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ON SUMS OF EIGENVALUES OF ELLIPTIC OPERATORS ON

MANIFOLDS

AHMAD EL SOUFI, EVANS M. HARRELL II, SAÏD ILIAS, AND JOACHIM STUBBE

Abstract. We use the averaged variational principle introduced in a recent article on graph
spectra [7] to obtain upper bounds for sums of eigenvalues of several partial differential operators
of interest in geometric analysis, which are analogues of Kröger’s bound for Neumann spectra
of Laplacians on Euclidean domains [12]. Among the operators we consider are the Laplace-
Beltrami operator on compact subdomains of manifolds. These estimates become more explicit
and asymptotically sharp when the manifold is conformal to homogeneous spaces (here extending
a result of Strichartz [21] with a simplified proof). In addition we obtain results for the Witten
Laplacian on the same sorts of domains and for Schrödinger operators with confining potentials
on infinite Euclidean domains. Our bounds have the sharp asymptotic form expected from the
Weyl law or classical phase-space analysis. Similarly sharp bounds for the trace of the heat
kernel follow as corollaries.

1. Introduction

In this article we consider the eigenvalues of self-adjoint, second-order elliptic partial differ-
ential operators defined on a subdomain of a Riemannian manifold (M,g) of dimension ν ≥ 2.
The model for the operators we are able to treat is the Laplacian on a domain with Neumann
boundary conditions, defined in the weak sense, i.e. via the Laplacian energy

´

Ω (|∇gϕ(x)|2dvg
´

Ω |ϕ(x)|2dvg
on functions ϕ ∈ H1(Ω), but the class treated includes a large variety of Schrödinger operators,
even with weights. Specifically, the eigenvalues we shall discuss are operationally defined by the
min-max procedure applied to expressions of the general form

R(ϕ) :=

´

Ω (|∇gϕ(x)|2 + V (x)|ϕ(x)|2)e−2θ(x)dvg
´

Ω |ϕ(x)|2e−2ρ(x)dvg
.

For convenience we set w = e2(ρ−θ) so that R takes on the form

R(ϕ) =

´

Ω (|∇gϕ(x)|2 + V (x)|ϕ(x)|2)w(x)e−2ρ(x)dvg
´

Ω |ϕ(x)|2e−2ρ(x)dvg
. (1)

Here ρ ∈ C1(Ω), 0 < C ≤ w(x) ∈ C0(Ω), and V ∈ Lip(Ω) are real-valued functions. We define
the Neumann eigenvalues of (1) by the min-max principle [3, 22], i.e.,

µℓ := max
{subspaceS: dim(S)=ℓ}

min
{ϕ∈H1(Ω):ϕ⊥S,‖ϕ‖

L2=1}
R(ϕ). (2)
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Of course, µℓ depends on the domain Ω as well as the choice of the metric g, the density e−2ρ

and weight w, and the potential V , but dependence on these quantities will not be indicated
explicitly unless necessary.

Under suitable regularity assumptions on Ω and V , the sequence {µℓ} is nothing but the
spectrum of the eigenvalue problem

Hϕ = µϕ in Ω (3)

with Neumann boundary conditions if ∂Ω 6= ∅, where
Hϕ = −e2ρdivg

(
we−2ρ∇gϕ

)
+ V wϕ (4)

= w
{
∆gϕ+ 2 (∇gθ,∇gϕ)g + V ϕ

}
(5)

where ∆gϕ := −divg(∇gϕ) is the Laplace Beltrami operator associated with g.

In the following sections we derive semiclassically sharp phase-space upper bounds for the
sums of the first k eigenvalues associated with (1). We also obtain bounds for the corresponding
Riesz means and heat trace. The following inequalities, which are valid for any bounded domain
Ω ⊂ R

ν , provide a sampling of these bounds.

1

k

k−1∑

j=0

µj ≤
4π2ν

ν + 2

(
k

|Ω|ων

) 2
ν
 

Ω
w(x)dνx+

 

Ω
Ṽ (x)w(x)dνx

and
∑

j≥0

e−tµj ≥ |Ω|
(4πt)

ν
2

(
 

Ω
w(x) dνx

)− ν
2

e−t
ffl

Ω
Ṽ (x)w(x) dνx,

where Ṽ (x) := V (x) + |∇ρ|2(x), |Ω| is the volume of Ω, ων is the volume of the unit ball in R
ν

and, for every f ∈ L1(Ω),
ffl

Ω f(x)d
νx = 1

|Ω|

´

Ω f(x)d
νx is the mean value of f with respect to

Lebesgue measure.

When appropriate we remark on the simpler consequences that apply under assumptions on
ρ, w, and V . The case where V = ρ = 0 and w = 1 identically, and M = R

ν reduces to the
situation treated by Kröger in his ground-breaking work [12], and this result was already ex-
tended to subdomains of general homogeneous spaces by Strichartz [21] (see also [5]). The upper
bounds in [12, 21] are notable for being sharp in the sense of agreeing with the “semiclassical”
Weyl law, with the optimal constant. For the background and context of Weyl-sharp bounds on
sums of Laplacian eigenvalues, we refer to [13, 14].

In this article a new, simplified proof is used, and we considerably enlarge the family of self-
adjoint elliptic operators for which semiclassical upper bounds are proved. Even when V = 0,
new cases of interest that are treated include the Witten Laplacian, for which w = 1; the
Laplacian of a conformal metric g̃ = α2g, for which e−2ρ = αn and w = e2ραn−2; and the
vibrating membrane with variable density µ(x), for which µ(x) = e−2ρ and we−2ρ = 1.

In the last part of the paper, we focus on domains of compact homogeneous Riemannian
spaces. We revisit the inequality of Strichartz ([21, Theorem 2.2]) in the light of this new
approach and obtain extensions of Strichartz’s inequality to the case where the Laplace operator
is penalized by a potential in the presence of weights. For example, we prove that if Ω is a domain
of a compact homogeneous Riemannian manifold (M,g), then the eigenvalues µl associated with
(1) on Ω satisfy

∑

j≥0

(z − µj)+ ≥ |Ω|g
|M |g

∑

j≥0

(
z − λ̃j

)
+



SUMS OF EIGENVALUES 3

for all z ∈ R, and
∑

j≥0

e−µjt ≥ |Ω|g
|M |g

∑

j≥0

e−λ̃jt

for all t > 0, where λ̃j = λj
ffl

Ω w dvg +
ffl

Ω Ṽ w dvg, and where the λ′js are the eigenvalues of

the Laplacian on the whole manifold M (see Theorem 5.1 and Corollary 5.2). The extension
(stricto sensu) of Strichartz inequality is given in Theorem 5.2 and takes the following form
when Ω =M :

k−1∑

j=0

µj ≤
k−1∑

j=0

λ̃j .

It is known that without assumptions of regularity these variationally defined Neumann eigen-
values for the Laplacian may have finite points of accumulation of a quite arbitrary sort, as
entertainingly discussed in [9]. In this case the definition (2) would yield µℓ = inf(σess) for all
ℓ greater than some value, and the bounds we shall provide would become uninteresting. We
note that, for example, the spectrum of the Neumann Laplacian is guaranteed to have no finite
points of accumulation if the boundary is piecewise smooth [9].

Remark 1.1. Before closing this section, we make some further technical remarks about how to
define the Dirichlet and Neumann problems for these elliptic operators in the weak, or quadratic-
form, sense. In this regard we follow Edmunds and Evans [4], where in Chapter VII it is shown
that uniformly elliptic quadratic forms, on arbitrary open sets in Euclidean space, determine
unique operators via the Friedrichs extension, which, when the domain is sufficiently regular,
reduce to the classically defined operators for the Dirichlet and Neumann problems. (See also

[23, 19].) In particular, defining the quadratic form (1) initially on the Sobolev space W 1,2
0 (Ω)

corresponds to Dirichlet boundary conditions, whereas defining it initially on the restrictions
to Ω of functions in the space W 1,2

0 (Rν) corresponds to Neumann conditions. (For domains
allowing a Sobolev extension property the latter set coincides with W 1,2(Ω).) It is not in general
possible to say that the operators thus defined satisfy boundary conditions in a classical sense,
or to guarantee regularity at the boundary. However, in cases where the boundary is sufficiently
regular, integration by parts transforms expressions 〈Hϕ,ϕ〉 where H is a classically defined
operator into a quadratic form of the type (1) for ϕ in a dense subset of the Sobolev spaces
corresponding to Dirichlet or respectively Neumann conditions.

There are certainly significant questions of regularity of the eigenfunctions in the case when
Ω is an arbitrary open set, treated for example in [2], but they will play no role in the present
article.

The extension of the analysis of [4] from R
ν to manifolds is straightforward, because only

Hilbert-space structures and locally defined properties of functions and their gradients are used.

2. The averaged variational principle

In this section we recall the averaged variational principle which will be foundational for this
article. The following is mainly a restatement of Theorem 3.1 of Harrell-Stubbe [7], along with
a characterization of the case of equality.

Theorem 2.1. Consider a self-adjoint operator H on a Hilbert space H, the spectrum of which
is discrete at least in its lower portion, so that −∞ < µ0 ≤ µ1 ≤ . . . . The corresponding
orthonormalized eigenvectors are denoted {ψ(ℓ)}. The closed quadratic form corresponding to H
is denoted Q(ϕ,ϕ) for vectors ϕ in the quadratic-form domain Q(H) ⊂ H. Let fζ ∈ Q(H) be a
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family of vectors indexed by a variable ζ ranging over a measure space (M,Σ, σ). Suppose that
M0 is a subset of M. Then for any z ∈ R,

∑

j

(z − µj)+

ˆ

M

∣∣∣〈ψ(j), fζ〉
∣∣∣
2
dσ ≥

ˆ

M0

(
z‖fζ‖2 −Q(fζ , fζ)

)
dσ, (6)

provided that the integrals converge. Moreover, equality holds in (6) for z ∈ R if and only if up
to sets of measure 0,

{fζ ; ζ ∈ M0} ⊂ E(z) and {fζ ; ζ ∈ M \M0} ⊥ E0(z),

where E(z) =
⊕

µ≤z ker(H − µI) and E0(z) =
⊕

µ<z ker(H − µI).

Taking z = µk in (6) we obtain

µk

(
ˆ

M0

‖fζ‖2 dσ −
k−1∑

j=0

ˆ

M

|〈ψ(j), fζ〉|2 dσ
)

≤
ˆ

M0

Q(fζ , fζ)dσ −
k−1∑

j=0

µj

ˆ

M

|〈ψ(j), fζ〉|2 dσ,
(7)

Remark 2.1. We point out that the normalization of the test function fζ could be incorporated
into the measure, so that, for example, Eq. (6) could alternatively be written in terms of integrals
of expectation values such as

ˆ

(
|〈ψ(j), fζ〉|2

‖fζ‖2

)
dσ, (8)

i.e., over norms of projections of the eigenfunctions. Despite the suggestiveness of these alter-
natives, an advantageous feature of (7)-(6) that we shall later exploit is that useful identities
are available for averages of norms of some choices of fζ. Still, if the test functions fζ and
the measure space M constitute a tight frame, in the sense of satisfying a generalized Parseval
identity [10], then alternative forms of the inequalities imply appealing variational principles for
sums and Riesz means of eigenvalues, as captured in the next corollary. (We note that, in spe-
cial cases, similar use of averaging and tight frames for the study of eigenvalue sums and related
quantities has been made by Laugesen and Siudeja [15].)

Corollary 2.1. Under the assumptions of the Theorem, suppose further that fζ is a nonvan-
ishing family of test functions with the property that for all φ ∈ H,

ˆ

M

|〈φ, fζ〉|2
‖fζ‖2

dσ = A‖φ‖2

for a fixed constant A > 0. Then for any M0 ⊂ M such that (|M0| −Ak)µk ≥ 0,

1

k

k−1∑

j=0

µj ≤
1

|M0|

ˆ

M0

(
Q(fζ , fζ)

‖fζ‖2
)
dσ. (9)

For Riesz means,
∑

j

(z − µj)+ ≥ 1

A

ˆ

M0

(
z − Q(fζ , fζ)

‖fζ‖2
)
dσ. (10)

The proof of Corollary 2.1 is immediate; see [7] for more in this connection. To make our
exposition self-contained, we provide here the proof of the inequality (6) in Theorem 2.1 before
discussing the case of equality.
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Proof of Theorem 2.1. For every integer l ≥ 0, we denote by Pl the orthogonal projector onto

the subspace spanned by {ψ(j) , j ≤ l}, i.e. Plf =
∑l

j=0〈ψ(j), f〉ψ(j). Let z ∈ R, z > µ0 (the

inequality (6) being obvious for z ≤ µ0), and let k be the smallest integer such that z ≤ µk (that
is z ∈ (µk−1, µk]). Then

z‖f − Pk−1f‖2 ≤ µk‖f − Pk−1f‖2 ≤ Q(f − Pk−1f, f − Pk−1f), (11)

and, after direct computations,

z
(
‖f‖2 − ‖Pk−1f‖2

)
≤ Q(f, f)−Q(Pk−1f, Pk−1f).

With ‖Pk−1f‖2 =
∑k−1

j=0〈ψ(j), f〉2 and Q(Pk−1f, Pk−1f) =
∑k−1

j=0 µj〈ψ(j), f〉2, this yields

z‖f‖2 −Q(f, f) ≤
k−1∑

j=0

(z − µj)〈ψ(j), f〉2.

Applying this last inequality to fζ , ζ ∈ M0, and integrating over M0 we get

z

ˆ

M0

‖fζ‖2dσ −
ˆ

M0

Q(fζ , fζ)dσ ≤
k−1∑

j=0

(z − µj)

ˆ

M0

|〈ψ(j), fζ〉|2dσ

=
∑

j≥0

(z − µj)+

ˆ

M0

|〈ψ(j), fζ〉|2dσ.
(12)

The inequality (6) follows from (12) and the obvious inequality

∑

j≥0

(z − µj)+

ˆ

M0

|〈ψ(j), fζ〉|2dσ ≤
∑

j≥0

(z − µj)+

ˆ

M

|〈ψ(j), fζ〉|2dσ. (13)

Assume now that equality holds in (6). This implies that equality holds in (13) and in (11)
for f = fζ for almost all ζ ∈ M0. Equality in (11) holds for f either when z < µk and f = Pk−1f
or if z = µk and H(f −Pk−1f) = µk(f −Pk−1f), which implies in both cases that f ∈ E(z). On
the other hand, equality in (13) implies that, for almost all ζ ∈ M \M0 and all j ∈ N such that

µj < z, fζ is orthogonal to span{ψ(0), . . . , ψ(j)}, which means that fζ is orthogonal to E0(z).
Conversely, under the conditions of the statement,

∑

j

(z − µj)+

ˆ

M

∣∣∣〈ψ(j), fζ〉
∣∣∣
2
dσ =

∑

j

(z − µj)+

ˆ

M0

∣∣∣〈ψ(j), fζ〉
∣∣∣
2
dσ

=
∑

µj≤z

z

ˆ

M0

∣∣∣〈ψ(j), fζ〉
∣∣∣
2
dσ −

∑

µj≤z

µj

ˆ

M0

∣∣∣〈ψ(j), fζ〉
∣∣∣
2
dσ

=

+∞∑

j=0

z

ˆ

M0

∣∣∣〈ψ(j), fζ〉
∣∣∣
2
dσ −

+∞∑

j=0

µj

ˆ

M0

∣∣∣〈ψ(j), fζ〉
∣∣∣
2
dσ

=

ˆ

M0

(
z‖fζ‖2 −Q(fζ , fζ)

)
dσ.

�

As the guiding example for this article, when Ω is a bounded subdomain of Rν , we may use
test functions of the form

fζ(x) :=
1

(2π)ν/2
eip·x,
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where ζ has been equated to p, which ranges over M = R
ν with Lebesgue measure (The reason

for distinguishing ζ logically from p will be made clear in Theorem 4.1.). Indeed, ‖fζ‖2 = |Ω|
(2π)ν

for all ζ, where |Ω| is the Euclidean volume of Ω, and Parseval’s identity gives

ˆ

Rν

|〈φ, fζ〉|2 dνp = ‖φ‖2.

Hence, applying Corollary 2.1 withM0 ⊂ M taken to be the Euclidean ball of radius 2π
(

k
|Ω|ων

) 1
ν
,

we recover Kröger’s inequality for Neumann eigenvalues of the Euclidean Laplacian (here ων

stands for the volume of the ν-dimensional Euclidean unit ball). Indeed, in this case, the
Rayleigh quotient of fζ is simply given by R(fζ) = |p|2 and (9) yields

1

k

k−1∑

j=0

µj ≤
1

|M0|

ˆ

M0

|p|2dνp = 4π2ν

ν + 2

(
k

|Ω|ων

) 2
ν

.

This approach can be applied to easily extend Kröger’s inequality to Neumann eigenvalues
on a bounded subdomain of Rν in the presence of nontrivial potential and weights.

Corollary 2.2. Let µ0 ≤ µ1 ≤ . . . be the variationally defined Neumann eigenvalues (2) on
a bounded open set Ω ⊂ R

ν endowed with the standard Euclidean metric, where w, ρ, and V
satisfy the assumptions stated above. Then

1

k

k−1∑

j=0

µj ≤
4π2ν

ν + 2

(
k

|Ω|ων

) 2
ν
 

Ω
w(x)dνx+

 

Ω
Ṽ (x)w(x)dνx, (14)

where Ṽ (x) := V (x) + |∇ρ|2(x) and, for every f ∈ L1(Ω),
ffl

Ω f(x)d
νx = 1

|Ω|

´

Ω f(x)d
νx is the

mean value of f with respect to Lebesgue measure.

Actually, Corollary 2.2 will appear as a particular case of a more general result that we obtain
in Section 3 in the context of Riemannian manifolds. We also stress that Corollary 2.2 will be
improved in Section 4, with the aid of a coherent-state analysis relating the upper bounds to
phase-space volumes.

Upper bounds for individual Neumann eigenvalues µj are also obtainable from the averaged
variational principle. In order to somewhat simplify the bound, let us define the shifted Neumann
eigenvalues

µ̃j := µj −
 

Ω
Ṽ (x)w(x)dνx. (15)

In terms of these quantities, we will be able to show that (see Corollary 3.1)

µ̃k ≤ 4π2
(

k

|Ω|ων

) 2
ν

(
1 + 2

√
1− Sk
ν + 2

)
 

Ω
w(x)dνx, (16)

where

Sk :=
1
k

∑k−1
j=0 µ̃j

4π2ν
ν+2

(
k

|Ω|ων

) 2
ν ffl

Ω w(x)d
νx

≤ 1. (17)
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3. Bounds for Neumann eigenvalues on domains of Riemannian manifolds

Let (M,g) be a Riemannian manifold of dimension ν ≥ 2 and let Ω be a bounded subdomain
of M . Of course, when M is a closed manifold, Ω can be equal to the whole of M .

Let F : (M,g) → R
N , be an isometric embedding (whose existence for sufficiently large N

is guaranteed by Nash’s embedding Theorem). To any function u ∈ L2(Ω), we associate the
function ûF : RN → R defined by

ûF (p) =

ˆ

Ω
u(x)eip·F (x)dvg, (18)

where the dot stands for the Euclidean inner product in R
N (i.e., ûF is the Fourier transform

of the signed measure F∗(udvg) supported by F (Ω)). It is well-known, since the works of
Hörmander, Agmon-Hörmander and others (see [1, Theorem 2.1] [11, Theorem 7.1.26], [20,
Corollary 5.2]), that there exists a constant CF (Ω) such that, ∀u ∈ L2(Ω) and ∀R > 0,

ˆ

BR

|ûF (p)|2dNp ≤ CF (Ω)R
N−ν‖u‖2, (19)

where BR is the Euclidean ball of radius R in R
N centered at the origin and ‖u‖2 =

´

Ω u
2dvg.

In other words the Fourier functions appearing in (18) constitute a frame that is not generally
tight.

We define the Riemannian constant HΩ by

HΩ = inf
N≥ν

inf
F∈I(M,RN )

(
ν + 2

N + 2

) ν
2 1

ωN
CF (Ω), (20)

where I(M,RN ) is the set of isometric embeddings from (M,g) to R
N .

When Ω is a domain of Rν , we may take for F the identity map so that, ∀u ∈ L2(Ω), ûI is
nothing but the Fourier transform of u extended by zero outside Ω. Using Parseval’s identity
we get ∀R > 0,

ˆ

BR

|ûF (p)|2dνp ≤
ˆ

Rν

|ûF (p)|2dνp = (2π)ν‖u‖2.

Thus CI(Ω) = (2π)ν and

HΩ ≤ (2π)ν

ων
. (21)

In all the sequel, the notation |Ω|g will designate the Riemannian volume of Ω with respect to
g. We will also use the notation

ffl

Ω f dvg to represent the mean value of a function f ∈ L1(Ω)

with respect to the Riemanian measure dvg. (I.e.,
ffl

Ω f dvg =
1

|Ω|g

´

Ω f dvg.)

Theorem 3.1. Let (M,g) be a Riemannian manifold of dimension ν ≥ 2. Let µl = µl(Ω, g, ρ, w, V ),
l ∈ N, be the eigenvalues defined by (2) on a bounded open set Ω ⊂M , where w, ρ, and V satisfy
the assumptions stated above. Then

(1) For all z ∈ R,

∑

j≥0

(z − µj)+ ≥ 2 |Ω|g
(ν + 2)HΩ

(
 

Ω
w dvg

)− ν
2
(
z −

 

Ω
Ṽ w dvg

)1+ ν
2

+

, (22)

where Ṽ = V + |∇gρ|2.
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(2) For all k ∈ N,

1

k

k−1∑

j=0

µj ≤
ν

ν + 2

(
HΩ

|Ω|g
k

) 2
ν
 

Ω
w dvg +

 

Ω
Ṽ w dvg. (23)

(3) For all t > 0,

∑

j≥0

e−t(µj−
ffl

Ω
Ṽ w dvg) ≥

(π
t

) ν
2 |Ω|g
ωνHΩ

(
 

Ω
w dvg

)− ν
2

. (24)

Proof. Let F : (M,g) → R
N be an isometric embedding. For simplicity, we identify the domain

Ω with its image F (Ω) ⊂ RN and any function u : Ω → R with u ◦ F−1 : F (Ω) → R.
We apply Theorem 2.1 using test functions of the form

fζ(x) := eip·x+ρ(x),

where ζ has been equated to p, which ranges over M = BR ⊂ R
N endowed with Lebesgue

measure, where BR is a Eucidean N -dimensional ball whose radius R is to be determined later.
Our Hilbert space here is L2(Ω, e−2ρdvg) (endowed with the norm ‖u‖2 =

´

Ω u
2e−2ρdvg). Hence,

for all ζ,

‖fζ‖2 = |Ω|g
and consequently

ˆ

M

‖fζ‖2dNp = |Ω|gωNR
N . (25)

On the other hand, in our case the quadratic form is

Q(fζ , fζ) =

ˆ

Ω

(
|∇τfζ |2 + V |fζ |2

)
w(x) e−2ρ(x)dvg,

where ∇τfζ is the tangential part of the gradient of fζ (more generally, for all v ∈ R
N , vτ will

designate the tangential vector field induced on Ω by orthogonal projection of v). Thus, with
|fζ |2 = e2ρ and |∇τfζ |2 = |pτ +∇τρ|2,

Q(fζ , fζ) =

ˆ

Ω

(
|pτ |2(x) + 2p · ∇τρ(x)

)
w(x)dvg +

ˆ

Ω
(V + |∇τρ|2)w(x)dvg .

Observe that for symmetry reasons, for all v ∈ R
N \ {0},

ˆ

BR

p · v dNp = 0

and, after elementary calculations,
ˆ

BR

(p · v)2 dNp = |v|
N

ˆ

BR

|p|2 dNp = |v|
N + 2

ωNR
N+2.

Thus, if {v1, . . . , vν} is an orthonormal basis of the tangent space of Ω at a point x, then
ˆ

Ω
|pτ |2(x) dNp =

∑

j≤ν

ˆ

BR

(p · vj)2 dNp =
ν

N + 2
ωNR

N+2.

This leads to
ˆ

M

Q(fζ , fζ)d
Np =

ν

N + 2
ωNR

N+2

ˆ

Ω
w dvg + ωNR

N

ˆ

Ω
Ṽ w dvg. (26)
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It remains to deal with the integrals
´

M
|〈ψ(j), fζ〉|2 dNp, where {ψ(j)} is an L2(Ω, e−2ρdvg)-

orthonormal basis of eigenfunctions associated to {µj}. Setting φ(j) = e−ρψ(j),

〈ψ(j), fζ〉 =
ˆ

Ω
fζψ

(j)e−2ρdvg =

ˆ

Ω
eip·xψ(j)e−ρdvg = φ̂

(j)
F (p).

Using (19) we obtain
ˆ

BR

|〈ψ(j), fζ〉|2 dNp =
ˆ

BR

|φ̂(j)F (p)|2 dNp ≤ CF (Ω)R
N−ν

ˆ

Ω
|φ(j)|2dvg

= CF (Ω)R
N−ν

ˆ

Ω
|ψ(j)|2e−2ρdvg = CF (Ω)R

N−ν . (27)

We put (25), (26), and (27) into (6) after choosing M0 = M = BR, and obtain for all R > 0
and z ∈ R

∑

j≥0

(z − µj)+CF (Ω) ≥ |Ω|gωNR
ν

(
z − νR2

N + 2

 

Ω
w dvg −

 

Ω
Ṽ w dvg

)
. (28)

The right side of this inequality is optimized when R = 0 if z ≤
ffl

Ω Ṽ w dvg and when R2 =
N+2
ν+2

(
z −

ffl

Ω Ṽ w dvg

)
/
ffl

Ωw dvg otherwise. Thus

∑

j≥0

(z − µj)+CF (Ω) ≥

|Ω|gωN

(
N + 2

ν + 2

) ν
2 2

ν + 2

(
 

Ω
w dvg

)− ν
2
(
z −

 

Ω
Ṽ w dvg

)1+ ν
2

+

.

(29)

Taking the infimum with respect to F and N we get (22).

To prove (23) we first observe that taking z = µk in (28) gives

kµk −
k−1∑

j=0

µj ≥
|Ω|gωNR

ν

CF (Ω)

(
µk −

νR2

N + 2

 

Ω
w dvg −

 

Ω
Ṽ w dvg

)
(30)

for all R > 0, or

k−1∑

j=0

µj ≤
(
k − |Ω|gωNR

ν

CF (Ω)

)
µk +

|Ω|gωNR
ν

CF (Ω)

(
νR2

N + 2

 

Ω
w dvg +

 

Ω
Ṽ w dvg

)
.

Choosing R such that
|Ω|gωNRν

CF (Ω)
= k we get

k−1∑

j=0

µj ≤ k

(
ν

N + 2

(
CF (Ω)k

|Ω|gωN

) 2
ν
 

Ω
w dvg +

 

Ω
Ṽ w dvg

)
, (31)

which leads to (23) after taking the infimum with respect to F and N .

The inequality (24) is a consequence of (22) and the following identity relating the heat trace
to the Laplace transform of the Riesz mean :

∑

j≥0

e−µjt = t2
ˆ ∞

0
e−zt

∑

j≥0

(z − µj)+dz. (32)

�
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Remark 3.1. 1. In [16, Theorem 1.2], Li and Tang obtained for the Laplacian (i.e. in the case
V = ρ = 0, w = 1) an inequality which is similar to but weaker than (31). Indeed, instead of
the term ν

N+2 in the right side their inequality appears with N
N+2 .

2. It is possible to derive (23) from (22) using Legendre transform. Indeed, the Legendre trans-

form of a function f of the form f(z) = A(z −B)
1+ ν

2
+ with A > 0 is given by

f∧(p) = sup
z≥0

(pz − f(z)) =

(
2

A

) 2
ν ν

(ν + 2)1+
2
ν

p1+
2
ν +Bp,

while the Legendre transform of g(z) =
∑

j≥0 (z − µj)+ is

g∧(p) =

⌊p⌋−1∑

j=0

µj + (p − ⌊p⌋)µ⌊p⌋.

(Indeed, for z ∈ [µk−1, µk], pz − g(z) = (p − k)z +
∑k−1

j=0 µj which is nondecreasing as soon as

k ≤ ⌊p⌋.) Hence, it suffices to apply Legendre transform to both sides of (22) taking into account
that such a transform is inequality-reversing.

Corollary 3.1. Under the assumptions of Theorem 3.1, for any positive integer k,

µ̃k ≤
(
1 + 2

√
1− Sk
ν + 2

)(
HΩ

|Ω|g
k

) 2
ν
 

Ω
w dvg, (33)

where

µ̃k = µk −
 

Ω
Ṽ w dvg and Sk :=

1
k

∑k−1
j=0 µ̃j

(
HΩk
|Ω|g

) 2
ν ffl

Ωw dvg

.

Notice that according to Theorem 3.1 (2), Sk ≤ 1.

Proof of Corollary 3.1. We take back the proof of Theorem 3.1 and rewrite (30) as follows: For
every positive R,

kµ̃k −
k−1∑

j=0

µ̃j ≥
|Ω|gωNR

ν

CF (Ω)

(
µ̃k −

νR2

N + 2

 

Ω
w dvg

)
, (34)

which yields
( |Ω|gωNR

ν

CF (Ω)
− k

)
µ̃k ≤ ν

N + 2

|Ω|gωNR
ν+2

CF (Ω)

 

Ω
w dvg −

k−1∑

j=0

µ̃j.

With the change of variable σ :=
|Ω|gωN

CF (Ω)k
Rν the last inequality reads

(σ − 1)µ̃k ≤ ν

N + 2

(
CF (Ω)k

|Ω|gωN

) 2
ν
 

Ω
w dvg σ

1+ 2
ν − 1

k

k−1∑

j=0

µ̃j

for all σ > 1. Taking the infimum with respect to F and N and using (20), we get

(σ − 1)µ̃k ≤
(
HΩk

|Ω|g

) 2
ν
 

Ω
w dvg σ

1+ 2
ν − 1

k

k−1∑

j=0

µ̃j
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=

(
HΩk

|Ω|g

) 2
ν
 

Ω
w dvg

(
σ1+

2
ν − Sk

)
.

That is

µ̃k ≤
(
HΩk

|Ω|g

) 2
ν
 

Ω
w dvg

σ1+
2
ν − Sk
σ − 1

. (35)

This inequality can be explicitly optimized with respect to σ ∈ [1,+∞) only when ν = 2, and
we then obtain σ+ = 1 +

√
1− Sk, yielding the desired bound. For general ν ≥ 2 we introduce

a new change of variable as follows : σ = 1 + αzk, where zk = (1− Sk)
1
p , p =

ν + 2

ν
, and α is a

free positive parameter. Then the bound (35) reads:

µ̃k ≤
(
HΩk

|Ω|g

) 2
ν
 

Ω
w dvg

(1 + αzk)
p − 1 + zpk

αzk
.

Since 1 < p ≤ 2 for all ν ≥ 2, it follows that

1

p

(1 + αzk)
p − 1 + zpk

αzk
=

1

αzk

ˆ αzk

0
(1 + s)p−1ds+

zp−1
k

pα

≤ 1

αzk

ˆ αzk

0
(1 + (p− 1)s) ds +

zp−1
k

pα

= 1 +
(p− 1)αzk

2
+
zp−1
k

pα
.

Optimizing with respect to α leads to choose α2 =
2zp−2

k

p(p− 1)
. Thus,

1

p

(1 + αzk)
p − 1 + zpk

αzk
≤ 1 +

√
2

√
p− 1

p
z

p
2
k = 1 + 2

√
1− Sk√
ν + 2

,

which implies the the desired inequality.
�

Corollary 3.2. Under the assumptions of Theorem 3.1, for any integer k ∈ N such that∑k−1
j=0 µj ≥ 0,

µk

(
1−

ffl

Ω Ṽ w dvg

µk

)1+ 2
ν

+

≤
(
ν + 2

2

) 2
ν
(
HΩ

|Ω|g
k

) 2
ν
 

Ω
w dvg. (36)

In particular,

µk ≤ max

{
2

 

Ω
Ṽ w dvg ; 2 (ν + 2)

2
ν

(
HΩ

|Ω|g
k

) 2
ν
 

Ω
w dvg

}
. (37)

Proof. From the inequality (30) in the proof of Theorem 3.1, we deduce with
∑k−1

j=0 µj ≥ 0 that
for all R ≥ 0,

kµk −
|Ω|gωNR

ν

CF (Ω)

(
µk −

νR2

N + 2

 

Ω
w dvg −

 

Ω
Ṽ w dvg

)
≥ 0. (38)

The left side achieves its minimum when R = 0 if µk ≤
ffl

Ω Ṽ w dvg and otherwise when R2 =
N+2
ν+2

(
µk −

ffl

Ω Ṽ w dvg

)
/
ffl

Ωw dvg. Since (36) is obviously satisfied when µk ≤
ffl

Ω Ṽ w dvg, we
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shall assume µk >
ffl

Ω Ṽ w dvg and get

kµk −
|Ω|gωN

CF (Ω)

(
N + 2

ν + 2

) ν
2 2

ν + 2

(
µk −

 

Ω
Ṽ w dvg

)1+ ν
2
(
 

Ω
w dvg

)− ν
2

≥ 0

which gives
(
µk −

 

Ω
Ṽ w dvg

)1+ ν
2

≤
CF (Ω)

|Ω|gωN

(
ν + 2

N + 2

) ν
2 ν + 2

2

(
 

Ω
w dvg

) ν
2

kµk.

Therefore,

µ
ν
2
k

(
1−

ffl

Ω Ṽ w dvg

µk

)1+ ν
2

≤ CF (Ω)

|Ω|gωN

(
ν + 2

N + 2

) ν
2 ν + 2

2

(
 

Ω
w dvg

)ν
2

k.

Raising to the power 2
ν and taking the infimum with respect to F and N we obtain (36).

To prove (37) we observe that if µk > 2
ffl

Ω Ṽ w dvg, then 1−
ffl

Ω Ṽ w dvg
µk

> 1
2 , so we can deduce

from (36)
(
1

2

)1+ 2
ν

µk ≤
(
ν + 2

2

) 2
ν
(
HΩ

|Ω|g
k

) 2
ν
 

Ω
w dvg.

�

Remark 3.2. 1. From (23) in Theorem 3.1 and (37) in Corollary 3.2 we deduce that for any
Schrödinger operator ∆g + V on Ω and any integer k ≥ 0 we find (with ρ = 0 and w = 1)

1

k

k−1∑

j=0

µj(∆g + V ) ≤ ν

ν + 2

(
HΩ

|Ω|g
k

) 2
ν

+

 

Ω
V dvg. (39)

Furthermore, if
∑k−1

j=0 µj(∆g + V ) ≥ 0,

µk(∆g + V ) ≤ max

{
2

 

Ω
V dvg ; 2 (ν + 2)

2
ν

(
HΩ

|Ω|g
k

) 2
ν

}
. (40)

These estimates are to be compared with the results by Grigor’yan, Netrusov and Yau [6, Theorem
5.15 and (1.14)] by which, under the assumption µ0(∆g + V ) ≥ 0,

µk(∆g + V ) ≤ C(Ω)k +
1

ε(Ω)

 

Ω
V dvg (41)

where C(Ω) > 0 and ε(Ω) ∈ (0, 1) are two Riemannian constants that do not depend on V or k.
They ask whether such an estimate holds true with ε(Ω) = 1. The inequality (39) answers this

question for the eigenvalue sums
∑k−1

j=0 µj in the affirmative, without any positivity condition.

On the other hand, unlike the upper bound in (41), our estimates (39) and (40) are consistent
with the Weyl law regarding the power of k. Notice that (41) has been recently improved by A.
Hassannezhad [8] who obtained

µk(∆g + V ) ≤ C(Ω) +Aν

 

Ω
V dvg +Bν

(
k

|Ω|g

) 2
ν

under the same assumption of positivity of µ0(∆g + V ), where Aν > 1 and Bν are two con-
stants that only depend on the dimension ν, and C(Ω) is a Riemannian constant that does not
depend on V or k. Our estimates are valid, however, under weaker assumptions and, moreover,
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the coefficient in front of
ffl

Ω V dvg in (40) is equal to 1 while the other coefficient is explicitly
computable at least in the elementary case where Ω is conformally Euclidean.

2. When ρ = V = 0, the inequality (36) produces

µk ≤
(
ν + 2

2

) 2
ν
(
HΩ

|Ω|g
k

) 2
ν
 

Ω
w dvg,

which coincides with Kröger’s estimate [12, Corollary 2] when Ω is a Euclidean domain and

w = 1 (just replace HΩ by (2π)ν

ων
).

Let us highlight some consequences of Theorem 3.1. The first one deals with Witten Lapla-
cians.

Corollary 3.3. Let Ω be a bounded domain of a Riemannian manifold (M,g) and let ∆ρ be the
Witten Laplacian associated with the density e−2ρ, that is,

∆ρϕ = ∆gϕ+ 2(∇gρ,∇gϕ).

The Neumann eigenvalues {µl} of ∆ρ in Ω satisfy the following estimates :
(1) For all z ∈ R,

∑

j≥0

(z − µj)+ ≥ 2 |Ω|g
(ν + 2)HΩ

(
z −

 

Ω
|∇gρ|2 dvg

)1+ ν
2

+

. (42)

(2) For all k ∈ N
∗,

1

k

k−1∑

j=0

µj ≤
ν

ν + 2

(
HΩ

|Ω|g
k

) 2
ν

+

 

Ω
|∇gρ|2 dvg. (43)

(3) For all k ∈ N
∗,

µk

(
1−

ffl

Ω |∇gρ|2 dvg
µk

)1+ 2
ν

+

≤
(
ν + 2

2

) 2
ν
(
HΩ

|Ω|g
k

) 2
ν

. (44)

In particular,

µk ≤ max

{
2

 

Ω
|∇gρ|2 dvg ; 2 (ν + 2)

2
ν

(
HΩ

|Ω|g
k

) 2
ν

}
. (45)

For example, when Ω is a bounded domain of Rν endowed with the Gaussian density e−|x|2/2,
we have for the corresponding Witten Laplacian

1

k

k−1∑

j=0

µj ≤
ν

ν + 2

(
4π2

(
k

|Ω|ων

) 2
ν

+
ων

|Ω|R
ν+2

)
,

where R is chosen so that Ω is contained in the Euclidean ball BR.
The second particular case we want to stress is the Laplacian associated with a conformally

Euclidean metric.

Corollary 3.4. Let Ω be a bounded domain of Rν and let g = α2gE be a Riemannian metric
that is conformal to the Euclidean metric gE. The Neumann eigenvalues {µl} of the Laplacian
∆g in Ω satisfy the following estimates in which |Ω| denotes the Euclidean volume of Ω :

(1) For all z ∈ R,

∑

j≥0

(z − µj)+ ≥ 2ων |Ω|
(ν + 2)(2π)ν

(
 

Ω
α−2 dνx

) ν
2
(
z − ν2

4

 

Ω
|∇α|2α−4 dνx

)1+ ν
2

+

. (46)
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(2) For all k ∈ N,

1

k

k−1∑

j=0

µj ≤
4π2ν

ν + 2

(
k

ων |Ω|

) 2
ν
 

Ω
α−2 dνx+

ν2

4

 

Ω
|∇α|2α−4 dνx. (47)

(3) For all k ∈ N,

µk

(
1− ν2

4

ffl

Ω |∇α|2α−4 dνx

µk

)1+ 2
ν

+

≤ 4π2
(
ν + 2

2

) 2
ν
(

k

ων |Ω|

) 2
ν
 

Ω
α−2 dνx. (48)

In particular,

µk ≤ max

{
ν2

2

 

Ω
|∇α|2α−4 dνx ; 8π2 (ν + 2)

2
ν

(
k

ων |Ω|

) 2
ν
 

Ω
α−2 dνx

}
. (49)

For example, a domain of the hyperbolic space Hν can be identified with a domain of the

Euclidean unit ball endowed with the metric g =
(

2
1−|x|2

)2
gE . For such a domain, with α =

2
1−|x|2 ,

ffl

Ω α
−2 dνx ≤ 1

4 and
ffl

Ω |∇α|2α−4 dνx =
ffl

Ω |x|2 dνx, Corollary 3.4 gives

1

k

k−1∑

j=0

µj ≤
π2ν

ν + 2

(
k

ων |Ω|

) 2
ν

+
ν2

4

 

Ω
|x|2 dνx. (50)

µk

(
1− ν2

4

ffl

Ω |x|2 dνx
µk

)1+ 2
ν

+

≤ π2
(
ν + 2

2

) 2
ν
(

k

ων |Ω|

) 2
ν

. (51)

In particular,

µk ≤ max

{
ν2

2

 

Ω
|x|2 dνx ; 2π2 (ν + 2)

2
ν

(
k

ων |Ω|

) 2
ν

}
. (52)

4. Sums of Neumann eigenvalues on domains conformal to Euclidean sets, and

phase-space volumes

A phase-space analysis can considerably sharpen the upper bounds on sums of eigenvalues
from the previous sections so that they become sharp in the semiclassical regime. Following
physical tradition, it is shown in [17] how this may be achieved in some circumstances with the aid
of coherent states. We carry out such an analysis in this section for (1) when (M,g) = (Rν , dνx).
We must first introduce a few quantities that will be helpful to relate spectral estimates to phase-
space volumes. To avoid complications we assume that the potential energy V is Lipschitz
continuous and bounded from below. We do not assume that Ω is necessarily bounded, but if it
is not, we require V to be confining in the sense that there is a radial function Vrad(r) tending
to +∞ as r → ∞ with V (x) ≥ Vrad(|x|) for all x /∈ Ω. This condition is sufficient to ensure that
the eigenvalues form a discrete sequence tending to +∞.

Definition 4.1. The effective potential incorporating a correction for the conformal transfor-

mation will be denoted Ṽ (x) := V (x) + |∇ρ|2(x), and the maximal Lipschitz constant of Ṽ (x)

on the region Ω ∩ {x : Ṽ (x) ≤ Λ} will be denoted Lip(Λ).
The L2-normalized ground-state Dirichlet eigenfunction for the ball of geodesic radius r in M

will be denoted hr and K(hr) :=
´

Br
|∇hr(x)|2dν x. I.e., in this section where M = R

ν, h is a
scaled Bessel function and

K(hr) =
j2ν
2
−1,1

r2
.
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Remark 4.1. The function hr will ensure that some coherent-state functions to be defined below
are localized in configuration space. Its specific form is but one of many plausible choices.

We next recall some quantities that arise in phase-space analysis.

Definition 4.2. The Euclidean phase-space volume for energy Λ is defined as

Φ1(Λ) :=
1

(2π)ν
|(x,p) : |p|2 + Ṽ (x) ≤ Λ| = ων

(2π)ν

ˆ

Ω

(
Λ− Ṽ (x)

) ν
2

+
dνx,

according to a standard calculation to be found, for example, in [17]. If the weight in (1) is not
constant, we make use of a weighted phase-space volume,

Φw(Λ) =
ων

(2π)ν

ˆ

Ω

(
Λ− Ṽ (x)

) ν
2

+
w(x)dνx.

The total energy associated with this quantity is correspondingly

Ew(Λ) :=
1

(2π)ν

ˆ

{(x,p):x∈Ω,|p|2+Ṽ (x)≤Λ}

(
|p|2 + Ṽ (x)

)
w(x)dνxdνp

=
ν

ν + 2

ων

(2π)ν

ˆ

Ω

(
Λ− Ṽ (x)

)1+ ν
2

+
w(x)dνx. (53)

We note that according to (53),
dEw

dΛ
(Λ) = Φw(Λ), (54)

and that Φw increases strictly monotonically in Λ, implying that Ew is strictly convex.

Theorem 4.1. Let µ0 ≤ µ1 ≤ . . . be the variationally defined Neumann eigenvalues (2) on an
open set Ω ∈ R

ν, where w, ρ, and V satisfy the assumptions stated above, and define Λ(k) as the
minimal value of Λ for which Φ1(Λ) ≥ (2π)νk. Then

k−1∑

j=0

µj ≤ Ew(Λ(k)) + 3
(
2j2ν−1,1Lip(Λ(k))

) 1
3 Φw

(
Λ(k) + (2j2ν−1,1Lip(Λ(k))

1
3

)
. (55)

The Riesz-mean form of the inequality reads

k−1∑

j=0

(z − µj)+ ≥ 2

ν + 2

ων

(2π)ν

ˆ

(z − V (y))
1+ ν

2
+ dy (56)

−
(

ων

(2π)ν

ˆ

(z − V (y))
ν
2
+ dy

)(
‖∇hr‖2 +

ˆ

|x|h2r
)
. (57)

Remark 4.2. 1. We call attention to the fact that the condition in this theorem defining Λ uses
the Euclidean phase space, whereas weighted phase-space quantities appear in (55).
2. The dominant term in the semiclassical regime can be identified by introducing a small
parameter α as a coefficient of |∇ϕ|2 in (1), i.e.,

Rα(ϕ) :=

´

Ω (α|∇ϕ(x)|2 + V (x)|ϕ(x)|2)w(x)e−2ρ(x)dvg
´

Ω |ϕ(x)|2e−2ρ(x)dvg
. (58)

The result, in the Riesz-mean form after choosing a convenient relationship between r and α, is

k−1∑

j=0

(z − µj)+ ≥ α− ν
2

2

ν + 2

ων

(2π)ν

ˆ

(z − V (y))
1+ ν

2
+ dy

−
(
α

1
3
− ν

2
ων

(2π)ν

ˆ

(z − V (y))
ν
2
+ dy

)(
‖∇h1‖2 +

ˆ

|x|h21
)
, (59)
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in which the leading term is precisely the expected semiclassical expression, in contrast to results
of the previous section such as Corollary 3.4.
3. Inequalities of the type (55) imply estimates of quantities including trace of the heat kernel (=
the partition function in quantum physics) and the spectral zeta functions by simple transforms.
For instance (55) implies for the Riesz mean R1(z) :=

∑
j (z − µj)+ that

R1(z) ≥
1

(2π)ν

(
zΦw(Λ(z)) − Ew(Λ(k)) + 3

(
2j2ν−1,1Lip(Λ(k))

) 1
3 Φw

(
Λ(k) + (2j2ν−1,1Lip(Λ(k))

1
3

))
.

(60)
The Riesz mean is in turn related to the heat trace by the Laplace transform (32).

Proof of Theorem 4.1. We apply Theorem 2.1 to the Neumann eigenvalues of (1) as defined by
(2), using for test functions “coherent states” [17, 22] of the form:

fζ(x) :=
1

(2π)ν/2
eip·(x)+ρ(x)hr(x− y).

In this formula, ζ = (p,y) ranges over the phase space M = R
2ν with Lebesgue measure. The

radius r will be chosen below.
We note that the inner product that appears is a Fourier transform with respect to the variable

x, viz.,

〈φ, fζ〉 = F[hr(x− y)e−ρ(x)φ(x)],

where if Ω is a strict subset of Rν , then φ is extended by 0 outside Ω. Thus, with the Parseval
identity,

ˆ

R2ν

|〈φ, fζ〉|2 dνp dνy =

ˆ

Rν

ˆ

Rν

hr(x− y)2 |φ|2 e−2ρdνy dνx

=

ˆ

Rν

|φ|2 e−2ρdνx = ‖φ‖2. (61)

The set M0 in Theorem 2.1 must be taken large enough that

k ≤
ˆ

M0

‖fζ‖2dσ

=
1

(2π)ν

ˆ

M0

ˆ

Ω
h2r(x− y)e2ρ(x)−2ρ(x)dνxdνp dνy

≤ 1

(2π)ν
|M0|, (62)

in which case

k−1∑

j=0

µj ≤
ˆ

M0

R(fζ)d
νp dνy =

=
1

(2π)ν

ˆ

M0×Ω

(
(|p|2 + V (x))h2r(x− y) + |∇hr(x− y) + hr(x− y)∇ρ(x)|2

)
w(x)dνx dνp dνy.

(63)

We now make the ansatz that M0 = M0(Λ) := {(x,p) : x ∈ Ω, |p|2 + Ṽ (x) ≤ Λ}, where
Λ ≥ Λ(k), defined as the minimum value of Λ for (62) to be valid. Thus the upper bound in
(62) becomes 1

(2π)ν Φ1(Λ), whence the condition in the theorem.
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Since the support of h is restricted to a ball of radius r, the x-integral may be restricted to
the set {x ∈ Ω : ∃y, |y − x| ≤ r, |p|2 + Ṽ (x) ≤ Λ} ⊂ M0(Λ + Lip(Λ)r). Thus, integrating first
in y, the right side of (63) is bounded above by

1

(2π)ν

ˆ

{p:|p|2≤Λ}

ˆ

{x:Ṽ (x)≤Λ+Lip(Λ)r−|p|2}

ˆ

Rν

(
(|p|2 + V (x))h2r(x− y)

+ |∇hr(x− y) + hr(x− y)∇ρ(x)|2
)
w(x)dνy dνx dνp

=
1

(2π)ν

ˆ

{p:|p|2≤Λ}

ˆ

{x:Ṽ (x)≤Λ+Lip(Λ)r−|p|2}

ˆ

Rν

(
(|p|2 + Ṽ (x))h2r(x− y)

+ |∇hr(x− y)|2 +∇ρ(x) · ∇h2r(x− y)
)
w(x)dνy dνx dνp.

The last contribution vanishes because
ˆ

Rν

∇ρ(x) · ∇h2r(x− y)dνy =

ˆ

Rν

∇ρ(x) · ∇1dνy = 0, (64)

leaving
k−1∑

j=0

µj ≤
1

(2π)ν

ˆ

M0(Λ+Lip(Λ)r)
(|p|2 + Ṽ (x) +K(hr))w(x)d

νx dνp (65)

for all values of r > 0. The upper bound (65) is of the form

1

(2π)ν
(Ew(Λ + Lip(Λ)r) + Φw(Λ + Lip(Λ)r)K(hr))

≤ 1

(2π)ν

(
Ew(Λ) +

(
j2ν−1,1

r2
+ Lip(Λ)r

)
Φw(Λ + Lip(Λ)r)

)
,

where we have made use of (54) and the monotonicity of Φw in a first-order expansion of Ew.

Choosing the optimal value r =

(
2j2ν−1,1

L

) 1
3

, we get the claim (55).

The derivation of (56) proceeds similarly. �

Remark 4.3. We note the following special cases of particular interest.
1. Laplace operators with Neumann conditions on a compact Euclidean domain (V = ρ = 0,

w = 1). In this case Lip(Λ) = 0, Λ
ν
2 :=

(2π)ν

Bν

k

|Ω| , and we recover the inequality of Kröger, that

k−1∑

j=0

µj ≤
ν

ν + 2

ων

(2π)ν
|Ω|Λ1+ ν

2 =
ν

ν + 2
(2π)2ω

− 2
ν

ν
k

ν+2
ν

|Ω| 2ν
.

Indeed, without the potential V , the introduction of the function hr is not needed for the proof.
2. Nonhomogeneous problems with ρ = V = 0, but w is variable, under Neumann conditions:

k−1∑

j=0

µj ≤
ν

ν + 2

ων

(2π)ν

(
ˆ

Ω
w(x)dνx

)
Λ1+ ν

2 .

The eigenvalue bounds of Corollary 3.1 are sharp as k tends to infinity. Indeed since µ̃k = µk
we get

µk ≤ 4π2
´

Ω w(x)d
νx

|Ω|

(
k

|Ω|ων

) 2
ν
(
1 + 2

√
1− Sk
ν + 2

)
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with Sk as given in Corollary 3.1 :

Sk =
ν+2
ν

1
k

∑k−1
j=0 µj

4π2
´

Ω
w(x)dνx

|Ω|

(
k

|Ω|ων

) 2
ν

≤ 1.

5. Bounds for Neumann eigenvalues on subdomains of compact homogeneous

spaces

In this section, we deal with the case where the ambient space is a compact homogeneous
Riemannian manifold (M,g) with isomorphism group denoted G. In particular, we shall recover
Strichartz’s result [21] with a more efficient proof and extend it to a wider class of operators. We
begin with bounds in the spirit of Theorem 3.1 and then derive a phase-space bound analogous
to Theorem 4.1.

Let us denote by

spec(M) = {0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · }
the spectrum of the Laplace-Beltrami operator ∆g on M (each eigenvalue is repeated according
to its multiplicity). Although 0 is a simple eigenvalue, all the other eigenvalues are degenerate
owing to the transitive action of the isometry group G (recall that the eigenspaces are invariant
under the action of G.)

Given a regular domain Ω ⊂M endowed with densities e−2ρ and e−2θ = we−2ρ, and a potential
V , we consider the eigenvalues µl(Ω, g, ρ, w, V ), l ∈ N, defined by (1) and (2) and seek for

relationships between the µl’s and the λl’s . As before, we will use the notation Ṽ = V + |∇gρ|2.
We also need the following subspaces introduced in Theorem 2.1

E0(R) =
⊕

µ<R

ker(H − µI) and E(R) =
⊕

µ≤R

ker(H − µI)

where H = H(Ω, g, ρ, w, V ) is the operator defined by (4). The corresponding subspaces associ-
ated with the Laplacian ∆g on M will be denoted

F0(R) =
⊕

λ<R

ker(∆g − λI) and F (R) =
⊕

λ≤R

ker(∆g − λI).

Theorem 5.1. Let (M,g) be a compact homogeneous Riemannian manifold. Let µl = µl(Ω, g, ρ, w, V ),
l ∈ N, be the eigenvalues defined by (2) on a bounded open set Ω ⊂M . Then, for all z ∈ R,

∑

j≥0

(z − µj)+ ≥ |Ω|g
|M |g

∑

j≥0

(
z − λ̃j

)
+
, (66)

where λ̃j = λj
ffl

Ωw dvg +
ffl

Ω Ṽ w dvg. Equality holds in (66) for some z ∈ R if and only if

E0(z) ⊂ eρF (z̃) ⊂ E(z),

with z̃ = 1
ffl

Ω
w dvg

(
z −

ffl

Ω Ṽ w dvg

)
.

Proof. Let {yλ : λ ∈ spec(M)} be an orthonormal basis of L2(M,g) with ∆gyλ = λyλ. The
proof relies on Theorem 2.1 in which we take M = spec(M) endowed with the uniform discrete
measure, and use test functions of the form

fλ = yλe
ρ.
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For any function ψ ∈ L2(Ω, e−2ρdvg) (endowed with the norm ‖ψ‖2 =
´

Ω ψ
2e−2ρdvg),

ˆ

M

〈fλ, ψ〉2dλ =
∑

λ∈spec(M)

(
ˆ

Ω
fλψe

−2ρdvg

)2

=
∑

λ∈spec(M)

(
ˆ

Ω
yλψe

−ρdvg

)2

=
∑

λ∈spec(M)

(
ˆ

M
yλψe

−ρdvg

)2

=

ˆ

M
ψ2e−2ρdvg = ‖ψ‖2,

where we used the same notation ψ to designate the extension of ψ by zero outside Ω.
Let R > 0 and let M0 = {λ ∈ M : λ ≤ R}. Due to the transitive action of the isometry

group G on M , for every eigenvalue Λ of ∆g, with multiplicity mΛ, the basis {yλ : λ = Λ} of
the corresponding eigenspace is such that

∑
λ=Λ y

2
λ is constant on M . Integrating over M , we

get ∑

λ=Λ

y2λ =
mΛ

|M |g
. (67)

Moreover, 0 = 1
2∆g(

∑
λ=Λ y

2
λ) =

∑
λ=Λ

(
Λy2λ − |∇gyλ|2

)
, that is

∑

λ=Λ

|∇gyλ|2 =
mΛ

|M |g
Λ. (68)

Therefore,
ˆ

M0

‖fλ‖2dλ =
∑

λ≤R

ˆ

Ω
y2λdvg =

∑

Λ≤R

|Ω|g
|M |g

mΛ =
|Ω|g
|M |g

N(R).

where N(R) is the number of eigenvalues of ∆g on M that are less or equal to R (counted with
multiplicity). On the other hand, using (67) and (68), we get for every Λ,

∑

λ=Λ

|∇gfλ|2 = e2ρ
∑

λ=Λ

(
|∇gyλ|2 + y2λ|∇gρ|2 + g(∇gρ,∇gy2λ)

)

=
mΛ

|M |g
e2ρ
(
Λ+ |∇gρ|2

)
.

Thus
ˆ

M0

Q(fλ, fλ)dλ =
∑

λ≤R

ˆ

Ω

(
|∇gfλ|2 + V f2λ

)
we−2ρdvg

=
∑

Λ≤R

ˆ

Ω

mΛ

|M |g
(
Λ+ |∇gρ|2 + V

)
wdvg

=

´

Ω w dvg

|M |g
∑

λ≤R

λ+

´

Ω Ṽ w dvg

|M |g
N(R).

Inserting into (6), for every z ∈ R and R > 0 we get

∑

j≥0

(z − µj)+ ≥ z
|Ω|g
|M |g

N(R)−
´

Ωw dvg

|M |g
∑

λ≤R

λ−
´

Ω Ṽ w dvg

|M |g
N(R)

=
|Ω|g
|M |g

∑

λ≤R

(
z − λ

 

Ω
w dvg −

 

Ω
Ṽ w dvg

)
.

(69)
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Notice that the RHS is negative if z ≤
ffl

Ω Ṽ w dvg. Now, when z >
ffl

Ω Ṽ w dvg, we can choose

R = z̃ =
z−

ffl

Ω
Ṽ w dvg

ffl

Ω
w dvg

so that the last sum is taken over all eigenvalues λ for which the involved

terms are nonnegative, thus
∑

j≥0

(z − µj)+ ≥ |Ω|g
|M |g

∑

j≥0

(
z − λj

 

Ω
w dvg −

 

Ω
Ṽ w dvg

)

+

.

Regarding the case of equality, it follows from Theorem 2.1 that equality holds in (66) if and
only if fλ ∈ E(z) for λ ≤ z̃ and fλ is orthogonal to E0(z) for λ > z̃. Equivalently, eρF (z̃) ⊂ E(z)
and, since Span{fλ : λ > z̃} is the orthogonal complement of eρF (z̃), E0(z) ⊂ eρF (z̃). �

As we have seen in the previous sections, our technique allows obtaining bounds on eigenvalue
sums. In order to simplify the statement of these bounds, we intoduce the following notation :
Given any sequence (a) = (ak)k≥0 of real numbers, we set for p ∈ [1,+∞),

S(a)(p) =

⌊p⌋−1∑

j=0

aj + (p − ⌊p⌋)a⌊p⌋,

so that when p is an integer, S(a)(p) is nothing but the sum of the first p terms a0, · · · , ap−1 of
the sequence (a).

Theorem 5.2. Let (M,g) be a compact homogeneous Riemannian manifold. Let (µ) = (µl)l≥0

be the sequence of eigenvalues defined by (2) on an open set Ω ⊂M . Then, for every p ∈ [1,+∞),

S(µ)(p) ≤
|Ω|g
|M |g

S(λ̃)

( |M |g
|Ω|g

p

)
, (70)

where (λ̃) = (λ̃l)l≥0 is the sequence defined by λ̃l = λl
ffl

Ωw dvg +
ffl

Ω Ṽ w dvg. Moreover, equality
holds in (70) for some p = k ∈ N

∗ if and only if

E0(µk) ⊂ eρF0(λk̆) and eρF (λk̂−1) ⊂ E(µk). (71)

with k̆ =
⌊
|M |g
|Ω|g

k
⌋
and k̂ =

⌈
|M |g
|Ω|g

k
⌉
, where ⌊ ⌋ and ⌈ ⌉ denote the floor and the ceiling functions,

respectively.

Observe that we have F0(λk̆) ⊂ F (λk̂−1) with equality if and only if λk̂−1 < λk̆).

Proof of Theorem 5.2. As mentioned in Remark 3.1, Legendre’s transform enables us to obtain
(70) from (66). Alternatively, we can prove (70) using the averaged principle, which has the
advantage of allowing us to characterize the case of equality. Indeed, taking z = µk in (69) we
immediately get, ∀R > 0

k−1∑

j=0

µj ≤
|Ω|g
|M |g

N(R)−1∑

j=0

λ̃j +

(
k − |Ω|g

|M |g
N(R)

)
µk. (72)

Denote by 1 = N0 < N1 < N2 < · · · < Nj < . . . the values taken by the function N(R), R ∈ R,
that is Nj = m0 +m1 + · · ·+mj . The sequence of eigenvalues of ∆g on M is then numbered as
follows :

0 = λ0 < λ1 = λ2 = · · · = λN1−1 < λN1 = · · · = λN2−1 < λN2 = · · ·
= λNj−1 < λNj

= · · · = λNj+1−1 < λNj+1 = · · ·
Let q ∈ N such that

Nq ≤
|M |g
|Ω|g

k < Nq+1.
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We consider the inequality (72) with first N(R) = Nq and, then, N(R) = Nq+1. We multiply

the first inequality by α = (Nq+1 − |M |g
|Ω|g

k)/mq+1 and add the second inequality multiplied by

1− α = (
|M |g
|Ω|g

k −Nq)/mq+1 to get

k−1∑

j=0

µj ≤
|Ω|g
|M |g

Nq−1∑

j=0

λ̃j + (1− α)
|Ω|g
|M |g

mq+1λ̃Nq + kµk −
|Ω|g
|M |g

(αNq + (1− α)Nq+1)µk

=
|Ω|g
|M |g

Nq−1∑

j=0

λ̃j +

(
k − |Ω|g

|M |g
Nq

)
λ̃Nq =

|Ω|g
|M |g




Nq−1∑

j=0

λ̃j +

( |M |g
|Ω|g

k −Nq

)
λ̃Nq




since α is chosen such that αNq +(1−α)Nq+1 =
|M |g
|Ω|g

k. Now, from the definition of Nq we have

λNq = λNq+1 = · · · = λ
⌊
|M|g
|Ω|g

k⌋
and, then,

Nq−1∑

j=0

λ̃j +

( |M |g
|Ω|g

k −Nq

)
λ̃Nq = S(λ̃)

( |M |g
|Ω|g

k

)
,

which yields
k−1∑

j=0

µj ≤
|Ω|g
|M |g

S(λ̃)

( |M |g
|Ω|g

k

)
.

This means that (70) holds for all p ∈ N. Since the functions S(µ) and S(λ̃) are piecewise-affine

in p, the extension of (70) to all positive p is immediate.
Let k be a positive integer. The equality is achieved in (70) for p = k if and only if one of the

following holds :

• |M |g
|Ω|g

k = Nq and equality holds in (72) for R such that N(R) = Nq, i.e. for R = λNq−1

• |M |g
|Ω|g

k > Nq and equality holds in (72) for the values of R such that N(R) = Nq and

N(R) = Nq+1, i.e. for both R = λNq−1 and R = λNq+1−1.

The first case corresponds to the case of equality in Theorem 2.1 with z = µk, M = spec(M),
M0 = {λ ∈ spec(M) ; λ ≤ λNq−1}. As in the proof of Theorem 5.1, this situation occurs if

and only if E0(µk) ⊂ eρF (λNq−1) ⊂ E(µk), with Nq =
|M |g
|Ω|g

k. Since λNq−1 < λNq , F (λNq−1) =

F0(λNq ), and the last conditions can be written as follows :

E0(µk) ⊂ eρF0(λ |M|g
|Ω|g

k
) and F (λ |M|g

|Ω|g
k−1

) ⊂ E(µk). (73)

which is equivalent to (71).
In the second case, similar considerations show that equality holds if and only if

E0(µk) ⊂ eρF (λNq−1) ⊂ eρF (λNq+1−1) ⊂ E(µk). (74)

Since Nq <
|M |g
|Ω|g

k < Nq+1, it is clear that

Nq ≤
⌊ |M |g
|Ω|g

k
⌋
≤ Nq+1 − 1

and

Nq ≤
⌈ |M |g
|Ω|g

k
⌉
− 1 ≤ Nq+1 − 1.
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Thus,

λNq = λNq+1−1 = λ⌊
|M|g
|Ω|g

k

⌋ = λ⌈
|M|g
|Ω|g

k

⌉
−1
.

Consequently,

F (λNq+1−1) = F
(
λ⌈

|M|g
|Ω|g

k

⌉
−1

)

and, since λNq−1 < λNq ,

F (λNq−1) = F0(λNq ) = F0

(
λ⌊

|M|g
|Ω|g

k

⌋
)
.

Therefore, (74) is equivalent to (71). �

Remark 5.1.

1. The particular case of (70) in which w = 1 and ρ = V = 0 corresponds to the inequality
obtained by Strichartz [21, Theorem 2.2].

In the same paper [21], Strichartz also proved, following Gallot [5, Proposition 2.9], that for
Dirichlet eigenvalues µDl of the Laplacian on a domain Ω of a compact homogeneous Riemannian
manifold (M,g), the reverse inequality

S(µD)(p) ≥
|Ω|g
|M |g

S(λ)

( |M |g
|Ω|g

p

)

holds. Contrary to what was found for Neumann eigenvalues in Theorem 5.2, a straightforward
extension of the latter inequality to Dirichlet eigenvalues of a Laplacian with potential cannot hold
in general. Indeed, such an extension would imply for p = 1 that µD0 (∆g + V ) ≥ 1

|M |g

´

Ω V dvg,

which is not always true (for example, if Ω is a spherical cap of radius r and if u is a positive first
eigenfunction of the Dirichlet Laplacian on Ω, we can take the family of continuous potentials
Vε with Vε =

1
u2 on the spherical cap of radius (1 − ε)r, and Vε is constant on the complement,

then, using u as a test function, it is easy to see that µD0 (∆g+Vε) ≤ µD0 (∆g)+ |Ω| while
´

Ω Vε dvg
tends to infinity as ε→ 0.)
2. Assume that |Ω| ≥ 2

3 |M |, then an immediate consequence of Theorem 5.2 and the fact that the
first positive eigenvalue λ1 of the Laplacian on (M,g) has multiplicity at least 2, is the following
inequality

µ0 + µ1 ≤
|Ω|g
|M |g

(
2λ1

 

Ω
w dvg + 3

 

Ω
Ṽ w dvg

)

which yields

µ1 ≤ 2
|Ω|g
|M |g

λ1

for the Neumann Laplacian (with ρ = V = 0 and w = 1)

In the case where Ω is equal to the whole of M , Theorem 5.2 leads to the following

Corollary 5.1. Let (M,g) be a compact homogeneous Riemannian manifold. Let µl, l ∈ N, be
the eigenvalues defined by (2) on M . Then, for every k ∈ N

∗,

k−1∑

j=0

µj ≤
k−1∑

j=0

λ̃j , (75)

where equality holds if and only if

E0(µk) ⊂ eρF0(λk) and eρF (λk−1) ⊂ E(µk).
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In particular, if m1 is the multiplicity of λ1, then equality holds in (75) for k ≤ m1 if and only

if (V + |∇gρ|2)w − divg(w∇ρ) is constant on M and µj = λ̃j for j = 0, 1, · · · , k − 1.

Proof of Corollary 5.1. Assume that equality holds in (75) for k ≤ m1. Then we have E0(µk) ⊂
eρF0(λk). Since k ≤ m1, F0(λk) = F (λ0) = span{1}. It follows that E0(µk) has dimension
1, that is E0(µk) = E(µ0) = span{eρ}. Consequently, µ1 = µ2 = · · · = µk, and eρ is an
eigenfunction of H associated with µ0. Thus

Heρ = e2ρdivg
(
we−2ρ∇geρ

)
+ V weρ = · · · ,

=
(
(V + |∇gρ|2)w − divg(w∇ρ)

)
eρ = µ0e

ρ

which implies that (V + |∇gρ|2)w− divg(w∇ρ) = µ0. Integrating, we get µ0 =
ffl

Ω Ṽ w dvg = λ̃0.
Now,

µ0 + (k − 1)µ1 =

k−1∑

j=0

µj =

k−1∑

j=0

λ̃j = λ̃0 + (k − 1)λ̃1

and, consequently, µ1 = λ̃1.
�

Remark 5.2. We know that for any k ≥ 2, either λk−1 = λk or else λk−1 = λk−2. Notice that

if λk−1 = λk and if equality holds in (75) for k, then, necessarily, λ̃k−1 = µk−1 = µk = λ̃k.

(This follows directly from the combination of
∑k−1

j=0 µj =
∑k−1

j=0 λ̃j with
∑k

j=0 µj ≤
∑k

j=0 λ̃j and∑k−2
j=0 µj ≤

∑k−2
j=0 λ̃j .) Consequently, the equality also holds in (75) for k − 1 and k + 1.

Moreover, if µk > µk−1, then the equality holds in (75) for k if and only if λk > λk−1 and
E(µk−1) = eρF (λk−1). (Indeed, in this case, dimE0(µk) = dimE(µk−1) = k and dimF0(λk) =
dimF0(λk−1) = k.)

Applying the Laplace transform to both sides of (66), we obtain the following comparison of
the heat traces (see (32)):

Corollary 5.2. Let (M,g) be a compact homogeneous Riemannian manifold. Let µl, l ∈ N, be
the eigenvalues defined by (2) on a bounded open set Ω ⊂M . Then, for all t > 0,

∑

j≥0

e−µj t ≥ |Ω|g
|M |g

∑

j≥0

e−λ̃jt, (76)

where λ̃j = λj
ffl

Ωw dvg +
ffl

Ω Ṽ w dvg.

Let us define the theta function via:

Θ(t) =
1

4πt

∑

(p,q)∈Z2

e−
p2+q2+pq

4t .

Corollary 5.3. Let Γ = Ze1 ⊕ Ze2 ⊂ R
2 be a lattice, where {e1, e2} is a basis of R2. Let ρ,

w > 0, V be Γ-periodic functions on R
2 and denote by µl = µl(ρ,w, V ), l ∈ N, the eigenvalues

of the operator H(ρ,w, V ) defined by (4), acting on Γ-periodic functions on R
2. Then, for all

t > 0,
∑

j≥0

e−µj t ≥ Θ

(ffl
Ωw dx

|Ω| t

)
e−t

ffl

Ω Ṽ w dx, (77)

where Ω is a fundamental domain for the action of Γ on R
2.
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Proof. This result is a direct consequence of (76) combined with Poisson’s formula and Mont-
gomery’s Theorem [18].

�

We turn now to the phase space analysis taking into account the form of the potential V , and
allowing conformal transformations and nontrivial weights. Let us denote by

0 = Λ0 < Λ1 < Λ2 < · · · < Λl < · · ·
the increasing sequence of eigenvalues of the Laplacian of the compact homogeneous space (M,g).
The multiplicity of Λl is denotedml, and we designate by {yl,1, yl,2, · · · , yl,ml

} an L2-orthonormal
basis of the eigenspace associated with Λl.

In the case of a domain Ω in a manifold X ≃ (M,e−2ρg) that is conformally equivalent to
(M,g), we shall use coherent-state test functions of the form:

fζ(x) := yℓm(x)eρ(x)hy(x). (78)

In this formula, h(x) is a nonnegative H1 function supported in the geodesic ball of radius r in
the canonical metric on M , with

´

Br
h2r(x)d

ν x = 1, and y ranges over the isometry group G.
As before we choose it specifically as the ground-state Dirichlet eigenfunction on the geodesic
ball of radius r and set K(hr) :=

´

Br
|∇h(x)|2dν x, which is thus the fundamental Dirichlet

eigenvalue for the Laplacian on the geodesic disk of radius r. Denoting by Ty(x) the action by
the group element y on the point x, we let

hy(x) := h(Ty(x)).

Recall that one can designate an arbitrary point of M as 0 and cover M with translates Ty(0).
We normalize the uniform measure dγ on G so that for any f ∈ L∞(M),

´

G f(Ty(x))dγ(y) =
´

M f(x)dvg. The index ζ = (ℓ,m,y) ranges over M = J ×G, where J is the set of all pairs of
integer indices for the normalized eigenfunctions yℓm(x), and the associated measure dσ is the
product of the counting measure on J with dγ.

As in Section 2, we find it helpful to define:

Definition 5.1. As before,

Ṽ (x) := V (x) + |∇ρ|2,
The weighted phase-space volume is

Φh
w(Λ) := |{ℓ,m,y} : m ≤ mℓ, Ty(0) ∈ Ω,Λℓ + Ṽ (Ty(0)) ≤ Λ|

=

ˆ

{y:Ty(0)∈Ω,Ṽ (Ty(0))≤Λ}


 ∑

{ℓ:Λℓ+Ṽ (Ty(0))≤Λ}

mℓ


 dγ(y). (79)

The total energy associated with this phase-space volume is correspondingly

Eh
w(Λ) :=

ˆ

{y:Ty(0)∈Ω,Ṽ (Ty(0))≤Λ}


 ∑

{ℓ:Λℓ+Ṽ (Ty(0))≤Λ}

mℓ

(
Λℓ + Ṽ (Ty(0))

)

 dγ(y). (80)

Theorem 5.3. Let µ0 ≤ µ1 ≤ . . . be the variationally defined Neumann eigenvalues (2) on a
bounded open set Ω ⊂M , where w, ρ, and V satisfy the assumptions stated in Section 1. Then
for all r > 0,

k−1∑

j=0

µj ≤ Eh
w(Λ + Lip(Λ)r) +K(hr)Φ

h
w(Λ + Lip(Λ)r). (81)
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Proof. Note that

〈φ, fζ〉Ω =
〈
e−ρ(x)hy(x)φ(x), yℓm

〉
M
,

where if Ω is a strict subset of M , then φ is extended by 0 outside Ω. Thus, by the Fourier
completeness relation,

ˆ

G


∑

ℓ,m

∣∣〈φ, fζ〉Ω
∣∣2

 dγ(y) =

ˆ

G
‖e−ρ(x)hy(x)φ(x)‖2L2(M,dvg)

dγ(y)

=

ˆ

Ω
|φ|2 e−2ρ

(
ˆ

G
hy(x)

2dγ(y)

)
dvg

=

ˆ

Ω
|φ|2 e−2ρdvg

= ‖φ‖2L2(Ω). (82)

To apply the theorem, chooseM0 of the form {(ℓ,m,y) : m ≤ mℓ, Ty(0) ∈ Ω,Λℓ+Ṽ (Ty(0)) ≤ Λ}
for a finite Λ large enough so that

k ≤
ˆ

M0

‖fζ‖2L2(Ω)dσ =

ˆ

Ω

ˆ

M0

h2
y
(x)e2ρ(x)−2ρ(x)dσdvg = |Ω|Φh

w(Λ). (83)

We define Λ(k) as the minimal value of Λ for which (83) is valid and henceforth choose M0 =

{(ℓ,m,y) : m ≤ mℓ, Ty(0) ∈ Ω,Λℓ + Ṽ (y) ≤ Λ(k)}. Then
k−1∑

j=0

µj ≤
ˆ

M0

R(fζ)dσ(ζ)

=

ˆ

Ω

ˆ

M0

w(x)
(
y2ℓm

(
h2
y
(x)Ṽ (x) + |∇hy(x)|2 +∇ρ(x) · ∇h2

y
(x)
)

+ h2
y
(x)|∇yℓm|2 + 2hy(x)∇hy(x) · yℓm∇yℓm

)
dσdvg

≤
ˆ

Ω

ˆ

{y:Ṽ (Ty(0))≤Λ}
w(x)


 ∑

{ℓ:Λℓ+Ṽ (Ty(0))≤Λ}

(
mℓ

|M |

)(
h2
y
(x)(Λℓ + Ṽ (x)) + |∇hy(x)|2

)

 dγ(y),

by dint of (67) and (68). (The final cross term dropped out because it was proportional to the
gradient of a constant function (67), in analogy with (64).) Because h is supported in a ball of
radius r, we restrict the x-integration to x : dist(x,y) ≤ r with (ℓ,m,y) ∈ M0 and estimate the
integral in analogy with (65), obtaining

k−1∑

j=0

µj ≤
(

1

|M |

)
ˆ

(ℓ,m,x)∈M0(Λ+Lip(Λ)r)
w(x)

(
Λℓ + Ṽ (x) +K(hr)

)
dσ, (84)

which yields the statement in the Theorem. �
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References
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SUMS OF EIGENVALUES 27
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