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THE MAGNETIC LAPLACIAN ACTING ON DISCRETE CUSPS

Keywords: 2010 Mathematics Subject Classification. 34L20, 47A10, 05C63, 47B25, 47A63, 81Q10 discrete magnetic Laplacian, locally finite graphs, eigenvalues, asymptotic, form-domain

We introduce the notion of discrete cusp for a weighted graph. In this context, we prove that the form-domain of the magnetic Laplacian and that of the non-magnetic Laplacian can be different. We establish the emptiness of the essential spectrum and compute the asymptotic of eigenvalues for the magnetic Laplacian.

Introduction

The spectral theory of discrete Laplacians on graphs has drawn a lot of attention for decades. The spectral analysis of the Laplacian associated to a graph is strongly related to the geometry of the graph. Moreover, graphs are discretized versions of manifolds. In [MoT, GM], it is shown that for a manifold with cusps, adding a magnetic field can drastically destroy the essential spectrum of the Laplacian. The aim of this article is to go along this line in a discrete setting.

We recall some standard definitions of graph theory. A graph is a triple G := (E, V, m), where V is a countable set (the vertices), E : V × V → R + is symmetric, and m : V → (0, ∞) is a weight. We say that G is simple if m = 1 and E : V × V → {0, 1}.

Given x, y ∈ V, we say that (x, y) is an edge (or x and y are neighbors) if E(x, y) > 0. We denote this relationship by x ∼ y and the set of neighbors of x by N G (x). We say that there is a loop at x ∈ V if E(x, x) > 0. A graph is connected if for all x, y ∈ V, there exists a path γ joining x and y. Here, γ is a sequence x 0 , x 1 , ..., x n ∈ V such that x = x 0 , y = x n , and x j ∼ x j+1 for all 0 ≤ j ≤ n -1. In this case, we set |γ| := n. A graph G is locally finite if |N G (x)| is finite for all x ∈ V. In the sequel, we assume that:

All graphs are locally finite, connected with no loops. We endow a graph G := (E, V, m) with the metric ρ G defined by ρ G (x, y) := inf{|γ|, γ is a path joining x and y}.

The space of complex-valued functions acting on the set of vertices V is denoted by C(V) := {f : V → C}. Moreover, C c (V) is the subspace of C(V) of functions with finite support. We consider the Hilbert space

ℓ 2 (V, m) := f ∈ C(V), x∈V m(x)|f (x)| 2 < ∞
with the scalar product f, g := x∈V m(x)f (x)g(x).

We equip G with a magnetic potential θ : V × V → R/2πZ such that we have θ x,y := θ(x, y) = -θ y,x and θ(x, y) := 0 if E(x, y) = 0. We define the Hermitian form

Q G,θ (f ) := 1 2 x,y∈V E(x, y) f (x) -e iθx,y f (y) 2 ,
for all f ∈ C c (V). The associated magnetic Laplacian is the unique non-negative self-adjoint operator ∆ G,θ satisfying f, ∆ G,θ f ℓ 2 (V,m) = Q G,θ (f ), for all f ∈ C c (V). It is the Friedrichs extension of ∆ G,θ | Cc(V) , e.g., [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III: Magnetic fields[END_REF][START_REF] Reed | Methods of Modern Mathematical Physics, Tome I-IV: Analysis of operators[END_REF], where (∆ G,θ f )(x) = 1 m(x) y∈V E(x, y) f (x)e iθx,y f (y) , for all f ∈ C c (V). We set deg G (x) := 1 m(x) y∈V E(x, y), the degree of x ∈ V. We see easily that ∆ G,θ ≤ 2 deg G (•) in the form sense, i.e., [KL, Go].

0 ≤ f, ∆ G,θ f ≤ f, 2 deg G (•)f , for all f ∈ C c (V). (1) Moreover, setting δx (y) := m -1/2 (x)δ x,y for any x, y ∈ V, δx , ∆ G,θ δx = deg G (x), so ∆ G,θ is bounded if and only if sup x∈V deg G (x) is finite, e.g.
Another consequence of (1) is

D deg 1/2 G (•) ⊂ D ∆ 1/2 G,θ , (2) 
where D deg

1/2 G (•) := f ∈ ℓ 2 (V, m), deg G (•)f ∈ ℓ 2 (V, m)
. However, the equality of the form-domains

D deg 1/2 G (•) = D ∆ 1/2 G,θ (3) 
is wrong in general for a simple graph, see [Go, BGK]. In fact if θ = 0, (2) is equivalent to a sparseness condition and holds true for planar simple graphs, see [BGK]. We refer to [BGKLM] for a magnetic sparseness condition. On a general weighted graph, if (3) holds true,

σ ess (∆ G,θ ) = ∅ ⇔ (∆ G,θ + 1) -1 is compact ⇔ lim |x|→∞ deg G (x) = ∞,
where |x| := ρ G (x 0 , x) for a given x 0 ∈ V. Note that the limit is independent of the choice of x 0 . Besides if the latter is true and if the graph is sparse (simple and planar for instance), [BGK] ensures the following asymptotic of eigenvalues,

lim n→∞ λ n (∆ G,θ ) λ n deg G (•) = 1, (4)
where λ n (H) denotes the n-th eigenvalue, counted with multiplicity, of a self-adjoint operator H, which is bounded from below.

The technique used in [BGK] does not apply when the graph is a discrete cusp (thin at infinity), see Definition 2.5. The aim of this article is to establish new behaviors for the asymptotic of eigenvalues for the magnetic Laplacian in that case, and also to prove that the form-domain of the non-magnetic Laplacian can be different from that of the magnetic Laplacian, see Theorem 2.14. We found the inspiration by mimicking the continuous case, which was studied in [MoT, GM].

Let us present a flavour of our results (in particular of Theorem 2.14) by introducing the following specific example of discrete cusp :

Example 1.1. Let n ≥ 3 be an integer and consider

G 1 := (E 1 , V 1 , m 1 ), where V 1 := N, m 1 (n) := exp(-n), and E 1 (n, n + 1) := exp(-(2n + 1)/2), for all n ∈ N and G 2 := (E 2 , V 2 , 1) a simple connected finite graph such that |V 2 | = n. Set θ 1 := 0 and θ 2 such that Hol θ2 = 0. Let G := (E, V, m) be the twisted Cartesian product G 1 × V2 G 2 , given by:    m(x, y) := m 1 (x), E ((x, y), (x ′ , y ′ )) := E 1 (x, x ′ ) × δ y,y ′ + δ x,x ′ × E 2 (y, y ′ ), θ ((x, y), (x ′ , y ′ )) := δ x,x ′ × θ 2 (y, y ′ ),
for all x, x ′ ∈ V 1 and y, y ′ ∈ V 2 . Then there exists a constant ν > 0 such that for all κ ∈ R/νZ

σ ess (∆ G,κθ ) = ∅ ⇔ D ∆ 1/2 G,κθ = D deg 1/2 G (•) ⇔ κ = 0 in R/νZ Moreover:
1) When κ = 0 in R/νZ, we have:

lim λ→∞ N λ (∆ G,κθ ) N λ deg G (•) = 1,
where N λ (H) := dim ran1 ]-∞,λ] (H) for a self-adjoint operator H. 2) When κ = 0 in R/νZ, the absolutely continuous part of the ∆ G,κθ is σ ac (∆ G,κθ ) = e 1/2 + e -1/2 -2, e 1/2 + e -1/2 + 2 , with multiplicity 1 and

lim λ→∞ N λ ∆ G,κθ P ⊥ ac,κ N λ deg G (•) = n -1 n ,
where P ac,κ denotes the projection onto the a.c. part of ∆ G,κθ .

We now describe heuristically the phenomenon. Compared with the first case, the constant (n -1)/n that appears in the second case encodes the fact that a part of the wave packet diffuses. Moreover, switching on the magnetic field is not a gentle perturbation because the form domain of the operator is changed.

By Riemann-Lebesgue Theorem, the particle, which is localized in the a.c. part of the operator, escapes from every compact set. More precisely, for a finite subset X ⊂ V and all f ∈ D(∆ G,0 ) 1 X (•)e it∆G,0 P ac,0 f → 0, as t → ∞.

In the first case, when the magnetic potential is active, the spectrum of ∆ G,κθ is purely discrete. The particle cannot diffuse anymore. More precisely, for a finite subset X ⊂ V and an eigenvalue f of ∆ G,κθ such that f | X = 0, there is c > 0 such that:

1

T T 0 1 X (•)e it∆ G,κθ f 2 dt → c, as T → ∞.
The particle is trapped by the magnetic field.

• • •

Diffusion

Magnetic effect

Representation of a discrete cusp:

The magnetic field traps the particle by spinning it, whereas its absence lets the particle diffuse.

We now describe the structure of the paper. In Section 2.1, we recall some properties of the holonomy of a magnetic potential. In Section 2.2 we present our main hypotheses and several notions of (weighted) product for graphs. We introduce the notion of discrete cusp and analyze it under the light of the radius of injectivity. Then in Section 2.3 we give a criteria concerning the absence of essential spectrum. Next, in Section 2.4, we refine the analysis and give our central theorem, a general statement for discrete cusps, computing the form domain and the asymptotic of eigenvalues. We finish the section by proving Theorem 1.1. Notation: N denotes the set of non negative integers and N * that of the positive integers. We denote by D(H) the domain of an operator H. Its (essential) spectrum is denoted by σ(H) (by σ ess (H)). We set δ x,y equals 1 if and only if x = y and 0 otherwise and given a set X, 1 X (x) equals 1 if x ∈ X and 0 otherwise. Acknowledgments: We would like to thank Colette Anné, Michel Bonnefont, Yves Colin de Verdière, Matthias Keller, and Sergiu Moroianu for useful discussions. SG and FT were partially supported by the ANR project GeRaSic (ANR-13-BS01-0007-01) and by SQFT (ANR-12-JS01-0008-01).

Main results

2.1. Holonomy of a magnetic potential. We recall some facts about the gauge theory of magnetic fields, see [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III: Magnetic fields[END_REF][START_REF] Higuchi | Weak Bloch property for discrete magnetic Schrödinger operators[END_REF] for more details and also [LLPP] for a different point of view. We recall that a gauge transform U is the unitary map on

ℓ 2 (V, m) defined by (U f )(x) = u x f (x), where (u x ) x∈V is a sequence of complex numbers with |u x | ≡ 1 (we write u x = e iσx ). The map U acts on the quadratic forms Q G,θ by U ⋆ (Q G,θ )(f ) = Q G,θ (U f ), for all f ∈ C c (V). The magnetic potential U ⋆ (θ) is defined by: U ⋆ (Q G,θ ) = Q G,U ⋆ (θ) .
More explicitly, we get:

U ⋆ (θ) xy = θ x,y + σ yσ x . We turn to the definition of the flux of a magnetic potential, the Holonomy.

Proposition 2.1. Let us denote by Z 1 (G) the space of cycles of G. It is is a free Z-module with a basis of geometric cycles γ = (x 0 , x 1 ) + (x 1 , x 2 ) + . . . + (x N -1 , x N ) with, for i = 0, • • • , N -1, E(x i , x i+1 ) = 0, and x N = x 0 . We define the holonomy map Hol

θ : Z 1 (G) → R/2πZ, by Hol θ ((x 0 , x 1 ) + (x 1 , x 2 ) + • • • + (x N , x 0 )) := θ x0,x1 + • • • + θ xN ,x0 . Then 1) The map θ → Hol θ is surjective onto Hom Z (Z 1 (G), R/2πZ).
2) Hol θ1 = Hol θ2 if and only if there exists a gauge transform U so that U ⋆ (θ 2 ) = θ 1 . In consequence Hol θ1 = Hol θ2 if and only if the magnetic Laplacians ∆ G,θ1 and ∆ G,θ2 are unitarily equivalent.

Lemma 2.2. Let G := (E, V, m) be a connected graph such that 1 ∈ ker ∆ G,0 . Let θ be magnetic potential. Then ker ∆ G,θ = {0} if and only if Hol θ = 0.
Remark 2.3. By construction of the Friedrichs extension, the domain of ∆ G,0 is given by

D(∆ G,0 ) =    f ∈ ℓ 2 (V, m), x → 1 m(x) y∈V E(x, y)(f (x) -f (y)) ∈ ℓ 2 (V, m)    C c (V) ( • 2 +QG,0(•)) 1/2 . The hypothesis 1 ∈ ker ∆ G,0 is trivially satisfied if G is a finite graph.
In general, it is satisfied if and only if:

( * ) 1 belongs to the closure of C c (V) with respect to the norm ( • 2 +Q G,0 (•)) 1/2 . A sufficient condition to guarantee ( * ) is that the following two conditions hold true: 1) G is of finite volume, i.e., such that x∈V m(x) < ∞, 2) ∆ G,0 is essentially self-adjoint on C c (V).
Proof. If Hol θ = 0 then ∆ G,θ is unitarily equivalent to ∆ G,0 by Proposition 2.1 and 1 ∈ ker(∆ G,0 ) = {0} by hypothesis.

Conversely, let f = 0 with ∆ G,θ f = 0 and hence Q G,θ (f ) = 0. This implies that all terms in the expression of Q G,θ (f ) vanish. In particular, if E(x, y) = 0 we have ( 5) f (x) = e iθx,y f (y).

Assume that there is a cycle γ = (x 0 , x 1 , . . . , x N = x 0 ), such that Hol θ (γ) = 0. Using (5), we obtain that

f (x i ) = e -iHol θ (γ) f (x i ) .
for all i = 0, . . . , N -1. Therefore f | γ = 0. Then, since f = 0, there is x ∈ V such that f (x) = 0. Using again (5) and by connectedness between x and γ, it yields that f (x) = 0. Contradiction. Therefore if there exists f ∈ ker (∆ G,θ ) \ {0} then Hol θ = 0. We exhibit the following coupling constant effect.

Corollary 2.4. Let G := (E, V, m) be a connected graph of finite volume, i.e., such that x∈V m(x) < ∞ and let θ be a magnetic potential such that Hol θ = 0. Assume that the function

1 is in ker ∆ G,θ . Then there is ν ∈ R such that ker ∆ G,λθ = {0} ⇔ λ = 0 in R/νZ. Proof. Let Φ : (R, +) → (Hom Z (Z 1 (G), R/2πZ), +) be defined by Φ(λ) := Hol λθ .
It is a homomorphism of group. Hence its kernel is a subgroup of (R, +). In particular it is either dense with respect to the Euclidean norm or equal to νZ for some ν ∈ R, e.g., [Bou, Section V.1.1]. Suppose by contradiction that the kernel is dense. Since for any cycle γ of G, the map λ → Hol λθ (γ) is continuous from R to R/2πZ, we infer that Hol λθ (γ) = 0 for all λ ∈ R. Hence, Φ(λ) = 0 for all λ ∈ R. This is a contradiction with Hol θ = 0. We conclude that there is ν ∈ R such that ker(Φ) = νZ, i.e., using Proposition 2.1, that

{λ ∈ R, ker ∆ G,λθ = {0}} = {λ ∈ R, Hol λθ = 0} = νZ.
This ends the proof.

The setting. Given

G 1 := (E 1 , V 1 , m 1 ) and G 2 := (E 2 , V 2 , m 2 ), the Cartesian product of G 1 by G 2 is defined by G := (E, V, m), where V := V 1 × V 2 .    m(x, y) := m 1 (x) × m 2 (y), E ((x, y), (x ′ , y ′ )) := E 1 (x, x ′ ) × δ y,y ′ m 2 (y) + m 1 (x)δ x,x ′ × E 2 (y, y ′ ), θ ((x, y), (x ′ , y ′ )) := θ 1 (x, x ′ ) × δ y,y ′ + δ x,x ′ × θ 2 (y, y ′ ),
We denote by G := G 1 × G 2 . This definition generalizes the unweighted Cartesian product, e.g., [Ha]. It is used in several places in the literature, e.g., [Ch][Section 2.6] and in [BGKLM] for a generalization.

• • • • • • The graph of Z × Z/3Z
The terminology is motivated by the following decomposition:

∆ G,θ = ∆ G1,θ1 ⊗ 1 + 1 ⊗ ∆ G2,θ2 , where ℓ 2 (V, m) ≃ ℓ 2 (V 1 , m 1 ) ⊗ ℓ 2 (V 2 , m 2 ).
The spectral theory of ∆ G,θ is wellunderstood since e it∆ G,θ = e it∆ G 1 ,θ 1 ⊗ e it∆ G 2 ,θ 2 , for t ∈ R. We refer to [RS][Section VIII.10] for an introduction to the tensor product of selfadjoint operators.

In this paper, we are motivated by a geometrical situation. A hyperbolic manifold of finite volume is the union of a compact part and of a cusp, e.g., [START_REF] Thurston | Three-Dimensional Geometry and Topology[END_REF]Theorem 4.5.7]. The cusp part can be seen as the product of (1, ∞) × M , where (M, g M ) is a possibly disconnected Riemannian manifold, endowed with the metric, y -1 (dy 2 + g M ).

On the cusp part, the infimum of the radius of injectivity is 0.

To analyze the Laplacian on this product one separates the variables and obtain a decomposition which is not of the type of a Cartesian product, e.g., [START_REF] Golénia | Spectral analysis of magnetic Laplacians on conformally cusp manifolds[END_REF]Eq. (5.22)] for some details. We aim at mimicking this situation and introduce a modified Cartesian product. [SA] for its spectral analysis in the unweighted case.

Given G 1 := (E 1 , V 1 , m 1 ) and G 2 := (E 2 , V 2 , m 2 ) and I ⊂ V 2 , we define the product of G 1 by G 2 through I by G := (E, V, m), where V := V 1 × V 2 and    m(x, y) := m 1 (x) × m 2 (y), E ((x, y), (x ′ , y ′ )) := E 1 (x, x ′ ) × δ y,y ′ z∈I δ y,z + δ x,x ′ × E 2 (y, y ′ ), θ ((x, y), (x ′ , y ′ )) := θ 1 (x, x ′ ) × δ y,y ′ + δ x,x ′ × θ 2 (y, y ′ ), for all x, x ′ ∈ V 1 and y, y ′ ∈ V 2 . We denote G by G 1 × I G 2 . If I is empty, the graph is disconnected and of no interest for our purpose. If |I| = 1, G 1 × I G 2 is the graph G 1 decorated by G 2 , see
If I = V 2 and m = 1, we notice that G 1 × I G 2 = G 1 × G 2 . • • • • • • The graph of Z The graph of Z/3Z • • • • • • The graph of Z × I Z/3Z, with |I| = 1 • • • • • • The graph of Z × I Z/3Z, with |I| = 2 • • • • • • The graph of Z × I Z/3Z, with |I| = 3 Under the representation ℓ 2 (V, m) ≃ ℓ 2 (V 1 , m 1 ) ⊗ ℓ 2 (V 2 , m 2 ), deg G (•) = deg G1 (•) ⊗ 1 I (•) m 2 (•) + 1 m 1 (•) ⊗ deg G2 (•) (6) and ∆ G,θ = ∆ G1,θ1 ⊗ 1 I (•) m 2 (•) + 1 m 1 (•) ⊗ ∆ G2,θ2 . (7)
If m is non-trivial, we stress that the Laplacian obtained with our product is usually not unitarily equivalent to the Laplacian obtained with the Cartesian product. However, there is a potential

V : V → R such that ∆ G1×G2 is unitarily equivalent to ∆ G1×V 2 G2 + V (•), in ℓ 2 (V, m). Definition 2.5. Set G 1 := (E 1 , V 1 , m 1 ), G 2 := (E 2 , V 2 , m 2 ), and I ⊂ V 2 . We say that G = G 1 × I G 2 is a discrete cusp if the following hypotheses are satisfied: (H1) m 1 (x) tend to 0 as |x| → ∞, (H2) G 2 is finite, (H3) ∆ G1,θ1 is bounded (or equivalently sup x∈V1 deg G1 (x) < ∞).
We now motivate the choice of the above hypotheses by discussing the radius of injectivity. We start by defining a different metric on V, this choice is motivated by the works of [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II: metrically non complete graphs[END_REF] and [MiT] but it needs a small adaptation for our purpose.

Definition 2.6. Given G := (E, V, m), the weighted length of an edge (x, y) ∈ E defined by:

L G (x, y) := min m(x), m(y) E(x, y) .
Given x, y ∈ V, we define the weighted distance from x to y with respect to this length by:

ρ LG (x, y) := inf γ |γ|-1 i=0 L G γ(i), γ(i + 1) ,
where γ is a path joining x to y and with the convention that ρ LG (x, x) := 0 for all x ∈ V.

Remark 2.7. Since G is assumed connected, ρ LG is a metric on V. In fact ρ LG belongs to the class of intrinsic metrics. We refer to [Ke] for a general definition, historical references, properties, and applications. However, since Propositions 2.9 and 2.10 do not hold in general with an arbitrary intrinsic metric, we stick to our specific choice of metric.

We turn to the definitions of the girth and of the weighted radius of injectivity. This is essentially a weighted version of the standard ones, e.g, [EGL].

Definition 2.8. Given G := (E, V, m), the girth at x ∈ V of G w.r.t. the weighted length L G is girth(x) := inf{L G (γ), γ simple cycle of unweighted length ≥ 3 and containing x},
where simple cycle means a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex. We use the convention that the girth is +∞ if there is no such cycle. The radius of injectivity (at x) of G with respect to L G is half the girth (at x). We denote the radius of injectivity by rad(G) (at x by rad(x) respectively) Note that with this definition, the radius of injectivity of a tree is +∞. Proposition 2.9. Given G

1 := (E 1 , V 1 , m 1 ) and G 2 := (E 2 , V 2 , m 2 ) and I ⊂ V 2 Assume that G := G 1 × I G 2 is a discrete cusp. We have: 1) rad(G 1 ) > 0. 2) If rad(G 2 ) < ∞, then rad(G) = 0.
Proof. (1) Assume that rad(G 1 ) = 0. Then for all ε > 0, there is x ∼ y in V 1 such that L G1 (x, y) < ε. In particular, we have deg G1 (x) > ε -2 or deg G1 (y) > ε -2 . This is in contradiction with (H3).

(2) Since rad(G 2 ) < ∞, for all x ∈ V 1 , there is a pure cycle contained in {x} × V 2 . Moreover, for all x ∈ V 1 and a ∼ b in V 2 , since E(x, x) = 0, we have:

L G1×I G2 ((x, a), (x, b)) = m 1 (x)L G2 (a, b)
By (H1) we obtain that rad(G) = 0.

In contrast with this result we see that under the same hypotheses, the Cartesian product is not small at infinity. More precisely, we have:

Proposition 2.10. Set G 1 := (E 1 , V 1 , m 1 ) and G 2 := (E 2 , V 2 , m 2 ).
Assume that (H1), (H2), and (H3) are satisfied. Then rad(G 1 × G 2 ) > 0.

Proof. Assume that rad(G 1 × G 2 ) = 0. For all ε > 0, there are

x 1 ∼ y 1 in V 1 and x 2 ∼ y 2 in V 2 such that ε > L G1×G2 ((x 1 , x 2 ), (x 1 , y 2 )) = L G2 (x 2 , y 2 ) or ε > L G1×G2 ((x 1 , x 2 ), (y 1 , x 2 )) = L G1 (x 1 , y 1 ) .
The first line is in contradiction with (H2) and the second line with (H3).

2.3. Absence of essential spectrum. We have a first result of absence of essential spectrum. We refer to [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III: Magnetic fields[END_REF] for related results based on the non-triviality of Hol θ in the context of non-complete graphs. See also [BGKLM] for similar ideas.

Proposition 2.11. Set G 1 := (E 1 , V 1 , m 1 ), G 2 := (E 2 , V 2 , m 2 ), and G := G 1 × I G 2 , with |I| > 0.
Assume that (H1), (H2), and Hol θ2 = 0 hold true. Then ∆ G,θ has a compact resolvent, and

N λ m -1 1 (•) ⊗ ∆ G2,θ2 ≥ N λ (∆ G,θ ), for all λ ≥ 0. Proof. Note that ∆ G,θ ≥ 1 m 1 (•) ⊗ ∆ G2,θ2
in the form sense on C c (V). Since (H1) and (H2) hold, Lemma 2.2 ensures that 0 is not in the spectrum of (∆ G2,θ2 ). Hence the spectrum of the r.h.s. is purely discrete. By the min-max Principle, e.g., [Go, RS], the operator ∆ G,θ has a compact resolvent.

2.4. The asymptotic of the eigenvalues. From now on, we focus on the case when the graph is a discrete cusp and aim at a more precise result. To start off, we give the key-stone of our approach:

Proposition 2.12.

Set G 1 := (E 1 , V 1 , m 1 ), G 2 := (E 2 , V 2 , m 2 ), and I ⊂ V 2 non- empty. Assume that G := G 1 × I G 2 is a discrete cusp. We set M := sup x∈V1 deg G1 (x) × max y∈V2 (1/m 2 (y)) < ∞. (8)
We have:

1 m 1 (•) ⊗ deg G2 (•) ≤ deg G (•) ≤ 1 m 1 (•) ⊗ deg G2 (•) + M, (9) 1 m 1 (•) ⊗ ∆ G2,θ2 ≤ ∆ G,θ ≤ 2M + 1 m 1 (•) ⊗ ∆ G2,θ2 , (10) 
in the form sense on C c (V).

Proof. Use (1), ( 6), and (7).

We work in the spirit of [Go, BGK, BGKLM] and compare the Laplacian directly with the degree.

Proposition 2.13. Set G 1 := (E 1 , V 1 , m 1 ), G 2 := (E 2 , V 2 , m 2 ), and I ⊂ V 2 non- empty. Assume that G := G 1 × I G 2 is a discrete cusp. Set M as in (8). We have: inf σ(∆ G2,θ2 ) max y∈V2 deg G2 (y) deg G (•) -M ≤ ∆ G,θ ≤ 2M + 2 deg G (•), (11) 
in the form sense on C c (V).

Moreover, assuming that inf σ(∆ G2,θ2 ) > 0, then D(∆

1/2 G,θ ) = D deg 1/2 G (•) . Fur- thermore, since lim |x|→∞ deg G (x) = ∞, ∆ G,θ has a compact resolvent and 0 < inf σ(∆ G2,θ2 ) max y∈V2 deg G2 (y) ≤ lim inf n→∞ λ n (∆ G,θ ) λ n (deg G (•)) ≤ lim sup n→∞ λ n (∆ G,θ ) λ n (deg G (•)) ≤ 2.
Proof. Use ( 10) and (1) to get

inf σ(∆ G2,θ2 ) max y∈V2 deg G2 (y) 1 m 1 (•) ⊗ deg G2 (•) ≤ ∆ G,θ ≤ 2M + 2 m 1 (•) ⊗ deg G2 (•),
Then apply (9) to obtain (11). Concerning the statement about the eigenvalue this follows from the standard consequences of the min-max Principle, e.g., [Go].

Here, trying to compare directly ∆ G,θ to deg G to get sharp results about eigenvalues is too optimistic because it is unclear how to obtain constants arbitrarily close to 1 in front of deg G , as in [Go, BGK]. To obtain some sharp asymptotics for the eigenvalues of ∆ G,θ , as in ( 15), we will use directly ( 10) and analyze very carefully the operator m -1

1 (•) ⊗ ∆ G2,θ2 . Theorem 2.14. Set G 1 := (E 1 , V 1 , m 1 ), G 2 := (E 2 , V 2 , m 2 ), and I ⊂ V 2 non-empty. Assume that G := G 1 × I G 2 is a discrete cusp. We obtain that D(∆ 1/2 G,θ ) = D m -1/2 1 (•) ⊗ ∆ 1/2 G2,θ2 . (12) 
Moreover, we have: 1) ∆ G,θ has a compact resolvent if and only if Hol θ2 = 0.

2) If Hol θ2 = 0, then

D(∆ 1/2 G,θ ) = D deg 1/2 G (•) and lim n→∞ λ n (∆ G,θ ) λ n m -1 1 (•) ⊗ ∆ G2,θ2 = 1. (13) Furthermore, setting M as in (8), N λ-2M m -1 1 (•) ⊗ ∆ G2,θ2 ≤ N λ (∆ G,θ ) ≤ N λ m -1 1 (•) ⊗ ∆ G2,θ2 , (14) 
for all λ ≥ 0.

Proof. First note that (12) follows directly from (10). Denoting by {g i } i=1,..,|V2| the eigenfunctions associated to the eigenvalues {λ i } i=1,..,|V2| of ∆ G2,θ2 , where λ j ≤ λ j+1 , we see that the eigenfunctions of m -1 1 (•) ⊗ ∆ G2 are given by {δ x ⊗ g i }, where x ∈ V 1 and i = 1, .., |V 2 |. Then, using (H1), we observe that

σ m -1 1 (•) ⊗ ∆ G2 = m -1 1 (V 1 ) × {λ 1 , . . . , λ |V2| } = m -1 1 (V 1 ) × {λ 1 , . . . , λ |V2| }. Besides, 0 ∈ σ m -1 1 (•) ⊗ ∆ G2 if and only if 0 is an eigenvalue of m -1 1 (•) ⊗ ∆ G2
of infinite multiplicity if and only if λ 1 = 0 if and only if Hol θ2 = 0, by Lemma 2.2. Moreover, recalling (H1), we see that all the eigenvalues of m -1 1 (•) ⊗ ∆ G2 which are not 0 are of finite multiplicity. Therefore, m -1 1 (•) ⊗ ∆ G2 has a compact resolvent if and only if Hol θ2 = 0. Combining the latter and (10), the min-max Principle yields the first point.

We turn to the second point and assume that Hol θ2 = 0. The equality of the form-domains is given by (11). Taking in account (10), the min-max Principle ensures the asymptotic behavior of λ n and the inequalities (14).

Remark 2.15. In the case when Hol θ2 = 0, for instance when θ 2 = 0, we see that the form-domain is m

-1/2 1 ⊗P ⊥ ker(∆ G 2 ,θ 2 ) .
In particular, the form-domain is not that of deg G (•). Indeed if the two form-domains are the same, the closed graph theorem yields the existence of c 1 > 0 and c 2 > 0 so that

c 1 deg G (•) -c 2 ≤ m -1/2 1 ⊗ P ⊥ ker(∆ G 2 ,θ 2 ) ,
in the form sense on C c (V). However, note that 0 ∈ σ ess m -1/2 1 ⊗ P ⊥ ker(∆ G 2 ,θ 2 ) , whereas deg(•) has a compact resolvent. This is a contradiction with the min-max Principle. We obtain:

D ∆ 1/2 G,θ = D deg 1/2 (•) ⇔ Hol θ2 = 0 ⇔ ∆ G,θ has a compact resolvent.
In (13), we exhibit the behaviour of the eigenvalues in terms of an explicit and computable mean. We now aim at comparing the asymptotic with that of the degree, as in [Go, BGK]. The new phenomenon is that we are able to obtain a constant different from 1 in the asymptotic.

Corollary 2.16. Let G 1 := (E 1 , V 1 , m 1 ), G 2 := (E 2 , V 2 , m 2 )
, and I ⊂ V 2 nonempty such that G := G 1 × I G 2 is a discrete cusp. Suppose that deg G2 is constant on V 2 and take θ 2 such that Hol θ2 = 0. Then, for all a ∈ [1, +∞[, there exists

G 1 := ( E 1 , V 1 , m1 ) such that 1) G := G 1 × I G 2 is a discrete cusp.
2) E 1 and E 1 have the same zero set.

3) deg G1 (x) ≤ deg G1 (x) for all x ∈ V 1 . 4) ∆ G,θ is with compact resolvent, and

lim λ→∞ N λ ∆ G,θ N λ deg G (•) = a. (15)
Proof. We choose m 1 and E 1 later. We denote by {λ i } i=1,...,|V2| the eigenvalues of ∆ G2,θ2 . Since Hol θ2 = 0, we have λ i = 0 for all i = 1, . . . , |V 2 |. This yields:

N λ 1 m 1 (•) ⊗ ∆ G2,θ2 = (x, i), λ i m 1 (x) ≤ λ = |V2| i=1 1 m 1 [-1] 0, λ λ i ,
where [-1] denotes the reciprocal image. On the other hand,

N λ 1 m 1 (•) ⊗ deg G2 = |V 2 | × 1 m 1 [-1] 0, λ deg G2 .
Moreover, from (9) we get 16) for all λ ≥ 0, where M is given by (8).

N λ-M ( m -1 1 (•) ⊗ deg G2 ) ≤ N λ (deg G (•)) ≤ N λ ( m -1 1 (•) ⊗ deg G2 ), (
Step 1: We first aim at a = 1 in (15). Thanks to Lemma 2.18, we choose m 1 and E 1 such that the three first points are satisfied and

x ∈ V 1 , 1 m 1 (x) ≤ λ ∼ ln(λ), as λ → ∞,
where ∼ stands for asymptotically equivalent. We obtain:

N λ 1 m1(•) ⊗ ∆ G2,θ2 N λ 1 m1(•) ⊗ deg G2 ∼ |V2| i=1 (ln(λ) -ln(λ i )) |V 2 |(ln(λ) -ln(deg G2 )) → 1, as λ → ∞. ( 17 
)
and for all c ∈ R,

N λ-c 1 m 1 (•) ⊗ deg G2 ∼ |V 2 | ln(λ -c) ∼ |V 2 | ln(λ) ∼ N λ 1 m 1 (•) ⊗ deg G2 , as λ → ∞. ( 18 
)
Combining the latter with ( 16), we infer that for all c ∈ R

N λ-c 1 m 1 (•) ⊗ deg G2 ∼ N λ (deg G (•)), as λ → ∞. (19) Using now (17), this yields that for all c ∈ R N λ-c 1 m 1 (•) ⊗ ∆ G2,θ2 ∼ N λ (deg G (•)), as λ → ∞. (20) 
Finally recalling ( 14), we infer that

N λ ∆ G,θ ∼ N λ deg G (•) , as λ → ∞.
In other words, there are m 1 and E 1 such that the three first points are satisfied and such that (15) is satisfied with a = 1.

Step 2: We turn to the case a > 1 in (15). Given α > 0,. Thanks to Lemma 2.18, we choose m 1 and E 1 such that the three first points are satisfied and

x ∈ V 1 , 1 m 1 (x) ≤ λ ∼ λ α , as λ → ∞,
We obtain:

N λ 1 m1(•) ⊗ ∆ G2,θ2 N λ 1 m1(•) ⊗ deg G2 ∼ λ→∞ 1 |V 2 | |V2| i=1 deg G2 λ i α =: F (α).
First note that lim α→1 + F (α) = 1. Next, the sum of the eigenvalues (counted with multiplicity) of ∆ G2,θ2 is equal to |V 2 | deg G2 . Therefore, there exists at least one eigenvalue λ i , with 1

≤ i ≤ |V 2 | so that deg G2 > λ i . In particular lim α→+∞ F (α) = +∞.
Finally, by continuity of F , we obtain that for all a > 1 there is α > 1 such that F (α) = a. To conclude, repeating the end of step 1, we obtain that for all a > 1, there are m 1 and E 1 such that the three first points are satisfied and such that (15) is satisfied.

Remark 2.17. In [Go, BGK], the asymptotic in N λ was not discussed since the estimates that they obtain seem too weak to conclude. Being able to compute N λ in an explicit way, as in (15), is a new phenomenon.

We have used the following lemma: Lemma 2.18. Let G 1 := (E 1 , V 1 , m 1 ) be a graph satisfying (H1) and (H3) in Definition 2.5 and let f : [1, +∞) → [1, +∞) be a continuous and strictly increasing function that tends to +∞ at +∞. There exists G 1 := ( E 1 , V 1 , m 1 ) such that 1) E and Ẽ have the same zero set. 2) (H1) and (H3) are satisfied for G

1 . 3) deg G1 (x) ≤ deg G1 (x) for all x ∈ V 1 . 4) We have: x ∈ V 1 , 1 m 1 (x) ≤ λ ∼ f (λ), as λ → ∞,
where ∼ stands for asymptotically equivalent.

Proof. Without any loss of generality, one may suppose that f (1) = 1. Let φ :

N * → V 1 be a bijection. Set: m1 (φ(n)) := 1 f [-1] (n)
,

where [-1] denotes the reciprocal image. Note that (H1) is satisfied. Moreover,

x ∈ V 1 , 1 m 1 (x) ≤ λ = |{n ∈ N * , n ≤ f (λ)}| = ⌊f (λ)⌋ + 1 ∼ f (λ),
as λ → ∞. Finally, we set:

E 1 (x, y) := E 1 (x, y) min( m1 (x), m1 (y)) max(m 1 (x), m 1 (y)) .

The first point is clear. For (H3), note that deg G1 (x) ≤ deg G1 (x) for all x ∈ V 1 . We end this section by proving the results stated in the introduction.

Proof of Theorem 1.1. Let us consider G 1 := (E 1 , V 1 , m 1 ), where Set G := G 1 × V2 G 2 , θ 1 := 0 and θ 2 such that Hol θ2 = 0.

In the spirit of [GM], we denote by P le κ the projection on ker(∆ G2,κθ2 ) and by P he κ is the projection on ker(∆ G2,κθ2 ) ⊥ . Here le stands for low energy and he for high energy.

We have that ∆ G,κθ := ∆ le G,κθ ⊕ ∆ he G,κθ , where ∆ le G,κθ := ∆ G1,0 ⊗ P le κ , on (1 ⊗ P le κ )ℓ 2 (V, m), and ∆ he G,κθ := ∆ G1,0 ⊗ P he κ + 1 m 1 (•) ⊗ P he κ ∆ G2,κθ2 , on (1 ⊗ P he κ )ℓ 2 (V, m). By Lemma 2.2, Corollary 2.4, and Remark 2.15, there exists ν > 0 such that

P le κ = 0 ⇔ Hol κθ2 = 0 ⇔ κ = 0 in R/νZ ⇔ D ∆ 1/2 G,κθ = D deg 1/2 G (•) .
The proof of Theorem 2.14 gives the first point. Assume that κ ∈ R/νZ. Let U : ℓ 2 (N, m 1 ) → ℓ 2 (N, 1) be the unitary map given by U f (n) := m 1 (n)f (n). We see that:

U ∆ le G,κθ U -1 = ∆ N,0 + (e -1/2 -1)δ 0 + e 1/2 + e -1/2 -2 in ℓ 2 (N), where ∆ N,0 is related to the simple graph of N. By using for instance some Jacobi matrices techniques, it is well-known that the essential spectrum of ∆ le G,κθ is purely absolutely continuous and equal to σ ac (∆ le G,κθ ) = [e 1/2 + e -1/2 -2, e 1/2 + e -1/2 + 2], with multiplicity one, e.g., [We]. It has a unique eigenvalue and it is negative.

We turn to the high energy part. Denote by {λ i } i=1,...,n , with λ i ≤ λ i+1 , the eigenvalues of ∆ G2,κθ2 . Recall that λ 1 = 0 due to the fact that Hol κθ2 = 0. By (10),

1 m 1 (•) ⊗ ∆ G2,κθ2 P he κ ≤ ∆ G,κθ (1 ⊗ P he κ ) ≤ 2M + 1 m 1 (•)
⊗ ∆ G2,κθ2 P he κ .

Hence, ∆ G,κθ (1 ⊗ P he κ ) has a compact resolvent and

N λ-2M m -1 1 (•) ⊗ ∆ G2,κθ2 P he κ ≤ N λ ∆ G,κθ (1 ⊗ P he κ ) ≤ N λ m -1 1 (•) ⊗ ∆ G2,κθ2 P he κ ,
for all λ ≥ 0. Finally:

N λ ( 1 m1(•) ⊗ ∆ G2,κθ2 P he κ ) N λ 1 m1(•) ⊗ deg G2 ∼ n i=2 ln(λ) -ln(λ i ) n(ln(λ) -ln(deg G2 )) → n -1 n , as λ → ∞.
We conclude with (18) for a = 1.

V 1 :

 1 = N, m 1 (n) := exp(-n), and E 1 (n, n + 1) := exp(-(2n + 1)/2), for all n ∈ N and G 2 := (E 2 , V 2 , 1) a simple connected finite graph such that |V 2 | = n.