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Impedance boundary condition methods (IBCs) are among the most efficient methods for solving time-harmonic eddy-current problems with a small skin depth (delta). However for a wide range of frequencies (or material conductivities) the standard approach is no more efficient, since it requires for each frequency (or conductivity) the computation of a finite element (FE) complex-valued problem. Moreover, the accuracy of IBC decreases dramatically for large delta. As an extension of our previous work, we propose here a more detailed method of parametrization in delta of the 2D small-delta eddy-currents problem. This numerically efficient method gives a very good precision for all the frequencies difficult to address, i.e. from the frequency corresponding to the last good solution obtainable by meshing the conductor up to infinity (perfect conductor solution).

I. INTRODUCTION

HE CLASSICAL surface impedance method makes it possible to solve approximately and quite accurately a time-harmonic eddy-current problem in a conductor (with a linear magnetic behavior), when the skin depth  is small compared to the characteristic size D of the conducting parts  C of the device [START_REF] Yuferev | Selection of the surface impedance boundary conditions for a given problem[END_REF]. If the boundary  of the conductor is regular enough, one can compute the electromagnetic field in the outer domain   by imposing a surface impedance condition on , i.e.:

curl H = J s in   , (1) n 
 E = Z S n  (n  H) on  (2) Z S = (1+j)/(), ( 3 
)
where H is the magnetic field, J s the source current density, E the electric field, n the outward normal, j the imaginary unit and Z S the so-called surface impedance that depends on the electric conductivity  and skin depth . The finite element solution is straightforward, e.g., in a 2D plane case, the vector potential (A) formulation gives (A and J with only one component):

A   0 J s in   ; A   n on  (j1)/2 (4) 
If the frequency (or conductivity) is modified, the solution has to be performed again. Note that this "classical" IBC belongs to a hierarchy of more and more precise approximations of the physical eddycurrents problem. Order 0 is the "perfect conductor" solution (error in  order 1 is the classical surface impedance (1)(3), also called "Leontovich condition", with error in  2 for curved surfaces; order 2 takes the scalar curvature of the boundary into account (error in  3 ) and coincides with Leontovich for flat areas; for higher orders, differential operators are involved on the boundary [START_REF] Yuferev | Selection of the surface impedance boundary conditions for a given problem[END_REF].

II. MATHEMATICAL ASYMPTOTIC EXPANSION

Theoretically, the 2D solution of Problem (4) can be formally expanded in a series in power of ( as in [START_REF] Poignard | Approximate conditions replacing thin layers[END_REF]:

αδ αδ αδ ⋯ αδ (5) 
where the coefficients A i are real-valued solutions to the recurrent elementary problems (6)(7) independent of :

∆  0 J s in   ; A 0  on (6) ∀i 1, ∆ 0 in   ; A i   n  i on (7)
The "perfect conductor" solution corresponds to the first term A 0 . The Leontovich condition corresponds exactly to the infinite development ((5) with n→); however, the limited development ( ) is as good as the Leontovich solution, because their errors with the solution of the physical problem (1)(3) have the same order of magnitude in  2 .

In other words, ( ) is an order-1 delta-parametrized solution, whose error magnitude is of the same order as the classical surface impedance solution. The two basis solutions A 0 and A 1 are easily obtained by solving two (real-valued, one domain, coarse mesh) problems {(6)(7), i=1} in the outer domain   .

One may wonder if it is possible to improve the accuracy. We first tried to include more terms in (5)( 7), but on one hand the numerical stability of (7) is bad for i=2 (and catastrophic for i>2); while on the other hand, the theoretical error compared with the physical solution is not improved. Then another approach must be pursued/adopted/tested.

III. A PRAGMATIC METHOD

A. Purposes Consider the finite element solution (

) of the complete magnetodynamic problem in    C , obtained with the finest "acceptable" mesh (in term of numerical cost, so called "coarse mesh") of the conducting region  C ; f FE and  FE are the corresponding frequency and skin depth (typically,  FE is 15-20% of the characteristic size D of  C and we have 4 or 5 first order elements in  FE all along Fig. 1). We aim at proposing a parametrized solution  δ uch that, in   :

lim → δ δ /δ 0 lim → δ . (8) 
T This way, a good precision is expected for any frequencies greater that f FE ; "good" means equivalent to the precision of the surface impedance method for very high frequencies, and better for lower frequencies, up to f FE for which the precision will be that of the complete coarse mesh solution ( ).

B. Proposed empirical method.

Based on an asymptotic expansion as (5) and on the expected low frequency limit ((8), →

), we propose to consider the following 3 rd order expansion in   :

αδ αδ αδ αδ , (9) 
where (Â 0 , Â 1 )=(A 0 , A 1 ) are given by the method in section II., using 2 finite element solutions in the outer domain   ; and (Â 2 , Â 3 ) are such that the expected limit is exactly reached in :

in    (10) 
The computational cost to get the 2 real-valued potentials (Â 2 , Â 3 ) is that of one FE (coarse meshed) complex-valued solution in the complete domain .

IV. RESULTS FOR A TEST PROBLEM

The test problem (Fig. 1) in this digest is the one described in [START_REF] Krähenbühl | Asymptotic delta-parametrization of surface-impedance solutions[END_REF]: we enforce a flux on part of the boundary  of a conducting rounded angle. This is the simplest possible problem with flat and curved parts for  (note that the question of parametrized solution for eddy currents near corners was previously tackled by the same group of authors [START_REF] Dauge | Corner asymptotics of the magnetic potential in the eddy-current model[END_REF], a further work will combine the proposed techniques). Fig. 2 presents the profiles of the 4 basis potentials (Â 0 … Â 3 ). The quadratic error of the proposed method is compared (Fig. 3) to the error of the classical IBC condition, for frequencies covering the range [f FE ,[.

CONCLUSION AND PERSPECTIVES

The computation cost of the proposed method is less than two IBCs solutions, regardless of the number of frequencies to consider. This clearly shows that we achieved our goal, in terms of precision and computation costs.

The extended paper will present more complex examples and preliminary tests for 3D structures. Future work will investigate the coupling of this parametrization technique with ideas previously proposed [START_REF] Dauge | Corner asymptotics of the magnetic potential in the eddy-current model[END_REF] for conductors with corners as well as rigorous justification of the accuracy. 
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 1 Fig. 1. The test problem (left) and a typical coarse mesh ( FE =15%D).

Fig. 2 .

 2 Fig. 2. Behaviors of the 4 basis solutions (9)(10) obtained for  FE =15%D.
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 3 Fig. 3. Quadratic solution errors : IBC (left); proposed method (right).