ig ; ð4Þ 
where the occupation numbers f n;k , band energies E n;k , broadening constant g and number of k points N k appear. U G nm ðk; qÞ are matrix elements of PWs in the basis of KS eigenstates W n;k ðrÞ U G nm ðk; qÞ 

1 V uc p Z V W Ã n;k ðrÞe iðqþGÞr W m;kþq ðrÞd 3 r: ð5Þ 
⇑

Method

Using the general expression for the macroscopic DF from Section 2, we can establish the connection to electronic structure calculations. We will start with LCAO eigenfunctions and expand the DF (2) in a suitable set of localized basis functions.

Localized orbitals in the bulk calculations

We use LCAO in order to expand the eigenstates W n;k ðrÞ of Kohn Sham Hamiltonian U a ðr; kÞ

1 N p X R e ikðRþRaÞ f a ðr R a RÞ: ð7Þ 
Here the number of lattice translations N enters in the normal ization constant (7). The summation in the last equation runs over lattice translations R. The local atomic orbitals f a ðrÞ are translated to each periodically repeated copy in the crystal. However, a finite spatial support of localized orbitals f a ðrÞ leaves the possibility for operators to become sparse when the unit cell size exceeds the spatial support. The expansion coefficients in Eq. ( 6) X n a ðkÞ, are determined during a self consistent Kohn Sham procedure. We use a DFT package SIESTA [12] for this step.

Dominant products in the bulk calculations

We want to use functions of finite support not only in DFT, but also in the TDDFT calculation of the DF [START_REF] Kittel | Introduction to Solid State Physics[END_REF]. For this sake, we will construct a set of functions of finite support which is suitable for expanding the response functions (3) and (4). The matrix elements of PWs (5) contain the products of eigenstates. Therefore, it is obvi ous that the new product basis must represent these products accu rately. A product of eigenstates translates to a product of Bloch orbitals by virtue of the LCAO expansion (6). Using the definition of the Bloch orbital (7) one gets

U a ðr; kÞU b ðr; k þ qÞ 1 N X R;R 0 e ikðRaþRÞ e iðkþqÞðR b þR 0 Þ Â f a ðr R a RÞf b ðr R b R 0 Þ: ð8Þ 
Due to the finite support of the local orbitals f a ðrÞ and f b ðrÞ, the double infinite summation over lattice translations R and R 0 can be converted to a summation in which only one translation runs infi nitely, while the other translation runs only in the neighborhood of the first. For this sake, we introduce a summation over translations S R 0 R that will be finite. Using the super cell translation S, one can rewrite Eq. ( 8)

U a ðr; kÞU b ðr; k þ qÞ 1 N X R;S
e ikðRaþRÞ e iðkþqÞðR b þRþSÞ Â

f a ðr R a RÞf b ðr R b R SÞ: ð9Þ 
The product of localized function in the last equation is trans lated infinitely over the lattice. Hence, it is sufficient to find a rep resentation of this product for a zero translation R 0. In our previous work we used a basis of dominant products [13,14] to expand products of localized functions

f a ðr R a Þf b ðr R b SÞ V abS l F l ðr R l Þ; ð10Þ 
where expansion coefficients V abS l and product functions F l ðrÞ are found in a diagonalization based procedure. The product functions F l ðr R l Þ are centered at the midpoint of the connecting length 

R l ðR a þ R b þ SÞ=2.
Finally, there is a possibility of using only atom centered func tions in the ansatz (11) instead of using functions centered on the midpoint of two atoms. We will use these atom centered products in the calculations, although we have to skip a formal derivation here.

Expansion of response function

The expansion (11) can be used in the non interacting response function (4). To this end, we insert the product of Bloch orbitals (11) with help of Eq. ( 6) into the matrix element ( 5)

U G nm ðk; qÞ X n a ðkÞV ab l ðk; k þ qÞX m b ðk þ qÞF l G ðqÞ; ð13Þ 
where the Fourier transform of the Bloch function (12) appears

F l G ðqÞ 
1 V uc p e iGRl Z V e iðqþGÞr F l ðrÞd 3 r:
Here V uc is the volume of unit cell. Using Eq. ( 13), we find for the response function ( 4)

v 0 GG 0 ðq; xÞ F l G ðqÞv 0 lm ðq; xÞF m G ðqÞ: ð14Þ 
Here the expansion coefficients v 0 lm ðq; xÞ must be defined by v 0 lm ðq; xÞ

1 N k X n;m;k
ðf n;k f m;kþq ÞU nm l ðk; qÞU nm m ðk; qÞ

x ðE mkþq E nk Þ þ ig ; ð15Þ 
where the expansion coefficients U nm l ðk; qÞ of products of eigenstates in terms of product functions are used U nm l ðk; qÞ X n a ðkÞV ab l ðk; k þ qÞX m b ðk þ qÞ:

Furthermore, for the interacting response function v GG 0 ðq; xÞ we use an ansatz similar to Eq. ( 14) and rewrite Eq. ( 3) in the basis of Bloch product functions v lm ðq; xÞ v 0 lm ðq; xÞ þ v 0 ll 0 ðq; xÞK l 0 m 0 ðqÞv m 0 m ðq; xÞ; ð16Þ where the interaction kernel K lm ðqÞ has to be introduced

K lm ðqÞ X GG 0 F l G ðqÞK GG 0 ðqÞF m G 0 ðqÞ: ð17Þ 
In the calculations, we only use the Hartree kernel K GG 0 ðqÞ v GG 0 ðqÞ, although any local or semi local interaction ker nel can be used.

Iterative computation of dielectric function

Using Eqs. ( 1), (2) with ansatz ( 14), we get the inverse macro scopic DF in terms of localized functions

1 ðq; xÞ 1 þ 4p q 2 F l 0 ðqÞv lm ðq; xÞF m 0 ðqÞ; ð18Þ 
where the interacting response function v lm ðq; xÞ can be deter mined by solving Eq. ( 16). The solution of the matrix equation is a maximum of 10 GMRES iterations per frequency point was performed. EELS curves computed with 9 and 10 iterations are not distinguishable on the plot. In Fig. 4 we see a comparison of our calculation with experimental data taken from [23,26]. As in the case of other carbon only systems, we find a low frequency p p à resonance (at about 5.6 eV in the calculation and at about 6.4 eV in the measurements) and r p resonance (at about 25 eV in calculation and measurements). At low resolution, the theoretical result match experimental data rather well. However, a more detailed comparison with higher resolution data in the low frequency range (0 12 eV) is less satisfactory. The discrepan cies are probably connected to the accuracy of the DFT functional (determining v 0 ) and the TDDFT kernel (RPA in our case). However, the method presented here opens a possibility of practical TDDFT calculations for large systems which would be difficult to achieve with other methods. (q, ω)
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Exp. by Kuzuo etal Exp. by Gordeev etal Iter, RPA Fig. 4. EELS of solid C 60 computed with our iterative method is compared to measured spectra. Experimental data is taken from [23,26].
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  n;k ðrÞ X n a ðkÞU a ðr; kÞ ð 6Þ in terms of Bloch symmetrized atomic orbitals[START_REF] Kittel | Introduction to Solid State Physics[END_REF][START_REF] Martin | Electronic Structure: Basic Theory and Practical Methods[END_REF] 

  By inserting the ansatz (10) into Eq. (9) one gets U a ðr; kÞU b ðr; k þ qÞ V ab l ðk; k þ qÞF l ðr; qÞ; ð11Þ where a Bloch product vertex V ab l ðk; k þ qÞ e ikRa e iqR l X S V abS l e iðkþqÞðR b þSÞ ; and a Bloch dominant product function are used F l ðr; qÞ 1 N X R e iqðRlþRÞ F l ðr R l RÞ:
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