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Introduction

In this article we consider the eigenvalues of self-adjoint, second-order elliptic partial differential operators defined on a subdomain of a Riemannian manifold (M, g) of dimension ν ≥ 2. The model for the operators we are able to treat is the Laplacian on a domain with Neumann boundary conditions, defined in the weak sense, i.e. via the Laplacian energy ´Ω (|∇ g ϕ(x)| 2 dv g ´Ω |ϕ(x)| 2 dv g on functions ϕ ∈ H 1 (Ω), but the class treated includes a large variety of Schrödinger operators, even with weights. Specifically, the eigenvalues we shall discuss are operationally defined by the min-max procedure applied to expressions of the general form R(ϕ) := ´Ω (|∇ g ϕ(x)| 2 + V (x)|ϕ(x)| 2 )e -2θ(x) dv g ´Ω |ϕ(x)| 2 e -2ρ(x) dv g .

For convenience we set w = e 2(ρ-θ) so that R takes on the form

R(ϕ) = ´Ω (|∇ g ϕ(x)| 2 + V (x)|ϕ(x)| 2 )w(x)e -2ρ(x) dv g ´Ω |ϕ(x)| 2 e -2ρ(x) dv g . (1) 
Here ρ ∈ C 1 (Ω), 0 < C ≤ w(x) ∈ C 0 (Ω), and V ∈ Lip(Ω) are real-valued functions. We define the Neumann eigenvalues of (1) by the min-max principle [START_REF] Beckenbach | Inequalities. Second revised printing[END_REF][START_REF] Thirring | Atoms, molecules and large systems[END_REF], i.e., µ ℓ := max {subspace S: dim(S)=ℓ}

min {ϕ∈H 1 (Ω):ϕ⊥S, ϕ L 2 =1} R(ϕ). (2) 
Of course, µ ℓ depends on the domain Ω as well as the choice of the metric g, the density e -2ρ and weight w, and the potential V , but dependence on these quantities will not be indicated explicitly unless necessary.

Under suitable regularity assumptions on Ω and V , the sequence {µ ℓ } is nothing but the spectrum of the eigenvalue problem Hϕ = µϕ in Ω (3) with Neumann boundary conditions if ∂Ω = ∅, where Hϕ = -e 2ρ div g we -2ρ ∇ g ϕ + V wϕ

= w ∆ g ϕ + 2 (∇ g θ, ∇ g ϕ) g + V ϕ [START_REF] Edmunds | Spectral theory and differential operators. Oxford Mathematical Monographs[END_REF] where ∆ g ϕ := -div g (∇ g ϕ) is the Laplace Beltrami operator associated with g.

In the following sections we derive semiclassically sharp phase-space upper bounds for the sums of the first k eigenvalues associated with [START_REF] Agmon | Asymptotic properties of solutions of differential equations with simple characteristics[END_REF]. We also obtain bounds for the corresponding Riesz means and heat trace. The following inequalities, which are valid for any bounded domain Ω ⊂ R ν , provide a sampling of these bounds :

1 k k-1 j=0 µ j ≤ 4π 2 ν ν + 2 k |Ω|ω ν 2 ν Ω w(x)d ν x + Ω V (x)w(x)d ν x and j≥0 e -tµ j ≥ |Ω| (4πt) ν 2 Ω w(x) d ν x -ν 2 e -t ffl Ω V (x)w(x) d ν x ,
where V (x) := V (x) + |∇ρ| 2 (x), |Ω| is the volume of Ω, ω ν is the volume of the unit ball in R ν and, for every f ∈ L 1 (Ω), ffl Ω f (x)d ν x = 1 |Ω| ´Ω f (x)d ν x is the mean value of f with respect to Lebesgue measure.

When appropriate we remark on the simpler consequences that apply under assumptions on ρ, w, and V . The case where V = ρ = 0 and w = 1 identically, and M = R ν reduces to the situation treated by Kröger in his ground-breaking work [START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space[END_REF], and this result was already extended to subdomains of general homogeneous spaces by Strichartz [START_REF] Strichartz | Estimates for sums of eigenvalues for domains in homogeneous spaces[END_REF] (see also [START_REF] Gallot | Inégalités isopérimétriques et analytiques sur les variétés riemanniennes[END_REF]). The upper bounds in [START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space[END_REF][START_REF] Strichartz | Estimates for sums of eigenvalues for domains in homogeneous spaces[END_REF] are notable for being sharp in the sense of agreeing with the "semiclassical" Weyl law, with the optimal constant. For the background and context of Weyl-sharp bounds on sums of Laplacian eigenvalues, we refer to [START_REF] Laptev | Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces[END_REF][START_REF] Laptev | Recent improvements of Berezin-Li & Yau type inequalities[END_REF].

In this article a new, simplified proof is used, and we considerably enlarge the family of selfadjoint elliptic operators for which semiclassical upper bounds are proved. Even when V = 0, new cases of interest that are treated include the Witten Laplacian, for which w = 1; the Laplacian of a conformal metric g = α -2 g, for which e -2ρ = α -n and w = α 2 ; and the vibrating membrane with variable density γ(x), for which γ(x) = e -2ρ and w = e 2ρ .

In the last part of the paper, we focus on domains of compact homogeneous Riemannian spaces. We revisit the inequality of Strichartz ([26,Theorem 2.2]) in the light of this new approach and obtain extensions of Strichartz's inequality to the case where the Laplace operator is penalized by a potential in the presence of weights. For example, we prove that if Ω is a domain of a compact homogeneous Riemannian manifold (M, g), then the eigenvalues µ l associated with [START_REF] Agmon | Asymptotic properties of solutions of differential equations with simple characteristics[END_REF] on Ω satisfy for all z ∈ R, and j≥0 e -µ j t ≥ |Ω| g |M | g j≥0 e -λj t for all t > 0, where λj = λ j ffl Ω w dv g + ffl Ω V w dv g , and where the λ ′ j s are the eigenvalues of the Laplacian on the whole manifold M (see Theorem 5.1 and Corollary 5.2). The extension (stricto sensu) of Strichartz inequality is given in Theorem 5.2 and takes the following form when Ω = M :

k-1 j=0 µ j ≤ k-1 j=0 λj .
It is known that without assumptions of regularity, these variationally defined Neumann eigenvalues for the Laplacian may have finite points of accumulation of a quite arbitrary sort, as entertainingly discussed in [START_REF] Hempel | The essential spectrum of Neumann Laplacians on some bounded singular domains[END_REF]. In this case the definition (2) would yield µ ℓ = inf(σ ess ) for all ℓ greater than some value, and the bounds we shall provide would become uninteresting. We note that, for example, the spectrum of the Neumann Laplacian is guaranteed to have no finite points of accumulation if the boundary is piecewise smooth [START_REF] Hempel | The essential spectrum of Neumann Laplacians on some bounded singular domains[END_REF].

Remark 1.1. Before closing this section, we make some further technical remarks about how to define the Dirichlet and Neumann problems for these elliptic operators in the weak, or quadraticform, sense. In this regard we follow Edmunds and Evans [START_REF] Edmunds | Spectral theory and differential operators. Oxford Mathematical Monographs[END_REF], where in Chapter VII it is shown that uniformly elliptic quadratic forms, on arbitrary open sets in Euclidean space, determine unique operators via the Friedrichs extension, which, when the domain is sufficiently regular, reduce to the classically defined operators for the Dirichlet and Neumann problems. (See also [START_REF] Weidmann | Linear operators in Hilbert spaces[END_REF][START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF].) In particular, defining the quadratic form (1) initially on the Sobolev space W 1,2 0 (Ω) corresponds to Dirichlet boundary conditions, whereas defining it initially on the restrictions to Ω of functions in the space W 1,2 0 (R ν ) corresponds to Neumann conditions. (For domains allowing a Sobolev extension property the latter set coincides with W 1,2 (Ω).) It is not in general possible to say that the operators thus defined satisfy boundary conditions in a classical sense, or to guarantee regularity at the boundary. However, in cases where the boundary is sufficiently regular, integration by parts transforms expressions Hϕ, ϕ where H is a classically defined operator into a quadratic form of the type (1) for ϕ in a dense subset of the Sobolev spaces corresponding to Dirichlet or respectively Neumann conditions.

There are certainly significant questions of regularity of the eigenfunctions in the case when Ω is an arbitrary open set, treated for example in [START_REF] Agmon | Lectures on elliptic boundary value problems[END_REF], but they will play no role in the present article.

The extension of the analysis of [START_REF] Edmunds | Spectral theory and differential operators. Oxford Mathematical Monographs[END_REF] from R ν to manifolds is straightforward, because only Hilbert-space structures and locally defined properties of functions and their gradients are used.

The averaged variational principle

In this section we recall the averaged variational principle which will be foundational for this article. The following is mainly a restatement of Theorem 3.1 of Harrell-Stubbe [START_REF] Harrell | On sums of graph eigenvalues[END_REF], along with a characterization of the case of equality.

Theorem 2.1. Consider a self-adjoint operator H on a Hilbert space H, the spectrum of which is discrete at least in its lower portion, so that -∞ < µ 0 ≤ µ 1 ≤ . . . . The corresponding orthonormalized eigenvectors are denoted {ψ (ℓ) }. The closed quadratic form corresponding to H is denoted Q(ϕ, ϕ) for vectors ϕ in the quadratic-form domain Q(H) ⊂ H. Let f ζ ∈ Q(H) be a family of vectors indexed by a variable ζ ranging over a measure space (M, Σ, σ). Suppose that M 0 is a subset of M. Then for any z ∈ R,

j (z -µ j ) + ˆM ψ (j) , f ζ 2 dσ ≥ ˆM0 z f ζ 2 -Q(f ζ , f ζ ) dσ, (6) 
provided that the integrals converge. Moreover, equality holds in (6) for z ∈ R if and only if up to sets of measure 0,

{f ζ ; ζ ∈ M 0 } ⊂ E(z) and {f ζ ; ζ ∈ M \ M 0 } ⊥ E 0 (z),
where E(z) = µ≤z ker(H -µI) and E 0 (z) = µ<z ker(H -µI).

Taking z = µ k in ( 6) we obtain

µ k ˆM0 f ζ 2 dσ - k-1 j=0 ˆM | ψ (j) , f ζ | 2 dσ ≤ ˆM0 Q(f ζ , f ζ )dσ - k-1 j=0 µ j ˆM | ψ (j) , f ζ | 2 dσ, (7) 
Remarks 2.1. 1. The averaged variational principle is an abstract version and sharpening of ideas appearing in various place in the literature, including not only [START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space[END_REF], but also work of Lieb and others on coherent states and trace inequalities [START_REF] Lieb | Coherent States as a Tool for Obtaining Rigorous Bounds[END_REF][START_REF] Lieb | Quantum coherent operators: A generalization of coherent states[END_REF]. In special cases, similar use of averaging and tight frames for the study of eigenvalue sums and related quantities has also been made by Laugesen and Siudeja [START_REF] Laugesen | Sums of Laplace eigenvalues-rotationally symmetric maximizers in the plane[END_REF].

2. We point out that the normalization of the test function f ζ could be incorporated into the measure, so that, for example, Eq. (6) could alternatively be written in terms of integrals of expectation values such as

ˆ | ψ (j) , f ζ | 2 f ζ 2 dσ, (8) 
i.e., over norms of projections of the eigenfunctions. Despite the suggestiveness of these alternatives, an advantageous feature of (7)-( 6) that we shall later exploit is that useful identities are available for averages of norms of some choices of f ζ . Still, if the test functions f ζ and the measure space M constitute a tight frame, in the sense of satisfying a generalized Parseval identity [START_REF] Heil | Continuous and discrete wavelet transforms[END_REF], then alternative forms of the inequalities imply appealing variational principles for sums and Riesz means of eigenvalues, as captured in the next corollary.

Corollary 2.1. Under the assumptions of the Theorem, suppose further that f ζ is a nonvanishing family of test functions with the property that for all φ ∈ H,

ˆM | φ, f ζ | 2 f ζ 2 dσ = A φ 2
for a fixed constant A > 0. Then for any

M 0 ⊂ M such that (|M 0 | -A k) µ k ≥ 0, 1 k k-1 j=0 µ j ≤ 1 |M 0 | ˆM0 Q(f ζ , f ζ ) f ζ 2 dσ. (9) 
For Riesz means,

j (z -µ j ) + ≥ 1 A ˆM0 z - Q(f ζ , f ζ ) f ζ 2 dσ. (10) 
The proof of Corollary 2.1 is immediate; see [START_REF] Harrell | On sums of graph eigenvalues[END_REF] for more in this connection. To make our exposition self-contained, we provide here the proof of the inequality (6) in Theorem 2.1 before discussing the case of equality.

Proof of Theorem 2.1. For every integer l ≥ 0, we denote by P l the orthogonal projector onto the subspace spanned by {ψ (j) , j ≤ l}, i.e. P l f = l j=0 ψ (j) , f ψ (j) . Let z ∈ R, z > µ 0 (the inequality (6) being obvious for z ≤ µ 0 ), and let k be the smallest integer such that z

≤ µ k (that is z ∈ (µ k-1 , µ k ]). Then z f -P k-1 f 2 ≤ µ k f -P k-1 f 2 ≤ Q(f -P k-1 f, f -P k-1 f ), (11) 
and, after direct computations,

z f 2 -P k-1 f 2 ≤ Q(f, f ) -Q(P k-1 f, P k-1 f ). With P k-1 f 2 = k-1 j=0 ψ (j) , f 2 and Q(P k-1 f, P k-1 f ) = k-1 j=0 µ j ψ (j) , f 2 , this yields z f 2 -Q(f, f ) ≤ k-1 j=0 (z -µ j ) ψ (j) , f 2 .
Applying this last inequality to f ζ , ζ ∈ M 0 , and integrating over M 0 we get

z ˆM0 f ζ 2 dσ - ˆM0 Q(f ζ , f ζ )dσ ≤ k-1 j=0 (z -µ j ) ˆM0 | ψ (j) , f ζ | 2 dσ = j≥0 (z -µ j ) + ˆM0 | ψ (j) , f ζ | 2 dσ. (12) 
The inequality [START_REF] Soufi | Majoration de la seconde valeur propre d'un opérateur de Schrödinger sur une variété compacte et applications[END_REF] follows from [START_REF] Hempel | The essential spectrum of Neumann Laplacians on some bounded singular domains[END_REF] and the obvious inequality

j≥0 (z -µ j ) + ˆM0 | ψ (j) , f ζ | 2 dσ ≤ j≥0 (z -µ j ) + ˆM | ψ (j) , f ζ | 2 dσ. (13) 
Assume now that equality holds in [START_REF] Soufi | Majoration de la seconde valeur propre d'un opérateur de Schrödinger sur une variété compacte et applications[END_REF]. This implies that equality holds in [START_REF] Heil | Continuous and discrete wavelet transforms[END_REF] and in (11) for f = f ζ for almost all ζ ∈ M 0 . Equality in [START_REF] Hassannezhad | Eigenvalues of perturbed Laplace operators on compact manifolds[END_REF] holds for f either when z < µ k and f

= P k-1 f or if z = µ k and H(f -P k-1 f ) = µ k (f -P k-1 f
), which implies in both cases that f ∈ E(z). On the other hand, equality in [START_REF] Heil | Continuous and discrete wavelet transforms[END_REF] implies that, for almost all ζ ∈ M \ M 0 and all j ∈ N such that µ j < z, f ζ is orthogonal to span{ψ (0) , . . . , ψ (j) }, which means that f ζ is orthogonal to E 0 (z).

Conversely, under the conditions of the statement,

j (z -µ j ) + ˆM ψ (j) , f ζ 2 dσ = j (z -µ j ) + ˆM0 ψ (j) , f ζ 2 dσ = µ j ≤z z ˆM0 ψ (j) , f ζ 2 dσ - µ j ≤z µ j ˆM0 ψ (j) , f ζ 2 dσ = +∞ j=0 z ˆM0 ψ (j) , f ζ 2 dσ - +∞ j=0 µ j ˆM0 ψ (j) , f ζ 2 dσ = ˆM0 z f ζ 2 -Q(f ζ , f ζ ) dσ.
As the guiding example for this article, when Ω is a bounded subdomain of R ν , we may use test functions of the form

f ζ (x) := 1 (2π) ν/2 e ip•x ,
where ζ has been equated to p, which ranges over M = R ν with Lebesgue measure (The reason for distinguishing ζ logically from p will be made clear in Theorem 4.1.). Indeed,

f ζ 2 = |Ω| (2π) ν
for all ζ, where |Ω| is the Euclidean volume of Ω, and Parseval's identity gives

ˆRν | φ, f ζ | 2 d ν p = φ 2 .
Hence, applying Corollary 2.1 with M 0 ⊂ M taken to be the Euclidean ball of radius 2π

k |Ω|ων 1 ν ,
we recover Kröger's inequality for Neumann eigenvalues of the Euclidean Laplacian (here ω ν stands for the volume of the ν-dimensional Euclidean unit ball). Indeed, in this case, the Rayleigh quotient of f ζ is simply given by R(f ζ ) = |p| 2 and (9) yields

1 k k-1 j=0 µ j ≤ 1 |M 0 | ˆM0 |p| 2 d ν p = 4π 2 ν ν + 2 k |Ω|ω ν 2 ν
. This approach can be applied to easily extend Kröger's inequality to Neumann eigenvalues on a bounded subdomain of R ν in the presence of nontrivial potential and weights.

Example 2.1. Let µ 0 ≤ µ 1 ≤ . . . be the variationally defined Neumann eigenvalues (2) on a bounded open set Ω ⊂ R ν endowed with the standard Euclidean metric, where w, ρ, and V satisfy the assumptions stated above. Then

1 k k-1 j=0 µ j ≤ 4π 2 ν ν + 2 k |Ω|ω ν 2 ν Ω w(x)d ν x + Ω V (x)w(x)d ν x, (14) 
where V (x) := V (x) + |∇ρ| 2 (x) and, for every

f ∈ L 1 (Ω), ffl Ω f (x)d ν x = 1 |Ω| ´Ω f (x)d ν
x is the mean value of f with respect to Lebesgue measure.

Example 2.1 sets the stage for a more general result that we obtain in Section 3 in the context of Riemannian manifolds. We also stress that these estimates will be improved in Section 4, with the aid of a coherent-state analysis relating the upper bounds to phase-space volumes.

Upper bounds for individual Neumann eigenvalues µ j are also obtainable from the averaged variational principle. In order to somewhat simplify the bound, let us define the shifted Neumann eigenvalues

µ j := µ j - Ω V (x)w(x)d ν x. ( 15 
)
In terms of these quantities, we will be able to show that (see Corollary 3.1)

µ k ≤ 4π 2 k |Ω|ω ν 2 ν 1 + 2 1 -S k ν + 2 Ω w(x)d ν x, (16) 
where

S k := 1 k k-1 j=0 µ j 4π 2 ν ν+2 k |Ω|ων 2 ν ffl Ω w(x)d ν x ≤ 1. ( 17 
)

Bounds for Neumann eigenvalues on domains of Riemannian manifolds

Let (M, g) be a Riemannian manifold of dimension ν ≥ 2 and let Ω be a bounded subdomain of M . Of course, when M is a closed manifold, Ω can be equal to the whole of M .

Let F : (M, g) → R N , be an isometric embedding (whose existence for sufficiently large N is guaranteed by Nash's embedding Theorem). To any function u ∈ L 2 (Ω), we associate the function ûF : R N → R defined by

ûF (p) = ˆΩ u(x)e ip•F (x) dv g , (18) 
where the dot stands for the Euclidean inner product in R N (i.e., ûF is the Fourier transform of the signed measure F * (udv g ) supported by F (Ω)). 

ˆBR |û F (p)| 2 d N p ≤ C F (Ω) R N -ν u 2 , ( 19 
)
where B R is the Euclidean ball of radius R in R N centered at the origin and u 2 = ´Ω u 2 dv g . In other words the Fourier functions appearing in ( 18) constitute a frame that is not generally tight.

We define the Riemannian constant H Ω by

H Ω = inf N ≥ν inf F ∈I(M,R N ) ν + 2 N + 2 ν 2 1 ω N C F (Ω) , (20) 
where

I(M, R N ) is the set of isometric embeddings from (M, g) to R N .
When Ω is a domain of R ν , we may take for F the identity map so that, ∀u ∈ L 2 (Ω), ûI is nothing but the Fourier transform of u extended by zero outside Ω. Using Parseval's identity we get ∀R > 0,

ˆBR |û F (p)| 2 d ν p ≤ ˆRν |û F (p)| 2 d ν p = (2π) ν u 2 .
Thus C I(Ω) = (2π) ν and

H Ω ≤ (2π) ν ω ν . (21) 
In all the sequel, the notation |Ω| g will designate the Riemannian volume of Ω with respect to g. We will also use the notation ffl Ω f dv g to represent the mean value of a function f ∈ L 1 (Ω) with respect to the Riemanian measure dv g . (I.e.,

ffl

Ω f dv g = 1 |Ω|g ´Ω f dv g .) Theorem 3.1. Let (M, g) be a Riemannian manifold of dimension ν ≥ 2. Let µ l = µ l (Ω, g, ρ, w, V ),
l ∈ N, be the eigenvalues defined by (2) on a bounded open set Ω ⊂ M , where w, ρ, and V satisfy the assumptions stated above. Then

(1) For all z ∈ R,

j≥0 (z -µ j ) + ≥ 2 |Ω| g (ν + 2)H Ω Ω w dv g -ν 2 z - Ω V w dv g 1+ ν 2 + , (22) 
where

V = V + |∇ g ρ| 2 .
(2) For all k ∈ N,

1 k k-1 j=0 µ j ≤ ν ν + 2 H Ω |Ω| g k 2 ν Ω w dv g + Ω V w dv g . (23) 
(3) For all t > 0,

j≥0 e -t(µ j - ffl Ω V w dvg ) ≥ π t ν 2 |Ω| g ω ν H Ω Ω w dv g -ν 2 . ( 24 
)
Proof. Let F : (M, g) → R N be an isometric embedding. For simplicity, we identify the domain Ω with its image F (Ω) ⊂ R N and any function u

: Ω → R with u • F -1 : F (Ω) → R.
We apply Theorem 2.1 using test functions of the form

f ζ (x) := e ip•x+ρ(x) ,
where ζ has been equated to p, which ranges over M = B R ⊂ R N endowed with Lebesgue measure, where B R is a Eucidean N -dimensional ball whose radius R is to be determined later.

Our Hilbert space here is L 2 (Ω, e -2ρ dv g ) (endowed with the norm

u 2 = ´Ω u 2 e -2ρ dv g ). Hence, for all ζ, f ζ 2 = |Ω| g and consequently ˆM f ζ 2 d N p = |Ω| g ω N R N . (25) 
On the other hand, in our case the quadratic form is

Q(f ζ , f ζ ) = ˆΩ |∇ τ f ζ | 2 + V |f ζ | 2 w(x) e -2ρ(x) dv g ,
where ∇ τ f ζ is the tangential part of the gradient of f ζ (more generally, for all v ∈ R N , v τ will designate the tangential vector field induced on Ω by orthogonal projection of v). Thus, with

|f ζ | 2 = e 2ρ and |∇ τ f ζ | 2 = |p τ + ∇ τ ρ| 2 , Q(f ζ , f ζ ) = ˆΩ |p τ | 2 (x) + 2p • ∇ τ ρ(x) w(x)dv g + ˆΩ(V + |∇ τ ρ| 2 )w(x)dv g .
Observe that for symmetry reasons, for all v ∈ R N \ {0},

ˆBR p • v d N p = 0
and, after elementary calculations,

ˆBR (p • v) 2 d N p = |v| N ˆBR |p| 2 d N p = |v| N + 2 ω N R N +2 .
Thus, if {v 1 , . . . , v ν } is an orthonormal basis of the tangent space of Ω at a point x, then

ˆΩ |p τ | 2 (x) d N p = j≤ν ˆBR (p • v j ) 2 d N p = ν N + 2 ω N R N +2 . This leads to ˆM Q(f ζ , f ζ )d N p = ν N + 2 ω N R N +2 ˆΩ w dv g + ω N R N ˆΩ V w dv g . (26) 
It remains to deal with the integrals ´M | ψ (j) , f ζ | 2 d N p, where {ψ (j) } is an L 2 (Ω, e -2ρ dv g )orthonormal basis of eigenfunctions associated to {µ j }. Setting φ (j) = e -ρ ψ (j) ,

ψ (j) , f ζ = ˆΩ f ζ ψ (j) e -2ρ dv g = ˆΩ e ip•x ψ (j) e -ρ dv g = φ(j) F (p).
Using [START_REF] Li | Some upper bounds for sums of eigenvalues of the Neumann Laplacian[END_REF] we obtain

ˆBR | ψ (j) , f ζ | 2 d N p = ˆBR | φ(j) F (p)| 2 d N p ≤ C F (Ω) R N -ν ˆΩ |φ (j) | 2 dv g = C F (Ω) R N -ν ˆΩ |ψ (j) | 2 e -2ρ dv g = C F (Ω) R N -ν . ( 27 
)
We put ( 25), [START_REF] Strichartz | Estimates for sums of eigenvalues for domains in homogeneous spaces[END_REF], and ( 27) into ( 6) after choosing M 0 = M = B R , and obtain for all R > 0 and z ∈ R

j≥0 (z -µ j ) + C F (Ω) ≥ |Ω| g ω N R ν z - νR 2 N + 2 Ω w dv g - Ω V w dv g . (28) 
The right side of this inequality is optimized when

R = 0 if z ≤ ffl Ω V w dv g and when R 2 = N +2 ν+2 z - ffl Ω V w dv g / ffl Ω w dv g otherwise. Thus j≥0 (z -µ j ) + C F (Ω) ≥ |Ω| g ω N N + 2 ν + 2 ν 2 2 ν + 2 Ω w dv g -ν 2 z - Ω V w dv g 1+ ν 2 + . (29) 
Taking the infimum with respect to F and N we get [START_REF] Lieb | Quantum coherent operators: A generalization of coherent states[END_REF].

To prove [START_REF] Montgomery | Minimal theta functions[END_REF] we first observe that taking z = µ k in [START_REF] Weidmann | Linear operators in Hilbert spaces[END_REF] gives

kµ k - k-1 j=0 µ j ≥ |Ω| g ω N R ν C F (Ω) µ k - νR 2 N + 2 Ω w dv g - Ω V w dv g (30) 
for all R > 0, or

k-1 j=0 µ j ≤ k - |Ω| g ω N R ν C F (Ω) µ k + |Ω| g ω N R ν C F (Ω) νR 2 N + 2 Ω w dv g + Ω V w dv g . Choosing R such that |Ω|gω N R ν C F (Ω) = k we get k-1 j=0 µ j ≤ k ν N + 2 C F (Ω) k |Ω| g ω N 2 ν Ω w dv g + Ω V w dv g , (31) 
which leads to [START_REF] Montgomery | Minimal theta functions[END_REF] after taking the infimum with respect to F and N . The inequality ( 24) is a consequence of ( 22) and the following identity relating the heat trace to the Laplace transform of the Riesz mean :

j≥0 e -µ j t = t 2 ˆ∞ 0 e -zt j≥0 (z -µ j ) + dz. ( 32 
)
Remarks 3.1. 1. In [19, Theorem 1.2], Li and Tang obtained for the Laplacian (i.e. in the case V = ρ = 0, w = 1) an inequality which is similar to but weaker than (31). Indeed, instead of the term ν N +2 in the right side their inequality appears with N N +2 . 2. It is possible to derive (23) from (22) using Legendre transform. Indeed, the Legendre transform of a function f of the form f (z) = A(z -B)

1+ ν 2 + with A > 0 is given by f ∧ (p) = sup z≥0 (pz -f (z)) = 2 A 2 ν ν (ν + 2) 1+ 2 ν p 1+ 2 ν + Bp, while the Legendre transform of g(z) = j≥0 (z -µ j ) + is g ∧ (p) = ⌊p⌋-1 j=0 µ j + (p -⌊p⌋)µ ⌊p⌋ . (Indeed, for z ∈ [µ k-1 , µ k ], pz -g(z) = (p -k)z + k-1
j=0 µ j which is nondecreasing as soon as k ≤ ⌊p⌋.) Hence, it suffices to apply Legendre transform to both sides of [START_REF] Lieb | Quantum coherent operators: A generalization of coherent states[END_REF] taking into account that such a transform is inequality-reversing. 

µ k ≤ 1 + 2 1 -S k ν + 2 H Ω |Ω| g k 2 ν Ω w dv g , (33) 
where

µ k = µ k - Ω V w dv g and S k := 1 k k-1 j=0 µ j H Ω k |Ω|g 2 ν ffl Ω w dv g .
Notice that according to Theorem 3.1 (2), S k ≤ 1.

Proof of Corollary 3.1. We take back the proof of Theorem 3.1 and rewrite (30) as follows: For every positive R,

k µ k - k-1 j=0 µ j ≥ |Ω| g ω N R ν C F (Ω) µ k - νR 2 N + 2 Ω w dv g , (34) 
which yields

|Ω| g ω N R ν C F (Ω) -k µ k ≤ ν N + 2 |Ω| g ω N R ν+2 C F (Ω) Ω w dv g - k-1 j=0 µ j .
With the change of variable σ :=

|Ω| g ω N C F (Ω) k R ν the last inequality reads (σ -1) µ k ≤ ν N + 2 C F (Ω) k |Ω| g ω N 2 ν Ω w dv g σ 1+ 2 ν - 1 k k-1 j=0 µ j
for all σ > 1. Taking the infimum with respect to F and N and using [START_REF] Lieb | Coherent States as a Tool for Obtaining Rigorous Bounds[END_REF], we get

(σ -1) µ k ≤ H Ω k |Ω| g 2 ν Ω w dv g σ 1+ 2 ν - 1 k k-1 j=0 µ j = H Ω k |Ω| g 2 ν Ω w dv g σ 1+ 2 ν -S k .
That is

µ k ≤ H Ω k |Ω| g 2 ν Ω w dv g σ 1+ 2 ν -S k σ -1 . ( 35 
)
This inequality can be explicitly optimized with respect to σ ∈ [1, +∞) only when ν = 2, and we then obtain σ + = 1 + √ 1 -S k , yielding the desired bound. For general ν ≥ 2 we introduce a new change of variable as follows : σ = 1 + αz k , where

z k = (1 -S k ) 1 p , p = ν + 2 ν
, and α is a free positive parameter. Then the bound (35) reads:

µ k ≤ H Ω k |Ω| g 2 ν Ω w dv g (1 + αz k ) p -1 + z p k αz k . Since 1 < p ≤ 2 for all ν ≥ 2, it follows that 1 p (1 + αz k ) p -1 + z p k αz k = 1 αz k ˆαz k 0 (1 + s) p-1 ds + z p-1 k pα ≤ 1 αz k ˆαz k 0 (1 + (p -1)s) ds + z p-1 k pα = 1 + (p -1)αz k 2 + z p-1 k pα .
Optimizing with respect to α leads to choose

α 2 = 2z p-2 k p(p -1)
. Thus,

1 p (1 + αz k ) p -1 + z p k αz k ≤ 1 + √ 2 p -1 p z p 2 k = 1 + 2 √ 1 -S k √ ν + 2 ,
which implies the the desired inequality.

Corollary 3.2. Under the assumptions of Theorem 3.1, for any integer k ∈ N such that k-1 j=0 µ j ≥ 0,

µ k 1 - ffl Ω V w dv g µ k 1+ 2 ν + ≤ ν + 2 2 2 ν H Ω |Ω| g k 2 ν Ω w dv g . (36) 
In particular,

µ k ≤ max 2 Ω V w dv g ; 2 (ν + 2) 2 ν H Ω |Ω| g k 2 ν Ω w dv g . ( 37 
)
Proof. From the inequality (30) in the proof of Theorem 3.1, we deduce with k-1 j=0 µ j ≥ 0 that for all R ≥ 0,

kµ k - |Ω| g ω N R ν C F (Ω) µ k - νR 2 N + 2 Ω w dv g - Ω V w dv g ≥ 0. ( 38 
)
The left side achieves its minimum when

R = 0 if µ k ≤ ffl Ω V w dv g and otherwise when R 2 = N +2 ν+2 µ k - ffl Ω V w dv g / ffl Ω w dv g . Since (36) is obviously satisfied when µ k ≤ ffl Ω V w dv g , we shall assume µ k > ffl Ω V w dv g and get kµ k - |Ω| g ω N C F (Ω) N + 2 ν + 2 ν 2 2 ν + 2 µ k - Ω V w dv g 1+ ν 2 Ω w dv g -ν 2 ≥ 0 which gives µ k - Ω V w dv g 1+ ν 2 ≤ C F (Ω) |Ω| g ω N ν + 2 N + 2 ν 2 ν + 2 2 Ω w dv g ν 2 kµ k .
Therefore,

µ ν 2 k 1 - ffl Ω V w dv g µ k 1+ ν 2 ≤ C F (Ω) |Ω| g ω N ν + 2 N + 2 ν 2 ν + 2 2 Ω w dv g ν 2 k.
Raising to the power 2 ν and taking the infimum with respect to F and N we obtain (36). To prove (37) we observe that if

µ k > 2 ffl Ω V w dv g , then 1 - ffl Ω V w dvg µ k > 1 2
, so we can deduce from (36) 1 2

1+ 2 ν µ k ≤ ν + 2 2 2 ν H Ω |Ω| g k 2 ν
Ω w dv g .

Note that when ρ = V = 0, the inequality (36) of Corollary 3.2 produces

µ k ≤ ν + 2 2 2 ν H Ω |Ω| g k 2 ν Ω w dv g ,
which coincides with Kröger's estimate [START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space[END_REF]Corollary 2] when Ω is a Euclidean domain and w = 1 (just replace H Ω by (2π) ν ων ). Let us highlight some consequences of Theorem 3.1 on Schrödinger operators, Witten Laplacians, and Laplacians associated with conformally Euclidean metrics.

Example 3.1 (Schrödinger operators). From (23) in Theorem 3.1 and (37) in Corollary 3.2 we deduce that for any Schrödinger operator ∆ g + V on Ω and any integer k ≥ 0 we find (with ρ = 0 and w = 1)

1 k k-1 j=0 µ j (∆ g + V ) ≤ ν ν + 2 H Ω |Ω| g k 2 ν + Ω V dv g . (39) Furthermore, if k-1 j=0 µ j (∆ g + V ) ≥ 0, µ k (∆ g + V ) ≤ max 2 Ω V dv g ; 2 (ν + 2) 2 ν H Ω |Ω| g k 2 ν . ( 40 
)
These estimates are to be compared with [ 

(∆ g + V ) ≥ 0, µ k (∆ g + V ) ≤ C(Ω)k + 1 ε(Ω) Ω V dv g ( 41 
)
where C(Ω) > 0 and ε(Ω) ∈ (0, 1) are two Riemannian constants that do not depend on V or k.

They ask whether such an estimate holds true with ε(Ω) = 1. The inequality (39) answers this question for the eigenvalue sums k-1 j=0 µ j in the affirmative, without any positivity condition.

On the other hand, unlike the upper bound in (41), our estimates (39) and (40) are consistent with the Weyl law regarding the power of k. Notice that (41) has been recently improved by A. Hassannezhad [START_REF] Hassannezhad | Eigenvalues of perturbed Laplace operators on compact manifolds[END_REF] who obtained

µ k (∆ g + V ) ≤ C(Ω) + A ν Ω V dv g + B ν k |Ω| g 2 ν
under the same assumption of positivity of µ 0 (∆ g + V ), where A ν > 1 and B ν are two constants that only depend on the dimension ν, and C(Ω) is a Riemannian constant that does not depend on V or k. Our estimates are valid, however, under weaker assumptions and, moreover, the coefficient in front of ffl Ω V dv g in (40) is equal to 1 while the other coefficient is explicitly computable at least in the elementary case where Ω is conformally Euclidean.

Example 3.2 (Witten Laplacians).

Let Ω be a bounded domain of a Riemannian manifold (M, g) and let ∆ ρ be the Witten Laplacian associated with the density e -2ρ , that is,

∆ ρ ϕ = ∆ g ϕ + 2(∇ g ρ, ∇ g ϕ).
The Neumann eigenvalues {µ l } of ∆ ρ in Ω satisfy the following estimates :

(1) For all z ∈ R,

j≥0 (z -µ j ) + ≥ 2 |Ω| g (ν + 2)H Ω z - Ω |∇ g ρ| 2 dv g 1+ ν 2 + . (42) 
(2) For all k ∈ N * ,

1 k k-1 j=0 µ j ≤ ν ν + 2 H Ω |Ω| g k 2 ν + Ω |∇ g ρ| 2 dv g . (43) 
(3) For all k ∈ N * ,

µ k 1 - ffl Ω |∇ g ρ| 2 dv g µ k 1+ 2 ν + ≤ ν + 2 2 2 ν H Ω |Ω| g k 2 ν . ( 44 
)
In particular,

µ k ≤ max 2 Ω |∇ g ρ| 2 dv g ; 2 (ν + 2) 2 ν H Ω |Ω| g k 2 ν . ( 45 
)
This last inequality is to be compared with the estimates obtained in [START_REF] Colbois | Eigenvalues of the Laplacian on a compact manifold with density[END_REF].

For example, when Ω is a bounded domain of R ν endowed with the Gaussian density e -|x| 2 /2 , we have for the corresponding Witten Laplacian

1 k k-1 j=0 µ j ≤ ν ν + 2 4π 2 k |Ω|ω ν 2 ν + ω ν |Ω| R ν+2 ,
where R is chosen so that Ω is contained in the Euclidean ball B R .

Example 3.3 (Laplacian associated with a conformally Euclidean metric).

Let Ω be a bounded domain of R ν and let g = α -2 g E be a Riemannian metric that is conformal to the Euclidean metric g E . The Neumann eigenvalues {µ l } of the Laplacian ∆ g in Ω satisfy the following estimates in which |Ω| denotes the Euclidean volume of Ω :

(1) For all z ∈ R,

j≥0 (z -µ j ) + ≥ 2ω ν |Ω| (ν + 2)(2π) ν Ω α 2 d ν x ν 2 z - ν 2 4 Ω |∇α| 2 d ν x 1+ ν 2 + . (46) 
(2) For all k ∈ N,

1 k k-1 j=0 µ j ≤ 4π 2 ν ν + 2 k ω ν |Ω| 2 ν Ω α 2 d ν x + ν 2 4 Ω |∇α| 2 d ν x. (47) 
(3) For all k ∈ N,

µ k 1 - ν 2 4 ffl Ω |∇α| 2 d ν x µ k 1+ 2 ν + ≤ 4π 2 ν + 2 2 2 ν k ω ν |Ω| 2 ν Ω α 2 d ν x. (48) 
In particular,

µ k ≤ max ν 2 2 Ω |∇α| 2 d ν x ; 8π 2 (ν + 2) 2 ν k ω ν |Ω| 2 ν Ω α 2 d ν x . ( 49 
)
Note that a domain of the hyperbolic space H ν can be identified with a domain of the Euclidean unit ball endowed with the metric g = 

ffl Ω |∇α| 2 d ν x = ffl Ω |x| 2 d ν x, 1 k k-1 j=0 µ j ≤ π 2 ν ν + 2 k ω ν |Ω| 2 ν + ν 2 4 Ω |x| 2 d ν x. (50) 
µ k 1 - ν 2 4 ffl Ω |x| 2 d ν x µ k 1+ 2 ν + ≤ π 2 ν + 2 2 2 ν k ω ν |Ω| 2 ν (51) and µ k ≤ max ν 2 2 Ω |x| 2 d ν x ; 2π 2 (ν + 2) 2 ν k ω ν |Ω| 2 ν
.

(52)

Sums of Neumann eigenvalues on domains conformal to Euclidean sets, and phase-space volumes

A phase-space analysis can considerably sharpen the upper bounds on sums of eigenvalues from the previous sections so that they become sharp in the semiclassical regime. Following physical tradition, it is shown in [START_REF] Lieb | Analysis[END_REF] how this may be achieved in some circumstances with the aid of coherent states. We carry out such an analysis in this section for (1) when (M, g) = (R ν , d ν x). We must first introduce a few quantities that will be helpful to relate spectral estimates to phasespace volumes. To avoid complications we assume that the potential energy V is Lipschitz continuous and bounded from below. We do not assume that Ω is necessarily bounded, but if it is not, we require V to be confining in the sense that there is a radial function V rad (r) tending to +∞ as r → ∞ with V (x) ≥ V rad (|x|) for all x / ∈ Ω. This condition is sufficient to ensure that the eigenvalues form a discrete sequence tending to +∞. Definition 4.1. The effective potential incorporating a correction for the conformal transformation will be denoted V (x) := V (x) + |∇ρ| 2 (x), and the maximal Lipschitz constant of V (x) on the region Ω ∩ {x : V (x) ≤ Λ} will be denoted Lip(Λ).

The L 2 -normalized ground-state Dirichlet eigenfunction for the ball of geodesic radius r in M will be denoted h r and K(h r ) := ´Br |∇h r (x)| 2 d ν x. I.e., in this section where M = R ν , h is a scaled Bessel function and

K(h r ) = j 2 ν 2 -1,1 r 2 .
Remark 4.1. The function h r will ensure that some coherent-state functions to be defined below are localized in configuration space. Its specific form is but one of many plausible choices.

We next recall some quantities that arise in phase-space analysis.

Definition 4.2. The Euclidean phase-space volume for energy Λ is defined as

Φ 1 (Λ) := 1 (2π) ν (x, p) : |p| 2 + V (x) ≤ Λ = ω ν (2π) ν ˆΩ Λ -V (x) ν 2 + d ν x,
according to a standard calculation to be found, for example, in [START_REF] Lieb | Analysis[END_REF]. If the weight in (1) is not constant, we make use of a weighted phase-space volume,

Φ w (Λ) = ω ν (2π) ν ˆΩ Λ -V (x) ν 2 + w(x)d ν x.
The total energy associated with this quantity is correspondingly

E w (Λ) := 1 (2π) ν ˆ{(x,p):x∈Ω,|p| 2 + V (x)≤Λ} |p| 2 + V (x) w(x)d ν xd ν p = ν ν + 2 ω ν (2π) ν ˆΩ Λ -V (x) 1+ ν 2 + w(x)d ν x. (53) 
We note that according to (53),

dE w dΛ (Λ) = Φ w (Λ), (54) 
and that Φ w increases strictly monotonically in Λ, implying that E w is strictly convex. 

µ j ≤ E w (Λ(k)) + 3 2j 2 ν-1,1 Lip(Λ(k)) 1 3 Φ w Λ(k) + (2j 2 ν-1,1 Lip(Λ(k)) 1 3 . ( 55 
)
The Riesz-mean form of the inequality reads

k-1 j=0 (z -µ j ) + ≥ 2 ν + 2 ω ν (2π) ν ˆ(z -V (y)) 1+ ν 2 + dy (56) - ω ν (2π) ν ˆ(z -V (y)) ν 2 + dy ∇h r 2 + ˆ|x|h 2 r . ( 57 
)
Remarks 4.1. 1. We call attention to the fact that the condition in this theorem defining Λ uses the Euclidean phase space, whereas weighted phase-space quantities appear in (55).

2. The dominant term in the semiclassical regime can be identified by introducing a small parameter α as a coefficient of |∇ϕ| 2 in (1), i.e.,

R α (ϕ) := ´Ω (α|∇ϕ(x)| 2 + V (x)|ϕ(x)| 2 )w(x)e -2ρ(x) dv g ´Ω |ϕ(x)| 2 e -2ρ(x) dv g . ( 58 
)
The result, in the Riesz-mean form after choosing a convenient relationship between r and α, is

k-1 j=0 (z -µ j ) + ≥ α -ν 2 2 ν + 2 ω ν (2π) ν ˆ(z -V (y)) 1+ ν 2 + dy -α 1 3 -ν 2 ω ν (2π) ν ˆ(z -V (y)) ν 2 + dy ∇h 1 2 + ˆ|x|h 2 1 , (59) 
in which the leading term is precisely the expected semiclassical expression, in contrast to results of the previous section such as Example 3.3.

3. Inequalities of the type (55) imply estimates of quantities including trace of the heat kernel (= the partition function in quantum physics) and the spectral zeta functions by simple transforms.

For instance (55) implies for the Riesz mean R 1 (z

) := j (z -µ j ) + that R 1 (z) ≥ 1 (2π) ν zΦ w (Λ(z)) -E w (Λ(k)) + 3 2j 2 ν-1,1 Lip(Λ(k)) 1 3 Φ w Λ(k) + (2j 2 ν-1,1 Lip(Λ(k)) 1 3 
.

(60) The Riesz mean is in turn related to the heat trace by the Laplace transform (32).

Proof of Theorem 4.1. We apply Theorem 2.1 to the Neumann eigenvalues of (1) as defined by (2), using for test functions "coherent states" [START_REF] Lieb | Analysis[END_REF][START_REF] Thirring | Atoms, molecules and large systems[END_REF] of the form:

f ζ (x) := 1 (2π) ν/2 e ip•(x)+ρ(x) h r (x -y).
In this formula, ζ = (p, y) ranges over the phase space M = R 2ν with Lebesgue measure. The radius r will be chosen below.

We note that the inner product that appears is a Fourier transform with respect to the variable x, viz.,

φ, f ζ = F[h r (x -y)e -ρ(x) φ(x)],
where if Ω is a strict subset of R ν , then φ is extended by 0 outside Ω. Thus, with the Parseval identity,

ˆR2ν | φ, f ζ | 2 d ν p d ν y = ˆRν ˆRν h r (x -y) 2 |φ| 2 e -2ρ d ν y d ν x = ˆRν |φ| 2 e -2ρ d ν x = φ 2 . ( 61 
)
The set M 0 in Theorem 2.1 must be taken large enough so that

k ≤ ˆM0 f ζ 2 dσ = 1 (2π) ν ˆM0 ˆΩ h 2 r (x -y)e 2ρ(x)-2ρ(x) d ν xd ν p d ν y ≤ 1 (2π) ν |M 0 |, ( 62 
) in which case k-1 j=0 µ j ≤ ˆM0 R(f ζ )d ν p d ν y = = 1 (2π) ν ˆM0 ×Ω (|p| 2 + V (x))h 2 r (x -y) + |∇h r (x -y) + h r (x -y)∇ρ(x)| 2 w(x)d ν x d ν p d ν y. ( 63 
)
We now make the ansatz that M 0 = M 0 (Λ) := {(x, p) : x ∈ Ω, |p| 2 + Ṽ (x) ≤ Λ}, where Λ ≥ Λ(k), defined as the minimum value of Λ for (62) to be valid. Thus the upper bound in (62) becomes 1 (2π) ν Φ 1 (Λ), whence the condition in the theorem.

Since the support of h is restricted to a ball of radius r, the x-integral may be restricted to the set {x ∈ Ω : ∃y, |y -x| ≤ r, |p| 2 + Ṽ (x) ≤ Λ} ⊂ M 0 (Λ + Lip(Λ)r). Thus, integrating first in y, the right side of (63) is bounded above by

1 (2π) ν ˆ{p:|p| 2 ≤Λ} ˆ{x: V (x)≤Λ+Lip(Λ)r-|p| 2 } ˆRν (|p| 2 + V (x))h 2 r (x -y) + |∇h r (x -y) + h r (x -y)∇ρ(x)| 2 w(x)d ν y d ν x d ν p = 1 (2π) ν ˆ{p:|p| 2 ≤Λ} ˆ{x: V (x)≤Λ+Lip(Λ)r-|p| 2 } ˆRν (|p| 2 + V (x))h 2 r (x -y) + |∇h r (x -y)| 2 + ∇ρ(x) • ∇h 2 r (x -y) w(x)d ν y d ν x d ν p. The last contribution vanishes because ˆRν ∇ρ(x) • ∇h 2 r (x -y)d ν y = ˆRν ∇ρ(x) • ∇1d ν y = 0, ( 64 
) leaving k-1 j=0 µ j ≤ 1 (2π) ν ˆM0 (Λ+Lip(Λ)r) (|p| 2 + Ṽ (x) + K(h r ))w(x)d ν x d ν p (65)
for all values of r > 0. The upper bound (65) is of the form

1 (2π) ν (E w (Λ + Lip(Λ)r) + Φ w (Λ + Lip(Λ)r)K(h r )) ≤ 1 (2π) ν E w (Λ) + j 2 ν-1,1 r 2 + Lip(Λ)r Φ w (Λ + Lip(Λ)r) ,
where we have made use of (54) and the monotonicity of Φ w in a first-order expansion of E w .

Choosing the optimal value r =

2j 2 ν-1,1 L 1 3
, we get the claim (55).

The derivation of (56) proceeds similarly. Remark 4.2. We note the following special cases of particular interest. 1. Laplace operators with Neumann conditions on a compact Euclidean domain (V = ρ = 0, w = 1). In this case Lip(Λ) = 0, Λ

ν 2 := (2π) ν B ν k |Ω|
, and we recover the inequality of Kröger, that

k-1 j=0 µ j ≤ ν ν + 2 ω ν (2π) ν |Ω|Λ 1+ ν 2 = ν ν + 2 (2π) 2 ω -2 ν ν k ν+2 ν |Ω| 2 ν
.

Indeed, without the potential V , the introduction of the function h r is not needed for the proof.

2. Nonhomogeneous problems with ρ = V = 0, but w is variable, under Neumann conditions:

k-1 j=0 µ j ≤ ν ν + 2 ω ν (2π) ν ˆΩ w(x)d ν x Λ 1+ ν 2 .
The eigenvalue bounds of Corollary 3.1 are sharp as k tends to infinity. Indeed since µ k = µ k we get

µ k ≤ 4π 2 Ω w(x)d ν x k |Ω|ω ν 2 ν 1 + 2 1 -S k ν + 2
with S k as given in Corollary 3.1 :

S k = ν+2 ν 1 k k-1 j=0 µ j 4π 2 ffl Ω w(x)d ν x k |Ω|ων 2 ν ≤ 1.

Bounds for Neumann eigenvalues on subdomains of compact homogeneous spaces

In this section, we deal with the case where the ambient space is a compact homogeneous Riemannian manifold (M, g) with isomorphism group denoted G. In particular, we shall recover Strichartz's result [START_REF] Strichartz | Estimates for sums of eigenvalues for domains in homogeneous spaces[END_REF] with a more efficient proof and extend it to a wider class of operators. We begin with bounds in the spirit of Theorem 3.1 and then derive a phase-space bound analogous to Theorem 4.1.

Let us denote by

spec(M ) = {0 = λ 0 < λ 1 ≤ λ 2 ≤ • • • ≤ λ k ≤ • • • }
the spectrum of the Laplace-Beltrami operator ∆ g on M (each eigenvalue is repeated according to its multiplicity). Although 0 is a simple eigenvalue, all the other eigenvalues are degenerate owing to the transitive action of the isometry group G (recall that the eigenspaces are invariant under the action of G.)

Given a regular domain Ω ⊂ M endowed with densities e -2ρ and e -2θ = we -2ρ , and a potential V , we consider the eigenvalues µ l (Ω, g, ρ, w, V ), l ∈ N, defined by ( 1) and ( 2) and seek for relationships between the µ l 's and the λ l 's . As before, we will use the notation

V = V + |∇ g ρ| 2 .
We also need the following subspaces introduced in Theorem 2.1

E 0 (R) = µ<R ker(H -µI) and E(R) = µ≤R ker(H -µI)
where H = H(Ω, g, ρ, w, V ) is the operator defined by (4). The corresponding subspaces associated with the Laplacian ∆ g on M will be denoted

F 0 (R) = λ<R ker(∆ g -λI) and F (R) = λ≤R ker(∆ g -λI).
Theorem 5.1. Let (M, g) be a compact homogeneous Riemannian manifold. Let µ l = µ l (Ω, g, ρ, w, V ), l ∈ N, be the eigenvalues defined by (2) on a bounded open set Ω ⊂ M . Then, for all z ∈ R,

j≥0 (z -µ j ) + ≥ |Ω| g |M | g j≥0 z -λj + , (66) 
where λj = λ j ffl Ω w dv g + ffl Ω V w dv g . Equality holds in (66) for some z ∈ R if and only if

E 0 (z) ⊂ e ρ F (z) ⊂ E(z), with z = 1 ffl Ω w dvg z - ffl Ω V w dv g .
Proof. Let {y λ : λ ∈ spec(M )} be an orthonormal basis of L 2 (M, g) with ∆ g y λ = λy λ . The proof relies on Theorem 2.1 in which we take M = spec(M ) endowed with the uniform discrete measure, and use test functions of the form

f λ = y λ e ρ .
For any function ψ ∈ L 2 (Ω, e -2ρ dv g ) (endowed with the norm ψ 2 = ´Ω ψ 2 e -2ρ dv g ),

ˆM f λ , ψ 2 dλ = λ∈spec(M ) ˆΩ f λ ψe -2ρ dv g 2 = λ∈spec(M ) ˆΩ y λ ψe -ρ dv g 2 = λ∈spec(M ) ˆM y λ ψe -ρ dv g 2 = ˆM ψ 2 e -2ρ dv g = ψ 2 ,
where we used the same notation ψ to designate the extension of ψ by zero outside Ω. Let R > 0 and let M 0 = {λ ∈ M : λ ≤ R}. Due to the transitive action of the isometry group G on M , for every eigenvalue Λ of ∆ g , with multiplicity m Λ , the basis {y λ : λ = Λ} of the corresponding eigenspace is such that λ=Λ y 2 λ is constant on M . Integrating over M , we get

λ=Λ y 2 λ = m Λ |M | g . ( 67 
) Moreover, 0 = 1 2 ∆ g ( λ=Λ y 2 λ ) = λ=Λ Λy 2 λ -|∇ g y λ | 2 , that is λ=Λ |∇ g y λ | 2 = m Λ |M | g Λ. (68) Therefore, ˆM0 f λ 2 dλ = λ≤R ˆΩ y 2 λ dv g = Λ≤R |Ω| g |M | g m Λ = |Ω| g |M | g N (R).
where N (R) is the number of eigenvalues of ∆ g on M that are less or equal to R (counted with multiplicity). On the other hand, using (67) and (68), we get for every Λ,

λ=Λ |∇ g f λ | 2 = e 2ρ λ=Λ |∇ g y λ | 2 + y 2 λ |∇ g ρ| 2 + g(∇ g ρ, ∇ g y 2 λ ) = m Λ |M | g e 2ρ Λ + |∇ g ρ| 2 . Thus ˆM0 Q(f λ , f λ )dλ = λ≤R ˆΩ |∇ g f λ | 2 + V f 2 λ we -2ρ dv g = Λ≤R ˆΩ m Λ |M | g Λ + |∇ g ρ| 2 + V wdv g ´Ω w dv g |M | g λ≤R λ + ´Ω V w dv g |M | g N (R).
Inserting into (6), we get for every z ∈ R and R > 0,

j≥0 (z -µ j ) + ≥ z |Ω| g |M | g N (R) - ´Ω w dv g |M | g λ≤R λ - ´Ω V w dv g |M | g N (R) = |Ω| g |M | g λ≤R z -λ Ω w dv g - Ω V w dv g . (69) 
Notice that the RHS is negative if z ≤ ffl Ω V w dv g . Now, when z > ffl Ω V w dv g , we can choose R = z = z-ffl Ω V w dvg ffl Ω w dvg so that the last sum is taken over all eigenvalues λ for which the involved terms are nonnegative, thus

j≥0 (z -µ j ) + ≥ |Ω| g |M | g j≥0 z -λ j Ω w dv g - Ω V w dv g + .
Regarding the case of equality, it follows from Theorem 2.1 that equality holds in (66) if and only if f λ ∈ E(z) for λ ≤ z and f λ is orthogonal to E 0 (z) for λ > z. Equivalently, e ρ F (z) ⊂ E(z) and, since Span{f λ : λ > z} is the orthogonal complement of e ρ F (z), E 0 (z) ⊂ e ρ F (z).

As we have seen in the previous sections, our technique allows obtaining bounds on eigenvalue sums. In order to simplify the statement of these bounds, we intoduce the following notation : Given any sequence (a) = (a k ) k≥0 of real numbers, we set for p ∈ [1, +∞),

S (a) (p) = ⌊p⌋-1 j=0 a j + (p -⌊p⌋)a ⌊p⌋ ,
so that when p is an integer, S (a) (p) is nothing but the sum of the first p terms a 0 , • • • , a p-1 of the sequence (a). Theorem 5.2. Let (M, g) be a compact homogeneous Riemannian manifold. Let (µ) = (µ l ) l≥0 be the sequence of eigenvalues defined by [START_REF] Agmon | Lectures on elliptic boundary value problems[END_REF] on an open set Ω ⊂ M . Then, for every p ∈ [1, +∞), Observe that we have F 0 (λ k) ⊂ F (λ k-1 ) with equality if and only if λ k-1 < λ k).

S (µ) (p) ≤ |Ω| g |M | g S ( λ) |M | g |Ω| g p , (70) where ( λ 
Proof of Theorem 5.2. As mentioned in Remark 3.1, Legendre's transform enables us to obtain (70) from (66). Alternatively, we can prove (70) using the averaged principle, which has the advantage of allowing us to characterize the case of equality. Indeed, taking z = µ k in (69) we immediately get, ∀R > 0

k-1 j=0 µ j ≤ |Ω| g |M | g N (R)-1 j=0 λj + k - |Ω| g |M | g N (R) µ k . ( 72 
) Denote by 1 = N 0 < N 1 < N 2 < • • • < N j < . . . the values taken by the function N (R), R ∈ R, that is N j = m 0 + m 1 + • • • + m j .
The sequence of eigenvalues of ∆ g on M is then numbered as follows :

0 = λ 0 < λ 1 = λ 2 = • • • = λ N 1 -1 < λ N 1 = • • • = λ N 2 -1 < λ N 2 = • • • = λ N j -1 < λ N j = • • • = λ N j+1 -1 < λ N j+1 = • • • Let q ∈ N such that N q ≤ |M | g |Ω| g k < N q+1 .
We consider the inequality (72) with first N (R) = N q and, then, N (R) = N q+1 . We multiply the first inequality by α = (N q+1 -

|M |g

|Ω|g k)/m q+1 and add the second inequality multiplied by 1α = (

|M |g |Ω|g k -N q )/m q+1 to get k-1 j=0 µ j ≤ |Ω| g |M | g Nq-1 j=0 λj + (1 -α) |Ω| g |M | g m q+1 λNq + kµ k - |Ω| g |M | g (αN q + (1 -α)N q+1 )µ k = |Ω| g |M | g Nq-1 j=0 λj + k - |Ω| g |M | g N q λNq = |Ω| g |M | g   Nq-1 j=0 λj + |M | g |Ω| g k -N q λNq   since α is chosen such that αN q + (1 -α)N q+1 = |M |g |Ω|g k. Now, from the definition of N q we have λ Nq = λ Nq+1 = • • • = λ ⌊ |M |g |Ω|g k⌋
and, then,

Nq-1 j=0 λj + |M | g |Ω| g k -N q λNq = S ( λ) |M | g |Ω| g k , which yields k-1 j=0 µ j ≤ |Ω| g |M | g S ( λ) |M | g |Ω| g k .
This means that (70) holds for all p ∈ N. Since the functions S (µ) and S ( λ) are piecewise-affine in p, the extension of (70) to all positive p is immediate.

Let k be a positive integer. The equality is achieved in (70) for p = k if and only if one of the following holds :

• |M |g
|Ω|g k = N q and equality holds in (72) for R such that N (R) = N q , i.e. for R = λ Nq-1 • |M |g |Ω|g k > N q and equality holds in (72) for the values of R such that N (R) = N q and N (R) = N q+1 , i.e. for both R = λ Nq-1 and R = λ N q+1 -1 . The first case corresponds to the case of equality in Theorem 2.1 with z = µ k , M = spec(M ), M 0 = {λ ∈ spec(M ) ; λ ≤ λ Nq-1 }. As in the proof of Theorem 5.1, this situation occurs if and only if E 0 (µ k ) ⊂ e ρ F (λ Nq-1 ) ⊂ E(µ k ), with N q = |M |g |Ω|g k. Since λ Nq-1 < λ Nq , F (λ Nq-1 ) = F 0 (λ Nq ), and the last conditions can be written as follows :

E 0 (µ k ) ⊂ e ρ F 0 (λ |M |g |Ω|g k ) and F (λ |M |g |Ω|g k-1 ) ⊂ E(µ k ). ( 73 
)
which is equivalent to (71).

In the second case, similar considerations show that equality holds if and only if

E 0 (µ k ) ⊂ e ρ F (λ Nq-1 ) ⊂ e ρ F (λ N q+1 -1 ) ⊂ E(µ k ). ( 74 
) Since N q < |M |g |Ω|g k < N q+1 , it is clear that N q ≤ |M | g |Ω| g k ≤ N q+1 -1 and N q ≤ |M | g |Ω| g k -1 ≤ N q+1 -1. Thus, λ Nq = λ N q+1 -1 = λ |M |g |Ω|g k = λ |M |g |Ω|g k -1 . Consequently, F (λ N q+1 -1 ) = F λ |M |g |Ω|g k -1
and, since λ Nq-1 < λ Nq ,

F (λ Nq-1 ) = F 0 (λ Nq ) = F 0 λ |M |g |Ω|g k
.

Therefore, (74) is equivalent to (71). In the same paper [START_REF] Strichartz | Estimates for sums of eigenvalues for domains in homogeneous spaces[END_REF], Strichartz also proved, following Gallot [8, Proposition 2.9], that for Dirichlet eigenvalues µ D l of the Laplacian on a domain Ω of a compact homogeneous Riemannian manifold (M, g), the reverse inequality

S (µ D ) (p) ≥ |Ω| g |M | g S (λ) |M | g |Ω| g p holds.
Contrary to what was found for Neumann eigenvalues in Theorem 5.2, a straightforward extension of the latter inequality to Dirichlet eigenvalues of a Laplacian with potential cannot hold in general. Indeed, such an extension would imply for p = 1 that µ D 0 (∆ g + V ) ≥ 1 |M |g ´Ω V dv g , which is not always true (for example, if Ω is a spherical cap of radius r and if u is a positive first eigenfunction of the Dirichlet Laplacian on Ω, we can take the family of continuous potentials V ε with V ε = 1 u 2 on the spherical cap of radius (1ε)r, and V ε is constant on the complement, then, using u as a test function, it is easy to see that µ D 0 (∆ g +V ε ) ≤ µ D 0 (∆ g )+|Ω| while ´Ω V ε dv g tends to infinity as ε → 0.) 2. Assume that |Ω| ≥ 2 3 |M |, then an immediate consequence of Theorem 5.2 and the fact that the first positive eigenvalue λ 1 of the Laplacian on a homogeneous manifold (M, g) has multiplicity at least 2, is the following inequality

µ 0 + µ 1 ≤ |Ω| g |M | g 2λ 1 Ω w dv g + 3 Ω V w dv g
which yields for the Neumann Laplacian (with ρ = V = 0 and w = 1)

µ 1 ≤ 2 |Ω| g |M | g λ 1 .
In the case where Ω is equal to the whole of M , Theorem 5.2 leads to the following Corollary 5.1. Let (M, g) be a compact homogeneous Riemannian manifold. Let µ l , l ∈ N, be the eigenvalues defined by (2) on M . Then, for every k

∈ N * , k-1 j=0 µ j ≤ k-1 j=0 λj , (75) 
where equality holds if and only if

E 0 (µ k ) ⊂ e ρ F 0 (λ k ) and e ρ F (λ k-1 ) ⊂ E(µ k ).
In particular, if m 1 is the multiplicity of λ 1 , then equality holds in (75) for k ≤ m 1 if and only if (V + |∇ g ρ| 2 )wdiv g (w∇ρ) is constant on M and µ j = λj for j = 0, 1,

• • • , k -1.
Proof of Corollary 5.1. Assume that equality holds in (75) for k ≤ m 1 . Then we have E

0 (µ k ) ⊂ e ρ F 0 (λ k ). Since k ≤ m 1 , F 0 (λ k ) = F (λ 0 ) = span{1}. It follows that E 0 (µ k ) has dimension 1, that is E 0 (µ k ) = E(µ 0 ) = span{e ρ }. Consequently, µ 1 = µ 2 = • • • = µ k
, and e ρ is an eigenfunction of H associated with µ 0 . Thus He ρ = e 2ρ div g we -2ρ ∇ g e ρ + V we ρ = • • • , = (V + |∇ g ρ| 2 )wdiv g (w∇ρ) e ρ = µ 0 e ρ which implies that (V + |∇ g ρ| 2 )wdiv g (w∇ρ) = µ 0 . Integrating, we get µ 0 = ffl Ω V w dv g = λ0 . Now,

µ 0 + (k -1)µ 1 = k-1 j=0 µ j = k-1 j=0 λj = λ0 + (k -1) λ1
and, consequently, µ 1 = λ1 . Remarks 5.2. 1. An immediate consequence of Corollary 5.1 is that for any potential V on a compact homogeneous (M, g), one has for every positive k,

1 k k-1 j=0 µ j (∆ g + V ) ≤ 1 k k-1 j=0 µ j (∆ g ) + M V dv g ,
to be compared with the results of [START_REF] Soufi | Majoration de la seconde valeur propre d'un opérateur de Schrödinger sur une variété compacte et applications[END_REF].

We know that for any

k ≥ 2, either λ k-1 = λ k or else λ k-1 = λ k-2 . Notice that if λ k-1 = λ k and if equality holds in (75) for k, then, necessarily, λk-1 = µ k-1 = µ k = λk .
(This follows directly from the combination of k-1 j=0 µ j = k-1 j=0 λj with k j=0 µ j ≤ k j=0 λj and k-2 j=0 µ j ≤ k-2 j=0 λj .) Consequently, the equality also holds in (75) for k -1 and k + 1. Moreover, if µ k > µ k-1 , then the equality holds in (75) for k if and only if λ k > λ k-1 and E(µ k-1 ) = e ρ F (λ k-1 ). (Indeed, in this case, dim E

0 (µ k ) = dim E(µ k-1 ) = k and dim F 0 (λ k ) = dim F 0 (λ k-1 ) = k.)
Applying the Laplace transform to both sides of (66), we obtain the following comparison of the heat traces (see (32)): Corollary 5.2. Let (M, g) be a compact homogeneous Riemannian manifold. Let µ l , l ∈ N, be the eigenvalues defined by (2) on a bounded open set Ω ⊂ M . Then, for all t > 0, 

e -µ j t ≥ |Ω| g |M | g j≥0 e -λj t , (76) 
where λj = λ j ffl Ω w dv g + ffl Ω V w dv g . Let us define the theta function via:

Θ(t) = 1 4πt
(p,q)∈Z 2 e -p 2 +q 2 +pq 4t .

Corollary 5.3. Let Γ = Ze 1 ⊕ Ze 2 ⊂ R 2 be a lattice, where {e 1 , e 2 } is a basis of R 2 . Let ρ, w > 0, V be Γ-periodic functions on R 2 and denote by µ l = µ l (ρ, w, V ), l ∈ N, the eigenvalues of the operator H(ρ, w, V ) defined by (4), acting on Γ-periodic functions on R 2 . Then, for all t > 0, ffl

Ω V w dx , ( 77 
)
where Ω is a fundamental domain for the action of Γ on R 2 .

Proof. This result is a direct consequence of (76) combined with Poisson's formula and Montgomery's Theorem [START_REF] Montgomery | Minimal theta functions[END_REF].

We turn now to the phase space analysis taking into account the form of the potential V , and allowing conformal transformations and nontrivial weights. Let us denote by

0 = Λ 0 < Λ 1 < Λ 2 < • • • < Λ l < • • •
the increasing sequence of eigenvalues of the Laplacian of the compact homogeneous space (M, g). The multiplicity of Λ l is denoted m l , and we designate by {y l,1 , y l,2 , • • • , y l,m l } an L 2 -orthonormal basis of the eigenspace associated with Λ l .

In the case of a domain Ω in a manifold X ≃ (M, e -2ρ g) that is conformally equivalent to (M, g), we shall use coherent-state test functions of the form: f ζ (x) := y ℓ m (x)e ρ(x) h y (x).

(78)

In this formula, h(x) is a nonnegative H 1 function supported in the geodesic ball of radius r in the canonical metric on M , with ´Br h 2 r (x)d ν x = 1, and y ranges over the isometry group G. As before we choose it specifically as the ground-state Dirichlet eigenfunction on the geodesic ball of radius r and set K(h r ) := ´Br |∇h(x)| 2 d ν x, which is thus the fundamental Dirichlet eigenvalue for the Laplacian on the geodesic disk of radius r. Denoting by T y (x) the action by the group element y on the point x, we let h y (x) := h(T y (x)).

Recall that one can designate an arbitrary point of M as 0 and cover M with translates T y (0). We normalize the uniform measure dγ on G so that for any f ∈ L ∞ (M ), ´G f (T y (x))dγ(y) = ´M f (x)dv g . The index ζ = (ℓ, m, y) ranges over M = J × G, where J is the set of all pairs of integer indices for the normalized eigenfunctions y ℓ m (x), and the associated measure dσ is the product of the counting measure on J with dγ.

As in Section 2, we find it helpful to define: 

The total energy associated with this phase-space volume is correspondingly 

which yields the statement in the Theorem.

Corollary 3 . 1 .

 31 Under the assumptions of Theorem 3.1, for any positive integer k,

2 g

 2 E . For such a domain we get, with α = 1-|x| 2 2 , ffl Ω α 2 d ν x ≤1 4 , and

Theorem 4 . 1 .

 41 Let µ 0 ≤ µ 1 ≤ . . . be the variationally defined Neumann eigenvalues (2) on an open set Ω ∈ R ν , where w, ρ, and V satisfy the assumptions stated above, and define Λ(k) as the minimal value of Λ for which Φ 1 (Λ) ≥ (2π) ν k. Then k-1 j=0

  ) = ( λl ) l≥0 is the sequence defined by λl = λ l ffl Ω w dv g + ffl Ω V w dv g . Moreover, equality holds in (70) for some p = k ∈ N * if and only if E 0 (µ k ) ⊂ e ρ F 0 (λ k) and e ρ F (λ k-1 ) ⊂ E(µ k ). (71) with k = |M |g |Ω|g k and k = |M |g |Ω|g k , where ⌊ ⌋ and ⌈ ⌉ denote the floor and the ceiling functions, respectively.

Remarks 5 . 1 . 1 .

 511 The particular case of (70) in which w = 1 and ρ = V = 0 corresponds to the inequality obtained by Strichartz [26, Theorem 2.2].

  j≥0

j≥0e

  -µ j t ≥ Θ ffl Ω w dx |Ω| t e -t

Definition 5 . 1 .

 51 As before, V (x) := V (x) + |∇ρ| 2 ,The weighted phase-space volume isΦ h w (Λ) := {ℓ, m, y} : m ≤ m ℓ , T y (0) ∈ Ω, Λ ℓ + V (T y (0)) ≤ Λ = ˆ{y:Ty(0)∈Ω, V (Ty(0))≤Λ}   {ℓ:Λ ℓ + V (Ty(0))≤Λ} m ℓ   dγ(y).

Theorem 5 . 3 . 2 ≤ ˆM0 f ζ 2 L 2 (ℓm h 2 y 2  1 j=0 µ j ≤ 1

 532222211 ˆ{y:Ty(0)∈Ω, V (Ty(0))≤Λ}   {ℓ:Λ ℓ + V (Ty(0))≤Λ} m ℓ Λ ℓ + V (T y (0)) Let µ 0 ≤ µ 1 ≤ . . . be the variationally defined Neumann eigenvalues (2) on a bounded open set Ω ⊂ M , where w, ρ, and V satisfy the assumptions stated in Section 1. Then for all r > 0, k-1 j=0µ j ≤ E h w (Λ + Lip(Λ)r) + K(h r )Φ h w (Λ + Lip(Λ)r). (81)Proof. Note thatφ, f ζ Ω = e -ρ(x) h y (x)φ(x), y ℓ m M ,where if Ω is a strict subset of M , then φ is extended by 0 outside Ω. Thus, by the Fourier completeness relation,dγ(y) = ˆG e -ρ(x) h y (x)φ(x) 2 L 2 (M,dvg ) dγ(y) = ˆΩ |φ| 2 e -2ρ ˆG h y (x) 2 dγ(y) dv g = ˆΩ |φ| 2 e -2ρ dv g = φ 2 . (82)To apply the theorem, chooseM 0 of the form {(ℓ, m, y) : m ≤ m ℓ , T y (0) ∈ Ω, Λ ℓ + V (T y (0)) ≤ Λ} for a finite Λ large enough so that k Ω) dσ = ˆΩ ˆM0 h 2 y (x)e 2ρ(x)-2ρ(x) dσdv g = |Ω|Φ h w (Λ).(83)We define Λ(k) as the minimal value of Λ for which (83) is valid and henceforth chooseM 0 = {(ℓ, m, y) : m ≤ m ℓ , T y (0) ∈ Ω, Λ ℓ + V (y) ≤ Λ(k)}. Then (x) V (x) + |∇h y (x)| 2 + ∇ρ(x) • ∇h 2 y (x) + h 2 y (x)|∇y ℓm | 2 + 2h y (x)∇h y (x) • y ℓm ∇y ℓm dσdv g ≤ ˆΩ ˆ{y: V (Ty(0))≤Λ} w(x)   {ℓ:Λ ℓ + V (Ty(0))≤Λ} m ℓ |M | h 2 y (x)(Λ ℓ + V (x)) + |∇h y (x)| dγ(y),by dint of (67) and (68). (The final cross term dropped out because it was proportional to the gradient of a constant function (67), in analogy with (64).) Because h is supported in a ball of radius r, we restrict the x-integration to x : dist(x, y) ≤ r with (ℓ, m, y) ∈ M 0 and estimate the integral in analogy with (65), obtaining k-|M | ˆ(ℓ,m,x)∈M 0 (Λ+Lip(Λ)r) w(x) Λ ℓ + V (x) + K(h r ) dσ,

  It is well-known, since the works of Hörmander, Agmon-Hörmander and others (see [1, Theorem 2.1] [14, Theorem 7.1.26], [25,

Corollary 5.2]

), that there exists a constant C F (Ω) such that, ∀u ∈ L 2 (Ω) and ∀R > 0,

  6, Theorem 2.2 and Corollary 2.8], [7, Theorem 2.1], and the results by Grigor'yan, Netrusov and Yau [9, Theorem 5.15 and (1.14)] by which, under the assumption µ 0
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