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Controllability of a 2× 2 parabolic system by one force with
space-dependent coupling term of order one.

M. Duprez∗
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Abstract

This paper is devoted to the controllability of linear systems of two coupled parabolic equa-
tions when the coupling involves a space dependent first order term. This system is set on an
bounded interval I ⊂⊂ R, and the first equation is controlled by a force supported in a subinterval
of I or on the boundary. In the case where the intersection of the coupling and control domains
is nonempty, we prove null controllability at any time. Otherwise, we provide a minimal time
for null controllability. Finally we give a necessary and sufficient condition for the approximate
controllability. The main technical tool for obtaining these results is the moment method.

1 Introduction and main results
Let T > 0 and ω := (a, b) ⊆ (0, π). We consider in the present paper the following distributed

control system
∂ty − ∂xxy +A0(p(x)∂xy + q(x)y) = B1ωv in QT := (0, π)× (0, T ),

y(0, ·) = y(π, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, π)

(1.1)

and boundary control system
∂tz − ∂xxz +A0(p(x)∂xz + q(x)z) = 0 in QT ,

z(0, ·) = Bu, z(π, ·) = 0 on (0, T ),

z(·, 0) = z0 in (0, π),

(1.2)

where y0 ∈ L2(0, π)2 and z0 ∈ H−1(0, π)2 are the initial conditions, v ∈ L2(QT ) and u ∈ L2(0, T )
are the controls, p ∈W 1

∞(0, π), q ∈ L∞(0, π) and the matrices A0 and B are given by

A0 :=

(
0 0
1 0

)
and B :=

(
1
0

)
.

It is known (see [20, 21] (resp. [16, 25])) that for given initial data y0 ∈ L2(0, π)2 (resp. z0 ∈
H−1(0, π)2) and a control v ∈ L2(QT ) (resp. u ∈ L2(0, T )) System (1.1) (resp. (1.2)) has a unique
solution y (resp. z) in

L2(0, T ;H1
0 (0, π)2) ∩ C([0, T ];L2(0, π)2)

(resp. L2(QT )2 ∩ C([0, T ];H−1(0, π)2) ),
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which depends continuously on the initial data and the control, that is

‖y‖L2(0,T ;H1
0 (0,π)2) + ‖y‖C([0,T ];L2(0,π)2) 6 CT (‖y0‖L2(0,π)2 + ‖v‖L2(QT ))

(resp. ‖z‖L2(QT )2 + ‖z‖C([0,T ];H−1(0,π)2) 6 CT (‖z0‖H−1(0,π)2 + ‖u‖L2(0,T )) ).

Let us introduce the notion of null and approximate controllability for this kind of systems.

• System (1.1) (resp. System (1.2)) is null controllable at time T if for every initial condition
y0 ∈ L2(0, π)2 (resp. z0 ∈ H−1(0, π)2) there exists a control v ∈ L2(QT ) (resp. u ∈ L2(0, T ))
such that the solution to System (1.1) (resp. System (1.2)) satisfies

y(T ) ≡ 0 (resp. z(T ) ≡ 0) in (0, π).

• System (1.1) (resp. System (1.2)) is approximately controllable at time T if for all ε > 0 and
all y0, yT ∈ L2(0, π)2 (resp. z0, zT ∈ H−1(0, π)2) there exists a control v ∈ L2(QT ) (resp.
u ∈ L2(0, T )) such that the solution to System (1.1) (resp. System (1.2)) satisfies

‖y(T )− yT ‖L2(0,π)2 6 ε (resp. ‖z(T )− zT ‖H−1(0,π)2 6 ε).

The main goal of this article is to provide a complete answer to the null and approximate control-
lability issues for System (1.1) and (1.2). For a survey and some applications in physics, chemistry or
biology concerning the controllability of this kind of systems, we refer to [6]. In the last decade, many
papers studied this problem. However most of them are relating to some parabolic systems with zero
order coupling terms. Without first order coupling terms, some Kalman coupling conditions are made
explicit in [3], [4] and [16] for distributed null controllability of systems in higher space dimension of
more than two equations with time-dependent and constant matrices.

Concerning the null and approximate controllability of Systems (1.1) and (1.2) in the case p ≡ 0
and q 6≡ 0 in (0, π), a partial answer is given in [1, 2, 13, 24] under the sign condition

q 6 0 or q > 0 in (0, π).

These results are obtained as a consequence of controllability results of a hyperbolic system using the
transmutation method (see [22]). One can find a necessary and sufficient condition in [7] when∫ π

0

q(x)dx 6= 0.

Finally in a recent work [8, 9], a complete study for any q ∈ L∞(0, π) is given.
Let us now remind known results of null controllability for systems of the following more general

form. Let Ω be a bounded domain in RN (N ∈ N∗) of class C2 and ω0 an arbitrary nonempty subset
of Ω. We denote by ∂Ω the boundary of Ω. Consider the system of two coupled linear parabolic
equations

∂ty1 = ∆y1 + g11 · ∇y1 + g12 · ∇y2 + a11y1 + a12y2 + 1ω0
v in Ω× (0, T ),

∂ty2 = ∆y2 + g21 · ∇y1 + g22 · ∇y2 + a21y1 + a22y2 in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(·, 0) = y0 in Ω,

(1.3)

where y0 ∈ L2(Ω)2, gij ∈ L∞(Ω× (0, T ))N and aij ∈ L∞(Ω× (0, T )) for all i, j ∈ {1, 2}.
As a particular case of the result in [17] (see also [5]), System (1.3) is null controllable whenever

g21 ≡ 0 and (a21 > C or a21 < −C) in ω1 ⊆ ω0, (1.4)
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for a positive constant C.
In [18], the author supposes that a11, g11, a22, g22 are constant and the first order coupling

operator g21 · ∇+ a21 can be written

g21 · ∇+ a21 = P1 ◦ θ in Ω× (0, T ), (1.5)

where θ ∈ C2(Ω) satisfies |θ| > C in ω1 ⊆ ω0 for a positive constant C and P1 is given by

P1 := m0 · ∇+m1,

for some m0,m1 ∈ R. Moreover the operator P1 satisfies

‖u‖H1(Ω) 6 C‖P ∗1 u‖L2(Ω) ∀u ∈ H1
0 (Ω).

Under these assumptions, the author proves the null controllability of System (1.3) at any time.
In [10], the same property holds true for System (1.3) if we assume that aij ∈ C4(Ω× (0, T )),

gij ∈ C1(Ω× (0, T ))N for all i, j ∈ {1, 2}, g21 ∈ C3(Ω× (0, T )) and the geometrical condition{
∂ω ∩ ∂Ω contains a nonempty open subset γ s.t. γ̊ 6= ∅,
∃x0 ∈ γ s.t. g21(t, x0) · ν(x0) 6= 0 for all t ∈ [0, T ],

(1.6)

where ν represents the exterior normal unit vector to the boundary ∂Ω.
Last, for constant coefficients, it is proved in [14] that System (1.3) is null/approximately control-

lable at any time T if and only if
g21 6= 0 or a21 6= 0.

Now let us go back to Systems (1.1) and (1.2) for which we will provide a complete description of
the null and approximate controllability. Our first and main result is the following

Theorem 1.1. Let us suppose that p ∈W 1
∞(0, π) ∩W 2

∞(ω), q ∈ L∞(0, π) ∩W 1
∞(ω) and

(Supp(p) ∪ Supp(q)) ∩ ω 6= ∅. (1.7)

Then System (1.1) is null controllable at any time T .

Let us compare this result with the previously described results to highlight our main contribution:

1. Even though System (1.1) is considered in one space dimension, we remark first that our coupling
operator has a more general form than the one in (1.5) assumed by Guerrero [18]. Moreover
unlike to [14], its coefficients are non constant with respect to the space variable.

2. We do not have the geometrical restriction (1.6) assumed in [10] by A. Benabdallah and al.
More precisely we do not require the control support to be a neighbourhood of a part of the
boundary.

For all x ∈ (0, π) and k ∈ N∗, we denote by ϕk(x) :=
√

2
π sin(kx) the eigenvector of the Laplacian

operator, with Dirichlet boundary condition, and consider the two following quantities
Ia,k(p, q) :=

∫ a

0

(
q − 1

2∂xp
)
ϕ2
k,

Ik(p, q) :=

∫ π

0

(
q − 1

2∂xp
)
ϕ2
k,

(1.8)

for all k ∈ N∗. Combined with the Hautus test ([15, Cor. 3.3] or Th. 5.1 in the present paper),
Theorem 1.1 leads to the following characterization:
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Theorem 1.2. Let us suppose that p ∈ W 1
∞(0, π) ∩W 2

∞(ω) and q ∈ L∞(0, π) ∩W 1
∞(ω). System

(1.1) is approximately controllable at time T if and only if

(Supp(p) ∪ Supp(q)) ∩ ω 6= ∅ (1.9)

or

|Ik(p, q)|+ |Ia,k(p, q)| 6= 0 for all k ∈ N∗. (1.10)

This last result recovers the case p ≡ 0 studied in [11] for Supp (q) ∩ ω = ∅. In [19], the authors
prove the approximate controllability at any time T of System (1.1) under the condition p ≡ 0 and
q ≡ 1ω0

with ω0 a nonempty open subset of (0, π), which implies (1.10).
Remark 1. We will see in the prove of Theorems 1.1 and 1.2 that only the following regularity are
needed for p and q {

p ∈W 1
∞(0, π) ∩W 2

∞(ω̃),

q ∈ L∞(0, π) ∩W 1
∞(ω̃),

for an open subinterval ω̃ of ω. These hypothesis are used in Definition (1.8) of Ik and Ia,k and the
change of variable described in Section 3.2. For more general coupling terms, these control problems
are open.

When the supports of the control and the coupling terms are disjoint in System (1.1), following
the ideas in [9], we obtain a minimal time of null controllability:

Theorem 1.3. Let p ∈W 1
∞(0, π), q ∈ L∞(0, π). Suppose that Condition (1.10) holds and

(Supp(p) ∪ Supp(q)) ∩ ω = ∅. (1.11)

Let T0(p, q) be given by

T0(p, q) := lim sup
k→∞

min(− log |Ik(p, q)| ,− log |Ia,k(p, q)|)
k2

. (1.12)

One has

1. If T > T0(p, q), then System (1.1) is null controllable at time T .

2. If T < T0(p, q), then System (1.1) is not null controllable at time T .

Remark 2. For p ≡ 0 in (0, π), it is proved in [9] that for any τ0 ∈ [0,∞] there exits a function
q ∈ L∞(0, π) such that the minimal time of null controllability T0(p, q) associated with System (1.1)
is given by

T0(p, q) = τ0.

The authors give explicit functions and one can easily adapt them to the case p 6≡ 0 in (0, π).
Concerning the boundary controllability, in [23, Th. 3.3], using the Hautus test, the author proves

that System (1.2) is approximately controllable at time T if and only if

Ik(p, q) 6= 0 for all k ∈ N∗. (1.13)

About null controllability of System (1.2) we obtain here a minimal time:

Theorem 1.4. Let p ∈W 1
∞(0, π), q ∈ L∞(0, π) and suppose that Condition (1.13) is satisfied. Let

us define

T1(p, q) := lim sup
k→∞

− log |Ik|
k2

. (1.14)

One has
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1. If T > T1(p, q), then System (1.2) is null controllable at time T .

2. If T < T1(p, q), then System (1.2) is not null controllable at time T .

Remark 3. A simple computation leads to the convergence of sequences (Ik)k∈N∗ and (Ia,k)k∈N∗ , more
precisely

lim
k→∞

Ik(p, q) = I :=
1

π

∫ π

0

(q − 1
2∂xp) and lim

k→∞
Ia,k(p, q) = Ia :=

1

π

∫ a

0

(q − 1
2∂xp).

We remark first that T0(p, q) = T1(p, q) = 0 when

q > ∂xp in (0, π) or q < ∂xp in (0, π).

Secondly, under the condition ∫ π

0

q 6=
∫ π

0

∂xp,

System (1.1) (resp. (1.2)) is null controllable if and only if (1.10) (resp. (1.13)) holds.
In higher space dimension, even for this simplified system, distributed and boundary controllability

are open problems. The cases T = T0 in Theorem 1.3 and T = T1 in Theorem 1.4 are also open.
This article is organized as follows. In the first section we present some preliminary results useful

to reduce the null controllability issues to the moment problem. In the second and third sections
we study the null controllability issue of System (1.1) in the two cases when the intersection of the
coupling and control supports is nonempty or not. We finish with the proof of Theorems 1.2 and 1.4
in Section 4 and 5.

2 Preliminary results
Consider the differential operator

L : D(L) ⊂ L2(0, π)2 → L2(0, π)2

f 7→ −∂xxf +A0(p∂xf + qf),

where the domain of L and its adjoint L∗ is given by D(L) = D(L∗) = H2(0, π)2 ∩ H1
0 (0, π)2. In

this section, we will first establish some properties of the operator L useful in the moment method.
Secondly we will recall the unique continuation property and the observability inequality related to
the approximate and null controllability, respectively.

2.1 Biorthogonal basis
Let us first analyze the spectrum of the operators L and L∗.

Proposition 2.1. For all k ∈ N∗ consider the two vectors

Φ∗1,k :=

(
ψ∗k
ϕk

)
,Φ∗2,k :=

(
ϕk
0

)
,

where ψ∗k is defined for all x ∈ (0, π) by
ψ∗k(x) = α∗kϕk(x)− 1

k

∫ x

0

sin(k(x− ξ))[Ik(p, q)ϕk(ξ) + ∂x(p(ξ)ϕk(ξ))− q(ξ)ϕk(ξ)]dξ,

α∗k =
1

k

∫ π

0

∫ x

0

sin(k(x− ξ))[Ik(p, q)ϕk(ξ) + ∂x(p(ξ)ϕk(ξ))− q(ξ)ϕk(ξ)]ϕk(x)dξdx,

One has
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1. The spectrum of L∗ is given by σ(L∗) = {k2 : k ∈ N∗}.

2. For k > 1, the eigenvalue k2 of L∗ is simple if and only if Ik(p, q) 6= 0. In this case, Φ∗2,k and
Φ∗1,k are an eigenfunction and a generalized eigenfunction of the operator L∗ associated with
the eigenvalue k2, more precisely{

(L∗ − k2Id)Φ∗1,k = IkΦ∗2,k,

(L∗ − k2Id)Φ∗2,k = 0.
(2.1)

3. For k > 1, the eigenvalue k2 of L∗ is double if and only if Ik(p, q) = 0. In this case, Φ∗1,k and
Φ∗2,k are two eigenfunctions of the operator L∗ associated with the eigenvalue k2, that is for
i = 1, 2

(L∗ − k2Id)Φ∗i,k = 0.

Proof. The adjoint operator L∗ of L is given by

L∗ : D(L) ⊂ L2(0, π)2 → L2(0, π)2

f 7→ −∂xxf +A0(−∂x(pf) + qf).

We can remark first that the inverse of L∗ is compact. Thus the spectrum of L∗ reduces to its point
spectrum. The eigenvalue problem associated with the operator L∗ is

−∂xxψ − ∂x(p(x)ϕ) + q(x)ϕ = λψ in (0, π),

−∂xxϕ = λϕ in (0, π),

ϕ(0) = ψ(0) = ϕ(π) = ψ(π) = 0,

(2.2)

where (ψ,ϕ) ∈ D(L∗) and λ ∈ C. For ϕ ≡ 0 in (0, π) and ψ = ϕk in (0, π), λ = k2 is an eigenvalue of
L∗ and the vector Φ∗2,k := (ϕk, 0) is an associated eigenfunction. If now ϕ 6≡ 0 in (0, π), then λ = k2

is an eigenvalue and ϕ = κϕk with κ ∈ R∗. We remark that System (2.2) has a solution if and only
if Ik(p, q) = 0. If Ik(p, q) = 0, Φ∗1,k := (ψ∗k, ϕk) is a second eigenfunction of L∗ linearly independent
of Φ∗2,k, where ψ

∗
k is the unique solution to the non-homogeneous Sturm-Liouville problem{

−∂xxψ − k2ψ = f in (0, π),

ψ(0) = ψ(π) = 0,
(2.3)

with
f := ∂x(p(x)ϕk)− q(x)ϕk

and is such that ∫ π

0

ψ(x)ϕk(x) dx = 0. (2.4)

A solution to System (2.3) can be written for all x ∈ (0, π)

ψ(x) = αϕk(x)− 1

k

∫ x

0

sin(k(x− ξ))f(ξ)dξ,

with α ∈ R. Under Condition (2.4), we obtain the expression of ψ∗k given in Proposition 2.1. Thus,
in the case Ik(p, q) = 0, λ = k2 is a double eigenvalue of L∗. Items 1 and 3 are now proved.

Let us now suppose that Ik(p, q) 6= 0. The eigenvalue λ = k2 is simple, Φ∗2,k := (ϕk, 0) is an
eigenfunction and a solution Φ∗1,k := (ψ,ϕ) to (L∗ − k2Id)Φ∗1,k = Ik(p, q)Φ∗2,k, that is

−∂xxψ − ∂x(p(x)ϕ) + q(x)ϕ = k2ψ + Ik(p, q)ϕk in (0, π),

−∂xxϕ = k2ϕ in (0, π),

ϕ(0) = ψ(0) = ϕ(π) = ψ(π) = 0,

(2.5)
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is a generalized eigenfunction of L∗. We deduce that ϕ = κϕk in (0, π) for a constant κ ∈ R∗. Again
System (2.5) has a solution if and only if κ = 1. Then ψ is solution to the Sturm-Liouville problem
(2.3) with

f = Ik(p, q)ϕk + ∂x(p(x)ϕk)− q(x)ϕk

and satisfying (2.4). Again, using (2.4), we obtain the expression of ψ∗k given in Proposition 2.1.

The function ψ∗k given in Proposition 2.1 will play an important role in this paper and we will
need the following immediate property

Lemma 2.1. There exists a positive constant C such that

|α∗k| 6
C

k
, ‖ψ∗k‖L∞(0,π) 6

C

k
, ‖∂xψ∗k‖L∞(0,π) 6 C, ∀k ∈ N∗. (2.6)

Since the eigenvalues of the operator L∗ are real, we deduce that L and L∗ have the same spectrum
and the associated eigenspaces have the same dimension. The eigenfunctions and the generalized
eigenfunctions of L can be found as previously.

Proposition 2.2. For all k ∈ N∗ consider the two vectors

Φ1,k :=

(
0
ϕk

)
,Φ2,k :=

(
ϕk
ψk

)
,

where ψk is defined for all x ∈ (0, π) by
ψk(x) := αkϕk(x)− 1

k

∫ x

0

sin(k(x− ξ))[Ik(p, q)ϕk(ξ)− p(ξ)∂x(ϕk(ξ))− q(ξ)ϕk(ξ)]dξ,

αk :=
1

k

∫ π

0

∫ x

0

sin(k(x− ξ))[Ik(p, q)ϕk(ξ)− p(ξ)∂x(ϕk(ξ))− q(ξ)ϕk(ξ)]ϕk(x)dξdx,

One has

1. The spectrum of L is given by σ(L) = σ(L∗) = {k2 : k ∈ N∗}.

2. For k > 1, the eigenvalue k2 of L is simple if and only if Ik(p, q) 6= 0. In this case, Φ1,k and
Φ2,k are an eigenfunction and a generalized eigenfunction of the operator L associated with the
eigenvalue k2, more precisely {

(L− k2Id)Φ1,k = 0,

(L− k2Id)Φ2,k = IkΦ1,k.
(2.7)

3. For k > 1, the eigenvalue k2 of L is double if and only if Ik(p, q) = 0. In this case, Φ1,k

and Φ2,k are two eigenfunctions of the operator L associated with the eigenvalue k2, that is for
i = 1, 2

(L− k2Id)Φi,k = 0.

Lemma 2.3 and Corollary 2.6 in [9] can be adapted easily to prove the following property.

Property 2.1. Consider the families

B := {Φ1,k,Φ2,k : k ∈ N∗} and B∗ :=
{

Φ∗1,k,Φ
∗
2,k : k ∈ N∗

}
.

Then

1. The sequences B and B∗ are biorthogonal Riesz bases of L2(0, π)2.

2. The sequence B∗ is a basis of H1
0 (0, π)2 and B is its biorthogonal basis in H−1(0, π).

7
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2.2 Duality
As is well known, the controllability has a dual concept called observability (see for instance [6],

[12, Th. 2.44, p. 56–57]). Consider the dual system associated with System (1.1)
−∂tθ − ∂xxθ +A∗0(−∂x(p(x)θ) + q(x)θ) = 0 in QT ,

θ(0, ·) = θ(π, ·) = 0 on (0, T ),

θ(·, T ) = θ0 in (0, π),

(2.8)

where θ0 ∈ L2(0, π)2. The approximate controllability is equivalent to a unique continuation property :

Proposition 2.3. 1. System (1.1) is approximately controllable at time T if and only if for all
initial condition θ0 ∈ L2(0, π)2 the solution to System (2.8) satisfies

1ωB
∗θ ≡ 0 in QT ⇒ θ ≡ 0 in QT . (2.9)

2. System (1.2) is approximately controllable at time T if and only if for all initial condition
θ0 ∈ H1

0 (0, π)2 the solution to System (2.8) satisfies

B∗∂xθ(0, t) ≡ 0 in (0, T ) ⇒ θ ≡ 0 in QT . (2.10)

The null controllability is characterized by an observability inequality :

Proposition 2.4. 1. System (1.1) is null controllable at time T if and only if there exists a
constant Cobs such that for all initial condition θ0 ∈ L2(0, π)2 the solution to System (2.8)
satisfies the observability inequality

‖θ(0)‖2L2(0,π)2 6 Cobs

∫∫
QT

|1ωB∗θ|2dxdt. (2.11)

2. System (1.1) is null controllable at time T if and only if there exists a constant Cobs such that
for all initial condition θ0 ∈ H1

0 (0, π)2 the solution to System (2.8) satisfies the observability
inequality

‖θ(0)‖2H1
0 (0,π)2 6 Cobs

∫ T

0

|B∗∂xθ(0, t)|2dt. (2.12)

3 Proof of Theorem 1.1
In this section, we first establish the moment problem related to the null controllability for System

(1.1) and then we will solve it in section 3.2. The strategy involves finding a equivalence system (see
Definition 3.1) to System (1.1), which has a associated quantity Ik satisfying "some good properties".

3.1 The moment problem
Let y0 := (y0

1 , y
0
2) ∈ L2(0, π)2. For i ∈ {1, 2} and k ∈ N∗, if we consider θ0 := Φ∗i,k in the dual

System (2.8), we get after an integration by part∫∫
QT

v(x, t)1ωB
∗θ(x, t)dxdt = 〈y(T ),Φ∗i,k〉L2(0,π)2 − 〈y0, θ(0)〉L2(0,π)2 .

Since B∗ is a basis of L2(0, π)2, System (1.1) is null controllable if and only if for all y0 ∈ L2(0, π)2,
there exists a control v ∈ L2(QT ) such that for all k ∈ N∗ and i ∈ {1, 2} the solution y to System
(1.1) satisfies the following equality∫∫

QT

v(x, t)1ωB
∗θi,k(x, t) dx dt = −〈y0, θi,k(0)〉L2(0,π)2 , (3.1)

8
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where θi,k is the solution to the dual system (2.8) with the initial condition θ0 := Φ∗i,k.
In the moment problem (3.1), we will look for a control v of the form

v(x, t) := f (1)(x)v(1)(T − t) + f (2)(x)v(2)(T − t) for all (x, t) ∈ QT , (3.2)

with v(1), v(2) ∈ L2(0, T ) and f (1), f (2) ∈ L2(0, π) satisfying

Supp
(
f (1)

)
, Supp

(
f (2)

)
⊆ ω.

The solutions θ1,k and θ2,k to the dual System (2.8) with the initial condition Φ∗1,k and Φ∗2,k are
given for all (x, t) ∈ QT by θ1,k(x, t) = e−k

2(T−t)
(

Φ∗1,k(x)− (T − t)Ik(p, q)Φ∗2,k(x)
)
,

θ2,k(x, t) = e−k
2(T−t)Φ∗2,k(x).

(3.3)

Plugging (3.2) and (3.3) in the moment problem (3.1), we get for all k > 1

f̃
(1)
k

∫ T

0

v(1)(t)e−k
2t dt+ f̃

(2)
k

∫ T

0

v(2)(t)e−k
2t dt

−Ik(p, q)f
(1)
k

∫ T

0

v(1)(t)te−k
2t dt− Ik(p, q)f

(2)
k

∫ T

0

v(2)(t)te−k
2t dt

= −e−k
2T
{
y0

1,k − TIk(p, q)y0
2,k

}
,

f
(1)
k

∫ T

0

v(1)(t)e−k
2t dt+ f

(2)
k

∫ T

0

v(2)(t)e−k
2t dt = −e−k

2T y0
2,k,

where f (i)
k , f̃ (i)

k and y0
i,k are given for all i ∈ {1, 2} and k ∈ N∗ by

f
(i)
k :=

∫ π

0

f (i)(x)ϕk(x)dx, f̃
(i)
k :=

∫ π

0

f (i)(x)ψ∗k(x)dx, (3.4)

and
y0
i,k := 〈y0,Φ∗i,k〉L2(0,π) (3.5)

In [16], the authors prove that the family
{
e1,k := e−k

2t, e2,k := te−k
2t
}
k≥1

admits a biorthogonal

family {q1,k, q2,k}k≥1 in the space L2(0, T ), i.e. a family satisfying∫ T

0

ei,kqj,l(t) dt = δijδkl, ∀k, l ≥ 1, 1 ≤ i, j ≤ 2. (3.6)

Moreover for all ε > 0 there exists a constant Cε,T > 0 such that

‖qi,k‖L2(0,T ) ≤ Cε,T eεk
2

, ∀k ≥ 1, i = 1, 2. (3.7)

We will look for v(1) and v(2) of the form

v(i)(t) =
∑
k>1

{v(i)
1,kq1,k(t) + v

(i)
2,kq2,k(t)}, i = 1, 2. (3.8)

Thus the moment problem (3.1) can be written as

A1,kV1,k +A2,kV2,k = Fk, for all k > 1, (3.9)

9
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with for all k ∈ N∗

A1,k =

(
f̃

(1)
k f̃

(2)
k

f
(1)
k f

(2)
k

)
, A2,k =

(
−Ik(p, q)f

(1)
k −Ik(p, q)f

(2)
k

0 0

)
, (3.10)

V1,k :=

(
v

(1)
1,k

v
(2)
1,k

)
, V2,k :=

(
v

(1)
2,k

v
(2)
2,k

)
(3.11)

and

Fk =

(
−e−k2T

(
y0

1,k − TIk(p, q)y0
2,k

)
−e−k2T y0

2,k

)
. (3.12)

The next sections will be devoted to solving problem (3.9) and prove that the corresponding solution
v(1), v(2) belong to L2(0, T ).

3.2 Resolution of the moment problem
In this section, we will prove the null controllability of System (1.1) at any time T when the

supports of p or q intersects the control domain ω. In [17], the authors obtain the null controllability
of System (1.1) at any time under Condition (1.4), so we will not consider this case and we will always
suppose that |p| > C in ω̃ for a positive constant C and an open subinterval ω̃ of ω.

Let us first introduce the following notion of equivalent systems.

Definition 3.1. Let p1, p2 ∈ W 1
∞(0, π) and q1, q2 ∈ L∞(0, π). Consider the systems given for

i ∈ {1, 2} by 

For given y0 ∈ L2(0, π)2, v ∈ L2(QT ),

Find y := (y1, y2) ∈W (0, T )2 such that :

∂ty1 − ∂xxy1 = 1ωv in QT ,

∂ty2 − ∂xxy2 + pi(x)∂xy1 + qi(x)y1 = 0 in QT ,

y(0, ·) = y(π, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, π).

(Si)

We say that System (S1) is equivalent to System (S2) if System (S1) is null controllable at time T if
and only if System (S2) is null controllable at time T .

Let us present the main technique used all along this section. Suppose that System (1.1) is null
controllable at time T . Let v a control such that the solution y to System (1.1) verifies y(T ) = 0 in
(0, π) and ω0 := (α, β) a subinterval of ω = (a, b). Consider a function θ ∈W 2

∞(0, π) satisfying
θ ≡ κ1 in (0, α),

θ ≡ κ2 in (β, π),

|θ| > κ3 in (0, π),

(3.13)

with κ1, κ2, κ3 ∈ R∗+. Thus if we consider the change of variable

ŷ := (ŷ1, y2) with ŷ1 := θ−1y1, (3.14)

then ŷ is solution in L2(0, T ;H1
0 (0, π)2) ∩ C([0, T ];L2(0, π)2) to the system

∂tŷ1 − ∂xxŷ1 = 1ω v̂ in QT ,

∂ty2 − ∂xxy2 + p̂∂xŷ1 + q̂ŷ1 = 0 in QT ,

ŷ(0, ·) = ŷ(π, ·) = 0 on (0, T ),

ŷ(·, 0) = ŷ0 in (0, π),

(3.15)

10
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where the initial condition is ŷ0 := (θ−1y0
1 , y

0
2) ∈ L2(0, π)2, the control is v̂ := −∂xx(θ−1)y1 −

2∂x(θ−1)∂xy1 + θ−1v ∈ L2(QT ) and the coupling terms are given by{
p̂ := pθ,

q̂ := p∂xθ + qθ.
(3.16)

Indeed, θ is constant in (0, π)\ω0, then

Supp v̂ ⊆ ω × (0, T ).

Since y is controlled, then ŷ also. The converse is clearly true: starting from the controlled System
(3.15) the same process leads to the construction of a controlled solution of System (1.1). Thus
through the change of variable (3.14), following Definition 3.1, Systems (1.1) and (3.15) are equivalent.

The next main result of this section is Proposition 3.1 that will be introduced after some lemmas.
The first of them is the following.

Lemma 3.1. Let p ∈ W 1
∞(0, π) ∩ W 2

∞(ω) and q ∈ L∞(0, π) ∩ W 1
∞(ω) with |p| > C in an open

subinterval ω̃ of ω for a positive constant C. There exists a subinterval ω0 := (α, β) ⊂ ω̃ and a
function θ ∈ W 2

∞(0, π) satisfying (3.13) such that System (1.1) is equivalent to System (3.15) with
q̂ ≡ 0 in ω0. Moreover for all ε > 0 the interval ω0 can be chosen in order to have for all k ∈ N∗

|I(p, q)− I(p̂, q̂)| 6 ε and |Ik(p, q)− Ik(p̂, q̂)| 6 ε. (3.17)

Proof. Let ω0 := (α, β) be an interval strictly included in ω̃ := (ã, b̃) and θ ∈W 2
∞(0, π) satisfying

p∂xθ + qθ = 0 in ω0,

θ ≡ 1 in (0, π)\ω̃,
|θ| > C in (0, π),

(3.18)

for a positive constant C. In the intervals (ã, α] and [β, b̃), we can take θ of class C∞ in order to have
θ ∈ W 2

∞(0, π). Thus the function θ verifies (3.13) and, following the change of variable described in
(3.14), System (1.1) is equivalent to System (3.15) with q̂ ≡ 0 in ω0 (see (3.16)). The estimates in
(3.17) are obtained taking the interval ω0 small enough.

Let us first study System (1.1) in a particular case.

Lemma 3.2. Consider p ∈ W 1
∞(0, π) ∩ W 2

∞(ω) and q ∈ L∞(0, π) ∩ W 1
∞(ω). Let us suppose that

p ≡ C ∈ R∗ and q ≡ 0 in an open subinterval ω̃ of ω. Then System (1.1) is equivalent to a system of
the form (3.15) with coupling terms p̂, q̂ satisfying

|Ik(p̂, q̂)| > C/k6, ∀k ∈ N∗.

To prove this result we will need this lemma:

Lemma 3.3. Let (uk)k∈N∗ be a real sequence. Then there exists κ ∈ R∗+ such that

|uk + κ| > 1/k2.

Proof of Lemma 3.3. By contradiction let us suppose that for all κ ∈ R∗+ there exists k ∈ N∗ such
that for all k ∈ N∗

|uk + κ| < 1/k2.

Then
R∗+ ⊆

⋃
k∈N∗

(uk − 1/k2, uk + 1/k2). (3.19)

The convergence of the series
∑
k∈N∗ 1/k2 implies that the measure of the set in the right hand-side

in (3.19) is finite and leads to the conclusion.

11
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Proof of Lemma 3.2. Let (α, β) an open subinterval of ω̃ with α and β to be determined later, κ ∈ R∗+
and θ ∈W 2

∞(0, π) satisfying {
θ ≡ 1 in (0, π)\(α, β),

θ ≡ 1 + κξ in (α, β),
(3.20)

where
ξ = sin2

(
π(x− α)

β − α

)
in (α, β).

In particular, we have θ > 1 in (0, π). Let k ∈ N∗, ŷ1 := θ−1y1 and ŷ := (ŷ1, y2) the solution to
System (3.15). For System (3.15) the quantity Ik defined in the introduction is given by

Ik(p̂, q̂) =

∫ π

0

{q̂ − 1

2
∂xp̂}ϕ2

k

= Ik(p, q) + κJk,

with p̂, q̂ given in (3.16) and Jk defined by

Jk :=
1

2

∫ β

α

∂x(ξ)ϕ2
k.

Then, after a simple calculation, we obtain

Jk =

2π
(β−α)2

(2k + 2π
β−α )(2k − 2π

β−α )
sin(k(β + α)) sin(k(β − α)). (3.21)

Let n ∈ N∗ and ` an algebraic number of order two satisfying

a

n
< ` <

b

n+ 1
and ` 6= π

j
for all j ∈ N∗.

Let us take α := n` and β := (n+ 1)`. Thus α, β ∈ (a, b) and

k(β + α) = k(2n+ 1)` and k(β − α) = k`. (3.22)

Moreover ∣∣∣∣2k +
2π

β − α

∣∣∣∣× ∣∣∣∣2k − 2π

β − α

∣∣∣∣ < Rk2,

with R > 0. Since ` is an algebraic number of order two, using diophantine approximations it can be
proved that

inf
j>1

(j| sin(j`)|) > γ, (3.23)

for a positive constant γ (see [9]). The expressions (3.21)-(3.23) give

|Jk| >
2π

(β − α)2

γ2

R(2n+ 1)k4
. (3.24)

Using Lemma 3.3, there exists κ ∈ R∗+ satisfying∣∣∣∣Ik(p, q)

Jk
+ κ

∣∣∣∣ > 1/k2.

Combining the last inequality with Estimate (3.24),

|Ik(p̂, q̂)| = |Ik(p, q) + κJk| > Jk/k
2 > C/k6.

12
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The next lemma is proved in [9] but, for the sake of completeness, we will include the proof in the
annexe A.

Lemma 3.4. There exist functions f (1), f (2) ∈ L2(0, π) satisfying

Supp
(
f (1)

)
, Supp

(
f (2)

)
⊆ ω

and such that for all k ∈ N∗ 
min{|f (1)

k |, |f
(2)
k |} >

C

k3
,

|Bk| := |f̂ (1)
k f

(2)
k − f̂ (2)

k f
(1)
k | >

C

k5
,

(3.25)

where for i ∈ {1, 2} the terms f (i)
k and f̂ (i)

k are given by

f
(i)
k :=

∫ π

0

f (i)(x)ϕk(x)dx and f̂
(i)
k :=

∫ π

0

f (i)(x) cos(kx)dx. (3.26)

Proposition 3.1. Consider p ∈ W 1
∞(0, π) ∩W 2

∞(ω) and q ∈ L∞(0, π) ∩W 1
∞(ω). Let us suppose

that |p| > C in an open subinterval ω̃ of ω for a positive constant C. Then System (1.1) is equivalent
to a system of the form (3.15) with coupling terms p̂, q̂ satisfying for all k ∈ N∗

|Ik(p̂, q̂)| > C/k6, if Ik(p̂, q̂) 6= 0,

|detA1,k| > C, if Ik(p̂, q̂) = 0,

#{j ∈ N∗ : Ij(p̂, q̂) = 0} 6 1,

(3.27)

for a positive constant C (the notion of equivalent systems is defined at the beginning of Section 3.2).

Proof. The proof is divided in three steps:

(i) In a first step we will see that System (1.1) is equivalent to a system with coupling terms p, q
satisfying

I(p, q) :=

∫ π

0

{q − 1

2
∂xp} 6= 0.

(ii) We will show in a second step that we can suppose that{
For all k ∈ N∗ : |Ik| > C if Ik(p, q) 6= 0,
#{j ∈ N∗ : Ij(p, q) = 0} 6 1.

(iii) Finally in a third step we will prove that System (1.1) is equivalent to a system which fulfils
the three conditions described in (3.27).

Step 1: Using Lemma 3.1, without loss of generality, we can suppose that q ≡ 0 and |p| > C in
a subinterval ω̂ of ω̃ for a positive constant C. If ∂xp ≡ 0 in ω̂, Lemma 3.2 leads to

|Ik(p, q)| > C/k6, ∀k ∈ N∗.

Otherwise, let (α, β) ⊆ ω̂ such that ∂xp > C in (α, β) or ∂xp < −C in (α, β) for a positive constant
C. Assume that I(p, q) = 0 and consider θ ∈ W 2

∞(0, π) defined in (3.20), with κ := 1. We remark
that |θ| > 1. If we consider the change of variable described in (3.14), then for all k ∈ N∗, using the
definition of Ik, we obtain

Ik(p̂, q̂) = Ik(p, q) +

∫ β

α

{1

2
∂x(ξ)p− 1

2
ξ∂x(p)}ϕ2

kdx

= Ik(p, q) + Jk(p, q),

13
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where

Jk(p, q) =
1

2π

∫ β

α

{∂x(ξ)p− ξ∂x(p)}{1− cos(2kx)}dx

−→
k→∞

1

2π

∫ β

α

{∂x(ξ)p− ξ∂x(p)}dx

= − 1

π

∫ β

α

ξ∂x(p)dx =: J(p, q).

Using the definition of ξ, we get

|J(p, q)| >
1

π
inf

(α,β)
|∂xp|

∫ β

α

sin2

(
π(x− α)

β − α

)
dx

=
1

2π
inf

(α,β)
|∂xp|

∫ β

α

{1− cos

(
2π(x− α)

β − α

)
}dx

=
(β − α)

2π
inf

(α,β)
|∂xp| 6= 0.

We recall that Ik(p, q)→ I(p, q) = 0. Thus we obtain Ik(p̂, q̂)→ I(p̂, q̂) 6= 0.
Step 2: Let us now assume that I(p, q) 6= 0. Using Lemma 3.1, up to the change of variable (3.14)

we can also suppose that q ≡ 0 in an open subinterval ω̂ of ω̃. Indeed, by (3.17), the function θ and ω̂
can be chosen in order to keep the quantity I different of zero. Let (α, β) ⊆ ω̂ such that |p| > C > 0
in (α, β). Since I(p, q) 6= 0 and Ik(p, q)→ I(p, q), there exists k0 ∈ N∗ such that |Ik(p, q)| > C for a
constant C > 0 and all k > k0. Let us define the set

S0 := {k ∈ N∗ : Ik(p, q) = 0 and pϕk non constant in (α, β)}

and M := #S0 <∞. Let θ ∈W 2
∞(0, π) satisfying

θ = 1 +
∑M
m=1 ξm,

ξm ∈W 2
∞(0, π), for all m ∈ {1, ...,M},

Supp(ξm) ⊆ (α, β), for all m ∈ {1, ...,M},
|θ| > C > 0,

where ξ1, ..., ξM are to be determined. Again, if we consider the change of variable (3.14), then for
all k ∈ N∗, using the definition of Ik, we obtain

Ik(p̂, q̂) = Ik(p, q) +
M∑
m=1

∫ β

α

{1

2
∂x(ξm)p− 1

2
ξm∂x(p)}ϕ2

kdx

=: Ik(p, q) +
M∑
m=1

Jm,k(p, q).

The goal is to choose the functions ξ1, ..., ξM such that |Ik(p̂, q̂)| > C if Ik(p, q) = 0 and #{k :
Ik(p̂, q̂) = 1} 6 1 for a positive constant C. We will construct ξ1, ..., ξM by induction. Let m ∈
{1, ...,M − 1} and let us assume that ξ1, ..., ξm−1 are already constructed. Consider the set

Sm−1 := {k ∈ N∗ : Ik(p, q) +

m−1∑
j=1

Jj,k(p, q) = 0 and pϕk non constant in (α, β)}.

If Sm−1 = ∅, then we take ξm = 0 in (0, π). Otherwise, let k ∈ Sm−1 and consider (f, ξm) ∈
W 1
∞(α, β) ∩W 2

∞(α, β) a solution to
1

2
∂x(ξm)p− 1

2
ξm∂x(p) = f in (α, β),

ξm(α) = ξm(β) = ∂xξm(α) = ∂xξm(β) = 0.
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This system is equivalent to
ξm(x) = p(x)

∫ x

α

2f(s)

p2(s)
ds, for all x ∈ (α, β),∫ β

α

2f(s)

p2(s)
ds = 0,

f(α) = f(β) = 0.

We remark that we need that p ∈W 2
∞(α, β). Finding a function f satisfying

f(α) = f(β) = 0,

∫ β

α

2f(s)

p2(s)
ds = 0 and Jm,k(p, q) =

∫ β

α

f(s)ϕ2
k(s)ds 6= 0, (3.28)

is equivalent to finding a function g := 2f/p2 satisfying

g(α) = g(β) = 0,

∫ β

α

g(s)ds = 0 and

∫ β

α

g(s)p2(s)ϕ2
k(s)ds 6= 0.

Let κm ∈ R and define for all j ∈ N∗ and all x ∈ (α, β)

gj(x) := κm sin

(
2πj(x− α)

β − α

)
.

Using the fact that pϕk is non constant in (α, β), without loss of generality we can suppose that

ϕk

(
α+

β − α
4

)
p

(
α+

β − α
4

)
6= ϕk

(
α+

3(β − α)

4

)
p

(
α+

3(β − α)

4

)
,

otherwise we adapt the interval (α, β) at the beginning of Step 2. Since (gj)j∈N∗ is a basis of
L2(α, α+ (β−α)/2) and gj(s) = gj(s+ β−α) pour tout s ∈ (α, α+ (β−α)/2), there exists j0 ∈ N∗
such that ∫ (β−α)/2

α

gj0(s)p2(s)ϕ2
k(s)ds 6=

∫ (β−α)/2

α

(s+ β − α)gj0(s)p2(s+ β − α)ϕ2
kds.

Thus ∫ β

α

gj0(s)p2(s)ϕ2
k(s)ds 6= 0.

Plugging g := gj0 and f :=
gj0p

2

2
in (3.28), we obtain

Jm,k(p, q) =
κm
2

∫ β

α

sin

(
2πj0(s− α)

β − α

)
p(s)2ϕk(s)2ds 6= 0

and we fix κm in order to have

sup
i∈N∗
|Jm,i(p, q)| 6

1

2
inf
i∈N∗

∣∣∣∣∣∣Ii(p, q) +

m−1∑
j=1

Jj,i(p, q)

∣∣∣∣∣∣ .
Thus, R := #{j ∈ N∗ : Ij(p̂, q̂) = 0} 6 1 and for a positive constant C and for all k 6∈ R, |Ik(p̂, q̂)| > C.

Step 3: Assume that {
R := #{j ∈ N∗ : Ij(p, q) = 0} = 1,

For all k 6∈ R : |Ik(p, q)| > C > 0.
(3.29)

15



3.2 Resolution of the moment problem M. Duprez, July 9, 2015

Again, using Lemma 3.1, up to the change of variable (3.14) described at the beginning of the section
we can also suppose that q ≡ 0 in a subinterval (α, β) of ω̃. Indeed, using (3.17), this change of
variable can be chosen in order to keep property (3.29). Let m ∈ N∗ such that Im(p, q) = 0. We
also suppose that pϕm is constant in a (α, β), otherwise we argue as in Step 2. Let θ ∈ W 2

∞(0, π)
satisfying 

θ = 1 + ξ in (0, π),

ξ ∈W 2
∞(0, π),

ξ ≡ ξα ∈ R∗+ in (0, α),

ξ ≡ 0 in (β, π),

|θ| > C > 0.

Again, if we consider the change of variable described in (3.14), then for all k ∈ N∗

Ik(p̂, q̂) = Ik(p, q) +

∫ β

0

{1

2
∂x(ξ)p+ ξq − 1

2
ξ∂x(p)}ϕ2

kdx

=: Ik(p, q) + Jk(p, q).

We will distinguish the cases Iα,m(p, q) = 0 and Iα,m(p, q) 6= 0 (see (1.8) for the definition of this
quantity) for the new control domain ω := (α, β).

Case 1: Assume that Iα,m(p, q) = 0. Let (ξ, h) ∈W 2
∞(α, β)×W 1

∞(α, β) be a solution to the system
1
2∂x(ξ)p− 1

2ξ∂x(p) = h in (α, β),

ξ(β) = ∂xξ(α) = ∂xξ(β) = 0,

ξ(α) = ξα ∈ R∗.

This system is equivalent to

ξ(x) = −p(x)
∫ β
x

2h(s)
p2(s)ds, for all x ∈ (α, β),∫ β

α
2h(s)
p2(s)ds = −ξα

p(α) ,

h(α) =
−ξα∂xp(α)

2
,

h(β) = 0.

Taking in account that Iα,m(p, q) = 0, q ≡ 0 in (α, β) and pϕm ≡ γ in (α, β) for a γ ∈ R∗, one
gets

Jm(p, q) = ξα

∫ α

0

(q − 1

2
∂x(p))ϕ2

mdx+
γ2

2

∫ β

α

∂x

(
ξ

p

)
dx = − γ2ξα

2p(α)
.

Let ξα and h be such that

sup
k∈N∗

|Jk| 6
1

2
inf
k∈N∗

|Ik|.

Then |Ik(p̂, q̂)| > C for all k ∈ N∗ and a positive constant C.

Case 2: Let us now assume that Iα,m(p, q) 6= 0. In this case we recall that in the moment problem
described in the last section we have

det A1,m := f̃ (1)
m f (2)

m − f̃ (2)
m f (1)

m ,

where f (1)
m , f (2)

m , f̃ (1)
m and f̃ (2)

m are given in (3.4). Since pϕm is constant in (α, β), the function
ψ∗m of Proposition 2.1 reads for all x ∈ (α, β)

ψ∗m(x) = α∗mϕm −
1

m

∫ α

0

sin(m(x− ξ))[∂x(p(ξ)ϕm(ξ))− q(ξ)ϕm(ξ)]dξ

= τmϕm(x)−
√
π

2

1

m
Iα,m(p, q) cos(mx),
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with

τm := α∗m −
√
π

2

1

m

∫ α

0

cos(mξ)[∂x(p(ξ)ϕm(ξ))− q(ξ)ϕm(ξ)]dξ.

We deduce that

detA1,m = −
√
π

2

1

m
Iα,m(p, q)(f̂ (1)

m f (2)
m − f̂ (2)

m f (1)
m ),

where f̂ (1)
m and f̂ (2)

m are given in Lemma 3.4. We conclude with the help of Lemma 3.4.

We recall that T0(p, q) is given by

T0(p, q) := lim sup
k→∞

min(− log |Ik(p, q)| ,− log |Ia,k(p, q)|)
k2

. (3.30)

In order to use the following proposition in the next section, we prove the null controllability of
System (1.1) under Condition (3.31) which is more general than (3.27).

Proposition 3.2. Assume that T > T0(p, q) and, for positive constants C1 and C2,

|detA1,k| ≥
C1

k6
|Ia,k(p, q)| − C2

k
|Ik(p, q)| , (3.31)

Then System (1.1) is null controllable at time T .

Proof. Let ε > 0. Using the definition of the minimal time T0(p, q) in (3.30), there exists a positive
integer kε for which

min
{

log |Ia,k(p, q)|−1
, log |Ik(p, q)|−1

}
< k2(T0(p, q) + ε), ∀k > kε. (3.32)

The goal is to solve the moment problem described in Section 3.1. We recall that we look for a control
v of the form (3.2) and (3.8) with f (1) and f (2) defined in Lemma 3.4. We will solve the moment
problem (3.9) depending on whether k belongs to Λ1 or Λ2, where{

Λ1 := {k ∈ N∗ : Ia,k(p, q) 6= 0},
Λ2 := {k ∈ N∗ : Ia,k(p, q) = 0}.

Case 1 : Consider the case k ∈ Λ1 with k ≤ kε.
Let us take

v
(2)
1,k = v

(2)
2,k = 0.

The moment problem (3.9) becomes f̃
(1)
k v

(1)
1,k − Ik(p, q)f

(1)
k v

(1)
2,k = −e−k2T

(
y0

1,k − TIk(p, q)y0
2,k

)
,

f
(1)
k v

(1)
1,k = −e−k2T y0

2,k.

Since Ik(p, q) 6= 0 and using the estimate of f (1)
k and f (2)

k in Lemma 3.4, the last system has a unique
solution 

v
(1)
1,k = −e−k2T y

0
2,k

f
(1)
k

,

v
(1)
2,k = e−k

2T

Ik(p,q)f
(1)
k

(
y0

1,k − TIk(p, q)y0
2,k − f̃

(1)
k

y02,k

f
(1)
k

)
.

(3.33)
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Moreover, since the set of the k considered in this case is finite, we get the inequality∣∣∣v(i)
j,k

∣∣∣ ≤ Cεe−k2T ‖y0‖L2(0,π)2 , i, j = 1, 2. (3.34)

Case 2: Let k ∈ Λ1 such that k > kε and |Ik(p, q)|−1 ≤ ek2(T0(p,q)+2ε).
As in the previous case, we take v(2)

1,k = v
(2)
2,k = 0 and the moment problem (3.9) has a unique solution,

given by (3.33). Thanks to the property of ψ∗k (see (2.6)) and Lemma 3.4, we get for i = 1, 2 the
following estimates

|f (1)
k | > C/k3, |f̃ (i)

k | 6
C

k
, |y0

i,k| 6 C‖y0‖L2(0,π)2 , ∀k ∈ N∗. (3.35)

Thus, using the assumptions on k, we obtain
|v(1)

1,k| ≤ Ck3e−k
2T ‖y0‖L2(0,π)2 ≤ Cεe−(T−ε)k2‖y0‖L2(0,π)2 ,

|v(2)
1,k| ≤

Cεe
−(T−ε)k2

Ik(p, q)
‖y0‖L2(0,π)2 ≤ Cεe−(T−T0−3ε)k2‖y0‖L2(0,π)2 ,

where Cε is a constant which is independent on k and y0.
Case 3: Consider now k ∈ Λ1 such that k > kε and |Ik(p, q)|−1

> ek
2(T0(p,q)+2ε).

This implies with (3.32) that
|Ia,k(p, q)|−1

< ek
2(T0(p,q)+ε). (3.36)

The two last inequality lead to
|Ik(p, q)| < e−εk

2

|Ia,k(p, q)| .

Combined with inequality (3.31), taking kε large enough, we get

|detA1,k| > Cεe
−εk2 |Ia,k(p, q)| , (3.37)

with Cε independent on k. To solve the moment problem (3.9), we take here

v
(1)
2,k = v

(2)
2,k = 0.

Then the moment problem (3.9) reads A1,kV1,k = Fk. Since detA1,k 6= 0, the inverse of A1,k is given
by

(A1,k)−1 = (det A1,k)−1

(
f

(2)
k −f̃ (2)

k

−f (1)
k f̃

(1)
k

)
.

We deduce that the solution to the moment problem (3.9) is v
(1)
1,k = e−k

2T

det A1,k
{−f (2)

k y0
1,k + (TIk(p, q)f

(2)
k + f̃

(2)
k )y0

2,k},

v
(2)
1,k = e−k

2T

det A1,k
{f (1)
k y0

1,k − (TIk(p, q)f
(1)
k + f̃

(1)
k )y0

2,k}.

The last expression together with (3.36) and (3.37) gives

|v(i)
1,k| ≤ Cεe

−(T−T0−2ε)k2‖y0‖L2(0,π)2 , i = 1, 2.

Case 4: Let us consider k ∈ Λ2.
If k ≤ kε, we can argue as in Case 1. Let us suppose that k > kε. In this case, Ia,k(p, q) = 0,
Ik(p, q) 6= 0 and inequality (3.32) reads |Ik(p, q)|−1

< ek
2(T0(p,q)+ε). We take here

v
(2)
1,k = v

(2)
2,k = 0

18
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and the solution of moment problem (3.9) is given by (3.33). We get∣∣∣v(i)
j,k

∣∣∣ ≤ Cεe−k2(T−T0(p,q)−2ε)‖y0‖L2(0,π)2 , i, j = 1, 2.

Conclusion:
We have constructed a control v of the form (3.2) and (3.8), which satisfies∣∣∣v(i)

j,k

∣∣∣ ≤ Cε∑
k>1

e−k
2(T−T0(p,q)−3ε)‖y0‖L2(0,π)2 , i, j = 1, 2, k ∈ N∗.

The last inequality, the estimate (3.7) of qi,k and the expression (3.8) of v(i) (i = 1, 2) lead to∥∥∥v(i)
∥∥∥
L2(0,T )

≤ Cε,T e−k
2(T−T0(p,q)−4ε), i = 1, 2.

Thus, taking

ε ∈
(

0,
T − T0(p, q)

4

)
,

we have the absolute convergence of the series defining v(1) and v(2) in L2(0, T ). This ends the proof.

Proof of Theorem 1.1. Using Proposition 3.1, System (1.1) is equivalent to a system with coupling
terms p̂ and q̂ satisfying Condition (3.27), that is

|Ik(p̂, q̂)| > C/k6, if Ik(p̂, q̂) 6= 0,

|detA1,k| > C, if Ik(p̂, q̂) = 0,

#{j ∈ N∗ : Ij(p̂, q̂) = 0} 6 1,

This condition implies Condition (3.31):

|detA1,k| ≥
C1

k6
|Ia,k(p, q)| − C2

k
|Ik(p, q)| .

Proposition 3.2 leads to the null controllability of System (1.1) when T > T0(p̂, q̂). We ends the proof
of Theorems 1.1 remarking that T0(p̂, q̂) = 0.

4 Proof of Theorem 1.2

4.1 Positive null controllability result
Before studying the case where the intersection of the coupling and control domains is empty, we

will first rewrite the function ψ∗k given in Proposition 2.1.

Lemma 4.1. Let k ∈ N∗. Consider the function ψ∗k defined in Proposition 2.1. If we suppose that
Condition (1.11) holds, then for all x ∈ ω

ψ∗k(x) = τkϕk(x) + gk(x) for all x ∈ ω,

where

τk := α∗k −
√
π

2

1

k

∫ a

0

cos(kξ)[∂x(p(ξ)ϕk(ξ)− q(ξ)ϕk(ξ)]dξ

and

gk(x) := −Ik(p, q)

k

∫ x

0

sin(k(x− ξ))ϕk(ξ)dξ −
√
π

2

1

k
Ia,k(p, q) cos(kx).
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Proof. Since p = q ≡ 0 in ω, we get for all x ∈ ω,

ψ∗k(x) = α∗kϕk(x)− Ik(p, q)

k

∫ x

0

sin(k(x− ξ))ϕk(ξ) dξ

−1

k

∫ a

0

sin(k(x− ξ))[∂x(p(ξ)ϕk(ξ))− q(ξ)ϕk(ξ)]dξ.

Proof of Theorem 1.2. Assume that Condition (1.11) holds. Consider the functions f (1) and f (2)

defined in Lemma 3.4 and the matrix A1,k given in (3.10). Let k ∈ N∗. We recall that, in this case,
we have

detA1,k := f̃
(1)
k f

(2)
k − f̃ (2)

k f
(1)
k ,

where, for i = 1, 2, f (i)
k and f̃ (i)

k are defined in (3.4). Since Supp
(
f (i)
)
⊆ ω, using the expression of

ψ∗k given in Lemma 4.1, we obtain

f̃
(i)
k = τkf

(i)
k +

∫ π

0

f (i)(x) gk(x) dx,

where for all x ∈ ω

gk(x) = −Ik(p, q)

k

∫ x

0

sin(k(x− ξ))ϕk(ξ)dξ −
√
π

2

1

k
Ia,k(p, q) cos(kx).

We deduce that

detA1,k = f
(2)
k

∫ π

0

f (1)(x) gk(x)dx− f (1)
k

∫ π

0

f (2)(x) gk(x) dx

= −Ik(p, q)

k

(
f

(2)
k

∫ π

0

∫ x

0

f (1)(x) sin(k(x− ξ))ϕk(ξ)dξ dx

−f (1)
k

∫ π

0

∫ x

0

f (2)(x) sin(k(x− ξ))ϕk(ξ)dξ dx

)
−
√
π

2

1

k
Ia,k(p, q)

(
f̂

(1)
k f

(2)
k − f̂ (2)

k f
(1)
k

)
,

where f̂ (i)
k are defined in (3.26). Since the integrals∫ π

0

∫ x

0

f (i)(x) sin(k(x− ξ))ϕk(ξ) dξ dx

are uniformly bounded with respect to k and i, we conclude with the help of Lemma 3.4.
We deduce that Condition (3.31) holds. Thus, using Proposition 3.2, System (1.1) is null control-

lable at time T .

4.2 Negative null controllability result
Let us suppose that T < T0(p, q) and System (1.1) is null controllable at time T . Using Proposition

2.4, there exists a constant Cobs > 0 such that for all θ0 ∈ L2(0, π)2, the solution to System (2.8)
satisfies the observability inequality

‖θ(0)‖2L2(0,π)2 6 Cobs

∫∫
QT

|1ωB∗θ|2dxdt. (4.1)

20



M. Duprez, July 9, 2015

Using the Definition of T0(p, q) (see (3.30)) there exists a sequence (kn)n∈N∗ ⊆ N satisfying:

T0(p, q) = lim
n→∞

min
(
log
∣∣Ia,kn(p, q)−1

∣∣ , log
∣∣Ikn(p, q)−1

∣∣)
k2
n

. (4.2)

Let us fix n ≥ 1 and θ0n := anΦ∗1,kn + bnΦ∗2,kn with (an, bn) ∈ R2 to be determined later and Φ∗2,kn ,
Φ∗1,kn the eigenfunction and generalized eigenfunction associated with k2

n given in Proposition 2.1. If
we denote by θn the solution to the dual System (2.8) for initial data θ0n, then

θn(x, t) = e−k
2
n(T−t){anΦ∗1,kn + (bn − (T − t)Ikn(p, q)an)Φ∗2,kn},

thus we have

A1,n := ‖θn(0)‖2L2(0,π)2 = e−2k2nT
{
|an|2|ψkn |2 + |an|2 + (bn − TIkn(p, q)an)

2
}

and

A2,n :=

∫∫
QT

|1ωB∗θn|2dxdt =

∫ T

0

∫
ω

e−2k2nt |anψkn(x) + (bn − tIkn(p, q)an)ϕkn(x)|2 dx dt.

The observability inequality (4.1) reads

A1,n 6 CobsA2,n. (4.3)

By choosing an := 1 and bn := −τkn , we get

A1,n > e−2k2nT (4.4)

and the expression of ψ∗kn(x) given in Lemma 4.1 leads to

A2,n =

∫ T

0

∫
ω

e−2k2nt

∣∣∣∣−√π

2

1

kn
Ia,kn(p, q) cos(knx)

−Ikn(p, q)
1

kn

∫ x

0

sin (kn(x− ξ))ϕkn(ξ) dξ − tIkn(p, q)ϕkn(x)

∣∣∣∣2 dx dt
6 C(Ia,kn(p, q)2 + Ikn(p, q)2).

Let ε > 0. Equality (4.2) implies that there is kε ∈ N∗ such that for all kn > kε

max
(
|Ia,kn(p, q)|2 , |Ikn(p, q)|2

)
6 e−2k2n(T0(p,q)−ε).

We deduce that for ε := (T0(p, q)− T )/2, we get

A2,n 6 Ce−2k2n(T+ε). (4.5)

Thus estimates (4.4) and (4.5) are in contradiction with inequality (4.3) for n large enough.

5 Approximate controllability of system (1.1)

Theorem 1.2 can be proved with the same argument as in [9], but we propose to use here the
Hautus test given below.
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Theorem 5.1 (see [15], Cor. 3.3). System (1.1) is approximatively controllable at time T if and
only if for any s ∈ C and for any u ∈ D(L∗) we have

L∗u = su in (0, π)

B∗u = 0 in ω

}
⇒ u = 0.

Proof of Theorem 1.2.
Necessary condition: Let us suppose that Conditions (1.9)-(1.10) do not hold i.e. there exists

k0 ∈ N∗ such that
Ik0(p, q) = Ia,k0(p, q) = 0

and

(Supp(p) ∪ Supp(q)) ∩ ω = ∅.
Then the function ψ∗k0 of Lemma 4.1 is given by ψ∗k0 = τk0ϕk0 . Moreover

Φ∗1,k0 − τk0Φ∗2,k0 =

(
0
ϕk

)
is an eigenfunction associated with the eigenvalue k2

0 of the operator L∗ and satisfies

B∗(Φ∗1,k0 − τk0Φ∗2,k0) ≡ 0 in ω.

Thus, using Theorem 5.1 System (1.1) is not approximately controllable at time T .
Sufficient condition: Let us suppose that Conditions (1.9)-(1.10) hold. If (Supp(p)∪Supp(q))∩

ω 6= ∅ we conclude using Theorem 1.1. Let us now suppose that

|Ik(p, q)|+ |Ia,k(p, q)| 6= 0 for all k ∈ N∗

and

(Supp(p) ∪ Supp(q)) ∩ ω = ∅.

If Ik(p, q) 6= 0, the set of the eigenvectors associated with the eigenvalue k2 of L∗ is generated by
Φ∗2,k (see Proposition 2.1). In this case, we remark that for all k ∈ N∗

B∗Φ∗2,k = ϕk 6≡ 0 in ω. (5.1)

If Ik(p, q) = 0, the eigenvectors associated with the eigenvalue k2 of L∗ are linear combinations of
Φ∗1,k and Φ∗2,k. We remark first that (5.1) holds. Let us suppose that

B∗Φ∗1,k = ψk ≡ 0 in ω. (5.2)

Using Lemma 4.1, it is equivalent to

τkϕk(x)−
√
π

2

1

k
Ia,k(p, q) cos(kx) = 0 for all x ∈ ω.

Since Ia,k(p, q) 6= 0, we obtain a contradiction with (5.2), which ends the proof.

6 Null controllability of System (1.2)
As in Section 3.1, System (1.2) is null controllable at time T if and only if for all y0 ∈ H−1(0, π)2,

k ∈ N∗ and i ∈ {1, 2} the solution θi,k to the dual System (2.8) for the initial data Φ∗i,k satisfies∫ T

0

u(t)B∗∂xθi,k(0, t)dt = −〈y0, θi,k(·, 0)〉H−1,H1
0
. (6.1)
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We recall that, for all k ∈ N∗, θ1,k and θ2,k are given for all (x, t) ∈ QT by θ1,k(x, t) = e−k
2(T−t)

(
Φ∗1,k(x)− (T − t)Ik(p, q)Φ∗2,k(x)

)
,

θ2,k(x, t) = e−k
2(T−t)Φ∗2,k(x).

Proof of Theorem 1.4. Assume that T > T1 and Ik(p, q) 6= 0 for all k ∈ N∗. We will look for the
control u under the form

u(t) :=
∑
k∈N∗
{u1,kq1,k(T − t) + u2,kq2,k(T − t)}, (6.2)

for all t ∈ (0, T ), where q1,k and q2,k are defined in Section 3.1. Plugging the expressions of u, θ1,k

and θ2,k in Equality (6.1), we obtain the moment problem
u1,k = −e−k2T

〈y0
1 , ϕk〉H−1,H1

0

∂xϕk(0)
,

u2,k =
e−k

2T

Ik∂xϕk(0)
{〈y0

1 , ψk〉H−1,H1
0

+ 〈y0
2 , ϕk〉H−1,H1

0
−
(
IkT +

∂xψk(0)

∂xϕk(0)

)
〈y0

1 , ϕk〉H−1,H1
0
}.

Let ε > 0. Using the definition of T1 (see (1.14)), we have Ik(p, q) > Cεe
−k2(T1+ε) for all k ∈ N∗.

Then, using the estimates (2.6) and (3.35), we get

|u1,k|+ |u2,k| 6 Ce−k
2(T−T1−2ε)‖y0‖H−10,π)2 .

Thus for ε ∈ (T − T1)/2, the control u defined in (6.2) is an element of L2(0, T ).
Assume now that T < T1 and Ik(p, q) 6= 0 for all k ∈ N∗. By contradiction let us suppose that

there exists a constant Cobs such that for all θ0 ∈ H1
0 (0, π)2 the solution to the dual System (2.8)

satisfies

‖θ(0)‖2H1
0 (0,π)2 6 Cobs

∫ T

0

|B∗∂xθ(0, t)|2dt. (6.3)

Let ε = (T1 − T )/2. Using the definition of T1, there exists a sequence (kn)n∈N∗ such that

Ikn(p, q) < e−k
2
n(T+ε). (6.4)

Let θ0
n := anΦ∗1,kn + bnΦ∗2,kn with (an, bn) ∈ R2. We recall that

θn(x, t) = e−k
2
n(T−t){anΦ∗1,kn + (bn − (T − t)Ik(p, q)an)Φ∗2,kn}.

Then, after calculation, we get

‖θ(0)‖2H1
0 (0,π)2 = e−2k2nT (a2

n‖ψkn‖2H1
0

+ a2
nk

2
n + (bn − TIk(p, q)an)2k2

n)

and ∫ T

0

|B∗∂xθ(0, t)|2dt =

∫ T

0

e−2k2n(T−t)|an∂xψkn(0) + (bn − (T − t)Ikn(p, q)an)kn|2dt.

For an := 1 and bn := −∂xψkn(0)/kn, taking in account inequality (6.4) and using the estimate (2.6),
we obtain

‖θ(0)‖2H1
0 (0,π)2 > k2

ne
−2k2nT and

∫ T

0

|B∗∂xθ(0, t)|2dt 6 Ck2
ne
−2k2n(T+ε).

Thus for n large enough we get a contradiction with observability inequality (6.3).
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A Proof of Lemma 3.4
Proof of Lemma 3.4. Let k ∈ N∗. Consider a1, b1, a2, b2 ∈ ω to be determined later with ai < bi for
i ∈ {1, 2} and define the functions {

f (1) := 1(a1,b1),

f (2) := 1(a2,b2).

Thus, for i = 1, 2, we obtain

f
(i)
k =

∫ π

0

f (i)(x)ϕk(x) dx =
2

k

√
2

π
sin

(
k
ai + bi

2

)
sin

(
k
bi − ai

2

)
and

f̂
(i)
k =

∫ π

0

f (i)(x) cos(kx) dx =
2

k
cos

(
k
ai + bi

2

)
sin

(
k
bi − ai

2

)
.

A simple computation leads to

|Bk| =
4

k2

√
2

π

∣∣∣∣sin(k b1 − a1

2

)
sin

(
k
b2 − a2

2

)
sin

(
k
a2 + b2 − a1 − b1

2

)∣∣∣∣ . (A.1)

Let n ∈ N∗ and ` an algebraic number of order two satisfying

a/2n < ` < b/(2n+ 3).

Let us take a1 := 2n`, b1 := a1 + 2`, a2 := a1 + ` and b2 := a2 + 2`. Thus a1, b1, a2, b2 ∈ ω and ai < bi
for i = 1, 2. Furthermore 

b1 − a1 = b2 − a2 = a2 + b2 − a1 − b1 = 2`,

a1 + b1 = (4n+ 2)`,

a2 + b2 = (4n+ 4)`.

(A.2)

Since ` is an algebraic number of order 2, as said in the proof of Proposition 3.2, using diophantine
approximations, there exists a constant γ > 0 such that

inf
j>1

(j |sin(j`)|) > γ. (A.3)

Combining (A.1)-(A.3), we deduce that

|Bk| >
√

2

π

4γ3

k5
, |f (1)

k | >
√

2

π

2γ2

(2n+ 1)k3
and |f (2)

k | >
√

2

π

γ2

(n+ 1)k3
,

for all k ∈ N∗.
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