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ABSTRACT

A method is presented to compute the dielectric function for extended systems using linear response
time dependent density functional theory. Localized basis functions with finite support are used to
expand both eigenstates and response functions. The electron energy loss function is directly obtained
by an iterative Krylov subspace method. We apply our method to graphene and silicon and compare it
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to plane wave based approaches. Finally, we compute electron energy loss spectrum of Cgq crystal to
demonstrate the merits of the method for molecular crystals, where it will be most competitive.

1. Introduction

The dielectric function (DF) describes the linear response of a
solid to external electromagnetic fields [1,2] and so contains infor
mation about experimentally observable quantities like optical
absorption spectra and electron energy loss spectra (EELS) [3].
Computing the DF ab initio can be efficiently done within time
dependent density function theory (TDDFT). Most approaches in
the literature employ plane wave (PW) basis sets [4 8], although
several alternatives that use atomic orbital basis sets have been
published [9 11]. PWs offer a natural framework for solids, a stable
convergence with the basis set size and diagonal representation of
some of the relevant operators. On the other hand, the linear com
bination of atomic orbitals (LCAO) method allows for an economi
cal description of the electronic structure, especially for molecular
solids and open nano structures. In this work, we present a method
that consistently uses basis sets of finite support both in the initial
density functional theory (DFT) and in the subsequent TDDFT cal
culation. We directly obtain the electron energy loss function by
using an iterative method, thus avoiding costly matrix inversions.
We start the derivation from widely used PW formulas to make
apparent the connections between PW and LCAO in TDDFT.

2. Basic theory

The macroscopic DF is given by a spatial average over the
inverse microscopic DF [5]
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The inverse microscopic DF is connected to the interacting
response function y¢¢ (g, ®)
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where v “‘G"fz‘ﬂz’ is a Coulomb interaction matrix element

between PWs. In the last equation and below in this text we assume
summation over repeating indices unless they appear on right hand
side of the equations. The interacting response function satisfies a
Petersilka Gossman Gross equation [5,6]

Yee (@ ®) 728, 0) + 1% (q, 0K (@) 1516 (4, ). (3)

Here the non interacting response function y2.(q,®) and the
TDDFT interaction kernel K¢ (q) appear. In this work, we use the

so called RPA approximation K (q) v for the TDDFT kernel.
The non interacting response function 2. (q, ®) has a convenient
expression in terms of the Kohn Sham (KS) eigenstates
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where the occupation numbers f,,, band energies E, , broadening
constant # and number of k points Ny appear. U (k,q) are matrix
elements of PWs in the basis of KS eigenstates W, ,(r)
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3. Method

Using the general expression for the macroscopic DF from
Section 2, we can establish the connection to electronic structure
calculations. We will start with LCAO eigenfunctions and expand
the DF (2) in a suitable set of localized basis functions.

3.1. Localized orbitals in the bulk calculations

We use LCAO in order to expand the eigenstates ¥, ,(r) of
Kohn Sham Hamiltonian

Wo(r) X (k)D(r k) (6)

in terms of Bloch symmetrized atomic orbitals [1,2]
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Here the number of lattice translations N enters in the normal
ization constant (7). The summation in the last equation runs over
lattice translations R. The local atomic orbitals f*(r) are translated
to each periodically repeated copy in the crystal. However, a finite
spatial support of localized orbitals f*(r) leaves the possibility for
operators to become sparse when the unit cell size exceeds the
spatial support. The expansion coefficients in Eq. (6) X7 (k), are
determined during a self consistent Kohn Sham procedure. We
use a DFT package SIESTA [12] for this step.

3.2. Dominant products in the bulk calculations

We want to use functions of finite support not only in DFT, but
also in the TDDFT calculation of the DF (1). For this sake, we will
construct a set of functions of finite support which is suitable for
expanding the response functions (3) and (4). The matrix elements
of PWs (5) contain the products of eigenstates. Therefore, it is obvi
ous that the new product basis must represent these products accu
rately. A product of eigenstates translates to a product of Bloch
orbitals by virtue of the LCAO expansion (6). Using the definition
of the Bloch orbital (7) one gets

(r, k) 0" (1, k + q) lze ik(Ro-+R) gi(k-+0) Ry+R') 5
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Due to the finite support of the local orbitals f*(r) and f°(r), the
double infinite summation over lattice translations R and R’ can be
converted to a summation in which only one translation runs infi
nitely, while the other translation runs only in the neighborhood of
the first. For this sake, we introduce a summation over translations
S R Rthat will be finite. Using the super cell translation S, one
can rewrite Eq. (8)

(r k) (r k + q) %Ze ik(Ro +R) @il +) (Ry +R+S) o
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The product of localized function in the last equation is trans
lated infinitely over the lattice. Hence, it is sufficient to find a rep
resentation of this product for a zero translation R 0. In our
previous work we used a basis of dominant products [13,14] to
expand products of localized functions

fir R)f’r R, S)

where expansion coefficients fo’s and product functions F*(r) are
found in a diagonalization based procedure. The product functions
Fi(r R,) are centered at the midpoint of the connecting length

VISFU(r Ry, (10)
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R, (R,+R,+S)/2. By inserting the ansatz (10) into Eq. (9) one
gets

O (r k)@ (r k+q) Vi(kk+q)F(r.q), (11)
where a Bloch product vertex
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Finally, there is a possibility of using only atom centered func
tions in the ansatz (11) instead of using functions centered on the
midpoint of two atoms. We will use these atom centered products
in the calculations, although we have to skip a formal derivation
here.

3.3. Expansion of response function

The expansion (11) can be used in the non interacting response
function (4). To this end, we insert the product of Bloch orbitals
(11) with help of Eq. (6) into the matrix element (5)

Unn(. @) Xg(R)V}/ (k. K+ q)X3 (K + @)Fg(q), (13)

where the Fourier transform of the Bloch function (12) appears
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Here V. is the volume of unit cell. Using Eq. (13), we find for
the response function (4)
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Here the expansion coefficients y9,(q, ) must be defined by
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where the expansion coefficients UZ’“(k,q) of products of
eigenstates in terms of product functions are used

Uk.q)  Xi(k)VE (R k+@)X) (k + q).

Furthermore, for the interacting response function y ¢ (q, @) we
use an ansatz similar to Eq. (14) and rewrite Eq. (3) in the basis of
Bloch product functions

L@ 0) L8 0) + 1y (4 0K (@)70,,(9, ), (16)

where the interaction kernel K*'(q) has to be introduced

K*(q) > FE@K (q)F(q). (17)
GG

In the calculations, we only use the Hartree Kkernel
K°“(q) wvee(q), although any local or semi local interaction ker
nel can be used.

3.4. Iterative computation of dielectric function

Using Egs. (1), (2) with ansatz (14), we get the inverse macro
scopic DF in terms of localized functions

1+ G @000, 0y (@), (18)

where the interacting response function y,,(q,®) can be deter
mined by solving Eq. (16). The solution of the matrix equation is a

'(q, )
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computationally demanding task. However, if only the DF (18) is
needed, then one can avoid the solution of matrix Eq. (16). We
reformulate the problem in terms of solving of a linear equation

(1 KX 1Fo
and a subsequent calculation of the DF (18)
€'(qw) 1+ %}F{,‘(q)x,‘(q). Moreover, applying an iterative, Krylov

subspace scheme [15] for solving the linear equation, one can signif

icantly reduce the computational cost. The whole problem of com

putation of the DF will be done in terms of matrix vector
operations, applying (1 XOK)L to vectors z,. One can split the
matrix vector operation in two: application of the kernel K to
the vector z, and subsequent application of response function to
the intermediate vector Kz. The kernel (17) is a full matrix. We pre

compute the kernel before the iterative procedure and apply it to
vectors using standard BLAS subroutines. The application of the
non interacting response function (15) to a vector can also be split
into several steps. The particular sequence of operations in the com

putation of xf“,zv is shownin Fig. 1. Firstly, we compute the product
V2", Secondly, we multiply with the eigenvector X%, etc. Because
the vertex coefficients Vf," are k dependent, we perform the sum
over the Brillouin zone (BZ) in an outer loop and compute products
xf,‘,z" simultaneously for a set of frequencies {w}. This method
reduces the number of operations significantly. The asymptotical
computation complexity of the method is N2 Ny, where N, is number
of atoms in the unit cell. As iterative solver, we use modified CERF

ACS subroutines which implement the Generalized Minimal Resi
due method [16].

4. Results

Inthe Fig. 2, we compare the EELS of graphene computed by our
iterative method with published calculations [6]. The parameters
for this comparison were chosen as in the publication [6]. Namely,
the momentum transferq 0.046A ' in plane inthe ' M direc
tion, the distance between graphene layers 20 A and the sampling
of BZ 64 x 64 x 1 were used. The frequency broadening was set to
n 0.24eV.In the DFT calculation we used a double zeta polarized
(DZP) basis with an energy shift parameter 50 meV, the Perdew
Zunger (LDA) exchange correlation functional [17] and Troullier
Martins pseudo potentials [18]. For the computation of the Hartree
kernel (17), a set of PWs with an energy cutoff of Eo,: 200 eV
(resulting in 651 PWs) was seen to give converged results and
was subsequently used. The number of product basis functions
was 138 (69 per atom in the unit cell), which is substantially lower
than number of plane waves needed for convergence in this calcu
lation. There are small discrepancies between the calculations.
These discrepancies are most probably due to the basis sets used
(spatial grid versus DZP basis in our calculation) as well as to the
differences in the TDDFT kernel (LDA versus RPA).

The next comparison is shown in the Fig. 3. We compare our
calculation for silicon with measurements [19] and with other
independent calculations [20|. The parameters in the DFT
calculation were the same as in the graphene example. We chose
a small momentum transfer ¢ 0.1336A 1, and an energy cutoff

Xn? =| Zk| Vi Za Xo| Sn Xy X0 V2 }Xd

Fig. 1. The realized sequence of operations for y° x vector product
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Fig. 2. EELS of graphene computed with our iterative method versus a mixed Grid-
PW calculation [6].
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Fig. 3. EELS of silicon with computed with our iterative method versus calculation
in PW basis [20] and measurements [19].

E.: 250eV, which resulted in 339 PWs. The frequency
broadening was set to  0.6eV. The BZ sampling was seen to
be converged with 15 x 15 x 15 points. The number of product
basis functions was 136 (68 per atom in the unit cell), which is
again lower than number of PWs needed for convergence (about
250). In Fig. 3 we see a good agreement between calculations but
less satisfactory agreement with experiment. The discrepancies
between theory and experiment must be attributed to deficiencies
in the LDA functional and the RPA kernel.

The final calculation concerns the solid state of Cgo fullerenes.
The structure and electronic properties of fullerite has been exten
sively studied in the past [21 26]. It is known that buckminster
fullerene crystallizes into one of the cubic lattices [21] and one
should expect non negligible effects on the electronic structure
induced by the crystal structure [27].

In this work, we compute EELS for the fcc crystal of Cgo found by
Dorset and McCourt [28]. The structure is a result of direct elec
tron crystallographic analysis of crystals at room temperature
most relevant for applications in organic electronics. The geometry
was taken from an open crystallography database [29] (id
9011073) and converted to SIESTA format by cif2cell utility
[30]. In the DFT calculation, we used the LDA functional, less
extended atomic orbitals (energy shift parameter 200 meV), an
electronic temperature of 300 K and a 3 x 3 x 3 BZ sampling. The
electronic structure corresponds to a semiconductor with a direct
band gap of 0.85 eV. The gap value coincides rather well with other
LDA calculation by Benning et al. [31] (0.98 eV), a recent calcula
tion by Zélyomi et al. [32] (1.06 eV) and with Troullier and Martins
[33] (1.18 eV). The momentum transfer was taken as the small
value 0.0039 Bohr ' and the broadening constant was set to
0.6 eV. The BZ sampling was seen to be converged with 3 x 3 x 3
points for the resolution defined by broadening of  0.6eV. An
energy cutoff E.x 200eV was used to define the set of PWs,
which resulted in 4015 PWs. The number of product basis func
tions was 4140 (69 functions per atom, i.e. the same as in the case
of graphene example). The runtime on a 12 core machine with
Intel Xeon X5550 processor at 2.67 GHz was 10 h, during which a



1.2 T T T
= Exp. by Kuzuo etai
1F - -- Exp. by Gordeev efal i
Iter, RPA N
_ y
S 08 B
=
706 F ,
w
»—% 04 S
Il Il Il Il Il Il

Frequency, o (eV)

Fig. 4. EELS of solid Csp computed with our iterative method is compared to
measured spectra. Experimental data is taken from [23,26].

maximum of 10 GMRES iterations per frequency point was
performed. EELS curves computed with 9 and 10 iterations are
not distinguishable on the plot. In Fig. 4 we see a comparison of
our calculation with experimental data taken from [23,26]. As in
the case of other carbon only systems, we find a low frequency
m 7" resonance (at about 5.6 eV in the calculation and at about
6.4eV in the measurements) and ¢ 7 resonance (at about
25 eV in calculation and measurements). At low resolution, the
theoretical result match experimental data rather well. However,
a more detailed comparison with higher resolution data in the
low frequency range (0 12 eV) is less satisfactory. The discrepan

cies are probably connected to the accuracy of the DFT functional
(determining °) and the TDDFT kernel (RPA in our case). However,
the method presented here opens a possibility of practical TDDFT
calculations for large systems which would be difficult to achieve
with other methods.
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