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aGipsa-Lab, 11 rue des Mathématiques, Domaine Universitaire BP 46, 38402 Saint Martin d’Hères Cedex, France
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Abstract

In this paper, a new method for the estimation of the parameters of multidimensional (R-D) harmonic and damped complex signals
in noise is presented. The problem is formulated as R simultaneous sparse approximations of multiple 1-D signals. To get a method
able to handle large size signals while maintaining a sufficient resolution, a multigrid dictionary refinement technique is associated
to the simultaneous sparse approximation. The refinement procedure is proved to converge in the single R-D mode case. Then,
for the general multiple modes case, the signal tensor model is decomposed in order to handle each mode separately in an iterative
scheme. The proposed method does not require an association step since the estimated modes are automatically “paired”. We also
derive the Cramér-Rao lower bounds of the parameters of modal R-D signals. The expressions are given in compact form in the
single tone case. Finally, numerical simulations are conducted to demonstrate the effectiveness of the proposed method.

Keywords: Multidimensional harmonic retrieval, frequency estimation, simultaneous sparse approximation, multigrid dictionary
refinement, Cramér-Rao lower bound

1. Introduction

The problem of estimating the parameters of sinusoidal sig-
nals from noisy measurements is an important topic in sig-
nal processing and several parametric and nonparameteric ap-
proaches have been developed for one-dimensional (1-D) sig-
nals [1]. Recently, this problem has received a renewed inter-
est thanks to the emergence of multidimensional (R-D) appli-
cations. Indeed, parameter estimation from R-D signals is re-
quired in numerous applications in signal processing and com-
munications such as nuclear magnetic resonance (NMR) spec-
troscopy, wireless communication channel estimation [2] and
MIMO radar imaging [3]. In all these applications, signals
are assumed to be a superposition of R-D sinusoids or, more
generally, of exponentially decaying R-D complex exponentials
(modal signals). As for the 1-D case, the crucial step is the es-
timation of the R-D modes (including frequencies and damping
factors) because they are nonlinear functions of the data. In
this paper, we consider the single snapshot R-D signal model
described in [4].

In order to achieve high resolution estimates, parametric
approaches are often preferred to nonparamatric ones. Sev-
eral parametric R-D methods (R ≥ 2) have been proposed.
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They include linear prediction-based methods such as 2-D TLS-
Prony [5], and subspace approaches such as matrix enhance-
ment and matrix pencil (MEMP) [6], 2-D ESPRIT [7], multidi-
mensional folding (MDF) [8], improved multidimensional fold-
ing (IMDF) [9, 10], Tensor-ESPRIT [11], principal-singular-
vector utilization for modal analysis (PUMA) [12, 13] and the
methods proposed in [14, 15]. All these methods perform at
various degrees but it is generally admitted that they yield ac-
curate estimates at high SNR scenarios and/or when the fre-
quencies are well separated. This is obtained at the expense
of computational effort. In [12], tensor PUMA was proposed
as an accurate and computationally efficient multidimensional
harmonic retrieval method, which attains the Cramér-Rao lower
bound (CRLB) and does not require to build large size matrix
or tensor. However its performance degrades rapidly with the
increase of the number of components in the R-D signal.

Recently, methods based on sparse approximations have
been proposed to address the harmonic or modal retrieval prob-
lem [16, 17, 18, 19, 20, 21, 22, 23]. For time-data spectral es-
timation, the dictionary is formed from a set of (normalized)
complex exponentials potentially embedded in the data, which
allows one to easily include some prior knowledge about the po-
sition of some known modes. More generally, the usual choice
is a uniform spectral grid obtained by sampling the frequency
and damping factor lines. Clearly, a fine grid is required to
get a good resolution but, on the other hand, it will result in a
huge dictionary [16]. This complexity is further increased in
the case of R-D signals in which we are confronted with 2R-D
grids. In order to reduce the computational burden, a multi-
grid scheme for sparse approximation was proposed in [20] to
iteratively refine the dictionary starting from a coarse one. At
each iteration, a sparse approximation is performed and then
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new grid points (called “atoms”) are inserted in the vicinity of
active ones leading to a multiresolution-like scheme. This al-
gorithm, which refines jointly R 2-D grids, is efficient but has
mainly two drawbacks: 1) it does not have convergence guar-
antees, 2) the dictionary becomes intractable for large signals
when R ≥ 2. Recently, several studies have also focused on
gridless sparse recovery methods based on continuous dictio-
naries [24, 25]. However, the proposed algorithms demand a
large computational burden even for 1-D signals.

The goal of the present paper is to propose a fast multidimen-
sional modal estimation technique able to handle large signals
and yielding a good estimation accuracy.

1. First, the proposed approach, as for some parametric meth-
ods for modal retrieval, is based on the idea of estimating
the parameters independently along each dimension r =

1, . . . ,R. It will be shown that the simultaneous sparse ap-
proximation concept [26, 21] is well-suited for R-D modal
retrieval (R ≥ 2).

2. The second contribution consists in the proposition of a new
multigrid scheme which amounts to consider a two-step re-
finement of 1-D grids, the first step for frequencies and the
second one for damping factors. One advantage of this pro-
cedure is that it reduces the computational time. The con-
vergence of the proposed multigrid strategy is analyzed in
the single tone case (F = 1), and convergence conditions
are expressed in terms of atom positions in the initial dictio-
naries.

3. The extension of this result to the multiple tones case (F >
1) is not trivial because, not only it depends on the selected
sparse approximation algorithm, but also on the coherence
of the dictionary [26]. Indeed, due to the multigrid strategy,
the columns of the refined dictionary are increasingly corre-
lated, which may prevent convergence even in the noiseless
case. Consequently, for F > 1, we exploit an alternative
representation of the data model enabling the extraction of
the R-D signal tones separately. Therefore, the third con-
tribution of this paper is the derivation of a new algorithm
for estimating parameters of R-D damped signals in which
the results of the previous contribution apply. The effec-
tiveness of the new algorithm for multiple R-D tones is also
analyzed. One very interesting by-product of this approach
is that the pairing of R-D parameters is achieved for free,
without any further association stage.

The usual way to assess the performances of an estima-
tion method is to compare the variance of the estimates to the
CRLB. In [6] Y. Hua derived the CRLB for 2-D frequencies,
i.e., undamped 2-D exponentials; no damped signals are con-
sidered. Closed-form expressions of the CRLB for the general
undamped R-D case are derived in [27]. CRLB for 2-D damped
signals are derived in [28]. Therefore, to the best of our knowl-
edge, no compact expressions of the CRLB’s are available for
the general R-D damped model. Thus, another contribution of
the paper is the derivation of the CRLB’s for the frequency,
damping factor, amplitude and phase of this model.

The remainder of this paper is organized as follows. In sec-
tion 2, we introduce notation and present the R-D modal re-
trieval problem. In section 3, we formulate the R-D modal esti-
mation problem as R simultaneous sparse estimation problems,
show how to construct a modal dictionary on a uniform grid
and then describe the new fast multigrid strategy. In section 4,
we give sufficient conditions for convergence of the multigrid
dictionary refinement in the case of single tone R-D signals. In
light of these new results, we propose in section 5 a new effi-
cient algorithm for multiple tones R-D signals. In section 6, we
derive the expressions of the CRLB’s for the parameters of R-
D damped exponentials in Gaussian white noise. We then give
the CRLB in the cases of single damped and undamped R-D
cisoids. The effectiveness of the proposed method is demon-
strated using simulation signals in section 7. Finally, conclu-
sions are drawn in section 8.

2. Notation and Problem Statement

2.1. Notation

Scalars are denoted as lower-case letters (a, b, α), column
vectors as lower-case bold-face letters (a,b), matrices as bold-
face capitals (A,B), and tensors as calligraphic bold-face let-
ters (A,B). Notations (·)T, (·)H and (·)† stand for the transpose,
the Hermitian transpose and the pseudo-inverse, respectively.
The symbols “�” and “�” will denote the Khatri-Rao product
(column-wise Kronecker) and the Kronecker product, respec-
tively. Both words “mode” and “tone” are used to refer to a
component of the multidimensional signal. The tensor opera-
tions used here are consistent with [29]:

• the outer product of two tensors A ∈ CM1×···×MR and B ∈
CK1×···×KN is given by:

C =A⊗B ∈ CM1×···×MR×K1×···×KN ,

c(m1, . . . ,mR, k1, . . . , kN) = a(m1, . . . ,mR)b(k1, . . . , kN)
(1)

• the contraction product acting on the r-th index of a tensor
A ∈ CM1×···×MR and the second index of a matrix U ∈ CK×Mr

is:

B =A •
r

U ∈ CM1×···×Mr−1×K×Mr+1×···×MR ,

b(m1,m2, . . . ,mr−1, kr,mr+1, . . . ,mR) =

Mr∑
mr=1

a(m1,m2, . . . ,mR)u(kr,mr) (2)

• the matrix A(r) ∈ CMr×(M1···Mr−1 Mr+1···MR) represents the un-
folding (dimension-r matricization) of the tensorA and cor-
responds to the arrangement of the dimension-r fibers ofA
in the columns of the resulting matrix.

• ‖A‖ denotes the the Frobenius norm for tensors.
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• The concatenation of two tensors
A1 ∈ CM1×···×Mr−1×K1×Mr+1×···×MR and
A2 ∈ CM1×···×Mr−1×K2×Mr+1×···×MR along the rth dimen-
sion is denoted byA1 tr A2 and obtained by stackingA1
andA2 along the rth dimension.

Finally, throughout this paper, the tilde symbol ( ˜ ) denotes a
noisy signal; e.g. ỹ(·) = y(·) + e(·).

2.2. Problem Formulation
An R-D modal signal is modeled as the superposition of F

multidimensional damped complex sinusoids:

ỹ(m1, . . . ,mR) =

F∑
f =1

c f

R∏
r=1

amr−1
f ,r + e(m1, . . . ,mR) (3)

where mr = 1, . . . ,Mr for r = 1, . . . ,R. Mr denotes the sample
support of the r-th dimension, a f ,r = exp (α f ,r + jω f ,r) ∈ C is
the f -th mode in the r-th dimension, {α f ,r}

F,R
f =1,r=1, α f ,r ∈ R−,

are the damping factors, {ω f ,r = 2πν f ,r}
F,R
f =1,r=1 are the angular

frequencies, and c f = λ f exp( jφ f ) is the complex amplitude of
the f -th mode where λ f = |c f | denotes the magnitude and φ f

the phase. e(m1,m2, . . . ,mR) is a zero-mean complex Gaussian
white noise with variance σ2 and mutually independent in all
dimensions.

In a tensor form, the R-D signal in (3) may be written as

Ỹ = Y + E (4)

where {Ỹ ,Y ,E} ∈ CM1×M2×···×MR . The problem consists in es-
timating the set of parameters {a f ,r}

F,R
f =1,r=1 and {c f }

F
f =1 from the

R-D signal samples.

3. Simultaneous Sparse Approximation for R-D Modal Sig-
nals

3.1. Tensor Formulation of the Data Model
The noise-free data tensor Y in (4) can be written in the fol-

lowing form:

Y =

F∑
f =1

c f a f ,1 ⊗ a f ,2 ⊗ · · · ⊗ a f ,R (5)

where a f ,r = [1, a f ,r, . . . , a
Mr−1
f ,r ]T, r = 1, . . . ,R. Equa-

tion (5) is called the Canonical Polyadic (CP) decomposition
form, or the Candecomp/Parafac decompostion of the tensor
Y [29, 30]. The CP model (5) can be concisely denoted
by Y = Jc; A1,A2, . . . ,ARK where Ar = [a1,r, a2,r, . . . , aF,r],
r = 1, . . . ,R, and c = [c1, c2, . . . , cF]T is the vector of complex
amplitudes. Using these definitions, the matricized form of Y
along the r-th dimension is given by

Y(r) = Ar∆c(AR � · · · � Ar+1 � Ar−1 � · · · � A1)T (6)

where ∆c = diag(c). Then, we can write

Ỹ(r) = ArHr + E(r) (7)

where Hr ∈ CF×M′r is

Hr
def
= ∆c(AR � · · · � Ar+1 � Ar−1 � · · · � A1)T (8)

and M′r =
R∏

k=1
k,r

Mk. Therefore

Y(r)
def
= [y(r),1, . . . , y(r),M′r ] =

 F∑
f =1

hr( f , 1)a f ,r, . . . ,

F∑
f =1

hr( f ,M′r)a f ,r


(9)

where hr( f ,m′r) is the ( f ,m′r) entry of the matrix Hr, for f =

1, . . . , F and m′r = 1, . . . ,M′r.

3.2. Simultaneous Sparse Approximation
Assuming1 that Mr > F,∀r, it is easy to see from (9) that the

mode coordinates {a f ,r}
Fr
f =1 (Fr ≤ F) in the r-th dimension are

identifiable from any column of Y(r). This process may be re-
peated on each dimension r = 1, . . . ,R to get all the modes co-
ordinates. In practice, we have to replace the matrix Y(r) by its
noisy counterpart Ỹ(r) accounting for the additive white noise.
In this case, (9) holds only approximately. Consequently, for
each column ỹ(r),m′r ,m

′
r = 1, . . . ,M′r, the modal estimation prob-

lem can be formulated as a sparse approximation problem cor-
responding to the following constrained optimization:

xm′r = arg min
x
‖x‖0 subject to ‖ỹ(r),m′r −Qrx‖22 ≤ ε (10)

where Qr ∈ CMr×N , N � Mr, is a (known) modal dictionary,
x ∈ CN is a (sparse) vector containing the coefficients of the
activated columns in Qr, and ε is a small reconstruction error
related to the noise variance. The pseudo-norm ‖x‖0 counts the
number of nonzero elements in x. The design of Qr is dis-
cussed in section 3.3. The fact that each vector ỹ(r),m′r corre-
sponds to a 1-D signal generated by the same modes implies
that the position of nonzero entries in xm′r should be the same
for m′r = 1, 2, . . . ,M′R. Let X be the matrix defined by

X = [x1, x2, . . . , xM′r ], (11)

then the sparsity of X may be measured by computing the Eu-
clidian norms of the rows: those providing a nonzero norm de-
fine the rows of active atoms (which are estimations of modes
a f ,r in the dimension r) in the dictionary Qr. Therefore, we are
facing a simultaneous sparse approximation problem:

Xr = arg min
X
‖X‖0,2 subject to ‖Ỹ(r) −QrX‖2F ≤ ε (12)

where ‖X‖0,2 is the mixed `0/`2-norm of X (the number of
rows with nonzero `2-norm). The simultaneous sparse repre-
sentation models, called also “multiple measurement vectors”
(MMV), have been studied from several angles of view, and dif-
ferent approaches have been proposed (see [31] and references
therein). As the goal of the present paper is to develop a fast

1Note that this assumption is considered only in this section.
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approach well adapted to large signals, we restrict our attention
to the SOMP algorithm [26]. However, it is worth mention-
ing that, in more intricate cases and/or small size signals, much
more efficient simultaneous sparse algorithms may be used at
the price of an increased computational burden. A straight-
forward way to get the R-tuples {(a f ,1, . . . , a f ,R)}Ff =1 consists in
estimating the modes a f ,r in the R dimensions using matrices
Ỹ(r), r = 1, . . . ,R, which requires a further pairing step to form
the R-D modes. To get accurate estimates using the described
scheme, two conditions have to be satisfied, 1) the dictionary
should contain all modes in the signal, 2) the sparse approxima-
tion method should have sufficient guarantees for selecting the
true atoms from the dictionary: this is known as “exact recov-
ery guarantees”. These problems are discussed in the following
sections and an alternative representation of the data is used to
avoid the pairing stage in the multiple tones case.

3.3. Modal Dictionary Design and Multigrid Strategy

3.3.1. Uniform Modal Dictionary
The dictionary Qr ∈ CMr×N can be defined from a discretiza-

tion of the (ν, α) plane. Each point of the grid corresponds
to a hypothetic mode. Let Nµ be the number of points of a
uniform grid covering the frequency interval [0, 1). Similarly,
let Nβ be the number of points of a uniform grid covering the
damping factor interval (βmin, 0], where βmin is a lower bound
on {α f ,r}

F
f =1. Then Qr is given by

Qr = [qr(0, 0), . . . ,qr((Nµ − 1)δµ, 0),qr(0, δβ), . . . ,
qr((Nµ − 1)δµ, δβ), . . . ,qr((Nµ − 1)δµ, (Nβ − 1)δβ)] (13)

where qr(µ, β) =
ar(µ,β)
||ar(µ,β)||2

, ar(µ, β) =

[1, e(β+ j2πµ), . . . , e(β+ j2πµ)(Mr−1)]T, δβ = βmin/Nβ, and δµ = 1/Nµ.
The total number of columns in Qr is N = NµNβ � F, each of
them is called atom. In the aim of reducing the computational
complexity, we propose to estimate frequencies and then
damping factors by calling twice the sparse approximation
method. At the first step, the frequencies are estimated using a
harmonic dictionary. In the second step, the damping factors
are estimated using a modal dictionary formed by the already
estimated frequencies and a damping factor grid. These two
steps are explained in section 4.

3.3.2. Multi-Grid Dictionary Refinement
To achieve a high-resolution modal estimation, a possible

way is to define uniform grids as before and selecting very
small values for δµ and δβ. However, the resulting dictionar-
ies will lead to prohibitive calculation cost and memory capac-
ities requested. Rather, we propose to start with a coarse grid
(Nµ and Nβ low) and to adaptively refine it through a multi-
grid scheme as sketched on Figure 1. Let ` be the current grid
level (` = 0, . . . , L − 1). At level `, we first restore the sig-
nal Xr(`) related to the dictionary Qr(`) by applying the SOMP
method. Then we refine the dictionary by inserting atoms in-
between pairs of Qr(`), in the neighborhood of each activated
atom, and we apply again the SOMP method to restore Xr(`+1)
with respect to the refined dictionary Qr(` + 1). This process is

Level

µ or β

µ or β

µ or β

0

`

` + 1 � � � � � �

Figure 1: The multigrid dictionary refinement procedure with η = 1. (,) atoms
in the dictionary; ( •,) activated atoms; (�) new atoms

Algorithm 1: Dictionary refinement (DICREF)
input : A vector d ∈ RN of sorted frequencies or damping factors, an

index set Ω of activated atoms, the number of atoms η ∈ N to add
at each side of an activated one

output: Updated vector dupdated

for i = 1 : numel(Ω) do
di,1 = linspace (d(Ω(i) − 1),d(Ω(i)), η)
di,2 = linspace(d(Ω(i)),d(Ω(i) + 1), η)
di = [dT

i,1,d
T
i,2(2 : η)]T

end
dupdated = union(d1, . . . ,dnumel(Ω))
return dupdated

repeated until the desired level of resolution is reached. This
procedure is applied for both frequencies and damping fac-
tors. Algorithm 1 presents the one-step dictionary refinement
(DICREF), from level ` to ` + 1, where, for a and b reals,
linspace(a, b, η) generates a set of η equispaced points in the
interval [a, b]. The difference between the present framework
and that in [20] is the following. In[20] the multigrid algorithm
refines jointly R 2-D grids, which leads to expensive computa-
tions when R ≥ 2, without convergence guarantees. The present
mutigrid scheme refines linear grids, which leads to low com-
putational complexity with convergence guarantees as will be
shown in the next section.

Finding the convergence conditions of the new multigrid
strategy in the general case (multiple tones) is not easy and
depends on the selected sparse approximation algorithm. By
contrast, it is possible to show that, under mild conditions, the
convergence may be guaranteed in the single tone case. This
issue is discussed in the next section. In section 5, we make use
of an alternative representation of the data model in the case
of multiple tones and we propose a method allowing one to re-
trieve the signal tones separately.

4. Single R-D Mode Estimation

In the previous section, we have shown how the R-D modal
retrieval problem may be tackled using a sparse approximation
algorithm by estimating the set of parameters in each dimen-
sion r = 1, . . . ,R. Here, we give the sufficient conditions for
convergence of the multigrid dictionary refinement for F = 1.
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Without loss of generality, we set R = 1. For notation simplic-
ity, we omit reference to the dimension index r.

According to (3), the 1-D modal signal containing a single
mode can be written as follows:

y(m) = c1am−1
1 = c1e(α1+ j2πν1)(m−1),m = 1, . . . ,M. (14)

Let Q be a normalized modal dictionary Q = [q1, . . . ,qN], with

qn =
1√∑

m |qn|
2m

[1, qn, . . . , qM−1
n ]T, (15)

qn = exp(βn + j2πµn), µn ∈ [0, 1), βn ∈ (βmin, 0], for n =

1, . . . ,N. The single tone sparse approximation of y with re-
spect to Q is the solution of the criterion:

min
x

J(x) = ||y −Qx||2 s.t. ||x||0 = 1. (16)

The optimal solution is given by

x∗n = qH
n y, x∗{1,...,N}\n = 0, J(x∗) = ||y||2 − yHqnqH

n y (17)

where n is the selected column number in Q. Finally, the min-
imum J(x∗) is reached for an atom qn that maximizes J′(qn) =

yHqnqH
n y = |qH

n y|2, n = 1, . . . ,N.

Remark 1. At this point we notice that, for 1-D single-tone
harmonic signals, maximizing J′(qn) leads to the well-known
beamforming method (or more precisely to the periodogram in
the single snapshot case). Hence, an estimate of the frequency
ν1 may be obtained from the peak of J′(qn). Here, as in [32], we
use the sparse approximation framework. In our case, it allows
to estimate the frequency and then the damping factor from a
unified point of view and using a unique algorithm based on
SOMP and DICREF.

4.1. Estimating the Frequency: The Harmonic Dictionary

First, we estimate frequency ν1 using a harmonic dictionary
(i.e. assuming βn = 0,∀n). In this case, we have:

J′(µn) =
|c1|

2

M

∣∣∣∣∣∣1 − eα1 M+ j2π(ν1−µn)M

1 − eα1+ j2π(ν1−µn)

∣∣∣∣∣∣2 . (18)

The following theorem gives a sufficient condition for the multi-
grid dictionary refinement scheme to converge to the global
maximum of J′.

Theorem 1. Let y(m) be a single tone (F = 1) noiseless signal
of length M and Q(` = 0) = [q1 q2 . . . qN(0)]T be the ini-
tial harmonic dictionary in which the columns are sorted in in-
creasing order of µn(0), n = 1, 2, . . . ,N(0) and covering the fre-
quency interval [0,1): µ1(0) = 0 and µN(0)(0) = 1 − 1/M. Then
the refinement scheme is convergent (i.e. ∃n ∈ {1, . . . ,N(`)} s.t.
lim`→∞ µn(`) = ν1) if the following condition is satisfied:

max
n∈{1,...,N(0)−1}

|µn+1(0) − µn(0)| < 2ζM (19)

where ζM is a constant depending only on M.

ν1 −
1
M

ν1 ν1 + 1
M ν1 + 2

M

0

1
4

1
2

3
4

1

ζM

µn

J′
(µ

n)
/|
|y
||2

α1 = 0.0
α1 = −0.3

Figure 2: J′(µn) in the single mode case with βn = 0

Proof It is easy to check that the global maximum of J′(µn) is
reached for µn = ν1, ∀α1. Figure 2 shows the shape of J′(µn)
for βn = 0. For α1 = 0, J′(µn) reduces to a Fejér kernel of order
M which has exactly one local maximum in the interval [ν1 +

k/M, ν1 + (k + 1)/M], k , 0. Let J′1 be the amplitude of the first
sidelobe and ν1 + ζM be the value of µn such that J′(µn = ν1 +

ζM) = J′1 in the interval [ν1, ν1 +1/M] (we assume2 that M > 2).
For the dictionary refinement strategy to converge to the global
maximum, it is sufficient to the sparse approximation algorithm
to select, at a given level `, an atom whose frequency satisfies
|µn∗ (`) − ν1| < ζM < 1/M, where µn∗ (`) = arg maxn J′(µn).
Indeed, if µn∗ (`) ∈ (ν1 − ζM , ν1 + ζM) then adding two atoms
whose frequencies are located on both sides of µn∗ (`) will lead
to the selection, at level ` + 1, of an atom that satisfies |µn∗ (` +

1) − ν1| ≤ |µn∗ (`) − ν1|: the distance between the selected atom
and the true frequency is a monotonically decreasing sequence.
Finally, the convergence is guaranteed if the initial dictionary
contains an atom n such that |µn(0)−ν1| < ζM , which is satisfied
if

max
n∈{1,...,N(0)−1}

|µn+1(0) − µn(0)| < 2ζM . (20)

given the fact that the sequence {µn(0)} covers the interval [0, 1).
For α1 < 0, the main lobe of J′(µn) becomes broader and ζM

larger than for α1 = 0. Consequently, condition (20) is also
sufficient for α1 < 0. �

Corollary 1. In the single tone case, the harmonic dictionary
refinement is convergent if the initial frequency grid (` = 0) is
the Fourier grid.

Proof Fourier bins are obtained for N = M and µn(0) = (n −
1)/M. Since ζM > 1/2M, the proof is straightforward. �

It is important to note that condition (20) is sufficient but not
necessary. Moreover, this condition is established when adding
a single atom on both sides of the selected one (i.e. η = 1 in
Algorithm 1). When η � 1, the condition may be relaxed and
the rate of convergence is expected to be higher.

4.2. Estimating the Damping Factor: The Modal Dictionary
Assume that the previous sparse approximation using a har-

monic dictionary has converged to select an atom with µn = ν1.

2The case of M ≤ 2 in not of practical interest but the theorem is still valid
by setting ζM = 1

2 because J′(µn) is a monotonically decreasing function in the
interval [ν1,min{ 1

2 ,
1
2 + ν1}].
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Now, we have to estimate the damping factor α1. We form
a modal dictionary using the damping factor grid and the fre-
quency ν1, i.e. qn = exp(βn + j2πν1). Consequently,

J′(βn) =
|c1|

2(1 − e2βn )
1 − e2βn M

(
1 − e(α1+βn)M

1 − e(α1+βn)

)2

. (21)

Theorem 2. Let y(m) be a single tone (F = 1) noiseless sig-
nal of length M and Q(0) = [q1 q2 . . . qN(0)]T be the ini-
tial modal dictionary formed using the frequency ν1, i.e., qn =

exp(βn(0) + j2πν1), where ν1 is the frequency of signal y. The
columns are sorted in increasing order of βn(0), n = 1, 2, . . . ,N
and covering the damping factor interval (βmin, 0]. Then the re-
finement scheme is convergent (i.e. ∃n s.t. lim`→∞ βn(`) = α1)
if α1 ∈ (βmin, 0].

Proof Let g(βn) be the derivative of J′(βn) in (21) with respect
to βn. It is easy to check that g(βn) > 0 for βn < α1, g(βn) < 0
for βn > α1, and g(βn) = 0 when βn = α1. In other words, J′(βn)
is monotonically increasing before the maximum reached at α1
and monotonically decreasing after α1. Therefore, the multigrid
algorithm converges to α1 if βmin < α1. �

As a consequence of Theorem 2, the initial modal dictionary
can be formed using only two points in the damping factor grid:
β1(0) = βmin and β2(0) = 0.

We can now state that the multigrid algorithm based on two
sparse approximations (for frequency and then damping factor)
converges in the single tone case under some conditions. Note
that in the noisy case when the SNR is sufficiently high, the
convergence analysis is still valid as in the noiseless case, and
the proposed multigrid sparse scheme for single tone converges
to the global maximum of the Fejér kernel. The extension to
the single tone R-D modal retrieval problem is straightforward
and can be performed according to the formulation presented in
Section 3.2. The details of this approach (STSM: Single Tone
Sparse Method) are presented in Algorithm 2. The algorithm
takes as input a noisy single tone R-D signal, and a couple of
integers ην and ηα that correspond respectively to the number of
frequency and damping factor atoms to be added on both sides
of the corresponding selected ones. Next, for each dimension
r = 1, . . . ,R, we run two tasks to estimate the frequency and
then the damping factor: in each step we apply SOMP com-
bined to DICREF using corresponding dictionaries and taking
into account the convergence conditions discussed previously.
Then parameters of ar, i.e., νr and αr, are given by the corre-
sponding selected atoms.

5. Multiple R-D Modes Estimation

In the multiple tones case, sparse approximation algorithms
yield suboptimal solutions when the coherence of the dictio-
nary is high [33]. This is a crucial point because the refinement
procedure will increase the coherence with increasing `, which
may prevent convergence even in the noiseless case. In the fol-
lowing, we present a low complexity algorithm that is accurate
and robust in the presence of noise. The idea is to begin by an

Algorithm 2: Single tone sparse method (STSM) based on
a multigrid refinement

input : A tensor Y ∈ CM1×···×MR , (ην, ηα) ∈ N × N
output: Parameters of the single R-D mode: a1, . . . , aR

initialization: (kν, kα) = (0, 0)
initialize d(0)

ν and d(0)
α using ζ

for r = 1 : R do
while halting criterion false do

kν = kν + 1
Ω

(kν)
ν = SOMP(Q(d(kν)

ν , 0),Y(r), Iter = 1)
d(kν+1)
ν = DICREF(d(kν)

ν ,Ω(k)
ν , ην)

end
while halting criterion false do

kα = kα + 1
Ω

(kα)
α = SOMP

(
Q

(
d(kν)
ν (Ω(kν)

ν ),d(kα)
α

)
,Y(r)

)
d(kα+1)
α = DICREF(d(kα)

α ,Ω(k)
α , ηα)

end
ar = exp(d(kα)

α (Ω(kα)
α ) + 2πd(kν)

ν (Ω(kν)
ν ))

end
return a1, . . . , aR

initialization step where F single tone modal signals of order
R− 1 are extracted from the multiple tones R-D signal. Then an
iterative technique is proposed to improve this decomposition
and estimate more accurately the underlying parameters.

It is assumed that the frequencies are distinct in at least one
dimension with Mr > F. Then dimensions are permuted such
that the dimension with distinct frequencies becomes the first
one (r = 1).

5.1. From Multiple Tones to Multiple Single-Tone Signals

According to (5), Y can be written as [29, 30]

Y = I •
1

A1 •
2
· · · •

R
AR •

R+1
cT (22)

=

(
I •

2
A2 •

3
· · · •

R
AR •

R+1
cT

)
•
1

A1

= S •
1

A1 (23)

where I ∈ CF×F×···×F is a tensor of order R + 1 containing ones
on its diagonal and zeros otherwise, and

S = I •
2

A2 •
3
· · · •

R
AR •

R+1
cT (24)

is a complex tensor of order R and size F×M2×· · ·MR. Similar
expressions are evoked in, among others, [12]. The matriciza-
tion of S along the first dimension is given by [30]

S(1) = I(1)(cT � AR � · · ·� A2)T (25)

= IF (cT � AR � · · · � A2)T (26)

where I(1) and IF denote respectively the matricization of I
along the first dimension and the identity matrix of size F × F.
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Then,

S(1) = (cT � AR � · · · � A2)T (27)

=


c1(a1,R � · · · � a1,2)T

c2(a2,R � · · · � a2,2)T

...
cF(aF,R � · · · � aF,2)T

 (28)

We can see that each row f = 1, . . . , F of S(1) represents the
matricization along the first dimension of a sub-tensor S f of
size 1 × M2 × · · · × MR that contains a single (R − 1)-D tone,
where:

S f = c f a f ,2 ⊗ a f ,3 ⊗ · · · ⊗ a f ,R. (29)

The tensor S can then be written as the concatenation of the F
sub-tensors S f along the first dimension

S = S1 t1 S2 t1 · · · t1 SF (30)

This is the key property to transform the multiple tone R-D sig-
nal into F single tone signals, thus allowing to use the single-
tone estimation of Section 4. To do so, we need firstly to esti-
mate A1.

Now, we show how to estimate the modes of the first dimen-
sion, i.e. A1, using the matricized form of Y along the first
dimension Y(1) (equation (6)). The singular value decomposi-
tion (SVD) of Y(1) yields

Y(1) = UΣVH (31)

where matrices U ∈ CM1×L and V ∈ CM′1×L are orthonormal
and contain respectively the left and right singular vectors of
Y(1), with L = min{M1,M′1}. Σ is a diagonal matrix containing
the singular values σi, i = 1, . . . , L, sorted in a decreasing or-
der. As the number of components in Y is equal to F, we can
decompose the SVD of Y(1) in (31) as follows

Y(1) = UFΣFVH
F + UnΣnVH

n (32)

where UF (resp. VF) stands for the matrix formed with the first
F columns of U (resp. V) and ΣF contains nonzero singular
values on its diagonal ΣF = diag(σ1, . . . , σF). Un (resp. Vn) is
formed by the remaining columns associated with zero singular
values Σn = 0. It can be established from (7) and (32) that
A1 and UF span the same subspace, and thus there exists an
unknown nonsingular matrix T that satisfies

A1 = UFT. (33)

Denote by M (resp. M) the matrix obtained from M by delet-
ing the first (resp. last) row. By harnessing the Vandermonde
structure of A1, there exists a diagonal matrix

D = diag(a1,1, . . . , aF,1)

such that A1 = A1D. Since A1 = UFT and A1 = UFT, then
UFT = UFTD, which proves that matrix T can be estimated
by the eigenvectors of U†FUF . Therefore, using this estimate

of T, exponentials of A1 can be estimated by (33) where UF is
obtained from (32).

In the presence of noise, the SVD of Ỹ(1) is given by

Ỹ(1) = ŨFΣ̃FṼH
F + ŨnΣ̃nṼH

n . (34)

Due to the noise, all the quantities in the right-hand side (RHS)
of (34) may be perturbed versions of those in the RHS of (32).
In this case we may express ŨF by ŨF = UF + ∆UF . Then,
neglecting Σ̃n, an approximation of Y(1), denoted by Ŷ(1), can
be obtained using the first F principal components of the SVD
of Ỹ(1):

Ŷ(1) = ŨFΣ̃FṼH
F . (35)

TherebyS can be estimated from the noisy data and Â1 using
equation (23) as follows

Ŝ = Ỹ •
1

Â†1, (36)

then Ŝ f , f = 1, . . . , F are extracted from Ŝ according to (30).
Each Y f = c f a f ,1 ⊗ · · · ⊗ a f ,R can be estimated by Ȳ (0)

f =

Ŝ f •
1

â f ,1. The sparse multigrid algorithm for single tone

(STSM) can be applied on each Ȳ (0)
f , f = 1, . . . , F to estimate

the parameters. However, we propose in the following to im-
prove the separated components using an iterative technique.

5.2. Improving the Estimation Accuracy
It is clear from (36) that, in the noisy case, the error in es-

timating S (due to the estimation of A1) will propagate when
estimating the parameters a f ,2, . . . , a f ,R. Hence, we propose to
improve iteratively the mode estimates. The following proce-
dure is used to update estimates at each iteration i = 0, . . . ,K

1. apply STSM to estimate a f ,2, . . . , a f ,R, f = 1, . . . , F

{â f ,2, . . . , â f ,R} = STSM(Ȳ (i)
f , ην, ηα, r = 2, . . . ,R) (37)

2. estimate c f a f ,1, f = 1, . . . , F by least squares using the
already estimated a f ,2, . . . , a f ,R, f = 1, . . . , F

ĉ f a f ,1 = Ȳ(i)
f(1)

(
(â f ,R � · · ·� â f ,2)T

)†
(38)

3. compute Ŷ
(i)
f

Ŷ
(i)
f = ĉ f a f ,1 ⊗ â f ,2 ⊗ · · · ⊗ â f ,R (39)

where Ȳ (i)
f = Ŷ

(i−1)
f + R

(i)
f−1, R(i)

( f ) = R
(i)
f−1 + Ŷ

(i−1)
f − Ŷ

(i)
f , f =

1, . . . , F,R(i)
0

def
= R

(i−1)
F , andR(0)

F = Ỹ−
∑F

f =1 Ŷ
(0)
f . This iterative

scheme will be analyzed in the next section.
Finally, the algorithm we propose (MTM: Multiple Tones

Method) is summarized in Algorithm 3. Note that no asso-
ciation step of R-D modes is required. The initialization step
consists in initializing: i) Â1 and Ŝ using (33), (36) and (30),
ii) the estimated single tones Ȳ (0)

f , f = 1, . . . , F.
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Algorithm 3: Multiple tones method (MTM)
input : A tensor Ỹ ∈ CM1×···×MR , (ην, ηα) ∈ N × N
output: Parameters of the multiple R-D modes : {a f ,r}

F,R
f =1,r=1

initialization:
1. Compute Â1 and Ŝ f , f = 1, . . . , F using (33), (36) and (30)

2. Ȳ (0)
f = Ŝ f •

1
â f ,1, f = 1, . . . , F

For f = 1, . . . , F, compute Ŷ
(0)
f using (37), (38) and (39)

R
(0)
F

def
= R

(1)
0 = Ỹ −

∑F
f =1 Ŷ

(0)
f

for i = 1 : K do
for f = 1 : F do
Ȳ

(i)
f = Ŷ

(i−1)
f +R

(i)
f−1

compute Ŷ
(i)
f using (37), (38) and (39)

R
(i)
f = Ȳ

(i)
f − Ŷ

(i)
f , if f = F, then R(i+1)

0
def
= R

(i)
F

end
end
For f = 1, . . . , F, extract a f ,1 using

a f ,1 = STSM(Ŷ
(K)
f +R

(K)
F , ην, ηα, r = 1)

return {â f ,r}
F,R
f =1,r=1

Note that the columns of Â1 are iteratively updated without
extracting the related modes, whereas the modes of the other di-
mensions are extracted at each iteration using (37). Solely after
the last iteration (i = K), the parameters of the first dimension
are extracted using STSM algorithm. K denotes the maximum
number of iterations, which is fixed to 2 in the simulations since
no improvement was observed for K > 2.

5.3. Analysis of the Algorithm
Following the separation step described in (31)–(36), we can

state that the algorithm yields the expected solution when the
SNR is sufficiently high. We want now to prove that the sec-
ond stage (next iterations), in addition to estimating the pa-
rameters from the single tones, is also improving the estima-
tion accuracy. The general idea is inspired from greedy for-
ward/backward sparse approximation, where the solution is re-
fined by adding/removing atoms to/from the set of activated
atoms. The improvement of the estimates is stated by the fol-
lowing theorem.

Theorem 3. Assuming that the noise E is sufficiently small
such that the ordering of the singular values in Σ in (31) is
the same as the ordering of the corresponding singular values
when E = 0. Using the procedure expressed by (37), (38) and
(39) to estimate Y f at iteration i = 0, . . . ,K

Ŷ
(i)
f = arg min

X∈H

‖Ȳ
(i)
f −X‖ (40)

where H = {X ∈ CM1×···×MR |X = b1 ⊗b2 ⊗ · · · ⊗bR, br ∈

P for r , 1} with P = {v ∈ CMr |v = [1, v, . . . , vMr−1]T, v =

exp(β + jω), β ∈ R−, ω ∈ [0, 2π)}. Then, at each iteration i, the
residual is decreased:∥∥∥∥Ỹ − Ŷ (i)

∥∥∥∥ ≤ ∥∥∥∥Ỹ − Ŷ (i−1)
∥∥∥∥ (41)

where Ŷ
(i)

=
∑F

f =1 Ŷ
(i)
f .

Proof See Appendix A. �

5.4. Identifiability

Based on the assumptions under which Algorithm 3 is oper-
ating, the identifiability condition can be stated as F < M1 and
min{M2, ....,MR} ≥ 2. In [34], the condition is Mr ≥ 4, r =

1, . . . ,R, and F ≤
⌊

M1
2

⌋∏R
r=1

⌈
Mr
2

⌉
.

We note that, when Mr ≥ 4, r = 1, . . . ,R, the number of
identifiable modes is slightly smaller than in [34], but the pro-
posed algorithm is able to outperform the conventional methods
in terms of computational complexity and accuracy. In addition,
another advantage of the proposed algorithm is clear when the
number of samples in one or more dimensions is less than 4
(i.e. Mr < 4), where identifiability in [34] is not satisfied. This
latter case (i.e. ∃r,Mr < 4) can be encountered in signal pro-
cessing applications when the size of one or more diversities
(dimensions in our formulation problem) is less than 4.

6. Cramér-Rao Lower Bounds for R-D Cisoids in Noise

In this section, we derive the expressions of the CRLB for
the parameters of R-D damped exponentials in Gaussian white
noise. We then give the CRLB in the cases of single damped
and undamped R-D cisoids. We consider the R-D sinusoidal
model given in (3). Let

θ = [ω1,1 . . . ω1,R ω2,1 . . . ωF,R α1,1 . . . α1,R

α2,1 . . . αF,R λ1 . . . λF φ1 . . . φF]T

be the unknown parameter vector. The aim here is to derive the
CRLB of the parameters in θ.

The joint probability density function (pdf) of ỹ is

p(ỹ; θ) =
1

(σ2π)M exp
{
−

1
σ2 (ỹ − µ(θ))H(ỹ − µ(θ))

}
(42)

where µ(θ) is the noise-free part of y and

ỹ = [ỹ(1, . . . , 1, 1), . . . , ỹ(1, . . . , 1,MR), ỹ(1, . . . , 2, 1),

. . . , ỹ(1, . . . , 2,MR), . . . , ỹ(M1, . . . ,MR)]T. (43)

The i-th entry of µ(θ) can be written as:

µ(θ)i =

F∑
f =1

c f

R∏
r=1

ati,r
f ,r, (44)

for i = 1, . . . ,M, where

ti,r =

 i − 1∏R
`=r+1 M`

 mod Mr, (45)

and b·c is the floor function. In the following, we derive the ex-
pressions of the CRLB in the general case (F > 1) and then we
deduce the result corresponding to a single R-D modal signal
(F = 1).
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6.1. Derivation of the CRLB

Given the joint pdf in (42), the (k, l) entry of the Fisher infor-
mation matrix is [35, 36]:

[F(θ)]kl =
2
σ2 Re


[
∂µ(θ)
∂θk

]H
∂µ(θ)
∂θl

 . (46)

After some lengthy calculations, the M × (2RF + 2F) matrix
∂µ(θ)/∂θ can be expressed as

∂µ(θ)
∂θ

= [ jZ′Φ Z′Φ Zφ jZφ]︸                            ︷︷                            ︸
V

· blkdiag(Λ,Λ, IF , λ)︸                   ︷︷                   ︸
S

(47)

where

Z′ = [Z′1, . . . ,Z
′
F] ∈ CM×RF ,with Z′f (i, l) = ti,l

R∏
r=1

ati,r
f ,r, (48)

Λ = blkdiag(λ1IR, . . . , λFIR) ∈ RRF×RF , (49)

Φ = blkdiag(e jφ1 IR, . . . , e jφF IR) ∈ CRF×RF , (50)

Z = [z1, . . . , zF] ∈ CM×F ,with z f (i) =

R∏
r=1

ati,r
f ,r, (51)

λ = diag([λ1, . . . , λF]) ∈ RF×F , (52)

φ = diag([e jφ1 , . . . , e jφF ]) ∈ CF×F . (53)

Finally, the inverse of the Fisher information matrix is

F−1(θ) =
σ2

2
S−1

[
Re{VHV}

]−1
S−1 =

σ2

2
S−1WS−1 (54)

where Re{·} stands for the real part. The CRLB of θk is given by
[F−1(θ)]kk. More explicitly, for f = 1, . . . , F and r = 1, . . . ,R:

CRLB(ω f ,r) =
2σ2WR( f−1)+r,R( f−1)+r

λ2
f

(55)

CRLB(α f ,r) =
2σ2WRF+R( f−1)+r,RF+R( f−1)+r

λ2
f

(56)

CRLB(λ f ) = 2σ2W2RF+ f ,2RF+ f (57)

CRLB(φ f ) =
2σ2W2RF+F+ f ,2RF+F+ f

λ2
f

(58)

Theorem 4. For the general R-D exponential process, the
CRLB’s for f = 1, . . . , F and r = 1, . . . ,R satisfy

CRLB(ω f ,r) = CRLB(α f ,r) (59)

CRLB(λ f ) = λ2CRLB(φ f ) (60)

Proof It is based on the special block structure of matrix
Re{VHV} (see for instance [35]).

6.2. Single Mode Case

In this section, the CRLB’s will be simplified in the case of a
single R-D modal signal (F = 1) to obtain more precise details

on their parameter dependency. For the sake of simplicity, the
subscripts denoting the mode f = 1 will be omitted. First,
assume that |ar | = exp(αr) < 1. We shall express the products
Z′HZ′, ZHZ and Z′HZ. After some calculations, we get:

[Z′HZ′]nk =

R∏
r=1

r,n,k

(
1 − |ar |

2Mr

1 − |ar |
2

)

×



Mn−1∑
m=0

m|an|
2m

Mk−1∑
m=0

m|ak |
2m, if n , k

Mn−1∑
m=0

m2|an|
2m, if n = k

(61)

ZHZ =

R∏
r=1

(
1 − |ar |

2Mr

1 − |ar |
2

)
(62)

[Z′HZ]n =

R∏
r=1
r,n

(
1 − |ar |

2Mr

1 − |ar |
2

)
×

Mn−1∑
m=0

m|an|
2m. (63)

Denoting M(α) =
∏R

r=1(1 − |ar |
2Mr )/(1 − |ar |

2),
q1(n) =

∑Mn−1
m=0 m|an|

2m/
∑Mn−1

m=0 |an|
2m and q2(n) =∑Mn−1

m=0 m2|an|
2m/

∑Mn−1
m=0 |an|

2m, we then obtain:

[P]nk = M(α) ×

q1(n)q1(k), if n , k
q2(n), if n = k

(64)

G = M(α) (65)

[Q]n = M(α)q1(n), (66)

and

Re{VHV} =


P 0 0 Q
0 P Q 0
0 QT G 0

QT 0 0 G

 . (67)

The inversion of Re{VHV} yields the following expressions of
the CRLB’s:

CRLB(ωr) = CRLB(αr) =
σ2

2λ2M(α)

×
(1 − |ar |

2)2(1 − |ar |
2Mr )2

−M2
r |ar |

2Mr (1 − |ar |
2)2 + |ar |

2(1 − |ar |
2Mr )2 , (68)

CRLB(λ)
λ2 = CRLB(φ) =

σ2

2λ2M(α)

1 +

R∑
r=1

q2
1(r)

q2(r) − q2
1(r)

 .
(69)

Finally, for a single R-D purely harmonic signal (αr = 0,∀r),
we have M(α) =

∏R
r=1 Mr = M and taking the limit of the

CRLB’s when αr → 0 leads to:

lim
αr→0

CRLB(ωr) =
6σ2

λ2M(M2
r − 1)

(70)

lim
αr→0

CRLB(λ)
λ2 =

σ2

2λ2M

1 + 3
R∑

r=1

Mr − 1
Mr + 1

 . (71)

Hence, for the undamped case, our result in (70) is consistent
with [12].
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7. Simulation Results

Numerical simulations have been carried out to assess
the performances of the proposed method for 2-D and 3-
D modal signals in the presence of white Gaussian noise.
The performances are measured by the total root-mean square
error (RMSE) on estimated parameters and the computa-
tional time. The total RMSE is defined as RMSEtotal =√

1
RFEp

{∑R
r=1

∑F
f =1(ξ f ,r − ξ̂ f ,r)2

}
where ξ̂ f ,r is an estimate of

ξ f ,r, and Ep is the average on p Monte-Carlo trials. In our sim-
ulations, ξ f ,r can be either a frequency or a damping factor.

7.1. RMSE for 2-D and 3-D Signals

Experiment 1. To show the effectiveness of the multigrid
scheme, this experiment presents the results obtained on Sig-
nal #1 (see Table 1) with different multigrid levels and different
initial grids. Signal #1 is a single tone 2-D modal signal of size
10 × 10. The number of multigrid levels is fixed to L = 2, i.e.,
` = 0, 1, 2. Then the results are presented as a function of the
number of atoms in the initial dictionaries N(0) and the number
of atoms ην or ηα added at each level `. The results we obtain for
the first step, i.e., for the harmonic estimation, are presented in
Figure 3. We can observe that the frequency RMSE obtained
with the R-D sparse algorithm can reach the CRLB using a
uniform initial harmonic dictionary of 10 atoms and ην = 31
(Figure 3.a). Figure 3.b shows that the frequency RMSE is im-
proved at low SNR if the initial dictionary contains 20 atoms,
and reaches the optimal estimates with ην = 21. Figure 4 shows
the damping factor RMSE obtained by R-D sparse algorithm
using different settings of the initial damping factor dictionary
and ηα. We can observe that the damping factor RMSE depends
on the number of atoms in the dictionary, the more atoms the
better. At low SNR, the RMSE also depends βmin. Therefore, it
is better to choose βmin with small absolute value if we have a
prior knowledge of the interval of damping factors in the signal.
In general, the estimation error is of order 1

N(0)η2 . For instance,
in the frequency step estimation, we recommend to chose N(0)
to be greater than or equal to 3

2 Mr if we want a good accuracy
at lower SNR levels. Otherwise, we can set N(0) = Mr. Once
N(0) is set, η can be chosen with respect to the desired accu-
racy. Let ε be the desired estimation error, then ε = 1

N(0)η2 and
we can set η = 1

√
εN(0)

.

In the rest of this section, the proposed algorithms are com-
pared with 2-D ESPRIT [7], Tensor-ESPRIT [11], PUMA [13]
and TPUMA [12]. If the R-D signal contains one tone then
Algorithm 2 (STSM) is used, otherwise Algorithm 3 ( MTM)
is used. Thus, to facilitate notation, both proposed algorithms,
Algorithm 2 and Algorithm 3, will be called R-D sparse. For
the proposed method, the initial grid used to build the harmonic
dictionary is the same for all dimensions; it contains 50 fre-
quency points uniformly distributed over the interval [0, 1) and
10 damping factors β ∈ [−0.05, 0]. To simulate a random dic-
tionary, at each run, the frequency grid is perturbed by a small
random quantity. As a consequence of experiment 1, we use the

Table 1: 2-D and 3-D parameters of Signal #1 through #4
Signal ν f ,1 α f ,1 ν f ,2 α f ,2 ν f ,3 α f ,3 c f

#1 0.22 −0.011 0.34 −0.015 – – 1
#2 0.40 −0.01 0.1 −0.01 0.1 −0.01 1

0.20 −0.01 0.3 −0.15 0.25 −0.01 1
#3 0.28 −0.01 0.31 −0.01 0.22 −0.01 1

0.12 −0.01 0.45 −0.015 0.11 −0.01 1
0.20 −0.01 0.31 −0.01 0.11 −0.01 1

#4 0.30 −0.01 0.1 −0.01 0.1 −0.01 1
0.13 −0.01 0.45 −0.015 0.4 −0.01 1
0.20 −0.01 0.31 −0.01 0.1 −0.01 1
0.42 −0.012 0.22 −0.01 0.32 −0.01 1

Table 2: Different configurations for experiments 3 and 4
F Dim. 1 Dim. 2 Dim. 3

Exp. 3 2 ∆ν > ∆Fr ∆ν > ∆Fr ∆ν > ∆Fr

Exp. 4 3 ∆ν < ∆Fr ∃ identical modes ∃ identical modes

following settings (L, ηµ, ηβ) = (2, 21, 11). The number of iter-
ations in Algorithm 3 is set to K = 2 because no improvement
was observed for K > 2.

Since the proposed method is applied directly on data with-
out using spatial smoothing, i.e., it does not require the con-
struction of a large matrix or an augmented order tensor, then
a relevant comparison will be with algorithms that do not use
spatial smoothing. Thereby, in the next experiments, the pro-
posed algorithm is compared to PUMA [13] and TPUMA [12],
which are algorithms that do not require spatial smoothing.
We also report comparisons with 2-D ESPRIT [7] and Tensor-
ESPRIT [11], which need spatial smoothing.

7.1.1. Single tone R-D modal signal
Experiment 2. This experiment tends to show the efficiency
of the proposed algorithm in estimating parameters of single
tone R-D modal signals. We use the same signal as before
(Signal #1). Our R-D sparse algorithm is compared to 2-D
ESPRIT [7] and PUMA [13]. For each level of noise, 1000
Monte-Carlo trials are performed. Figure 5 shows the obtained
results. We can observe that: i) the proposed algorithm and
PUMA reach the CRLB and outperform 2-D ESPRIT, ii) R-D
sparse outperform PUMA in SNR less than 3 dB.

7.1.2. Multiple tones R-D modal signals
Several configurations are studied in the case of multi-

ple tones to compare the proposed algorithm with Tensor-
ESPRIT [11] and TPUMA [12]. These configurations (Exper-
iments 3–4) are summarized in Table 2, in which the number
of modes and the distance between frequencies in different di-
mensions are varied. ∆Fr denotes the Rayleigh frequency reso-
lution limit, which has the same value in all dimensions because
M1 = M2 = M3. In Experiment 5 we examine the case when
the size of only one dimension is larger than 4, i.e., the identifi-
ability condition of [34] is not satisfied. The parameters of the
used signals are given in Table 1.
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Figure 3: Frequency RMSE using R-D sparse algorithm with different ην. 2-D
signal containing a single tone (Signal #1). (M1,M2) = (10, 10). 1000 Monte-
Carlo trials. (a) The initial harmonic dictionary contains N(0) = 10 atoms, (b)
N(0) = 20 atoms.

Experiment 3. In this experiment, we simulate a 3-D signal
(Signal #2) of size 8×8×8 and containing two modes whose fre-
quencies in each dimension are well separated. Parameters of
the signal are given in Table 1. Figure 6 shows the obtained re-
sults. Here, the proposed method performs as TPUMA. Tensor-
ESPRIT yields a slightly higher RMSE.

Experiment 4. 3-D signal of size 10×10×10 containing three
3-D modes ( Signal #3). Note that there exists identical modes
in two dimensions and frequencies in the first dimension are
separated by less than 1/M1. The results are shown on Fig-
ure 7. In this experiment, the proposed R-D sparse approach
performs better than TPUMA and Tensor-ESPRIT. Observe
also that Tensor-ESPRIT outperforms TPUMA in this config-
uration (close frequencies and identical modes in dimensions 2
and 3).

Experiment 5. Results on Signal #4 of size 10×3×3 contain-
ing 4 modes are given in Figure 8. We observe that the proposed
method outperforms TPUMA mainly at low SNR levels.

7.2. Numerical Complexity

It is known that in the case of 1-D signals of size M,
OMP costs O(NFM) in terms of multiplications [37]; F is
the sparsity (number of components) and N is the number
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Figure 4: Damping factor RMSE using R-D sparse algorithm with different ηα,
βmin and N(0). 2-D signal containing a single tone (Signal #1). (M1,M2) =

(10, 10). 1000 Monte-Carlo trials.
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Figure 5: Frequency total root-mean square error for a 2-D signal containing a
single tone (Signal #1). (M1,M2) = (10, 10). 1000 Monte-Carlo trials.

of atoms in the dictionary. For a M-measurements R-D sig-
nal, the complexity of the STSM algorithm over a set of L
multigrid levels is O(MNLR), assuming that the number of
dictionary atoms is maintained constant (equal to N) over all
levels. Regarding the approach proposed in Algorithm 3,
the main operations are the call of STSM and the update

of ĉ f a f ,1 = Ȳ(i)
f(1)

(
(â f ,R � · · ·� â f ,2)T

)†
which has a complex-

ity of O(M) since
(
(â f ,R � · · ·� â f ,2)T

)†
is a row vector of

length
∏R

r=2 Mr and Ȳ(i)
f(1)

is a matrix of size M1 ×
∏R

r=2 Mr.
Therefore, the whole complexity of the proposed algorithm is
O ((NL(F(R − 1)K + 1) + FK)M), which is linear in the num-
ber of measurements M. The complexity of the Tensor-ESPRIT
algorithm with spatial smoothing is mainly related to that of
the SVD which is at least O(ktF(R + 1)PM) where kt is a
constant depending on the implementation of the SVD algo-
rithm. Here P =

∏R
r=1 Pr where {Pr}

R
r=1 are design parame-

ters used to get smoothed measurements (see [11]). The ac-
curacy of the estimates provided by ESPRIT depends on these
parameters. Since the optimal value for Pr is a fraction of Mr

(e.g. [38, 39, 40]), the complexity of the SVD step is, in fact,
O(M2). The complexities of PUMA and TPUMA algorithms
are O(M3) and O(kt M(R + F − 1)) +

∑R
r=1 O(K(F + 1)M3

r ), re-
spectively. Compared to PUMA and TPUMA, the proposed
algorithm has an attractive computational complexity for large
size signals. Figure 9 shows the CPU time results of the pro-
posed, Tensor-ESPRIT and TPUMA algorithms versus M1 for
a 3-D damped signal containing two modes with M2 = M3 = 4.
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Figure 6: Frequency total root-mean square error for a 3-D signal containing
two 3-D modes (Signal #2). (M1,M2,M3) = (8, 8, 8). 1000 Monte-Carlo.
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Figure 7: Frequency total root-mean square error for a 3-D signal containing 3
modes with identical modes in two dimensions (Signal #3), with close modes
in the first dimension (0.28,0.12,0.2). (M1,M2,M3) = (10, 10, 10). 200 Monte-
Carlo.

We observe that the proposed method involves a low compu-
tational complexity compared to TPUMA and Tensor-ESPRIT
when M1 is large.

8. Conclusion

We presented an efficient sparse estimation approach for
the analysis of multidimensional (R-D) damped or undamped
modal signals. The idea consists in exploiting the simultaneous
sparse approximation principle to separate this joint estimation
problem into R multiple measurements problems. To be able to
handle large size signals and yield accurate estimates, a multi-
grid dictionary refinement scheme is associated with the simul-
taneous orthogonal matching pursuit (SOMP) algorithm. We
gave the convergence proof of the the refinement procedure in
the single tone case. Then, for the general multiple tones R-D
case, the signal tensor model is decomposed in order to handle
each tone separately in an iterative scheme so that the pairing of
the R-D parameters is automatically achieved. Also, the CRLB
of the R-D modal signal parameters were derived. The tests
performed on simulated signals showed that the proposed al-
gorithm attains the CRLB and outperforms state-of-the-art sub-
space algorithms. We also have shown that the complexity of
the algorithm is linear with respect to the number of measure-
ments, which allows the processing of large size signals. Fi-
nally, it is worth mentioning that this approach can be straight-
forwardly applied to other multidimensional array processing
problems.
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Figure 8: Frequency total root-mean square error for a 3-D signal containing 4
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Figure 9: Average CPU time for a single run under M2 = M3 = 4 and F = 2.

Appendix A. Proof of Theorem 3

We begin the proof by introducing the following lemma.

Lemma 1. Consider Ỹ = Y + ∆Y , where Ỹ is the perturbed
version of the data tensor Y and ∆Y is the perturbation. As-
suming that ∆Y is sufficiently small such that the ordering
of the F singular values in Σ in (31) is the same as the or-
dering of the corresponding singular values when ∆Y = 0.
Then the perturbation ∆Y f contains a linear combination of
all Y f , f = 1, . . . , F:

∆Y f =D f +

F∑
i=1

v f ,iY i

where vT
f = [v f ,1, . . . , v f ,F] = ∆A†1( f , :)A1 and D f =

∆Y •
1

a f ,1A†1( f , :) +Y s, f •
1

∆a f ,1.

Proof From (36) S = Y •
1

A†1, we differentiate and obtain

∆S = ∆Y •
1

A†1 +Y •
1

∆A†1

Then, we get ∆S f = ∆Y •
1

A†1( f , :) +
∑F

p=1 v f ,pSp. Y f is

estimated using Y f = S f •
1

a f ,1, we differentiate and obtain

∆Y f =
∑F

p=1 v f ,pY p + S f •
1

∆a f ,1 + ∆Y •
1

a f ,1A†1( f , :). �
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Using the previous lemma

Ȳ
(0)
f = S f •

1
(a f ,1 + v f , f a f ,1 + ∆a f )+

F∑
p=1,p, f

v f ,pY p + ∆Y •
1

a f ,1A†1( f , :)

Therefore, a f ,2, . . . , a f ,R, f = 1, . . . , F can be estimated using
STSM algorithm since

Ȳ(0)
f(r)

= c f a f ,r(a f ,R � · · ·� a f ,r+1 � a f ,r−1�

· · ·� (a f ,1 + v f , f a f ,1 + ∆a f ,1))

+

 F∑
p=1,p, f

v f ,pY p + ∆Y •
1

a f ,1A†1( f , :)


(r)

.

Since Ȳ(0)
f(1)

has the following form

Ȳ(0)
f(1)

= c f (a f ,1 + v f , f a f ,1 + ∆a f ,1)(a f ,R � · · ·� a f ,2)

+

 F∑
p=1,p, f

v f ,pY p + ∆Y •
1

a f ,1A†1( f , :)


(1)

,

we estimate c f a f ,1 by least squares once a f ,2, . . . , a f ,R are esti-
mated using STSM

ĉ f a f ,1 = min
a
‖Ȳ

(0)
f − a⊗ â f ,2 ⊗ · · · ⊗ â f ,R‖

= Ȳ(0)
f(1)

(
(â f ,R � · · ·� â f ,2)T

)†
So, we put Ŷ

(0)
f = ĉ f a f ,1 ⊗ â f ,2 ⊗ · · · ⊗ â f ,R and R f = Ȳ

(0)
f −

Ŷ
(0)
f . Therefore, the procedure to estimate Y f at iteration i =

0, . . . ,K can be summarized in (37), (38) and (39). Note that
this procedure is optimal because STSM and the least squares
are optimal when they are used to estimate a f ,2, . . . , a f ,R, f =

1, . . . , F and c f a f ,1, f = 1, . . . , F, respectively.
Now we present the technique for improving the estimation

of Y f . Let R(0)
F = R

(1)
0 = Ỹ −

∑F
f =1 Ŷ

(0)
f and

Ŷ
(1)
f = arg min

X∈H

‖Ŷ
(0)
f +R

(1)
f−1 −X‖ (A.1)

where R(1)
f = Ŷ

(0)
f + R

(1)
f−1 − Ŷ

(1)
f , f = 1, . . . , F, and Ŷ

(i)
f is an

improved estimate of Y f . We follow the same procedure as

described in equations (37), (38) and (39) to calculate Ŷ
(1)
f .

We can state that there is improvement in the estimation of
Y f if ∥∥∥∥∥∥∥∥Ỹ −

F∑
f =1

Ŷ
(1)
f

∥∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥Ỹ −

F∑
f =1

Ŷ
(0)
f

∥∥∥∥∥∥∥∥ (A.2)

We have ‖R(1)
0 ‖ = ‖Ȳ

(0)
1 −Ŷ

(0)
1 +

∑F
f =2R f +V‖whereV = Ỹ−Ȳ

and Ȳ =
∑F

f =1 Ȳ
(0)
f . It can be verified that

‖R
(1)
f ‖ =

∥∥∥∥∥∥∥
Ȳ (0)

f +

f−1∑
p=1

(Ȳ
(0)
p − Ŷ

(1)
p ) +

F∑
p= f +1

Rp +V

 − Ŷ (1)
f

∥∥∥∥∥∥∥

‖R
(1)
f−1‖ =

∥∥∥∥∥∥∥
Ȳ (0)

f +

f−1∑
p=1

(Ȳ
(0)
p − Ŷ

(1)
p ) +

F∑
p= f +1

Rp +V

 − Ŷ (0)
f

∥∥∥∥∥∥∥
However, from equation (A.1), Ŷ

(1)
f is the minimizer with re-

spect to X ∈ H of∥∥∥∥∥∥∥
Ȳ (0)

f +

f−1∑
p=1

(Ȳ
(0)
p − Ŷ

(1)
p ) +

F∑
p= f +1

Rp

 −X
∥∥∥∥∥∥∥

Therefore, ‖R(1)
f ‖ ≤ ‖R

(1)
f−1‖, f = 1, . . . , F. As consequence,

‖R
(1)
F ‖ ≤ ‖R

(0)
F ‖, which we are seeking in expression (A.2).

Similarly, we can prove that ‖R(i)
F ‖ ≤ ‖R

(i−1)
F ‖, i > 1, using the

general forms of R(i)
f and R(i)

f−1

R
(i)
f =

Ȳ (0)
f +

f−1∑
p=1

(Ȳ
(0)
p − Ŷ

(i)
p ) +

f−1∑
p= f +1

(Ȳ
(0)
p − Ŷ

(i−1)
p ) +V

 − Ŷ (i)
f

R
(i)
f−1 =

Ȳ (0)
f +

f−1∑
p=1

(Ȳ
(0)
p − Ŷ

(i)
p ) +

f−1∑
p= f +1

(Ȳ
(0)
p − Ŷ

(i−1)
p ) +V

 − Ŷ (i−1)
f

which we are seeking in (41).
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