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Abstract
In this paper, a new method for the estimation of the param-
eters of multidimensional (R-D) harmonic and damped com-
plex signals in noise is presented. The problem is formulated
asR simultaneous sparse approximations of multiple 1-D sig-
nals. To get a method able to handle large size signals while
maintaining a sufficient resolution, a multigrid dictionary re-
finement technique is associated to the simultaneous sparse
approximation. The refinement procedure is proved to con-
verge in the singleR-D mode case. Then, for the general mul-
tiple modes case, the signal tensor model is decomposed in or-
der to handle each mode separately in an iterative scheme. The
proposed method does not require an association step since the
estimated modes are automatically “paired”. We also derive
the Cramér-Rao lower bounds of the parameters of modal R-
D signals. The expressions are given in compact form in the
single tone case. Finally, numerical simulations are conducted
to demonstrate the effectiveness of the proposed method.

Index Terms—Multidimensional harmonic retrieval, fre-
quency estimation, simultaneous sparse approximation, multi-
grid dictionary refinement, Cramér-Rao lower bound

1 Introduction
The problem of estimating the parameters of sinusoidal sig-
nals from noisy measurements is an important topic in sig-
nal processing and several parametric and nonparameteric ap-
proaches have been developed for one-dimensional (1-D) sig-
nals [1]. Recently, this problem has received a renewed in-
terest thanks to the emergence of multidimensional (R-D) ap-
plications. Indeed, parameter estimation from R-D signals
is required in numerous applications in signal processing and
communications such as nuclear magnetic resonance (NMR)
spectroscopy, wireless communication channel estimation [2]
and MIMO radar imaging [3]. In all these applications, signals
are assumed to be a superposition of R-D sinusoids or, more
generally, of exponentially decaying R-D complex exponen-
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tials (modal signals). As for the 1-D case, the crucial step is
the estimation of the R-D modes (including frequencies and
damping factors) because they are nonlinear functions of the
data.

In order to achieve high resolution estimates, parametric
approaches are often preferred to nonparamatric ones. Sev-
eral parametric R-D methods (R ≥ 2) have been proposed.
They include linear prediction-based methods such as 2-D
TLS-Prony [4], and subspace approaches such as matrix en-
hancement and matrix pencil (MEMP) [5], 2-D ESPRIT [6],
multidimensional folding (MDF) [7], improved multidimen-
sional folding (IMDF) [8, 9], Tensor-ESPRIT [10], principal-
singular-vector utilization for modal analysis (PUMA) [11,
12] and the methods proposed in [13, 14]. All these methods
perform at various degrees but it is generally admitted that
they yield accurate estimates at high SNR scenarios and/or
when the frequencies are well separated. This is obtained at
the expense of computational effort. In [11], tensor PUMA
was proposed as an accurate and computationally efficient
multidimensional harmonic retrieval method, which attains
the Cramér-Rao lower bound (CRLB) and does not require to
build large size matrix or tensor. However its performance de-
grades rapidly with the increase of the number of components
in the R-D signal.

Recently, methods based on sparse approximations have
been proposed to address the harmonic or modal retrieval
problem [15, 16, 17, 18, 19, 20, 21, 22]. For time-data spec-
tral estimation, the dictionary is formed from a set of (nor-
malized) complex exponentials potentially embedded in the
data, which allows one to easily include some prior knowl-
edge about the position of some known modes. More gener-
ally, the usual choice is a uniform spectral grid obtained by
sampling the frequency and damping factor lines. Clearly, a
fine grid is required to get a good resolution but, on the other
hand, it will result in a huge dictionary [15]. This complex-
ity is further increased in the case of R-D signals in which
we are confronted with 2R-D grids. In order to reduce the
computational burden, a multigrid scheme for sparse approx-
imation was proposed in [19] to iteratively refine the dictio-
nary starting from a coarse one. At each iteration, a sparse
approximation is performed and then new grid points (called
“atoms”) are inserted in the vicinity of active ones leading to
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a multiresolution-like scheme. This algorithm, which refines
jointlyR 2-D grids, is efficient but has mainly two drawbacks:
1) it does not have convergence guarantees, 2) the dictionary
becomes intractable for large signals when R ≥ 2. Recently,
several studies have also focused on gridless sparse recovery
methods based on continuous dictionaries [23, 24]. However,
the proposed algorithms demand a large computational burden
even for 1-D signals.

The goal of the present paper is to propose a fast multi-
dimensional modal estimation technique able to handle large
signals and yielding a good estimation accuracy.

1. First, the proposed approach, as for some parametric meth-
ods for modal retrieval, is based on the idea of estimat-
ing the parameters independently along each dimension
r = 1, . . . , R. It will be shown that the simultaneous
sparse approximation concept [25, 20] is well-suited for
R-D modal retrieval (R ≥ 2).

2. The second contribution consists in the proposition of a
new multigrid scheme which amounts to consider a two-
step refinement of 1-D grids, the first step for frequencies
and the second one for damping factors. One advantage
of this procedure is that it reduces the computational time.
The convergence of the proposed multigrid strategy is an-
alyzed in the single tone case (F = 1), and convergence
conditions are expressed in terms of atom positions in the
initial dictionaries.

3. The extension of this result to the multiple tones case
(F > 1) is not trivial because, not only it depends on the
selected sparse approximation algorithm, but also on the
coherence of the dictionary [25]. Indeed, due to the multi-
grid strategy, the columns of the refined dictionary are
increasingly correlated, which may prevent convergence
even in the noiseless case. Consequently, for F > 1, we
exploit an alternative representation of the data model en-
abling the extraction of the R-D signal tones separately.
Therefore, the third contribution of this paper is the deriva-
tion of a new algorithm for estimating parameters of R-D
damped signals in which the results of the previous contri-
bution apply. The effectiveness of the new algorithm for
multiple R-D tones is also analyzed. One very interest-
ing by-product of this approach is that the pairing of R-D
parameters is achieved for free, without any further asso-
ciation stage.

The usual way to assess the performances of an estima-
tion method is to compare the variance of the estimates to the
CRLB. In [5] Y. Hua derived the CRLB for 2-D frequencies,
i.e., undamped 2-D exponentials; no damped signals are con-
sidered. Closed-form expressions of the CRLB for the gen-
eral undamped R-D case are derived in [26]. CRLB for 2-D
damped signals are derived in [27]. Therefore, to the best of
our knowledge, no compact expressions of the CRLB’s are
available for the general R-D damped model. Thus, another
contribution of the paper is the derivation of the CRLB’s for
the frequency, damping factor, amplitude and phase of this
model.

The remainder of this paper is organized as follows. In sec-
tion 2, we introduce notation and present the R-D modal re-
trieval problem. In section 3, we formulate the R-D modal
estimation problem asR simultaneous sparse estimation prob-
lems, show how to construct a modal dictionary on a uniform
grid and then describe the new fast multigrid strategy. In sec-
tion 4, we give sufficient conditions for convergence of the
multigrid dictionary refinement in the case of single tone R-D
signals. In light of these new results, we propose in section 5
a new efficient algorithm for multiple tones R-D signals. In
section 6, we derive the expressions of the CRLB’s for the
parameters of R-D damped exponentials in Gaussian white
noise. We then give the CRLB in the cases of single damped
and undampedR-D cisoids. The effectiveness of the proposed
method is demonstrated using simulation signals in section 7.
Finally, conclusions are drawn in section 8.

2 Notation and Problem Statement

2.1 Notation
Scalars are denoted as lower-case letters (a, b, α), column vec-
tors as lower-case bold-face letters (a,b), matrices as bold-
face capitals (A,B), and tensors as calligraphic bold-face let-
ters (A,B). Notations (·)T, (·)H and (·)† stand for the trans-
pose, the Hermitian transpose and the pseudo-inverse, respec-
tively. The symbols “�” and “�” will denote the Khatri-Rao
product (column-wise Kronecker) and the Kronecker product,
respectively. Both words “mode” and “tone” are used to re-
fer to a component of the multidimensional signal. The tensor
operations used here are consistent with [28]:

• the outer product of two tensors A ∈ CM1×···×MR and
B ∈ CK1×···×KN is given by:

C = A⊗B ∈ CM1×···×MR×K1×···×KN ,

c(m1, . . . ,mR, k1, . . . , kN ) = a(m1, . . . ,mR)b(k1, . . . , kN )
(1)

• the contraction product acting on the r-th index of a tensor
A ∈ CM1×···×MR and the second index of a matrix U ∈
CK×Mr is:

B = A •
r
U ∈ CM1×···×Mr−1×K×Mr+1×···×MR ,

b(m1,m2, . . . ,mr−1, kr,mr+1, . . . ,mR) =

Mr∑
mr=1

a(m1,m2, . . . ,mR)u(kr,mr)

(2)

• the matrix A(r) ∈ CMr×(M1···Mr−1Mr+1···MR) represents
the unfolding (dimension-r matricization) of the tensor A
and corresponds to the arrangement of the dimension-r
fibers of A in the columns of the resulting matrix.

• ‖A‖ denotes the the Frobenius norm for tensors.

Finally, throughout this paper, the tilde symbol (˜) denotes a
noisy signal; e.g. ỹ(·) = y(·) + e(·).
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2.2 Problem Formulation
An R-D modal signal is modeled as the superposition of F
multidimensional damped complex sinusoids:

ỹ(m1, . . . ,mR) =

F∑
f=1

cf

R∏
r=1

amr−1f,r + e(m1, . . . ,mR) (3)

where mr = 1, . . . ,Mr for r = 1, . . . , R. Mr de-
notes the sample support of the r-th dimension, af,r =
exp (αf,r + jωf,r) ∈ C is the f -th mode in the r-th dimen-
sion, {αf,r}F,Rf=1,r=1, αf,r ∈ R−, are the damping factors,
{ωf,r = 2πνf,r}F,Rf=1,r=1 are the angular frequencies, and
cf = λf exp(jφf ) is the complex amplitude of the f -th mode
where λf = |cf | denotes the magnitude and φf the phase.
e(m1,m2, . . . ,mR) is a zero-mean complex Gaussian white
noise with variance σ2 and mutually independent in all dimen-
sions.

In a tensor form, the R-D signal in (3) may be written as

Ỹ = Y + E (4)

where {Ỹ ,Y ,E} ∈ CM1×M2×···×MR . The problem con-
sists in estimating the set of parameters {af,r}F,Rf=1,r=1 and
{cf}Ff=1 from the R-D signal samples.

3 Simultaneous Sparse Approximation
for R-D Modal Signals

3.1 Tensor Formulation of the Data Model
The noise-free data tensor Y in (4) can be written in the fol-
lowing form:

Y =

F∑
f=1

cf af,1⊗af,2⊗ · · ·⊗af,R (5)

where af,r = [1, af,r, . . . , a
Mr−1
f,r ]T, r = 1, . . . , R. Equation

(5) is called the Canonical Polyadic (CP) decomposition form,
or the Candecomp/Parafac decompostion of the tensor Y [28,
29]. The CP model (5) can be concisely denoted by Y =
Jc; A1,A2, . . . ,ARK where Ar = [a1,r,a2,r, . . . ,aF,r], r =
1, . . . , R, and c = [c1, c2, . . . , cF ]T is the vector of complex
amplitudes. Using these definitions, the matricized form of Y
along the r-th dimension is given by

Y(r) = Ar∆c(AR � · · · �Ar+1 �Ar−1 � · · · �A1)T

(6)

where ∆c = diag(c). Then, we can write

Ỹ(r) = ArHr + E(r) (7)

where Hr ∈ CF×M ′r is

Hr
def
= ∆c(AR � · · · �Ar+1 �Ar−1 � · · · �A1)T (8)

and M ′r =
R∏
k=1
k 6=r

Mk. Therefore

Y(r)
def
= [y(r),1, . . . ,y(r),M ′r

] =

 F∑
f=1

hr(f, 1)af,r, . . . ,

F∑
f=1

hr(f,M
′
r)af,r


(9)

where hr(f,m′r) is the (f,m′r) entry of the matrix Hr, for
f = 1, . . . , F and m′r = 1, . . . ,M ′r.

3.2 Simultaneous Sparse Approximation
Assuming1 that Mr > F, ∀r, it is easy to see from (9) that the
mode coordinates {af,r}Frf=1 (Fr ≤ F ) in the r-th dimension
are identifiable from any column of Y(r). This process may
be repeated on each dimension r = 1, . . . , R to get all the
modes coordinates. In practice, we have to replace the matrix
Y(r) by its noisy counterpart Ỹ(r) accounting for the addi-
tive white noise. In this case, (9) holds only approximately.
Consequently, for each column ỹ(r),m′r

,m′r = 1, . . . ,M ′r,
the modal estimation problem can be formulated as a sparse
approximation problem corresponding to the following con-
strained optimization:

xm′r = arg min
x
‖x‖0 subject to ‖ỹ(r),m′r

−Qrx‖22 ≤ ε
(10)

where Qr ∈ CMr×N , N � Mr, is a (known) modal dic-
tionary, x ∈ CN is a (sparse) vector containing the coeffi-
cients of the activated columns in Qr, and ε is a small recon-
struction error related to the noise variance. The pseudo-norm
‖x‖0 counts the number of nonzero elements in x. The de-
sign of Qr is discussed in section 3.3. The fact that each
vector ỹ(r),m′r

corresponds to a 1-D signal generated by the
same modes implies that the position of nonzero entries in
xm′r should be the same for m′r = 1, 2, . . . ,M ′R. Let X be
the matrix defined by

X = [x1,x2, . . . ,xM ′r ], (11)

then the sparsity of X may be measured by computing the Eu-
clidian norms of the rows: those providing a nonzero norm de-
fine the rows of active atoms (which are estimations of modes
af,r in the dimension r) in the dictionary Qr. Therefore, we
are facing a simultaneous sparse approximation problem:

Xr = arg min
X
‖X‖0,2 subject to ‖Ỹ(r) −QrX‖2F ≤ ε

(12)
where ‖X‖0,2 is the mixed `0/`2-norm of X (the number of
rows with nonzero `2-norm). The simultaneous sparse repre-
sentation models, called also “multiple measurement vectors”
(MMV), have been studied from several angles of view, and
different approaches have been proposed (see [30] and ref-
erences therein). As the goal of the present paper is to de-
velop a fast approach well adapted to large signals, we re-
strict our attention to the SOMP algorithm [25]. However,

1Note that this assumption is considered only in this section.

3



it is worth mentioning that, in more intricate cases and/or
small size signals, much more efficient simultaneous sparse
algorithms may be used at the price of an increased compu-
tational burden. A straightforward way to get the R-tuples
{(af,1, . . . , af,R)}Ff=1 consists in estimating the modes af,r
in theR dimensions using matrices Ỹ(r), r = 1, . . . , R, which
requires a further pairing step to form the R-D modes. To get
accurate estimates using the described scheme, two conditions
have to be satisfied, 1) the dictionary should contain all modes
in the signal, 2) the sparse approximation method should have
sufficient guarantees for selecting the true atoms from the dic-
tionary: this is known as “exact recovery guarantees”. These
problems are discussed in the following sections and an alter-
native representation of the data is used to avoid the pairing
stage in the multiple tones case.

3.3 Modal Dictionary Design and Multigrid
Strategy

3.3.1 Uniform Modal Dictionary

The dictionary Qr ∈ CMr×N can be defined from a dis-
cretization of the (ν, α) plane. Each point of the grid corre-
sponds to a hypothetic mode. Let Nµ be the number of points
of a uniform grid covering the frequency interval [0, 1). Sim-
ilarly, let Nβ be the number of points of a uniform grid cov-
ering the damping factor interval (βmin, 0], where βmin is a
lower bound on {αf,r}Ff=1. Then Qr is given by

Qr = [qr(0, 0), . . . ,qr((Nµ − 1)δµ, 0),qr(0, δβ), . . . ,

qr((Nµ − 1)δµ, δβ), . . . ,qr((Nµ − 1)δµ, (Nβ − 1)δβ)]
(13)

where qr(µ, β) = ar(µ,β)
||ar(µ,β)||2 , ar(µ, β) =

[1, e(β+j2πµ), . . . , e(β+j2πµ)(Mr−1)]T, δβ = βmin/Nβ ,
and δµ = 1/Nµ. The total number of columns in Qr is
N = NµNβ � F , each of them is called atom. In the aim
of reducing the computational complexity, we propose to
estimate frequencies and then damping factors by calling
twice the sparse approximation method. At the first step, the
frequencies are estimated using a harmonic dictionary. In the
second step, the damping factors are estimated using a modal
dictionary formed by the already estimated frequencies and
a damping factor grid. These two steps are explained in
section 4.

3.3.2 Multi-Grid Dictionary Refinement

To achieve a high-resolution modal estimation, a possible way
is to define uniform grids as before and selecting very small
values for δµ and δβ . However, the resulting dictionaries will
lead to prohibitive calculation cost and memory capacities re-
quested. Rather, we propose to start with a coarse grid (Nµ
and Nβ low) and to adaptively refine it through a multigrid
scheme as sketched on Figure 1. Let ` be the current grid
level (` = 0, . . . , L− 1). At level `, we first restore the signal
Xr(`) related to the dictionary Qr(`) by applying the SOMP

Level

µ or β

µ or β

µ or β

0

`

`+ 1 � � � � � �

Figure 1: The multigrid dictionary refinement procedure with
η = 1. (,) atoms in the dictionary; ( •,) activated atoms; (�)
new atoms

Algorithm 1: Dictionary refinement (DICREF)

input : A vector d ∈ RN of sorted frequencies or damping factors, an
index set Ω of activated atoms, the number of atoms η ∈ N to
add at each side of an activated one

output: Updated vector dupdated

for i = 1 : numel(Ω) do
di,1 = linspace (d(Ω(i)− 1),d(Ω(i)), η)
di,2 = linspace(d(Ω(i)),d(Ω(i) + 1), η)

di = [dT
i,1,d

T
i,2(2 : η)]T

end
dupdated = union(d1, . . . ,dnumel(Ω))
return dupdated

method. Then we refine the dictionary by inserting atoms
inbetween pairs of Qr(`), in the neighborhood of each acti-
vated atom, and we apply again the SOMP method to restore
Xr(` + 1) with respect to the refined dictionary Qr(` + 1).
This process is repeated until the desired level of resolution
is reached. This procedure is applied for both frequencies
and damping factors. Algorithm 1 presents the one-step dic-
tionary refinement (DICREF), from level ` to ` + 1, where,
for a and b reals, linspace(a, b, η) generates a set of η equis-
paced points in the interval [a, b]. The difference between the
present framework and that in [19] is the following. In[19] the
multigrid algorithm refines jointly R 2-D grids, which leads
to expensive computations when R ≥ 2, without convergence
guarantees. The present mutigrid scheme refines linear grids,
which leads to low computational complexity with conver-
gence guarantees as will be shown in the next section.

Finding the convergence conditions of the new multigrid
strategy in the general case (multiple tones) is not easy and
depends on the selected sparse approximation algorithm. By
contrast, it is possible to show that, under mild conditions, the
convergence may be guaranteed in the single tone case. This
issue is discussed in the next section. In section 5, we make
use of an alternative representation of the data model in the
case of multiple tones and we propose a method allowing one
to retrieve the signal tones separately.
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4 Single R-D Mode Estimation

In the previous section, we have shown how the R-D modal
retrieval problem may be tackled using a sparse approxima-
tion algorithm by estimating the set of parameters in each di-
mension r = 1, . . . , R. Here, we give the sufficient condi-
tions for convergence of the multigrid dictionary refinement
for F = 1. Without loss of generality, we set R = 1. For
notation simplicity, we omit reference to the dimension index
r.

According to (3), the 1-D modal signal containing a single
mode can be written as follows:

y(m) = c1a
m−1
1 = c1e

(α1+j2πν1)(m−1),m = 1, . . . ,M.
(14)

Let Q be a normalized modal dictionary Q = [q1, . . . ,qN ],
with

qn =
1√∑

m |qn|2m
[1, qn, . . . , q

M−1
n ]T, (15)

qn = exp(βn + j2πµn), µn ∈ [0, 1), βn ∈ (βmin, 0], for
n = 1, . . . , N . The single tone sparse approximation of y
with respect to Q is the solution of the criterion:

min
x
J(x) = ||y −Qx||2 s.t. ||x||0 = 1. (16)

The optimal solution is given by

x∗n = qH
ny, x∗{1,...,N}\n = 0, J(x∗) = ||y||2−yHqnqH

ny
(17)

where n is the selected column number in Q. Finally, the
minimum J(x∗) is reached for an atom qn that maximizes
J ′(qn) = yHqnqH

ny = |qH
ny|2, n = 1, . . . , N .

Remark 1 At this point we notice that, for 1-D single-tone
harmonic signals, maximizing J ′(qn) leads to the well-known
beamforming method (or more precisely to the periodogram
in the single snapshot case). Hence, an estimate of the fre-
quency ν1 may be obtained from the peak of J ′(qn). Here, as
in [31], we use the sparse approximation framework. In our
case, it allows to estimate the frequency and then the damping
factor from a unified point of view and using a unique algo-
rithm based on SOMP and DICREF.

4.1 Estimating the Frequency: The Harmonic
Dictionary

First, we estimate frequency ν1 using a harmonic dictionary
(i.e. assuming βn = 0,∀n). In this case, we have:

J ′(µn) =
|c1|2

M

∣∣∣∣1− eα1M+j2π(ν1−µn)M

1− eα1+j2π(ν1−µn)

∣∣∣∣2 . (18)

The following theorem gives a sufficient condition for the
multigrid dictionary refinement scheme to converge to the
global maximum of J ′.

Theorem 1 Let y(m) be a single tone (F = 1) noiseless sig-
nal of length M and Q(` = 0) = [q1 q2 . . . qN(0)]

T be the
initial harmonic dictionary in which the columns are sorted
in increasing order of µn(0), n = 1, 2, . . . , N(0) and cover-
ing the frequency interval [0,1): µ1(0) = 0 and µN(0)(0) =
1 − 1/M . Then the refinement scheme is convergent (i.e.
∃n ∈ {1, . . . , N(`)} s.t. lim`→∞ µn(`) = ν1) if the following
condition is satisfied:

max
n∈{1,...,N(0)−1}

|µn+1(0)− µn(0)| < 2ζM (19)

where ζM is a constant depending only on M .

Proof It is easy to check that the global maximum of J ′(µn)
is reached for µn = ν1, ∀α1. Figure 2 shows the shape
of J ′(µn) for βn = 0. For α1 = 0, J ′(µn) reduces to a
Fejér kernel of order M which has exactly one local maxi-
mum in the interval [ν1 + k/M, ν1 + (k + 1)/M ], k 6= 0.
Let J ′1 be the amplitude of the first sidelobe and ν1 + ζM
be the value of µn such that J ′(µn = ν1 + ζM ) = J ′1 in
the interval [ν1, ν1 + 1/M ] (we assume2 that M > 2). For
the dictionary refinement strategy to converge to the global
maximum, it is sufficient to the sparse approximation algo-
rithm to select, at a given level `, an atom whose frequency
satisfies |µn∗(`) − ν1| < ζM < 1/M , where µn∗(`) =
arg maxn J

′(µn). Indeed, if µn∗(`) ∈ (ν1 − ζM , ν1 + ζM )
then adding two atoms whose frequencies are located on both
sides of µn∗(`) will lead to the selection, at level `+ 1, of an
atom that satisfies |µn∗(` + 1) − ν1| ≤ |µn∗(`) − ν1|: the
distance between the selected atom and the true frequency is a
monotonically decreasing sequence. Finally, the convergence
is guaranteed if the initial dictionary contains an atom n such
that |µn(0)− ν1| < ζM , which is satisfied if

max
n∈{1,...,N(0)−1}

|µn+1(0)− µn(0)| < 2ζM . (20)

given the fact that the sequence {µn(0)} covers the interval
[0, 1). For α1 < 0, the main lobe of J ′(µn) becomes broader
and ζM larger than for α1 = 0. Consequently, condition (20)
is also sufficient for α1 < 0. �

Corollary 1 In the single tone case, the harmonic dictionary
refinement is convergent if the initial frequency grid (` = 0) is
the Fourier grid.

Proof Fourier bins are obtained for N = M and µn(0) =
(n− 1)/M . Since ζM > 1/2M , the proof is straightforward.
�

It is important to note that condition (20) is sufficient but
not necessary. Moreover, this condition is established when
adding a single atom on both sides of the selected one (i.e.
η = 1 in Algorithm 1). When η � 1, the condition may be
relaxed and the rate of convergence is expected to be higher.

2The case of M ≤ 2 in not of practical interest but the theorem is still
valid by setting ζM = 1

2
because J ′(µn) is a monotonically decreasing

function in the interval [ν1,min{ 1
2
, 1

2
+ ν1}].
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ν1 − 1
M

ν1 ν1 + 1
M
ν1 + 2

M

0

1
4

1
2

3
4

1

ζM

µn

J
′ (
µ
n

)/
||y
||2

α1 = 0.0

α1 = −0.3

Figure 2: J ′(µn) in the single mode case with βn = 0

4.2 Estimating the Damping Factor: The
Modal Dictionary

Assume that the previous sparse approximation using a har-
monic dictionary has converged to select an atom with µn =
ν1. Now, we have to estimate the damping factor α1. We form
a modal dictionary using the damping factor grid and the fre-
quency ν1, i.e. qn = exp(βn + j2πν1). Consequently,

J ′(βn) =
|c1|2(1− e2βn)

1− e2βnM

(
1− e(α1+βn)M

1− e(α1+βn)

)2

. (21)

Theorem 2 Let y(m) be a single tone (F = 1) noiseless
signal of length M and Q(0) = [q1 q2 . . . qN(0)]

T be
the initial modal dictionary formed using the frequency ν1,
i.e., qn = exp(βn(0) + j2πν1), where ν1 is the frequency
of signal y. The columns are sorted in increasing order of
βn(0), n = 1, 2, . . . , N and covering the damping factor in-
terval (βmin, 0]. Then the refinement scheme is convergent
(i.e. ∃n s.t. lim`→∞ βn(`) = α1) if α1 ∈ (βmin, 0].

Proof Let g(βn) be the derivative of J ′(βn) in (21) with re-
spect to βn. It is easy to check that g(βn) > 0 for βn < α1,
g(βn) < 0 for βn > α1, and g(βn) = 0 when βn = α1.
In other words, J ′(βn) is monotonically increasing before the
maximum reached at α1 and monotonically decreasing after
α1. Therefore, the multigrid algorithm converges to α1 if
βmin < α1. �

As a consequence of Theorem 2, the initial modal dictionary
can be formed using only two points in the damping factor
grid: β1(0) = βmin and β2(0) = 0.

We can now state that the multigrid algorithm based on
two sparse approximations (for frequency and then damping
factor) converges in the single tone case under some condi-
tions. Note that in the noisy case when the SNR is sufficiently
high, the convergence analysis is still valid as in the noise-
less case, and the proposed multigrid sparse scheme for single
tone converges to the global maximum of the Fejér kernel.
The extension to the single tone R-D modal retrieval prob-
lem is straightforward and can be performed according to the
formulation presented in Section 3.2. The details of this ap-
proach (STSM: Single Tone Sparse Method) are presented in
Algorithm 2. The algorithm takes as input a noisy single tone
R-D signal, and a couple of integers ην and ηα that corre-
spond respectively to the number of frequency and damping
factor atoms to be added on both sides of the corresponding

Algorithm 2: Single tone sparse method (STSM) based
on a multigrid refinement

input : A tensor Y ∈ CM1×···×MR , (ην , ηα) ∈ N× N
output: Parameters of the single R-D mode: a1, . . . , aR

initialization: (kν , kα) = (0, 0)

initialize d
(0)
ν and d

(0)
α using ζ

for r = 1 : R do
while halting criterion false do

kν = kν + 1

Ω
(kν)
ν = SOMP(Q(d

(kν)
ν , 0),Y(r), Iter = 1)

d
(kν+1)
ν = DICREF(d

(kν)
ν ,Ω

(k)
ν , ην)

end
while halting criterion false do

kα = kα + 1

Ω
(kα)
α = SOMP

(
Q
(
d

(kν)
ν (Ω

(kν)
ν ),d

(kα)
α

)
,Y(r)

)
d

(kα+1)
α = DICREF(d

(kα)
α ,Ω

(k)
α , ηα)

end
ar = exp(d

(kα)
α (Ω

(kα)
α ) + 2π d

(kν)
ν (Ω

(kν)
ν ))

end
return a1, . . . , aR

selected ones. Next, for each dimension r = 1, . . . , R, we run
two tasks to estimate the frequency and then the damping fac-
tor: in each step we apply SOMP combined to DICREF using
corresponding dictionaries and taking into account the con-
vergence conditions discussed previously. Then parameters
of ar, i.e., νr and αr, are given by the corresponding selected
atoms.

5 Multiple R-D Modes Estimation
In the multiple tones case, sparse approximation algorithms
yield suboptimal solutions when the coherence of the dictio-
nary is high [32]. This is a crucial point because the refine-
ment procedure will increase the coherence with increasing `,
which may prevent convergence even in the noiseless case. In
the following, we present a low complexity algorithm that is
accurate and robust in the presence of noise. The idea is to be-
gin by an initialization step where F single tone modal signals
of order R− 1 are extracted from the multiple tones R-D sig-
nal. Then an iterative technique is proposed to improve this
decomposition and estimate more accurately the underlying
parameters.

It is assumed that the frequencies are distinct in at least one
dimension with Mr > F . Then dimensions are permuted
such that the dimension with distinct frequencies becomes the
first one (r = 1).

5.1 From Multiple Tones to Multiple Single-
Tone Signals

According to (5), Y can be written as

Y = IR+1,F
R•
r=1

Ar •
R+1

cT (22)

= S •
1
A1 (23)
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where IR+1,F is the diagonal tensor of order R + 1 and size
F × F × · · · × F , containing ones on its diagonal, and

S = IR+1,F
R•
r=2

Ar •
R+1

cT (24)

is a complex tensor of order R and size F ×M2 × · · ·MR.
Similar expressions are evoked in, among others, [11]. The
new tensor S can also be written as the concatenation of F
tensors along the first dimension

S = S1 t1 S2 t1 · · · t1 SF (25)

where each Sf , f = 1, . . . , F is a modal (R− 1)-D signal of
size 1×M2× · · · ×MR containing a single (R− 1)-D tone:

Sf = cf af,2⊗af,3⊗ · · ·⊗af,R. (26)

The singular value decomposition (SVD) of Ỹ(1) yields

Ỹ(1) = UΣVH (27)

where matrices U and V contain respectively the left and right
singular vectors of Ỹ(1), and Σ is a diagonal matrix contain-
ing the singular values σi, i = 1, . . . ,min{M1,M

′
1} sorted

in a decreasing order. As the number of components in Y is
equal to F , then an approximation of Y(1), denoted by Ŷ(1),
can be obtained using the first F principal components of the
SVD:

Ŷ(1) = UFΣFVH
F (28)

where UF (resp. VF ) stands for the matrix formed with the
first F columns of U (resp. V) and ΣF = diag(σ1, . . . , σF ).
It can be established from (7) and (28) that A1 and UF span
the same subspace, and thus there exists an unknown nonsin-
gular matrix T that satisfies

A1 = UFT. (29)

Denote by M (resp. M) the matrix obtained from M by delet-
ing the first (resp. last) row. By harnessing the Vandermonde
structure of A1, there exists a diagonal matrix D such that
A1 = A1D. Since A1 = UFT and A1 = UFT, then
UFT = UFTD, which proves that matrix T can be esti-
mated by the eigenvectors of U†FUF .

Thereby S can be estimated from the noisy data and Â1

using equation (23) as follows

Ŝ = Ỹ •
1
Â†1, (30)

then Ŝf , f = 1, . . . , F are extracted from Ŝ according
to (25). Each Yf = cfaf,1⊗ · · ·⊗af,R can be estimated
by Ȳ(0)

f = Ŝf •
1
âf,1. The sparse multigrid algorithm for sin-

gle tone (STSM) can be applied on each Ȳ(0)
f , f = 1, . . . , F

to estimate the parameters. However, we propose in the fol-
lowing to improve the separated components using an iterative
technique.

5.2 Improving the Estimation Accuracy
It is clear from (30) that, in the noisy case, the error in estimat-
ing S (due to the estimation of A1) will propagate when es-
timating the parameters af,2, . . . , af,R. Hence, we propose to
improve iteratively the mode estimates. The following proce-
dure is used to update estimates at each iteration i = 0, . . . ,K

1. apply STSM to estimate af,2, . . . ,af,R, f = 1, . . . , F

{âf,2, . . . , âf,R} = STSM(Ȳ(i)
f , ην , ηα, r = 2, . . . , R)

(31)

2. estimate cfaf,1, f = 1, . . . , F by least squares using the
already estimated af,2, . . . ,af,R, f = 1, . . . , F

ĉfaf,1 = Ȳ
(i)
f(1)

(
(âf,R � · · ·� âf,2)T

)†
(32)

3. compute Ŷ
(i)

f

Ŷ
(i)

f = ĉfaf,1⊗ âf,2⊗ · · ·⊗ âf,R (33)

where Ȳ(i)
f = Ŷ

(i−1)
f + R(i)

f−1, R(i)
(f) = R(i)

f−1 + Ŷ
(i−1)
f −

Ŷ
(i)

f , f = 1, . . . , F , R(i)
0

def
= R(i−1)

F , and R(0)
F = Ỹ −∑F

f=1 Ŷ
(0)

f . This iterative scheme will be analyzed in the next
section.

Finally, the algorithm we propose (MTM: Multiple Tones
Method) is summarized in Algorithm 3. Note that no associ-
ation step of R-D modes is required. The initialization step
consists in initializing: i) Â1 and Ŝ using (29), (30) and (25),
ii) the estimated single tones Ȳ(0)

f , f = 1, . . . , F .
Note that the columns of Â1 are iteratively updated without

extracting the related modes, whereas the modes of the other
dimensions are extracted at each iteration using (31). Solely
after the last iteration (i = K), the parameters of the first
dimension are extracted using STSM algorithm. K denotes
the maximum number of iterations, which is fixed to 2 in the
simulations since no improvement was observed for K > 2.

5.3 Analysis of the Algorithm
Following the separation step described in (27)–(30), we can
state that the algorithm yields the expected solution when the
SNR is sufficiently high. We want now to prove that the sec-
ond stage (next iterations), in addition to estimating the pa-
rameters from the single tones, is also improving the estima-
tion accuracy. The general idea is inspired from greedy for-
ward/backward sparse approximation, where the solution is
refined by adding/removing atoms to/from the set of activated
atoms. The improvement of the estimates is stated by the fol-
lowing theorem.

Theorem 3 Assuming that the noise E is sufficiently small
such that the ordering of the singular values in Σ in (27) is
the same as the ordering of the corresponding singular values
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Algorithm 3: Multiple tones method (MTM)
input : A tensor Ỹ ∈ CM1×···×MR , (ην , ηα) ∈ N× N
output: Parameters of the multiple R-D modes : {af,r}F,Rf=1,r=1

initialization:
1. Compute Â1 and Ŝf , f = 1, . . . , F using (29), (30) and (25)

2. Ȳ(0)
f = Ŝf •

1
âf,1, f = 1, . . . , F

For f = 1, . . . , F , compute Ŷ(0)
f using (31), (32) and (33)

R(0)
F

def
= R(1)

0 = Ỹ −
∑F
f=1 Ŷ(0)

f

for i = 1 : K do
for f = 1 : F do

Ȳ(i)
f = Ŷ(i−1)

f + R(i)
f−1

compute Ŷ(i)
f using (31), (32) and (33)

R(i)
f = Ȳ(i)

f − Ŷ(i)
f , if f = F , then R(i+1)

0
def
= R(i)

F

end
end
For f = 1, . . . , F , extract af,1 using

af,1 = STSM(Ŷ(K)
f + R(K)

F , ην , ηα, r = 1)

return {âf,r}F,Rf=1,r=1

when E = 0. Using the procedure expressed by (31), (32) and
(33) to estimate Yf at iteration i = 0, . . . ,K

Ŷ
(i)

f = arg min
X∈H

‖Ȳ(i)
f −X‖ (34)

where H = {X ∈ CM1×···×MR |X = b1⊗b2⊗ · · ·⊗bR,
br ∈ P for r 6= 1} with P = {v ∈ CMr |v =
[1, v, . . . , vMr−1]T, v = exp(β + jω), β ∈ R−, ω ∈ [0, 2π)}.
Then, at each iteration i, the residual is decreased:∥∥∥Ỹ − Ŷ

(i)
∥∥∥ ≤ ∥∥∥Ỹ − Ŷ

(i−1)∥∥∥ (35)

where Ŷ
(i)

=
∑F
f=1 Ŷ

(i)

f .

Proof See A. �

5.4 Identifiability

Based on the assumptions under which Algorithm 3 is oper-
ating, the identifiability condition can be stated as F < M1

and min{M2, ....,MR} ≥ 2. In [33], the condition is Mr ≥
4, r = 1, . . . , R, and F ≤

⌊
M1

2

⌋∏R
r=1

⌈
Mr

2

⌉
.

We note that, when Mr ≥ 4, r = 1, . . . , R, the number of
identifiable modes is slightly smaller than in [33], but the pro-
posed algorithm is able to outperform the conventional meth-
ods in terms of computational complexity and accuracy. In
addition, another advantage of the proposed algorithm is clear
when the number of samples in one or more dimensions is
less than 4 (i.e. Mr < 4), where identifiability in [33] is not
satisfied. This latter case (i.e. ∃r,Mr < 4) can be encoun-
tered in signal processing applications when the size of one or
more diversities (dimensions in our formulation problem) is
less than 4.

6 Cramér-Rao Lower Bounds for R-D
Cisoids in Noise

In this section, we derive the expressions of the CRLB for the
parameters of R-D damped exponentials in Gaussian white
noise. We then give the CRLB in the cases of single damped
and undamped R-D cisoids. We consider the R-D sinusoidal
model given in (3). Let

θ = [ω1,1 . . . ω1,R ω2,1 . . . ωF,R α1,1 . . . α1,R

α2,1 . . . αF,R λ1 . . . λF φ1 . . . φF ]T

be the unknown parameter vector. The aim here is to derive
the CRLB of the parameters in θ.

The joint probability density function (pdf) of ỹ is

p(ỹ;θ) =
1

(σ2π)M
exp

{
− 1

σ2
(ỹ − µ(θ))H(ỹ − µ(θ))

}
(36)

where µ(θ) is the noise-free part of y and

ỹ = [ỹ(1, . . . , 1, 1), . . . , ỹ(1, . . . , 1,MR), ỹ(1, . . . , 2, 1),

. . . , ỹ(1, . . . , 2,MR), . . . , ỹ(M1, . . . ,MR)]T. (37)

The i-th entry of µ(θ) can be written as:

µ(θ)i =

F∑
f=1

cf

R∏
r=1

a
ti,r
f,r , (38)

for i = 1, . . . ,M , where

ti,r =

⌊
i− 1∏R
`=r+1M`

⌋
mod Mr, (39)

and b·c is the floor function. In the following, we derive the
expressions of the CRLB in the general case (F > 1) and then
we deduce the result corresponding to a single R-D modal
signal (F = 1).

6.1 Derivation of the CRLB

Given the joint pdf in (36), the (k, l) entry of the Fisher infor-
mation matrix is [34, 35]:

[F(θ)]kl =
2

σ2
Re

{[
∂µ(θ)

∂θk

]H
∂µ(θ)

∂θl

}
. (40)

After some lengthy calculations, theM× (2RF +2F ) ma-
trix ∂µ(θ)/∂θ can be expressed as

∂µ(θ)

∂θ
= [jZ′Φ Z′Φ Zφ jZφ]︸ ︷︷ ︸

V

· blkdiag(Λ,Λ, IF ,λ)︸ ︷︷ ︸
S

(41)
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where

Z′ = [Z′1, . . . ,Z
′
F ] ∈ CM×RF ,with Z′f (i, l) = ti,l

R∏
r=1

a
ti,r
f,r ,

(42)

Λ = blkdiag(λ1IR, . . . , λF IR) ∈ RRF×RF , (43)

Φ = blkdiag(ejφ1IR, . . . , e
jφF IR) ∈ CRF×RF , (44)

Z = [z1, . . . , zF ] ∈ CM×F ,with zf (i) =

R∏
r=1

a
ti,r
f,r , (45)

λ = diag([λ1, . . . , λF ]) ∈ RF×F , (46)

φ = diag([ejφ1 , . . . , ejφF ]) ∈ CF×F . (47)

Finally, the inverse of the Fisher information matrix is

F−1(θ) =
σ2

2
S−1

[
Re{VHV}

]−1
S−1 =

σ2

2
S−1WS−1

(48)
where Re{·} stands for the real part. The CRLB of θk is given
by [F−1(θ)]kk. More explicitly, for f = 1, . . . , F and r =
1, . . . , R:

CRLB(ωf,r) =
2σ2WR(f−1)+r,R(f−1)+r

λ2f
(49)

CRLB(αf,r) =
2σ2WRF+R(f−1)+r,RF+R(f−1)+r

λ2f
(50)

CRLB(λf ) = 2σ2W2RF+f,2RF+f (51)

CRLB(φf ) =
2σ2W2RF+F+f,2RF+F+f

λ2f
(52)

Theorem 4 For the general R-D exponential process, the
CRLB’s for f = 1, . . . , F and r = 1, . . . , R satisfy

CRLB(ωf,r) = CRLB(αf,r) (53)

CRLB(λf ) = λ2CRLB(φf ) (54)

Proof It is based on the special block structure of matrix
Re{VHV} (see for instance [34]).

6.2 Single Mode Case

In this section, the CRLB’s will be simplified in the case of a
single R-D modal signal (F = 1) to obtain more precise de-
tails on their parameter dependency. For the sake of simplic-
ity, the subscripts denoting the mode f = 1 will be omitted.
First, assume that |ar| = exp(αr) < 1. We shall express the
products Z′HZ′, ZHZ and Z′HZ. After some calculations, we

get:

[Z′HZ′]nk =

R∏
r=1
r 6=n,k

(
1− |ar|2Mr

1− |ar|2

)

×


Mn−1∑
m=0

m|an|2m
Mk−1∑
m=0

m|ak|2m, if n 6= k

Mn−1∑
m=0

m2|an|2m, if n = k

(55)

ZHZ =

R∏
r=1

(
1− |ar|2Mr

1− |ar|2

)
(56)

[Z′HZ]n =

R∏
r=1
r 6=n

(
1− |ar|2Mr

1− |ar|2

)
×
Mn−1∑
m=0

m|an|2m. (57)

Denoting M (α) =
∏R
r=1(1 − |ar|2Mr )/(1 − |ar|2),

q1(n) =
∑Mn−1
m=0 m|an|2m/

∑Mn−1
m=0 |an|2m and q2(n) =∑Mn−1

m=0 m2|an|2m/
∑Mn−1
m=0 |an|2m, we then obtain:

[P]nk = M (α) ×

{
q1(n)q1(k), if n 6= k

q2(n), if n = k
(58)

G = M (α) (59)

[Q]n = M (α)q1(n), (60)

and

Re{VHV} =


P 0 0 Q
0 P Q 0

0 QT G 0

QT 0 0 G

 . (61)

The inversion of Re{VHV} yields the following expressions
of the CRLB’s:

CRLB(ωr) = CRLB(αr) =
σ2

2λ2M (α)

× (1− |ar|2)2(1− |ar|2Mr )2

−M2
r |ar|2Mr (1− |ar|2)2 + |ar|2(1− |ar|2Mr )2

,

(62)

CRLB(λ)

λ2
= CRLB(φ) =

σ2

2λ2M (α)

(
1 +

R∑
r=1

q21(r)

q2(r)− q21(r)

)
.

(63)
Finally, for a singleR-D purely harmonic signal (αr = 0,∀r),
we have M (α) =

∏R
r=1Mr = M and taking the limit of the

CRLB’s when αr → 0 leads to:

lim
αr→0

CRLB(ωr) =
6σ2

λ2M(M2
r − 1)

(64)

lim
αr→0

CRLB(λ)

λ2
=

σ2

2λ2M

(
1 + 3

R∑
r=1

Mr − 1

Mr + 1

)
. (65)

Hence, for the undamped case, our result in (64) is consistent
with [11].
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7 Simulation Results
Numerical simulations have been carried out to assess the
performances of the proposed method for 2-D and 3-D
modal signals in the presence of white Gaussian noise. The
performances are measured by the total root-mean square
error (RMSE) on estimated parameters and the computa-
tional time. The total RMSE is defined as RMSEtotal =√

1
RF Ep

{∑R
r=1

∑F
f=1(ξf,r − ξ̂f,r)2

}
where ξ̂f,r is an esti-

mate of ξf,r, and Ep is the average on pMonte-Carlo trials. In
our simulations, ξf,r can be either a frequency or a damping
factor.

7.1 RMSE for 2-D and 3-D Signals
Experiment 1 To show the effectiveness of the multigrid
scheme, this experiment presents the results obtained on Sig-
nal #1 (see Table 1) with different multigrid levels and differ-
ent initial grids. Signal #1 is a single tone 2-D modal signal
of size 10 × 10. The number of multigrid levels is fixed to
L = 2, i.e., ` = 0, 1, 2. Then the results are presented as
a function of the number of atoms in the initial dictionaries
N(0) and the number of atoms ην or ηα added at each level `.
The results we obtain for the first step, i.e., for the harmonic
estimation, are presented in Figure 3. We can observe that the
frequency RMSE obtained with the R-D sparse algorithm can
reach the CRLB using a uniform initial harmonic dictionary
of 10 atoms and ην = 31 (Figure 3.a). Figure 3.b shows that
the frequency RMSE is improved at low SNR if the initial dic-
tionary contains 20 atoms, and reaches the optimal estimates
with ην = 21. Figure 4 shows the damping factor RMSE ob-
tained by R-D sparse algorithm using different settings of the
initial damping factor dictionary and ηα. We can observe that
the damping factor RMSE depends on the number of atoms
in the dictionary, the more atoms the better. At low SNR, the
RMSE also depends βmin. Therefore, it is better to choose
βmin with small absolute value if we have a prior knowledge
of the interval of damping factors in the signal. In general,
the estimation error is of order 1

N(0)η2 . For instance, in the
frequency step estimation, we recommend to chose N(0) to
be greater than or equal to 3

2Mr if we want a good accuracy at
lower SNR levels. Otherwise, we can set N(0) = Mr. Once
N(0) is set, η can be chosen with respect to the desired accu-
racy. Let ε be the desired estimation error, then ε = 1

N(0)η2

and we can set η = 1√
εN(0)

.

In the rest of this section, the proposed algorithms
are compared with 2-D ESPRIT [6], Tensor-ESPRIT [10],
PUMA [12] and TPUMA [11]. If the R-D signal contains
one tone then Algorithm 2 (STSM) is used, otherwise Algo-
rithm 3 (MTM) is used. Thus, to facilitate notation, both pro-
posed algorithms, Algorithm 2 and Algorithm 3, will be called
R-D sparse. For the proposed method, the initial grid used to
build the harmonic dictionary is the same for all dimensions;
it contains 50 frequency points uniformly distributed over the
interval [0, 1) and 10 damping factors β ∈ [−0.05, 0]. To

Table 1: 2-D and 3-D parameters of Signal #1 through #4
Signal νf,1 αf,1 νf,2 αf,2 νf,3 αf,3 cf

#1 0.22 −0.011 0.34 −0.015 – – 1
#2 0.40 −0.01 0.1 −0.01 0.1 −0.01 1

0.20 −0.01 0.3 −0.15 0.25 −0.01 1
#3 0.28 −0.01 0.31 −0.01 0.22 −0.01 1

0.12 −0.01 0.45 −0.015 0.11 −0.01 1
0.20 −0.01 0.31 −0.01 0.11 −0.01 1

#4 0.30 −0.01 0.1 −0.01 0.1 −0.01 1
0.13 −0.01 0.45 −0.015 0.4 −0.01 1
0.20 −0.01 0.31 −0.01 0.1 −0.01 1
0.42 −0.012 0.22 −0.01 0.32 −0.01 1

simulate a random dictionary, at each run, the frequency grid
is perturbed by a small random quantity. As a consequence
of experiment 1, we use the following settings (L, ηµ, ηβ) =
(2, 21, 11). The number of iterations in Algorithm 3 is set to
K = 2 because no improvement was observed for K > 2.

Since the proposed method is applied directly on data
without using spatial smoothing, i.e., it does not require the
construction of a large matrix or an augmented order ten-
sor, then a relevant comparison will be with algorithms that
do not use spatial smoothing. Thereby, in the next experi-
ments, the proposed algorithm is compared to PUMA [12] and
TPUMA [11], which are algorithms that do not require spatial
smoothing. We also report comparisons with 2-D ESPRIT [6]
and Tensor-ESPRIT [10], which need spatial smoothing.

7.1.1 Single tone R-D modal signal

Experiment 2 This experiment tends to show the efficiency
of the proposed algorithm in estimating parameters of single
tone R-D modal signals. We use the same signal as before
(Signal #1). Our R-D sparse algorithm is compared to 2-D
ESPRIT [6] and PUMA [12]. For each level of noise, 1000
Monte-Carlo trials are performed. Figure 5 shows the ob-
tained results. We can observe that: i) the proposed algorithm
and PUMA reach the CRLB and outperform 2-D ESPRIT, ii)
R-D sparse outperform PUMA in SNR less than 3 dB.

7.1.2 Multiple tones R-D modal signals

Several configurations are studied in the case of multiple tones
to compare the proposed algorithm with Tensor-ESPRIT [10]
and TPUMA [11]. These configurations (Experiments 3–4)
are summarized in Table 2, in which the number of modes
and the distance between frequencies in different dimensions
are varied. ∆Fr denotes the Rayleigh frequency resolution
limit, which has the same value in all dimensions because
M1 = M2 = M3. In Experiment 5 we examine the case
when the size of only one dimension is larger than 4, i.e., the
identifiability condition of [33] is not satisfied. The parame-
ters of the used signals are given in Table 1.

Experiment 3 In this experiment, we simulate a 3-D signal
(Signal #2) of size 8×8×8 and containing two modes whose
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Figure 3: Frequency RMSE using R-D sparse algorithm with
different ην . 2-D signal containing a single tone (Signal #1).
(M1,M2) = (10, 10). 1000 Monte-Carlo trials. (a) The initial
harmonic dictionary contains N(0) = 10 atoms, (b) N(0) =
20 atoms.

Table 2: Different configurations for experiments 3 and 4
F Dim. 1 Dim. 2 Dim. 3

Exp. 3 2 ∆ν > ∆Fr ∆ν > ∆Fr ∆ν > ∆Fr

Exp. 4 3 ∆ν < ∆Fr ∃ identical modes ∃ identical modes

frequencies in each dimension are well separated. Parameters
of the signal are given in Table 1. Figure 6 shows the obtained
results. Here, the proposed method performs as TPUMA.
Tensor-ESPRIT yields a slightly higher RMSE.

Experiment 4 3-D signal of size 10×10×10 containing three
3-D modes (Signal #3). Note that there exists identical modes
in two dimensions and frequencies in the first dimension are
separated by less than 1/M1. The results are shown on Fig-
ure 7. In this experiment, the proposed R-D sparse approach
performs better than TPUMA and Tensor-ESPRIT. Observe
also that Tensor-ESPRIT outperforms TPUMA in this config-
uration (close frequencies and identical modes in dimensions
2 and 3).

Experiment 5 Results on Signal #4 of size 10 × 3 × 3 con-
taining 4 modes are given in Figure 8. We observe that the
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Figure 4: Damping factor RMSE using R-D sparse algorithm
with different ηα, βmin and N(0). 2-D signal containing a
single tone (Signal #1). (M1,M2) = (10, 10). 1000 Monte-
Carlo trials.
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Figure 5: Frequency total root-mean square error for a 2-
D signal containing a single tone (Signal #1). (M1,M2) =
(10, 10). 1000 Monte-Carlo trials.

proposed method outperforms TPUMA mainly at low SNR
levels.

7.2 Numerical Complexity
It is known that in the case of 1-D signals of size M , OMP
costs O(NFM) in terms of multiplications [36]; F is the
sparsity (number of components) and N is the number of
atoms in the dictionary. For a M -measurements R-D sig-
nal, the complexity of the STSM algorithm over a set of L
multigrid levels is O(MNLR), assuming that the number
of dictionary atoms is maintained constant (equal to N ) over
all levels. Regarding the approach proposed in Algorithm 3,
the main operations are the call of STSM and the update of
ĉfaf,1 = Ȳ

(i)
f(1)

(
(âf,R � · · ·� âf,2)T

)†
which has a com-

plexity of O(M) since
(
(âf,R � · · ·� âf,2)T

)†
is a row vec-

tor of length
∏R
r=2Mr and Ȳ

(i)
f(1)

is a matrix of size M1 ×∏R
r=2Mr. Therefore, the whole complexity of the proposed

algorithm is O ((NL(F (R− 1)K + 1) + FK)M), which is
linear in the number of measurements M . The complex-
ity of the Tensor-ESPRIT algorithm with spatial smooth-
ing is mainly related to that of the SVD which is at least
O(ktF (R + 1)PM) where kt is a constant depending on the
implementation of the SVD algorithm. Here P =

∏R
r=1 Pr
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Figure 6: Frequency total root-mean square error for
a 3-D signal containing two 3-D modes (Signal #2).
(M1,M2,M3) = (8, 8, 8). 1000 Monte-Carlo.
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Figure 7: Frequency total root-mean square error for a 3-D
signal containing 3 modes with identical modes in two di-
mensions (Signal #3), with close modes in the first dimension
(0.28,0.12,0.2). (M1,M2,M3) = (10, 10, 10). 200 Monte-
Carlo.

where {Pr}Rr=1 are design parameters used to get smoothed
measurements (see [10]). The accuracy of the estimates pro-
vided by ESPRIT depends on these parameters. Since the op-
timal value for Pr is a fraction of Mr (e.g. [37, 38, 39]), the
complexity of the SVD step is, in fact, O(M2). The com-
plexities of PUMA and TPUMA algorithms are O(M3) and
O(ktM(R+F −1))+

∑R
r=1 O(K(F +1)M3

r ), respectively.
Compared to PUMA and TPUMA, the proposed algorithm
has an attractive computational complexity for large size sig-
nals. Figure 9 shows the CPU time results of the proposed,
Tensor-ESPRIT and TPUMA algorithms versus M1 for a 3-
D damped signal containing two modes with M2 = M3 = 4.
We observe that the proposed method involves a low computa-
tional complexity compared to TPUMA and Tensor-ESPRIT
when M1 is large.

8 Conclusion
We presented an efficient sparse estimation approach for the
analysis of multidimensional (R-D) damped or undamped
modal signals. The idea consists in exploiting the simultane-
ous sparse approximation principle to separate this joint esti-
mation problem into R multiple measurements problems. To
be able to handle large size signals and yield accurate esti-
mates, a multigrid dictionary refinement scheme is associated
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Figure 8: Frequency total root-mean square error for a 3-D
signal containing 4 modes with (M1,M2,M3) = (10, 3, 3)
(Signal #4). 200 Monte-Carlo.
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Figure 9: Average CPU time for a single run under M2 =
M3 = 4 and F = 2.

with the simultaneous orthogonal matching pursuit (SOMP)
algorithm. We gave the convergence proof of the the refine-
ment procedure in the single tone case. Then, for the general
multiple tones R-D case, the signal tensor model is decom-
posed in order to handle each tone separately in an iterative
scheme so that the pairing of the R-D parameters is automat-
ically achieved. Also, the CRLB of the R-D modal signal
parameters were derived. The tests performed on simulated
signals showed that the proposed algorithm attains the CRLB
and outperforms state-of-the-art subspace algorithms. We also
have shown that the complexity of the algorithm is linear with
respect to the number of measurements, which allows the pro-
cessing of large size signals. Finally, it is worth mentioning
that this approach can be straightforwardly applied to other
multidimensional array processing problems.

A Proof of Theorem 3
We begin the proof by introducing the following lemma.

Lemma 1 Consider Ỹ = Y +∆Y , where Ỹ is the perturbed
version of the data tensor Y and ∆Y is the perturbation. As-
suming that ∆Y is sufficiently small such that the ordering
of the F singular values in Σ in (27) is the same as the or-
dering of the corresponding singular values when ∆Y = 0.
Then the perturbation ∆Yf contains a linear combination of
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all Yf , f = 1, . . . , F :

∆Yf = Df +

F∑
i=1

vf,iYi

where vT
f = [vf,1, . . . , vf,F ] = ∆A†1(f, :)A1 and Df =

∆Y •
1
af,1A

†
1(f, :) + Ys,f •

1
∆af,1.

Proof From (30) S = Y •
1
A†1, we differentiate and obtain

∆S = ∆Y •
1
A†1 + Y •

1
∆A†1

Then, we get ∆Sf = ∆Y •
1
A†1(f, :) +

∑F
p=1 vf,pSp. Yf is

estimated using Yf = Sf •
1
af,1, we differentiate and obtain

∆Yf =
∑F
p=1 vf,pYp+Sf •

1
∆af,1+∆Y •

1
af,1A

†
1(f, :). �

Using the previous lemma

Ȳ(0)
f = Sf •

1
(af,1 + vf,faf,1 + ∆af )+

F∑
p=1,p6=f

vf,pYp + ∆Y •
1
af,1A

†
1(f, :)

Therefore, af,2, . . . ,af,R, f = 1, . . . , F can be estimated us-
ing STSM algorithm since

Ȳ
(0)
f(r)

= cfaf,r(af,R � · · ·� af,r+1 � af,r−1�

· · ·� (af,1 + vf,faf,1 + ∆af,1))

+

 F∑
p=1,p6=f

vf,pYp + ∆Y •
1
af,1A

†
1(f, :)


(r)

.

Since Ȳ
(0)
f(1)

has the following form

Ȳ
(0)
f(1)

= cf (af,1 + vf,faf,1 + ∆af,1)(af,R � · · ·� af,2)

+

 F∑
p=1,p6=f

vf,pYp + ∆Y •
1
af,1A

†
1(f, :)


(1)

,

we estimate cfaf,1 by least squares once af,2, . . . ,af,R are
estimated using STSM

ĉfaf,1 = min
a
‖Ȳ(0)

f − a⊗ âf,2⊗ · · ·⊗ âf,R‖

= Ȳ
(0)
f(1)

(
(âf,R � · · ·� âf,2)T

)†
So, we put Ŷ

(0)

f = ĉfaf,1⊗ âf,2⊗ · · ·⊗ âf,R and Rf =

Ȳ(0)
f − Ŷ

(0)

f . Therefore, the procedure to estimate Yf at it-
eration i = 0, . . . ,K can be summarized in (31), (32) and
(33). Note that this procedure is optimal because STSM and
the least squares are optimal when they are used to estimate
af,2, . . . ,af,R, f = 1, . . . , F and cfaf,1, f = 1, . . . , F , re-
spectively.

Now we present the technique for improving the estimation

of Yf . Let R(0)
F = R(1)

0 = Ỹ −
∑F
f=1 Ŷ

(0)

f and

Ŷ
(1)

f = arg min
X∈H

‖Ŷ
(0)

f + R(1)
f−1 −X‖ (66)

where R(1)
f = Ŷ

(0)

f +R(1)
f−1 − Ŷ

(1)

f , f = 1, . . . , F , and Ŷ
(i)

f

is an improved estimate of Yf . We follow the same procedure

as described in equations (31), (32) and (33) to calculate Ŷ
(1)

f .
We can state that there is improvement in the estimation of

Yf if ∥∥∥∥∥∥Ỹ −
F∑
f=1

Ŷ
(1)

f

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥Ỹ −

F∑
f=1

Ŷ
(0)

f

∥∥∥∥∥∥ (67)

We have ‖R(1)
0 ‖ = ‖Ȳ(0)

1 − Ŷ
(0)

1 +
∑F
f=2 Rf + V‖ where

V = Ỹ − Ȳ and Ȳ =
∑F
f=1 Ȳ

(0)
f . It can be verified that

‖R(1)
f ‖ =

∥∥∥∥∥∥
Ȳ(0)

f +

f−1∑
p=1

(Ȳ(0)
p − Ŷ(1)

p ) +

F∑
p=f+1

Rp + V

− Ŷ(1)

f

∥∥∥∥∥∥
‖R(1)

f−1‖ =

∥∥∥∥∥∥
Ȳ(0)

f +

f−1∑
p=1

(Ȳ(0)
p − Ŷ(1)

p ) +

F∑
p=f+1

Rp + V

− Ŷ(0)

f

∥∥∥∥∥∥
However, from equation (66), Ŷ

(1)

f is the minimizer with re-
spect to X ∈ H of∥∥∥∥∥∥

Ȳ(0)
f +

f−1∑
p=1

(Ȳ(0)
p − Ŷ(1)

p ) +

F∑
p=f+1

Rp

−X

∥∥∥∥∥∥
Therefore, ‖R(1)

f ‖ ≤ ‖R
(1)
f−1‖, f = 1, . . . , F . As con-

sequence, ‖R(1)
F ‖ ≤ ‖R(0)

F ‖, which we are seeking in
expression (67). Similarly, we can prove that ‖R(i)

F ‖ ≤
‖R(i−1)

F ‖, i > 1, using the general forms of R(i)
f and R(i)

f−1

R(i)
f =

Ȳ(0)
f +

f−1∑
p=1

(Ȳ(0)
p − Ŷ(i)

p ) +

f−1∑
p=f+1

(Ȳ(0)
p − Ŷ(i−1)

p ) + V

− Ŷ(i)

f

R(i)
f−1 =

Ȳ(0)
f +

f−1∑
p=1

(Ȳ(0)
p − Ŷ(i)

p ) +

f−1∑
p=f+1

(Ȳ(0)
p − Ŷ(i−1)

p ) + V

− Ŷ(i−1)

f

which we are seeking in (35).
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