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ON SUMS OF EIGENVALUES OF ELLIPTIC OPERATORS ON
MANIFOLDS

AHMAD EL SOUFI, EVANS M. HARRELL II, SAID ILIAS, AND JOACHIM STUBBE

ABSTRACT. We use the averaged variational principle introduced in a recent article on graph
spectra [10] to obtain upper bounds for sums of eigenvalues of several partial differential op-
erators of interest in geometric analysis, which are analogues of Kréger’s bound for Neumann
spectra of Laplacians on Euclidean domains [15]. Among the operators we consider are the
Laplace-Beltrami operator on compact subdomains of manifolds. These estimates become more
explicit and asymptotically sharp when the manifold is conformal to homogeneous spaces (here
extending a result of Strichartz [26] with a simplified proof). In addition we obtain results for
the Witten Laplacian on the same sorts of domains and for Schrédinger operators with confining
potentials on infinite Euclidean domains. Our bounds have the sharp asymptotic form expected
from the Weyl law or classical phase-space analysis. Similarly sharp bounds for the trace of the
heat kernel follow as corollaries.

1. INTRODUCTION

In this article we consider the eigenvalues of self-adjoint, second-order elliptic partial differ-
ential operators defined on a subdomain of a Riemannian manifold (M, g) of dimension v > 2.
The model for the operators we are able to treat is the Laplacian on a domain with Neumann
boundary conditions, defined in the weak sense, i.e. via the Laplacian energy

Jo (IV9p(x)dug
fg |@(X)|2dvg

on functions ¢ € H'(Q), but the class treated includes a large variety of Schrédinger operators,
even with weights. Specifically, the eigenvalues we shall discuss are operationally defined by the
min-max procedure applied to expressions of the general form

Jo (V99(x)]* + V(%) |p(x)]*)e"*'™ dv,
Jo lex)Pe2rX¥)dug '

For convenience we set w = e2(P=9 g0 that R takes on the form

Jo (IV9(x)* + V (x)lp(x)]*)w(x)e” ) du,
Jo lp(x)[2e=2 ) du,
Here p € C1(Q), 0 < C < w(x) € C%Q), and V € Lip(Q) are real-valued functions. We define

the Neumann eigenvalues of (1) by the min-max principle [3, 27], i.e.,

0= max min R(p). 2
K {subspace &: dim(&)=,} {pcH!(Q):0L1&,| | 2=1} (SD) ( )

R(p) =

R(p) = (1)
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2 AHMAD EL SOUFI, EVANS M. HARRELL II, SATD ILIAS, AND JOACHIM STUBBE

Of course, 11y depends on the domain € as well as the choice of the metric g, the density e=2°
and weight w, and the potential V', but dependence on these quantities will not be indicated
explicitly unless necessary.

Under suitable regularity assumptions on © and V', the sequence {ju,} is nothing but the
spectrum of the eigenvalue problem

Ho=pp in Q (3)

with Neumann boundary conditions if 9Q # 0, where
Hyp = —eZpdivg (we_zpvgcp) + Vwep (4)
= w{Agp+2(990, V%), + Vo) (5)

where Ay := —div,(VYy) is the Laplace Beltrami operator associated with g.

In the following sections we derive semiclassically sharp phase-space upper bounds for the
sums of the first k eigenvalues associated with (1). We also obtain bounds for the corresponding
Riesz means and heat trace. The following inequalities, which are valid for any bounded domain
Q) C RY, provide a sampling of these bounds :

150 kN _
SN < IV d +][v d
kj}jou]_y+2(,g‘wy> J wtiars + f Veuas

and ,

Z —tpj > ’Q‘ (][ w(x) dux>_§ tfﬂ (x)w(x) d¥z ’

=0 (47t)2
where V(x) := V(x) + |Vp|2(x), ]Q\ is the Volume of ©, w, is the volume of the unit ball in R”
and, for every f € L'(Q), f, f(x)d"z = |Q\ Jo f(x)d”x is the mean value of f with respect to

Lebesgue measure.

When appropriate we remark on the simpler consequences that apply under assumptions on
p, w, and V. The case where V = p = 0 and w = 1 identically, and M = R" reduces to the
situation treated by Kroger in his ground-breaking work [15], and this result was already ex-
tended to subdomains of general homogeneous spaces by Strichartz [26] (see also [8]). The upper
bounds in [15, 26] are notable for being sharp in the sense of agreeing with the “semiclassical”
Weyl law, with the optimal constant. For the background and context of Weyl-sharp bounds on
sums of Laplacian eigenvalues, we refer to [16, 17].

In this article a new, simplified proof is used, and we considerably enlarge the family of self-
adjoint elliptic operators for which semiclassical upper bounds are proved. Even when V = 0,
new cases of interest that are treated include the Witten Laplacian, for which w = 1; the
Laplacian of a conformal metric § = a~2g, for which e?’ = o~ and w = o?; and the vibrating
membrane with variable density (x), for which v(x) = e~2” and w = e?*.

In the last part of the paper, we focus on domains of compact homogeneous Riemannian
spaces. We revisit the inequality of Strichartz ([26, Theorem 2.2]) in the light of this new
approach and obtain extensions of Strichartz’s inequality to the case where the Laplace operator
is penalized by a potential in the presence of weights. For example, we prove that if €2 is a domain
of a compact homogeneous Riemannian manifold (M, g), then the eigenvalues u; associated with

(1) on £ satisfy
Z(Z_“]+—|M| Z( )

=0
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for all z € R, and

for all ¢ > 0, where S\j = Aj widvg + fQ Vuw dvg, and where the )\}s are the eigenvalues of
the Laplacian on the whole manifold M (see Theorem 5.1 and Corollary 5.2). The extension

(stricto sensu) of Strichartz inequality is given in Theorem 5.2 and takes the following form
when 2 = M:

It is known that without assumptions of regularity, these variationally defined Neumann
eigenvalues for the Laplacian may have finite points of accumulation of a quite arbitrary sort,
as entertainingly discussed in [12]. In this case the definition (2) would yield py = inf(cess) for
all ¢ greater than some value, and the bounds we shall provide would become uninteresting. We
note that, for example, the spectrum of the Neumann Laplacian is guaranteed to have no finite
points of accumulation if the boundary is piecewise smooth [12].

Remark 1.1. Before closing this section, we make some further technical remarks about how to
define the Dirichlet and Neumann problems for these elliptic operators in the weak, or quadratic-
form, sense. In this regard we follow Edmunds and FEvans [5], where in Chapter VII it is shown
that uniformly elliptic quadratic forms, on arbitrary open sets in Fuclidean space, determine
unique operators via the Friedrichs extension, which, when the domain is sufficiently reqular,
reduce to the classically defined operators for the Dirichlet and Neumann problems. (See also
(28, 24].) In particular, defining the quadratic form (1) initially on the Sobolev space Wol’2(Q)
corresponds to Dirichlet boundary conditions, whereas defining it initially on the restrictions
to Q of functions in the space VVO1 ’Q(R” ) corresponds to Neumann conditions. (For domains
allowing a Sobolev extension property the latter set coincides with W12(Q).) It is not in general
possible to say that the operators thus defined satisfy boundary conditions in a classical sense,
or to guarantee reqularity at the boundary. However, in cases where the boundary is sufficiently
reqular, integration by parts transforms expressions (Hyp, @) where H is a classically defined
operator into a quadratic form of the type (1) for ¢ in a dense subset of the Sobolev spaces
corresponding to Dirichlet or respectively Neumann conditions.

There are certainly significant questions of reqularity of the eigenfunctions in the case when
Q is an arbitrary open set, treated for example in [2], but they will play no role in the present
article.

The extension of the analysis of [5] from RY to manifolds is straightforward, because only
Hilbert-space structures and locally defined properties of functions and their gradients are used.

2. THE AVERAGED VARIATIONAL PRINCIPLE

In this section we recall the averaged variational principle which will be foundational for this
article. The following is mainly a restatement of Theorem 3.1 of Harrell-Stubbe [10], along with
a characterization of the case of equality.

Theorem 2.1. Consider a self-adjoint operator H on a Hilbert space H, the spectrum of which
1s discrete at least in its lower portion, so that —oo < pg < p1 < .... The corresponding
orthonormalized eigenvectors are denoted {1/)([)}. The closed quadratic form corresponding to H
is denoted Q(yp, ) for vectors ¢ in the quadratic-form domain Q(H) C H. Let fr € Q(H) be a
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family of vectors indexed by a variable ( ranging over a measure space (M, %, 0). Suppose that
Mo is a subset of M. Then for any z € R,

, 2
S G-, [ w0 g do> [ IS - QU 10) do. ()
7 m Mo
provided that the integrals converge. Moreover, equality holds in (6) for z € R if and only if up
to sets of measure 0,

{fc; CeMo} CE(z) and {fe; C€M\ My} L Ey(z),
where E(z) = @, <, ker(H — pl) and Eo(2) = D, ker(H — pl).

Taking z = yuy in (6) we obtain

Mk(/ ||f¢u2da—2/| S do )

k—1 ‘
S/moQ(fofc)dU—jgouj/m!<¢(”7fc>!2d0,

Remarks 2.1. 1. The averaged variational principle is an abstract version and sharpening of
ideas appearing in various place in the literature, including not only [15], but also work of Lieb
and others on coherent states and trace inequalities [20, 22]. In special cases, similar use of
averaging and tight frames for the study of eigenvalue sums and related quantities has also been
made by Laugesen and Siudeja [18].

(7)

2. We point out that the normalization of the test function fc could be incorporated into the
measure, so that, for example, Eq. (6) could alternatively be written in terms of integrals of

expectation values such as
(Y, fo)?
———| do, 8
/ < 7P ®

i.e., over morms of projections of the eigenfunctions. Despite the suggestiveness of these alter-
natives, an advantageous feature of (7)-(6) that we shall later exploit is that useful identities
are available for averages of morms of some choices of fc. Still, if the test functions f¢ and
the measure space M constitute a tight frame, in the sense of satisfying a generalized Parseval
identity [13], then alternative forms of the inequalities imply appealing variational principles for
sums and Riesz means of eigenvalues, as captured in the next corollary.

Corollary 2.1. Under the assumptions of the Theorem, suppose further that fc is a nonvan-
ishing family of test functions with the property that for all ¢ € H,

| ¢a fC |2 2
= Alj¢l|
NS
for a fized constant A > 0. Then for any My C M such that (|My| — Ak) pu > 0,

1 B Q(fofc)) -
> = g o, (i) ¥

For Riesz means,

I 1 L QUGIIN 4
2 (w2 g 9:n< AL >d' (10)
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The proof of Corollary 2.1 is immediate; see [10] for more in this connection. To make our
exposition self-contained, we provide here the proof of the inequality (6) in Theorem 2.1 before
discussing the case of equality.

Proof of Theorem 2.1. For every integer [ > 0, we denote by P, the orthogonal projector onto
the subspace spanned by {9 | j <1}, ie. Bf = Z§:0< @), Hl). Let z € R, z > o (the
inequality (6) being obvious for z < ), and let k& be the smallest integer such that z < py (that
is z € (pg—1,pk)). Then

2| f = Pecr fIIP < pillf — Pecr /1P < Q(f — Pecaf, f — Pier f), (11)
and, after direct computations,
z (Hf”2 - ”Pk—lfHQ) <QU, f) = Q(Pr—vrf, Pe_rf).
With [Py fI? = 525w, £)? and Q(Pe-vf, Po-rf) = X874 1151, £), this yields

k—1
AP = QUEF) <D (2= )WY, £)%.
j=0

Applying this last inequality to f¢, ¢ € My, and integrating over My we get

k—1
. /sm felfdo - /m QU fo)do < ;@—uj) /m 1, 10 o

=Y [ 1w, 1) Pdo

>0 Mo

The inequality (6) follows from (12) and the obvious inequality

S [ 10 fPdr < 3ol = ) [ 09, fo) P (13

720 0 >0

Assume now that equality holds in (6). This implies that equality holds in (13) and in (11)
for f = f¢ for almost all { € M. Equality in (11) holds for f either when z < py and f = Py f
orif z = pp and H(f — Py_1f) = puk(f — Px—1f), which implies in both cases that f € E(z). On
the other hand, equality in (13) implies that, for almost all ¢ € 0\ My and all j € N such that
pj < z, fe¢ is orthogonal to span{w(o), .. ,w(j)}, which means that f is orthogonal to Fy(z).

Conversely, under the conditions of the statement,

= ;) /‘ YV fc dU—Z(z—/@) /imo‘w(j),fdfda

—;Z/ 9 fe) dU—;;ZMJ/ @ f< " do
—Z/ fe) da—zﬂa/ ])7fc>‘2d0

:/ (llfel® = Qfe fe)) do
Mo
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As the guiding example for this article, when € is a bounded subdomain of R”, we may use
test functions of the form

A 1 ip-xX

fC(X) T (27T)V/26 ’
where ¢ has been equated to p, which ranges over 9t = R” with Lebesgue measure (The reason
for distinguishing ¢ logically from p will be made clear in Theorem 4.1.). Indeed, || f¢|* = (z‘g)ll,

for all ¢, where |Q2] is the Euclidean volume of €2, and Parseval’s identity gives

/ (6, FO 2 d'p = 1>
RV

1
Hence, applying Corollary 2.1 with 9ty C 991 taken to be the Euclidean ball of radius 27 (‘ Qo > ’,
we recover Kroger’s inequality for Neumann eigenvalues of the Euclidean Laplacian (here w,
stands for the volume of the v-dimensional Euclidean unit ball). Indeed, in this case, the

Rayleigh quotient of f; is simply given by R(f) = |p|* and (9) yields

k— 2
1 9 42y kE\*
_ dp = .
kZ \smor LS u+2<mrwu>

This approach can be applied to easily extend Kroger’s inequality to Neumann eigenvalues
on a bounded subdomain of R” in the presence of nontrivial potential and weights.

Example 2.1. Let pop < pp < ... be the variationally defined Neumann eigenvalues (2) on
a bounded open set Q@ C RY endowed with the standard Fuclidean metric, where w, p, and V
satisfy the assumptions stated above. Then

Zm s (o) f utots+ f Veueors (14

where V(x) := V(x) + |Vp|2(x) and, for every f € L*(Q), fo fx)d'z = ﬁ Jo f(x)d"z is the

mean value of f with respect to Lebesgue measure.

Example 2.1 sets the stage for a more general result that we obtain in Section 3 in the context
of Riemannian manifolds. We also stress that these estimates will be improved in Section 4,
with the aid of a coherent-state analysis relating the upper bounds to phase-space volumes.

Upper bounds for individual Neumann eigenvalues p; are also obtainable from the averaged
variational principle. In order to somewhat simplify the bound, let us define the shifted Neumann
eigenvalues

1= i — ]é V(x)w(x)d" . (15)

In terms of these quantities, we will be able to show that (see Corollary 3.1)

2
N E o\~ 1-5
< 2 v
pr < 4w <|Q|w,,> (1 +2 I ) ]{lw(x)d x, (16)

1 k‘:—l Z/Lv
S = K JZO d <1. (17)

42y k
v+2 < Qlwy, ) fQ

where
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3. BOUNDS FOR NEUMANN EIGENVALUES ON DOMAINS OF RIEMANNIAN MANIFOLDS

Let (M, g) be a Riemannian manifold of dimension v > 2 and let €2 be a bounded subdomain
of M. Of course, when M is a closed manifold, {2 can be equal to the whole of M.

Let F : (M,g) — RY, be an isometric embedding (whose existence for sufficiently large N
is guaranteed by Nash’s embedding Theorem). To any function u € L?(f), we associate the
function ap : RN — R defined by

ir(p) = | a0 W, (18)

where the dot stands for the Euclidean inner product in RY (i.e., 4 is the Fourier transform
of the signed measure F(udvy) supported by F()). It is well-known, since the works of
Hormander, Agmon-Hormander and others (see [1, Theorem 2.1] [14, Theorem 7.1.26], [25,
Corollary 5.2]), that there exists a constant Cr(q) such that, Vu € L?(Q) and VR > 0,

/B p (D) 2dp < Cry BY 7 Jul?, (19)
R

where By, is the Euclidean ball of radius R in RY centered at the origin and |[ul|? = [, u*duv,.
In other words the Fourier functions appearing in (18) constitute a frame that is not generally
tight.

We define the Riemannian constant Hg by

v+ 2 : 1
Hqo = inf inf — 2
@7 N2 Per(MRY) <N+2> WN Cre, &

where I(M,R"Y) is the set of isometric embeddings from (M, g) to R,

When © is a domain of R”, we may take for F' the identity map so that, Vu € L?*(Q), 4y is
nothing but the Fourier transform of u extended by zero outside 2. Using Parseval’s identity
we get VR > 0,

/ lar(p)*d"p S/ lar(p)Pdp = (2m)"[|ul|.
Br RY

Thus Crq) = (27)” and

(21)

In all the sequel, the notation ||, will designate the Riemannian volume of {2 with respect to
g. We will also use the notation fQ f dvg to represent the mean value of a function f € LY(Q)

with respect to the Riemanian measure dvg. (Le., f, f dvg = ﬁ Jo f dvg.)

Theorem 3.1. Let (M, g) be a Riemannian manifold of dimensionv > 2. Let py = (2, g, p,w, V'),
I € N, be the eigenvalues defined by (2) on a bounded open set Q C M, where w, p, and V' satisfy
the assumptions stated above. Then

(1) For all z € R,

J=0

[SIN

- 1+3
<z - ][ Vw dvg> , (22)
Q +

where V.=V +|V9p[2.
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1l v Hq ~
- < —k d dv,. 2
e < s (k) e f, P )

(2) For all k € N,

NI

(8) For allt >0,

SN

Stz (5 e (fean) .

J=0

Proof. Let F: (M,g) — RY be an isometric embedding. For simplicity, we identify the domain
Q with its image F(2) € RV and any function u: Q — R with uo F~1: F(Q) — R.

We apply Theorem 2.1 using test functions of the form
fe(x) i= PP,

where ¢ has been equated to p, which ranges over 9 = Br C RY endowed with Lebesgue
measure, where Bg is a Eucidean N-dimensional ball whose radius R is to be determined later.
Our Hilbert space here is L?(Q, e~ ?’dv,) (endowed with the norm ||ul|* = [, u*e~*’dv,). Hence,
for all ¢,

1Fll® = 162
and consequently

[ gD = 9l v RN, (25)
On the other hand, in our case the quadratic form is

Qfe, fo) = /Q (IV7fe P+ V) w(x) e 2 dug,

where V7 f¢ is the tangential part of the gradient of f¢ (more generally, for all v € RN, v will
designate the tangential vector field induced on Q by orthogonal projection of v). Thus, with
[fel? = e* and V7 fe|* = [p™ + V7pl?,

Qe 1) = | (107 P) 20 97p()) wx)doy + [ (V 4+ V7 ),

Observe that for symmetry reasons, for all v € RV \ {0},

/ p-vd¥p=0
Br
and, after elementary calculations,

N |U|/ 2 N | | N+2
NER .
/BR(p v) [pl”d N+2

Thus, if {v1,...,v,} is an orthonormal basis of the tangent space of €2 at a point x, then
v
_ RN+2.
/|p| ;/ (0 w;)" d%p = 5w

This leads to

v ~
/ Q(fg,fc)de = 2(,uNRN“/ w dvg +wNRN/ Vw dvy. (26)
m + 0 Q
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It remains to deal with the integrals [y, (), fe)[2 dNp, where {10} is an L2(Q, e~2,dv,)-
orthonormal basis of eigenfunctions associated to {y;}. Setting P = e=Pypld)

<¢(j)’f<> — / f<¢(j)ef2pdvg — / eip-xw(j)efpdvg — &;Z’(p).
Q Q
Using (19) we obtain
|10 fP = [ 6@ < oo [ 169 P,
R R

= CF(Q)RN_V/ |1/)(j)|2€_2pdvg = CF(Q)RN_V. (27)
Q
We put (25), (26), and (27) into (6) after choosing 9y = M = Bpg, and obtain for all R > 0

and z € R
y vR? ~
Z (z = 1), Cri) > [Qgwn R <z “ N2 ]éwdvg - ]éVw dvg> . (28)
Jj=0

The right side of this inequality is optimized when R = 0 if z < fQ Vuw dvg and when R? =
Nt2 <z - 15 Vuw dvg) / fow dvg otherwise. Thus

v+42
Z (2 = ), Cri) >
j=0

N+2\2 2 3 - 43
Q — .
\ ’9MV<1/+2> V+2<]éwdvg> <z ]{)devg>+

Taking the infimum with respect to F' and N we get (22).

(29)

To prove (23) we first observe that taking z = py in (28) gives

|Q| WNRV VR2 ~
kl‘k—z,uj g o e devg— Qdevg (30)

for all R > 0, or

k—1

\Q]ngR”> 1) qwn RY < vR? ][ ~
E ,u‘§</<:—7 i+ wdv, + 1 Vwdy, | .
=" Cr@) T Cre \N+2Jo T T g !

Choosing R such that m'gwiNRy =k we get
F(Q)

kol 14 CF(Q)]C ~
- < 1
;]M]_k<N+2<]Q\ng> ]fzwdvg—i-]fz‘/wdvg), (31)

which leads to (23) after taking the infimum with respect to F' and V.

NI

The inequality (24) is a consequence of (22) and the following identity relating the heat trace
to the Laplace transform of the Riesz mean :

Zef“jt = t2/ 7”2 (2 — pj)4dz. (32)
j=0 j>0

O
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Remarks 3.1. 1. In [19, Theorem 1.2|, Li and Tang obtained for the Laplacian (i.e. in the
case V = p = 0 w = 1) an inequality which is similar to but weaker than (31). Indeed, instead
of the term N+2 in the right side their inequality appears with N+2

2. It is possible to derive (23) from (22) using Legendre transform. Indeed, the Legendre trans-
form of a function f of the form f(z) = A(z — B)i+§ with A > 0 is given by
A 2\~ v 1+2
Frp)=sup(pz = f(z) =7 ) ——2p " +Bp,
220 (v +2)1*
while the Legendre transform of g(z) = 350 (2 — pj), s

[p]-1

Z wj+ [P p) -

(Indeed, for z € [pg—1, k], Pz — g(2) = (p —k)z + Zj;o p; which is nondecreasing as soon as
k <'|p]|.) Hence, it suffices to apply Legendre transform to both sides of (22) taking into account
that such a transform is inequality-reversing.

Corollary 3.1. Under the assumptions of Theorem 3.1, for any positive integer k,

2
. Sk v
<|1+2
b < < + 1/+2> <|Q|gk> ]{lwdvg, (33)

k-1~
kZ] o HMj

(Hﬂk> JCQWd”g.

where

ﬁ;:pk—][f/wdvg and Sy =
Q

Notice that according to Theorem 3.1 (2), S < 1.
Proof of Corollary 3.1. We take back the proof of Theorem 3.1 and rewrite (30) as follows: For

every positive R,
|Q|ngR”< vR? ][ >
ki, — — d , 34
Fik Zw Croy B~ g3 fy s (34)

k—1
1] gwn RY >~ v |Q|ngR”+2][ .
—— — k| < wdvg—g 1.
< N +2 Q =

which yields

Cre) Cre)
. . ‘Q’ng v . .
With the change of variable o := —=——R" the last inequality reads
F(Q)
2 k-1
v (Crak\’ ][ e 1%
— Vg < d -
7= 0=y (!Q\gc«w o k2t

J
for all o > 1. Taking the infimum with respect to F' and N and using (20), we get

=)
=
=
ol
|
VN
3\5
< ol
N———
NI
S~
g
QL
(4
)
-
NI
|
el
=
o
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o< (Hek ][ o, T = Sk (35)
N e e

This inequality can be explicitly optimized with respect to o € [1,+00) only when v = 2, and
we then obtain o, =1+ /1 — S}, yielding the desired bound. For general v > 2 we introduce

That is

2
a new change of variable as follows : o = 1 + az, where z, = (1 — Sk) p= s ,and « is a
free positive parameter. Then the bound (35) reads:
N Hqk v (14 az)P — 1+ 2,
e < | —=—— w dvg .
124 Q oz
Since 1 < p < 2 for all v > 2, it follows that
1 (14 azp)?P —1+ 27 1 [z A1
L k) ko (1+s)P~'ds + 22—
p [0 %42 azZ Jo po
1 az p—1
< — 1 d
P (1+(p—1)s)ds + o
-1
14 (p— 1)z +z£ .
2 pa
22072
Optimizing with respect to « leads to choose o = # Thus,
1(1—i—azk)p—1+zk<1+\/— /p kg w/l—Sk7
Vv +2
which implies the the desired mequahty.
O

Corollary 3.2. Under the assumptions of Theorem 3.1, for any integer k € N such that

Z;:é wj =0,
~ 1—|—2 2 2
Vwd v 2\ [ H v
e (1= doVwdve) (v 2\ e (Ho fwae, (36)
Ik . 2 |€2g 0

2
- H. D]
pr < max 2][ Vwdvg ; 2(V—i—2)% <—Q/<:> ][wdvg . (37)
Q ’Q‘g Q

Proof. From the inequality (30) in the proof of Theorem 3.1, we deduce with 327 i 0 pj > 0 that

for all R > 0,
Q| gwn R vR? ][ ][ =
kpp — ——— — dvg, — d > 0.
i Crn s Qw Vg ; Vwduvg ) >0 (38)

The left side achieves its minimum when R = 0 if p < fQ Vw dvgy and otherwise when R? =
NE2 <,uk - f4 Vuw dvg> / fowdvg. Since (36) is obviously satisfied when py, < f, Vuw dvg, we

In particular,

v+2
shall assume puj > fQ Vuw dvy and get

0 N4+2\z 2 ~ +3 —2
ki, — [gwn < + > <,uk —][ Vw dvg> <][ wdvg> >0
CF(Q) v+2 v+2 Q 0
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- 45 R 2\ 2 2 3

« (v+ v+ <][ >
— Vwd < d kL.
(”’f Jé b ) = [Qfgwn <N+2> 2 \Jo ) M

~ 1+% v v
d 2 C 2 2
| JoVwdvy ) Crey (v 22wt ][wdvg k.

Raising to the power % and taking the infimum with respect to ¥’ and N we obtain (36).
fo Vw dug
1k

142 2 2
1 < vH2)\v &k V][wdv
2 Hie=1\"9 i, g e

Note that when p =V = 0, the inequality (36) of Corollary 3.2 produces

2
v+2\v [ Hg
< k d
ez (452) () e

which coincides with Kroger’s estimate [15, Corollary 2] when Q is a Euclidean domain and

(QW)”)‘

which gives

Therefore,

M

BN

7

To prove (37) we observe that if pg, > 2 £, Vuw dvg, then 1 —
from (36)

> %, so we can deduce

w =1 (just replace Hq by

Let us highlight some consequences of Theorem 3.1 on Schrodinger operators, Witten Lapla-
cians, and Laplacians associated with conformally Euclidean metrics.

Example 3.1 (Schrodinger operators). From (23) in Theorem 3.1 and (37) in Corollary 3.2
we deduce that for any Schrédinger operator Ag 4V on Q0 and any integer k > 0 we find (with
p=0andw=1)

15 Ho \*

v o \"
—E A V) —k V dv,. 39
k =0 ! V"‘Q(‘Q’g ) +]€2 o (39)

Furthermore, if Z?;é pi(Ag+V) >0

pr(Ag +V) §max{2]éVdvg ; 2(1/—|—2)% <|;I|gk>} (40)

These estimates are to be compared with [6, Theorem 2.2 and Corollary 2.8], [7, Theorem 2.1],
and the results by Grigor’yan, Netrusov and Yau [9, Theorem 5.15 and (1.14)] by which, under
the assumption po(Ag+V) >0,
1
1e(Ay + V) < C(Qk + —— ][ V d, (41)
() Jo

where C(Q) > 0 and £(2) € (0,1) are two Riemannian constants that do not depend on'V or k.
They ask whether such an estimate holds true with () = 1. The inequality (39) answers this

question for the eigenvalue sums z 0 w; in the affirmative, without any positivity condition.
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On the other hand, unlike the upper bound in (41), our estimates (39) and (40) are consistent
with the Weyl law regarding the power of k. Notice that (41) has been recently improved by A.
Hassannezhad [11] who obtained

2
k v
1Ay + V) < C(Q) + A,,][ Vdv, + B, <_>
Q g

under the same assumption of positivity of po(Ag + V), where A, > 1 and B, are two con-
stants that only depend on the dimension v, and C(S) is a Riemannian constant that does not
depend on 'V or k. Our estimates are valid, however, under weaker assumptions and, moreover,
the coefficient in front of fQ Vidvg in (40) is equal to 1 while the other coefficient is explicitly
computable at least in the elementary case where Q) is conformally Euclidean.

Example 3.2 (Witten Laplacians). Let Q be a bounded domain of a Riemannian manifold
(M, g) and let A, be the Witten Laplacian associated with the density e~?P, that is,

App=Dgp+2(VIp, V).

The Neumann eigenvalues {{} of A, in § satisfy the following estimates :
(1) For all z € R,

1+%
S (-l 2 ol (o= f 1va,) (12

Jj=0 +
(2) For all k € N*,
k—1 2
1 14 HQ v 2
- ;< —k Ip|* dv,. 4
ka;u]_HQ(Mg) + 190l e, (43)
(8) For all k € N*,
2 2 2
fo V9o dvg\'"" Y _ (v 2\¥ (Ho )"

In particular,
u 2
2 v
< max 2][ IV9p|2dv, 5 2 (v +2)¥ (—Qk> . (45)
Q €
This last inequality is to be compared with the estimates obtained in [4].

For example, when € is a bounded domain of RY endowed with the Gaussian density e_‘x‘2/2,
we have for the corresponding Witten Laplacian

15 v E\r

Z < | gr? [ 2V pr+2

k:j;)’“ S U2 ( " (\Qywy> T )
where R is chosen so that £ is contained in the Euclidean ball Bp.

Example 3.3 (Laplacian associated with a conformally Euclidean metric). Let Q be a bounded
domain of RY and let ¢ = o~ 2gg be a Riemannian metric that is conformal to the Euclidean
metric gg. The Neumann eigenvalues {jy} of the Laplacian A, in Q satisfy the following
estimates in which |Q| denotes the Euclidean volume of ) :

(1) For all z € R,

Z(z—uj)Jrz%(]éazd”x);<z—%2]éwa\2d”x>i+g. (46)

Jj=0
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2
k \v v?
< Ad'r+ — + |Val* dz. (47)
wy |2 Q 4 Ja
(3) For all k € N,

2 f [Val2dz\ "7 2N [k \»
e (1= L dal Vol daN e o (vt ][a2d”x. (48)
4 jors T 2 wy| Q| Q

In particular,
pr < max v ][ \Val?d”x ; 872 (v + 2)g < i > ][ o d’x (49)
k< e ; v :
2 Jo wy || Q

Note that a domain of the hyperbolic space H” can be identified with a domain of the Fuclidean
1-|z]?
2

(2) For all k € N,

F’{

NI

J

2
unit ball endowed with the metric g = <ﬁ) gg. For such a domain we get, with o =
fo?d’z <% and f,|Val? &’z = {, |z|> dz,

12 v kP o2

- < — 2ava.

/gZ“J—quz(wam) * 4]{)@' v (50)

7=0
2

p (1_V_2JCQ ’1“2de>1+” o <V—i—2>%< k >% (51)
F 4 L L 2 wy |9

L 2
() } (52

4. SUMS OF NEUMANN EIGENVALUES ON DOMAINS CONFORMAL TO EUCLIDEAN SETS, AND
PHASE-SPACE VOLUMES

and

NI

2
g < max{%][ |z dVz ; 2% (v 4 2)
Q

A phase-space analysis can considerably sharpen the upper bounds on sums of eigenvalues
from the previous sections so that they become sharp in the semiclassical regime. Following
physical tradition, it is shown in [21] how this may be achieved in some circumstances with the aid
of coherent states. We carry out such an analysis in this section for (1) when (M, g) = (R¥,d"x).
We must first introduce a few quantities that will be helpful to relate spectral estimates to phase-
space volumes. To avoid complications we assume that the potential energy V is Lipschitz
continuous and bounded from below. We do not assume that €2 is necessarily bounded, but if it
is not, we require V' to be confining in the sense that there is a radial function Vi,q(r) tending
to +00 as r — oo with V(x) > Viaq(|x]|) for all x ¢ Q. This condition is sufficient to ensure that
the eigenvalues form a discrete sequence tending to +oo.

Definition 4.1. The effective potential incorporating a correction for the conformal transfor-
mation will be denoted V(x) := V(x) + |Vp|2(x), and the mazimal Lipschitz constant of V (x)
on the region QN {x : V(x) < A} will be denoted Lip(A).

The L?-normalized ground state Dirichlet eigenfunction for the ball of geodesic radius v in M
will be denoted hy and K(hy) == [ [Vhe( (x)[2d” x. Le., in this section where M = RY, h is a
scaled Bessel function and

9
J¥_11
Rt

K(hr) -

r
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Remark 4.1. The function h, will ensure that some coherent-state functions to be defined below
are localized in configuration space. Its specific form is but one of many plausible choices.

We next recall some quantities that arise in phase-space analysis.

Definition 4.2. The Euclidean phase-space volume for energy A is defined as

Dy(A) = ﬁ ep)  pf + V) < A = 250 /Q (A-760)" avw,

according to a standard calculation to be found, for example, in [21]. If the weight in (1) is not
constant, we make use of a weighted phase-space volume,

By(A) = (;*’T")V/Q (A - V(X))iw(x)d”x.

The total energy associated with this quantity is correspondingly

1 ~
Ey(A) = 5 / B (|p|2 + V(X)) w(x)d”zd"p

(2m)" J (e pyxest o247 (<A}

v Wy ad I+5
g A — v .
12 (2n) /Q< V(X))+ w(x)d’z (53)
We note that according to (53),
dE, B

and that ®,, increases strictly monotonically in A, implying that F,, is strictly convex.

Theorem 4.1. Let g < py < ... be the variationally defined Neumann eigenvalues (2) on an
open set ) € RY, where w, p, and V' satisfy the assumptions stated above, and define A(k) as the
minimal value of A for which ®1(A) > (2m)"k. Then

N
—_

ol

i < Eu(A(R)) + 3 (272 1 Lip(A(K))? @y (A(K) + (272 Lip(A(K)F) . (55)

<.
Il
o

The Riesz-mean form of the inequality reads

N

—1

2 w
(Z_MJ)JFZ -

1+4
s [ G-V (56)

(o [ - vontar) (19ne+ [xi2). (57)

Remarks 4.1. 1. We call attention to the fact that the condition in this theorem defining A
uses the FEuclidean phase space, whereas weighted phase-space quantities appear in (55).

<.
Il
o

2. The dominant term in the semiclassical regime can be identified by introducing a small
parameter o as a coefficient of |V|? in (1), i.e.,

Jo (@Ve(x)* + V(x)[p(x)*)w(x)e > du,
Jo le(x)[Pe=20)dug '

Ral(p) = (58)
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The result, in the Riesz-mean form after choosing a convenient relationship between r and «, is

k—

o2 Wy 1+%

=0
—(a%‘%gj:)y [e-venia) (1Iome+ [xn). 6o

wn which the leading term is precisely the expected semiclassical expression, in contrast to results
of the previous section such as Fxample 3.3.

,_.

<.

3. Inequalities of the type (55) imply estimates of quantities including trace of the heat kernel (=
the partition function in quantum physics) and the spectral zeta functions by simple transforms.
For instance (55) implies for the Riesz mean Ri(z) := 3, (z — p;)+ that

Ri(2) 2 o (5Bu(A(2) — BulA(K)) +3 (2211 Tin(AR)) * By (A(K) + (272 Lin(A(K))5

(60)

(2r)”

The Riesz mean is in turn related to the heat trace by the Laplace transform (32).

Proof of Theorem 4.1. We apply Theorem 2.1 to the Neumann eigenvalues of (1) as defined by
(2), using for test functions “coherent states” [21, 27] of the form:

1
fC(X) = (27‘1’)”/2

e )X (x — ).

In this formula, ¢ = (p,y) ranges over the phase space 9 = R? with Lebesgue measure. The
radius r will be chosen below.

We note that the inner product that appears is a Fourier transform with respect to the variable
x, viz.

(6, f¢) = Blhe(x = y)e "M o(x)),
where if ) is a strict subset of R, then ¢ is extended by 0 outside 2. Thus, with the Parseval
identity,

2 v, gV, N2 412 20 gV V. 2 —2p v, _ 2
Lo soravey= [ [ ne-yPioferayae= [ of e = ok 6y

The set My in Theorem 2.1 must be taken large enough so that

k< / 1 felPdo =
Mo

in which case

k—1
> ny S/ R(f)d"pd"y =
=0 Mo

h2 P2 Py d pd'y < —— Mg, (62)

1
(2m)”

Mo

= | (RR+ VOO = y) + VA= y) + iy (x = V) VAG0) we)ds 'pt’y
(63)

We now make the ansatz that 9y = Mo(A) = {(x,p) : x € Q,|p|* + V(x) < A}, where
A > A(k), defined as the minimum value of A for (62) to be valid. Thus the upper bound in
(62) becomes ﬁ@l(A), whence the condition in the theorem.

N—
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Since the support of & is restricted to a ball of radius r, the z-integral may be restricted to
the set {x € Q: Jy, |y — x| <, |p|* + V(x) < A} C Mo(A + Lip(A)r). Thus, integrating first
in y, the right side of (63) is bounded above by

1
ol AR A [+ Veohiee =)
(2m)” Jipipl2<a} J eV ) <a+Lip(A)r—Ipi2} SR
+ |Vh(x —y) + he(x — y)Vp(x)|?) w(x)d"y d’z d’p

= - ~ (Ip]* +V(x)hs(x —y)
(2m)" Jip:ipl2<a} J ¥ (x) <A+ Lip(A)r—|p|2} Rv<

+ |[Vhe(x —y)> + Vp(x) - VRZ(x — y)) w(x)d"y d"z d"p.

The last contribution vanishes because

Vp(x) - Vhi(x —y)d"y = [ Vp(x)-V1d"y =0, (64)
RL/ ]RV

leaving

1
> < o (PP + V() + K(h)wlx)d"z d'p (65)

k—
J=0

AﬁdA—‘,—Lip(A)r)
for all values of > 0. The upper bound (65) is of the form

(Ew(A + Lip(A)r) + @, (A + Lip(A)r)K(h,))

-2
< (;)V (Ew(A) + <‘7”T% + Lip(A)T> (A + LiP(A)T)) ’

where we have made use of (54) and the monotonicity of ®,, in a first-order expansion of Ej,.
1

-2 3
Choosing the optimal value r = <2j”£1’1 , we get the claim (55).

The derivation of (56) proceeds similarly. O

Remark 4.2. We note the following special cases of particular interest.
1. Laplace operators with Neumann conditions on a compact Euclidean domain (V = p = 0,

v 2m)Y k
w=1). In this case Lip(A) =0, A2 := (g) @, and we recover the inequality of Kréger, that
v
k—1 v+2
14 1% _2 k v
;< —(2m)%w, v
”J—u+2( ) =2 02

<.
Il
o

Indeed, without the potential V', the introduction of the function h, is not needed for the proof.

2. Nonhomogeneous problems with p =V =0, but w is variable, under Neumann conditions:

Z“J u+2 27:) (/Qw(x)dyx>AH;'

The eigenvalue bounds of Corollary 3.1 are sharp as k tends to infinity. Indeed since pg = jij

we get
2
E \7* 1— S
< 472 Vo [ —— 1+2
i < ”7@””“(!9\%) ( * u+2)
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with Sy as given in Corollary 3.1 :

Sy = - =07 57 < 1.
4m? fo, w(x)dvx <|Q‘Lwy) Y

5. BOUNDS FOR NEUMANN EIGENVALUES ON SUBDOMAINS OF COMPACT HOMOGENEOUS
SPACES

In this section, we deal with the case where the ambient space is a compact homogeneous
Riemannian manifold (M, g) with isomorphism group denoted G. In particular, we shall recover
Strichartz’s result [26] with a more efficient proof and extend it to a wider class of operators. We
begin with bounds in the spirit of Theorem 3.1 and then derive a phase-space bound analogous
to Theorem 4.1.

Let us denote by
SpeC(M):{O:)\0<)\1S)\QS---S)\kS---}

the spectrum of the Laplace-Beltrami operator A, on M (each eigenvalue is repeated according
to its multiplicity). Although 0 is a simple eigenvalue, all the other eigenvalues are degenerate
owing to the transitive action of the isometry group G (recall that the eigenspaces are invariant
under the action of G.)

Given a regular domain § C M endowed with densities e 2 and e2¢ = we~2*, and a potential
V', we consider the eigenvalues (€, g,p,w,V), I € N, defined by (1) and (2) and seek for
relationships between the z;’s and the A;’s . As before, we will use the notation V =V + |V9p|2.
We also need the following subspaces introduced in Theorem 2.1

Eo(R) = @ ker(H — uI) and E(R) = P ker(H — pul)
u<R H<R

where H = H(Q, g, p, w, V) is the operator defined by (4). The corresponding subspaces associ-
ated with the Laplacian A, on M will be denoted

@ker — ) and F(R @ker — ).

A<R A<R

Theorem 5.1. Let (M, g) be a compact homogeneous Riemannian manifold. Let u; = (2, g, p,w, V'),
[ € N, be the eigenvalues defined by (2) on a bounded open set Q@ C M. Then, for all z € R,

(z = pj), = (66)
j; i)+ 2 |M| Z < )

where S\j =\ fQ w dvg + fQ Vw dvy. Equality holds in (66) for some z € R if and only if
Ey(z) Ce’F(Z) C E(z),

with Z = Trwdu dvg <z — 1o Vuw dvg>.

Proof. Let {yx : X € spec(M)} be an orthonormal basis of L?*(M,g) with Ayyy = Ayy. The
proof relies on Theorem 2.1 in which we take 9t = spec(M) endowed with the uniform discrete
measure, and use test functions of the form

Ix = yxe’.
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For any function ¢ € L%(Q, e =2 dv ¢) (endowed with the norm lv||? = f P2e 2P dv 9)5

| thowyir - < [ e 2%) . < /| yxwe—pdvgf

/\espec(M Aespec(M)
2
- ¥ (/ ywe')dvg) = [ wre i, = i,
Aespec(m) M M

where we used the same notation v to designate the extension of v by zero outside {2.

Let R > 0 and let My = {A € M : A < R}. Due to the transitive action of the isometry
group G on M, for every eigenvalue A of A4, with multiplicity my, the basis {yy : A = A} of
the corresponding eigenspace is such that >, yi is constant on M. Integrating over M, we

get
Z u3 = ‘M, (67)
Moreover, 0= 2A,(3",_,¥3) = > \_a (Ay)\ - |V9y)\| ) that is

912 —

Therefore,

Q Q
/ I£xI[2dA = Z/yxdvg > “M’i} ”M“f;N(R).

A<R A<R

where N (R) is the number of eigenvalues of A, on M that are less or equal to R (counted with
multiplicity). On the other hand, using (67) and (68), we get for every A,

STIVIAP =€ > (VI + 13IV90l” + 9(V9p, V43))

A=A A=A
A+ [V
= g, (A 000
Thus
/ QU pix = 3 [ (995 +V3) we >,
A<R
fQ wdvg, fQ ?wdvg
(A+ V9> + V) wdov + 22 9IN(R).
M/ i, Jwdey =g, 2,
Inserting into (6), we get for every z € R and R > 0,
’Q‘g Jo wdvg Ja Vuw dvg
N R) — = —= A—=—-"N(R
7>0 9 <R g
Q) (69)
:|| J < —)\][wdvg ][devg>.
lo A<R

Notice that the RHS is negative if z < fQ Vuw dvy. Now, when z > fQ Vw dvg, we can choose

R—3— 2o, Vwdyg

o o that the last sum is taken over all eigenvalues A for which the involved
Q g
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Z( ][wdvg ]{)f/wdvg>+.

7>0

terms are nonnegative, thus

P> gt

=0

Regarding the case of equality, it follows from Theorem 2.1 that equality holds in (66) if and
only if f\ € E(z) for A < Z and f) is orthogonal to Fy(z) for A > Z. Equivalently, e’ F(Z) C E(z)
and, since Span{fy : A > Z} is the orthogonal complement of e’ F(2), Ey(z) C e’F(Z). O

As we have seen in the previous sections, our technique allows obtaining bounds on eigenvalue
sums. In order to simplify the statement of these bounds, we intoduce the following notation :
Given any sequence (a) = (ay)r>0 of real numbers, we set for p € [1, +00),

lp]—1
Z aj + [p)ap),
so that when p is an integer, &) (p) is nothing but the sum of the first p terms ag,--- ,a,—1 of

the sequence (a).

Theorem 5.2. Let (M, g) be a compact homogeneous Riemannian manifold. Let (1) = (11)i>0
be the sequence of eigenvalues defined by (2) on an open set Q@ C M. Then, for everyp € [1,+00),

€2y (IMlg >
Syip) < 6 P, 70
W=7, O e, i

where (5\) = (5\1)120 is the sequence defined by \j = N\ fowdvg + fo Vw dvy. Moreover, equality
holds in (70) for some p =k € N* if and only if

Fo(un) C P Fo(Ny) and eF(\,_,) C (). (71)
with k = H%[“; kJ and k = H]g”; k—|, where | | and | | denote the floor and the ceiling functions,
respectively.

Observe that we have Fy(\;) C F();_;) with equality if and only if A\; | < A;).

Proof of Theorem 5.2. As mentioned in Remark 3.1, Legendre’s transform enables us to obtain
(70) from (66). Alternatively, we can prove (70) using the averaged principle, which has the
advantage of allowing us to characterize the case of equality. Indeed, taking z = ux in (69) we
immediately get, VR > 0

ST O 2]
w5 s (k- Sl (72)
=0 | |g =0 | |g

Denote by 1 = Ny < N < Np < --- < N;j < ... the values taken by the function N(R), R € R,

that is N; = mg +mq + - -- +m;. The sequence of eigenvalues of A, on M is then numbered as
follows :

0:)\0<)\1:)\2:"':>\le1<)\N1:"‘:AN271<)\N2:"'
= AN -1 AN F o F AN -1 < AN =
Let ¢ € N such that

_ |,
N, k N
1= ], " <
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We consider the inequality (72) with first N(R) = N, and, then, N(R) = Ngy;. We multiply
the first inequality by o = (Ng41 — %k) /mg41 and add the second inequality multiplied by

l—a= (%Hgk — Ng)/mg41 to get

S < S 2, 2,
Z g PORYERE a)‘M’ My A, + K, — | = (aNg + (1 — ) Not1)
=0 M, §=0 g
S 0 s (N5, (1
)\+<k— gN)A = —L >\+< 4k — N)XN
Z ™) M= T | 29 U, q
since a is chosen such that aN; + (1 — ) Nyq1 = %kz Now, from the definition of IV, we have
AN, = ANg+1 =" = A |umig,  and, then,
ot
Ng—1

o (1M o = |Mly
%Aﬁ(,m k= Ny ) An, = 8¢5 { gp F

which yields

k—1
€y (\M lg >
Z M < k
2= a1, o oy
This means that (70) holds for all p € N. Since the functions &,y and & (%) are piecewise-affine

in p, the extension of (70) to all positive p is immediate.

Let k be a positive integer. The equality is achieved in (70) for p = k if and only if one of the
following holds :

‘M|gkz Ny and equality holds in (72) for R such that N(R) = Ny, i.e. for R = Ay, 1
. %k > N, and equality holds in (72) for the values of R such that N(R) = N, and
N(R) = Ngy1, ie. for both R = Ay,—1 and R = Ay, 1.

The first case corresponds to the case of equality in Theorem 2.1 with z = p, 9 = spec(M),
Mo = {\ € spec(M) ; A < An,—1}. As in the proof of Theorem 5.1, this situation occurs if

and only if Eo(ux) C e’F(An,—1) C E(pu), with Ny = %Ngkz Since Any,—1 < An,, F(An,—1) =

Fo(An,), and the last conditions can be written as follows :

Eo(ux) € " Fo(Apar, ) and F(A\M\gk ) C E(p)- (73)

1Q0g

which is equivalent to (71).

In the second case, similar considerations show that equality holds if and only if

EO(ILLk) C epF()\Nq_1) C epF()\Nq+l_1) C E(Mk) (74)
Since N, < ||]g“gk < Nyy1, it is clear that
M
Ny < U |ng < Ngp1—1
1€y
and
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Thus,

M =M1t =X ) = M)

Qg

Consequently,

F(AN, 1) = F<)‘[Mgk1 ,1>

and, since Ay, -1 < An,,

F(hy, 1) = Fo(\y,) = Fow

=
)
=
I
——

Therefore, (74) is equivalent to (71). O

Remarks 5.1. 1. The particular case of (70) in which w =1 and p =V = 0 corresponds to
the inequality obtained by Strichartz [26, Theorem 2.2].

In the same paper [26], Strichartz also proved, following Gallot [8, Proposition 2.9|, that for
Dirichlet eigenvalues ,ulD of the Laplacian on a domain € of a compact homogeneous Riemannian
manifold (M, g), the reverse inequality

€, <!M ly
S,y (p) > S\ p
W= Tl SO\,
holds. Contrary to what was found for Neumann eigenvalues in Theorem 5.2, a straightforward

extension of the latter inequality to Dirichlet eigenvalues of a Laplacz'an with potentml cannot hold
in general. Indeed, such an extension would imply for p =1 that (A +V)> ‘M| fQ Vdvg,

which is not always true (for example, if X is a spherical cap of radius r and if u is a positive first
eigenfunction of the Dirichlet Laplacian on ), we can take the family of continuous potentials
V. with V., = 2 on the spherical cap of radius (1 — a)r and V: is constant on the complement,
then, using u as a test function, it is easy to see that p (Ag+Vz) < uf (Ag)+[Q while [, Ve dvg
tends to infinity as € — 0.)

2. Assume that QU > 2|M]|, then an immediate consequence of Theorem 5.2 and the fact that the
first positive eigenvalue A1 of the Laplacian on a homogeneous manifold (M, g) has multiplicity
at least 2, is the following inequality

0 ~
po + 1 < ]|]\4|\g <2)\1 ][ wdvg + 3][ Vw dvg>
g Q Q

which yields for the Neumann Laplacian (with p=V =0 and w =1)

12,
1251 < 2 )\
|M]g

In the case where € is equal to the whole of M, Theorem 5.2 leads to the following

Corollary 5.1. Let (M,g) be a compact homogeneous Riemannian manifold. Let u;, | € N, be
the eigenvalues defined by (2) on M. Then, for every k € N*,

k— 1

Z 1 g (75)

where equality holds if and only if
Eo(pr) C e’Fy(Ag) and e’F(Ap—1) C E(ug)-

In particular, if my is the multiplicity of \1, then equality holds in (75) fm’ k < mq if and only
if (V4 |V9p|?)w — divy(wVp) is constant on M and juj = \; for j =0,1,--- ,k — 1.
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Proof of Corollary 5.1. Assume that equality holds in (75) for & < m;. Then we have Ey(uy) C
e’ Fy(Ag). Since k < my, Fo(A\x) = F(X\o) = span{l}. It follows that Ey(ui) has dimension
1, that is Eo(ur) = E(po) = span{e”}. Consequently, u1 = po = -+ = pg, and e is an
eigenfunction of H associated with pg. Thus

Hef = erdivg (we*2pvge’)) + Vwel =--- |
= ((V + |V9p|*)w — divy(wVp)) e = pge”
which implies that (V + [V9p|?)w — divg(wVp) = po. Integrating, we get po = £, Vuw dvg = Ao
Now,
po+(k—=Dm =Y py=> =X+ (k-1X
and, consequently, u; = A
]

Remarks 5.2. 1. An immediate consequence of Corollary 5.1 is that for any potential V' on a
compact homogeneous (M, g), one has for every positive k,

k—1 k—1

1 1

o g pi(Ag +V) < o E 1i(Ag) +][MVdvg,
=0 =0

to be compared with the results of [6].
2. We know that for any k > 2, either \p._1 = Mg or else \p_1 = Ap_o. Notice that if
Me—1 = Mg and if equality holds in (75) for k, then, necessarily, Mot = Mot = [k = M.
(This follows directly from the combination of Z?;é pi = Zf;ol S\J- with, Z?:o py < Z?:o S\J- and
Z;:oz py < Z;:oz S\J) Consequently, the equality also holds in (75) for k —1 and k + 1.
Moreover, if ux > uk—1, then the equality holds in (75) for k if and only if \p > A\p—1 and
E(pg—1) = e?F(Ak—1). (Indeed, in this case, dim Eo(uy) = dim E(pui—1) = k and dim Fy(\g) =
dimFo()\k_l) == k‘)

Applying the Laplace transform to both sides of (66), we obtain the following comparison of
the heat traces (see (32)):

Corollary 5.2. Let (M, g) be a compact homogeneous Riemannian manifold. Let u;, | € N, be
the eigenvalues defined by (2) on a bounded open set Q@ C M. Then, for all t > 0,

Q ~
Sz (g e ()
g

where 5\j =\ fQ wdvg + fﬂ Vw dvg.

Let us define the theta function via:

Corollary 5.3. Let I' = Zey @ Zey C R? be a lattice, where {e1,ea} is a basis of R%. Let p,
w > 0, V be T-periodic functions on R? and denote by u; = pwi(p,w,V), | € N, the eigenvalues
of the operator H(p,w,V) defined by (4), acting on U'-periodic functions on R?. Then, for all
t>0,

Zefujt >0 (fgwd$t> eith \N/wdm’ (77)
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where Q is a fundamental domain for the action of I' on R2.

Proof. This result is a direct consequence of (76) combined with Poisson’s formula and Mont-
gomery’s Theorem [23].
O

We turn now to the phase space analysis taking into account the form of the potential V', and
allowing conformal transformations and nontrivial weights. Let us denote by

O=Ag <A< Ag<--- <A<+

the increasing sequence of eigenvalues of the Laplacian of the compact homogeneous space (M, g).
The multiplicity of A; is denoted m;, and we designate by {y; 1, %12, , Yi,m, } an L?-orthonormal
basis of the eigenspace associated with A;.

In the case of a domain  in a manifold X ~ (M,e ?/g) that is conformally equivalent to
(M, g), we shall use coherent-state test functions of the form:

Fe(x) = yom (x)e”® hy (x). (78)

In this formula, h(x) is a nonnegative H! function supported in the geodesic ball of radius r in
the canonical metric on M, with [ B, h2(x)d” xz = 1, and y ranges over the isometry group G.
As before we choose it specifically as the ground-state Dirichlet eigenfunction on the geodesic
ball of radius 7 and set  K(h,) := [ B, |Vh(x)[?d” z, which is thus the fundamental Dirichlet
eigenvalue for the Laplacian on the geodesic disk of radius r. Denoting by 7}, (x) the action by
the group element y on the point x, we let

hy (x) = h(Ty (x)).

Recall that one can designate an arbitrary point of M as 0 and cover M with translates 7} (0).
We normalize the uniform measure dy on G so that for any f € L>(M), [, f(Ty(x))dy(y) =
[oy f(x)dvg. The index ¢ = (¢,m,y) ranges over M = J x G, where J is the set of all pairs of
integer indices for the normalized eigenfunctions y;,,(x), and the associated measure do is the
product of the counting measure on J with d~.

As in Section 2, we find it helpful to define:

Definition 5.1. As before,
V(x) = V(x)+|Vpl*,

The weighted phase-space volume is

R (A) = ‘{E,m,y} m < my, Ty (0) € Q, Ay + V(Ty(0)) < A

> my | dy(y). (79)

/{y:Ty(O)eﬂvﬁ(T)’(O))SA} {Z:Ae+‘7(Ty(0))<A}

The total energy associated with this phase-space volume is correspondingly

N Y m (A V@) | dy). 50
YT OEQTT M) \ ) o0y

Theorem 5.3. Let g < g < ... be the variationally defined Neumann eigenvalues (2) on a
bounded open set ) C M, where w, p, and V satisfy the assumptions stated in Section 1. Then
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for allr >0,

T
L

< E"(A + Lip(A)r) + K(hy)®" (A + Lip(A)r). (81)

<.
Il
o

Proof. Note that
<¢7 fC>Q = <e_p(X)hy(X)¢(X)7 y5m>M s

where if € is a strict subset of M, then ¢ is extended by 0 outside €. Thus, by the Fourier
completeness relation,

LSS0 000l | ) = [ 167y (060 s a1 3)
lm

= [1o2e ([ rars)) v,
:/Q|¢|262Pdvg:\|¢||2. (82)

To apply the theorem, choose My of the form {(¢,m,y) : m < my, Ty (0) € Q, Ag—H7(Ty(O)) <A}
for a finite A large enough so that

k< / | fell2 0y do = / / h2 (x)e? ) =200 dgdu, = |Q|®h (A). (83)
f)ﬁ() Q 9310

We define A(k) as the minimal value of A for which (83) is valid and henceforth choose Mty =
{(l;m,y) :m <my, Ty (0) € Q,Ap+ V(y) < A(k)}. Then

k—1
Som< | R(fdo(Q)
j=0 Mo
= [ w0 (st (100700 + [y GO + Vo) - V130)
+ hi( )]Vygm]2 + 2hy(X)Vhy(X) : yszygm) dodv,
my 2 ~ 9
: /ﬂ/{y:?(Ty(O»SA}w(X) 2 (]M\) (M2 + V) + [Vhy () | dr(y),

{L:A+V(Ty (0)<A}
by dint of (67) and (68). (The final cross term dropped out because it was proportional to the
gradient of a constant function (67), in analogy with (64).) Because h is supported in a ball of
radius 7, we restrict the z-integration to x : dist(x,y) < r with (¢/,m,y) € My and estimate the
integral in analogy with (65), obtaining

Z y < ( = > / w(x) (Ae + V(x) + K(h)) do, (84)
\M| ) Jt,m,x)emo(A+Lip(A)r)
which yields the statement in the Theorem. O
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