The magnetic Laplacian acting on discrete cusps
 Sylvain Golénia, Francoise Truc

To cite this version:

Sylvain Golénia, Francoise Truc. The magnetic Laplacian acting on discrete cusps. 2016. hal01174771v2

HAL Id: hal-01174771
 https://hal.science/hal-01174771v2

Preprint submitted on 24 Nov 2016 (v2), last revised 8 Jun 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE MAGNETIC LAPLACIAN ACTING ON DISCRETE CUSPS

SYLVAIN GOLÉNIA AND FRANÇOISE TRUC

Abstract

We introduce the notion of discrete cusp for a weighted graph. In this context, we prove that the form-domain of the magnetic Laplacian and that of the non-magnetic Laplacian can be different. We establish the emptiness of the essential spectrum and compute the asymptotic of eigenvalues for the magnetic Laplacian.

1. Introduction

The spectral theory of discrete Laplacians on graphs has drawn a lot of attention for decades. The spectral analysis of the Laplacian associated to a graph is strongly related to the geometry of the graph. Moreover, graphs are discretized versions of manifolds. In [MT, GM], it is shown that for a manifold with cusps, adding a magnetic field can drastically destroy the essential spectrum of the Laplacian. The aim of this article is to go along this line in a discrete setting.

We recall some standard definitions of graph theory. A graph is a triple $\mathcal{G}:=$ $(\mathcal{E}, \mathcal{V}, m)$, where \mathcal{V} is a countable set (the vertices), $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}_{+}$is symmetric, and $m: \mathcal{V} \rightarrow(0, \infty)$ is a weight. We say that \mathcal{G} is simple if $m=1$ and $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow$ $\{0,1\}$.

Given $x, y \in \mathcal{V}$, we say that (x, y) is an edge (or x and y are neighbors) if $\mathcal{E}(x, y)>0$. We denote this relationship by $x \sim y$ and the set of neighbors of x by $N_{\mathcal{G}}(x)$. We say that there is a loop at $x \in \mathcal{V}$ if $\mathcal{E}(x, x)>0$. A graph is connected if for all $x, y \in \mathcal{V}$, there exists a path γ joining x and y. Here, γ is a sequence $x_{0}, x_{1}, \ldots, x_{n} \in \mathcal{V}$ such that $x=x_{0}, y=x_{n}$, and $x_{j} \sim x_{j+1}$ for all $0 \leq j \leq n-1$. In this case, we set $|\gamma|:=n$. A graph \mathcal{G} is locally finite if $\left|N_{\mathcal{G}}(x)\right|$ is finite for all $x \in \mathcal{V}$. In the sequel, we assume that:

All graphs are locally finite, connected with no loops.

We endow a graph $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$ with the metric $\rho_{\mathcal{G}}$ defined by

$$
\rho_{\mathcal{G}}(x, y):=\inf \{|\gamma|, \gamma \text { is a path joining } x \text { and } y\} .
$$

The space of complex-valued functions acting on the set of vertices \mathcal{V} is denoted by $C(\mathcal{V}):=\{f: \mathcal{V} \rightarrow \mathbb{C}\}$. Moreover, $C_{c}(\mathcal{V})$ is the subspace of $C(\mathcal{V})$ of functions with finite support. We consider the Hilbert space

$$
\ell^{2}(\mathcal{V}, m):=\left\{f \in C(\mathcal{V}), \sum_{x \in \mathcal{V}} m(x)|f(x)|^{2}<\infty\right\}
$$

with the scalar product $\langle f, g\rangle:=\sum_{x \in \mathcal{V}} m(x) \overline{f(x)} g(x)$.
We equip \mathcal{G} with a magnetic potential $\theta: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ such that $\theta_{x, y}:=\theta(x, y)=$ $-\theta_{y, x}$ and $\theta(x, y):=0$ if $\mathcal{E}(x, y)=0$. We define the Hermitian form

$$
Q_{\mathcal{G}, \theta}(f):=\frac{1}{2} \sum_{x, y \in \mathcal{V}} \mathcal{E}(x, y)\left|f(x)-e^{\mathrm{i} \theta_{x, y}} f(y)\right|^{2}
$$

[^0]for all $f \in \mathcal{C}_{c}(\mathcal{V})$. There is a unique non-negative self-adjoint operator $\Delta_{\mathcal{G}, \theta}$ such that $\left\langle f, \Delta_{\mathcal{G}, \theta} f\right\rangle_{\ell^{2}(\mathcal{V}, m)}=Q_{\mathcal{G}, \theta}(f)$, for all $f \in \mathcal{C}_{c}(\mathcal{V})$. Moreover, the magnetic Laplacian acts as follows:
$$
\left(\Delta_{\mathcal{G}, \theta} f\right)(x)=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} \mathcal{E}(x, y)\left(f(x)-e^{\mathrm{i} \theta_{x, y}} f(y)\right)
$$
for all $f \in \mathcal{C}_{c}(\mathcal{V})$. Notice that $\Delta_{\mathcal{G}, \theta}$ is the Friedrichs extension of $\left.\Delta_{\mathcal{G}, \theta}\right|_{\mathcal{C}_{c}(\mathcal{V})}$, e.g., [RS]. We set
$$
\operatorname{deg}_{\mathcal{G}}(x):=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} \mathcal{E}(x, y)
$$
the degree of $x \in \mathcal{V}$. We see easily that $\Delta_{\mathcal{G}, \theta} \leq 2 \operatorname{deg}_{\mathcal{G}}(\cdot)$ in the form sense, i.e.,
\[

$$
\begin{equation*}
0 \leq\left\langle f, \Delta_{\mathcal{G}, \theta} f\right\rangle \leq\left\langle f, 2 \operatorname{deg}_{\mathcal{G}}(\cdot) f\right\rangle, \text { for all } f \in \mathcal{C}_{c}(\mathcal{V}) \tag{1}
\end{equation*}
$$

\]

Moreover, since $\left\langle\delta_{x}, \Delta_{\mathcal{G}, \theta} \delta_{x}\right\rangle=\operatorname{deg}_{\mathcal{G}}(x), \Delta_{\mathcal{G}, \theta}$ is bounded if and only if $\sup _{x \in \mathcal{V}} \operatorname{deg}_{\mathcal{G}}(x)$ is finite, e.g. [KL, Go].

Another consequence of (1) is

$$
\begin{equation*}
\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right) \subset \mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right) \tag{2}
\end{equation*}
$$

However, the equality of the form-domains

$$
\begin{equation*}
\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)=\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right) \tag{3}
\end{equation*}
$$

is wrong in general for a simple graph, see [Go, BGK]. In fact if $\theta=0,(2)$ is equivalent to a sparseness condition and holds true for planar simple graphs, see [BGK]. We refer to [BGKLM] for a magnetic sparseness condition. On a general weighted graph, if (3) holds true,

$$
\sigma_{\mathrm{ess}}\left(\Delta_{\mathcal{G}, \theta}\right)=\emptyset \Leftrightarrow\left(\Delta_{\mathcal{G}, \theta}+1\right)^{-1} \text { is compact } \Leftrightarrow \lim _{|x| \rightarrow \infty} \operatorname{deg}_{\mathcal{G}}(x)=\infty
$$

where $|x|:=\rho_{\mathcal{G}}\left(x_{0}, x\right)$ for a given $x_{0} \in \mathcal{V}$. Note that the limit is independent of the choice of x_{0}. Besides if the latter is true and if the graph is sparse (simple and planar for instance), [BGK] ensures the following asymptotic of eigenvalues,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda_{n}\left(\Delta_{\mathcal{G}, \theta}\right)}{\lambda_{n}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)}=1 \tag{4}
\end{equation*}
$$

where $\lambda_{n}(H)$ denotes the n-th eigenvalue, counted with multiplicity, of a self-adjoint operator H, which is bounded from below.

The technique used in [BGK] does not apply when the graph is a discrete cusp (thin at infinity), see Section 2.2 for this notion. The aim of this article is to establish new behaviors for the asymptotic of eigenvalues in the magnetic case, and also to prove that the form of domains of the non-magnetic Laplacian is different from that of the magnetic Laplacian, see Theorem 2.12. We found the inspiration by mimicking the continuous case, which was studied in [MT, GM].

Let us present a flavour of Theorem 2.12 we present part of our results through the following theorem.

Theorem 1.1. Let $n \geq 3$ be an integer. There exist a discrete cusp $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, a magnetic potential θ and a constant $\nu>0$ such that for all $\kappa \in \mathbb{R} / \nu \mathbb{Z}$

$$
\sigma_{\mathrm{ess}}\left(\Delta_{\mathcal{G}, \kappa \theta}\right)=\emptyset \Leftrightarrow \mathcal{D}\left(\Delta_{\mathcal{G}, \kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right) \Leftrightarrow \kappa \neq 0 \text { in } \mathbb{R} / \nu \mathbb{Z}
$$

Moreover:

1) When $\kappa \neq 0$ in $\mathbb{R} / \nu \mathbb{Z}$, we have:

$$
\lim _{\lambda \rightarrow \infty} \frac{\mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \kappa \theta}\right)}{\mathcal{N}_{\lambda}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)}=1
$$

where $\mathcal{N}_{\lambda}(H):=\operatorname{dim} \operatorname{ran}_{]_{-\infty, \lambda]}}(H)$ for a self-adjoint operator H.
2) When $\kappa=0$ in $\mathbb{R} / \nu \mathbb{Z}$, the absolutely continuous part of the $\Delta_{\mathcal{G}, \kappa \theta}$ is

$$
\sigma_{\mathrm{ac}}\left(\Delta_{\mathcal{G}, \kappa \theta}\right)=\left[e^{1 / 2}+e^{-1 / 2}-2, e^{1 / 2}+e^{-1 / 2}+2\right]
$$

with multiplicity 1 and

$$
\lim _{\lambda \rightarrow \infty} \frac{\mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \kappa \theta} P_{\mathrm{ac}, \kappa \kappa}^{\perp}\right)}{\mathcal{N}_{\lambda}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)}=\frac{n-1}{n},
$$

where $P_{\mathrm{ac}, \kappa}$ denotes the projection onto the a.c. part of $\Delta_{\mathcal{G}, \kappa \theta}$.
We now describe heuristically the phenomenon. Compared with the first case, the constant $(n-1) / n$ that appears in the second case encodes the fact that a part of the wave packet diffuses. Moreover, switching on the magnetic field is not a gentle perturbation because the form domain of the operator is changed.

By Riemann-Lebesgue Theorem, the particle, which is localized in the a.c. part of the operator, escapes from every compact set. More precisely, for a finite subset $X \subset \mathcal{V}$ and all $f \in \mathcal{D}\left(\Delta_{\mathcal{G}, 0}\right)$

$$
\left\|1_{\mathrm{X}}(\cdot) e^{\mathrm{i} t \Delta_{\mathcal{G}, 0}} P_{\mathrm{ac}, 0} f\right\| \rightarrow 0, \text { as } t \rightarrow \infty
$$

In the first case, when the magnetic potential is active, the spectrum of $\Delta_{\mathcal{G}, \kappa \theta}$ is purely discrete. The particle cannot diffuse anymore. More precisely, for a finite subset $X \subset \mathcal{V}$ and an eigenvalue f of $\Delta_{\mathcal{G}, \kappa \theta}$ such that $\left.f\right|_{X} \neq 0$, there is $c>0$ such that:

$$
\frac{1}{T} \int_{0}^{T}\left\|1_{\mathrm{X}}(\cdot) e^{\mathrm{i} t \Delta_{\mathcal{G}, \kappa \theta}} f\right\|^{2} d t \rightarrow c, \text { as } T \rightarrow \infty
$$

The particle is trapped by the magnetic field.

The magnetic field traps the particle by spinning it, whereas its absence lets the particle diffuse.

We now describe the structure of the paper. In Section 2.1, we recall some properties of the holonomy of a magnetic potential. In Section 2.2 we present our main hypotheses and several notions of (weighted) product for graphs. We introduce the notion of discrete cusp and analyze it under the light of the radius of injectivity. Then in Section 2.3 we give a criteria concerning the absence of essential spectrum. Next, in Section 2.4, we refine the analysis and give our central theorem, a general statement for discrete cusps, computing the form domain and the asymptotic of eigenvalues. We finish the section by proving Theorem 1.1.
Notation: \mathbb{N} denotes the set of non negative integers and \mathbb{N}^{*} that of the positive integers. We denote by $\mathcal{D}(H)$ the domain of an operator H. Its (essential) spectrum is denoted by $\sigma(H)$ (by $\left.\sigma_{\text {ess }}(H)\right)$. We set $\delta_{x, y}$ equals 1 if and only if $x=y$ and 0 otherwise and given a set $X, 1_{X}(x)$ equals 1 if $x \in X$ and 0 otherwise.
Acknowledgments: We would like to thank Colette Anné, Michel Bonnefont, Yves Colin de Verdière, and Sergiu Moroianu for useful discussions. SG and FT were partially supported by the ANR project GeRaSic (ANR-13-BS01-0007-01) and by SQFT (ANR-12-JS01-0008-01).

2. Main Results

2.1. Holonomy of a magnetic potential. We recall some facts about the gauge theory of magnetic fields, see [CTT3, HS] for more details and also [LLPP] for a different point of view. We recall that a gauge transform U is the unitary map on $\ell^{2}(\mathcal{V}, m)$ defined by

$$
(U f)(x)=u_{x} f(x)
$$

where $\left(u_{x}\right)_{x \in \mathcal{V}}$ is a sequence of complex numbers with $\left|u_{x}\right| \equiv 1$ (we write $u_{x}=e^{\mathrm{i} \sigma_{x}}$). The map U acts on the quadratic forms $Q_{\mathcal{G}, \theta}$ by $U^{\star}\left(Q_{\mathcal{G}, \theta}\right)(f)=Q_{\mathcal{G}, \theta}(U f)$, for all $f \in \mathcal{C}_{c}(\mathcal{V})$. The magnetic potential $U^{\star}(\theta)$ is defined by:

$$
U^{\star}\left(Q_{\mathcal{G}, \theta}\right)=Q_{\mathcal{G}, U^{\star}(\theta)}
$$

More explicitly, we get:

$$
U^{\star}(\theta)_{x y}=\theta_{x, y}+\sigma_{y}-\sigma_{x} .
$$

We turn to the definition of the flux of a magnetic potential, the Holonomy.
Proposition 2.1. Let us denote by $Z_{1}(\mathcal{G})$ the space of cycles of \mathcal{G}. It is is a free \mathbb{Z}-module with a basis of geometric cycles $\gamma=\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\ldots+\left(x_{N-1}, x_{N}\right)$ with, for $i=0, \cdots, N-1, \mathcal{E}\left(x_{i}, x_{i+1}\right) \neq 0$, and $x_{N}=x_{0}$. We define the holonomy $\operatorname{map} \operatorname{Hol}_{\theta}: Z_{1}(\mathcal{G}) \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$, by

$$
\operatorname{Hol}_{\theta}\left(\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\cdots+\left(x_{N}, x_{0}\right)\right):=\theta_{x_{0}, x_{1}}+\cdots+\theta_{x_{N}, x_{0}} .
$$

Then

1) The map $\theta \mapsto \operatorname{Hol}_{\theta}$ is surjective onto $\operatorname{Hom}_{\mathbb{Z}}\left(Z_{1}(\mathcal{G}), \mathbb{R} / 2 \pi \mathbb{Z}\right)$.
2) $\operatorname{Hol}_{\theta_{1}}=\operatorname{Hol}_{\theta_{2}}$ if and only if there exists a gauge transform U so that $U^{\star}\left(\theta_{2}\right)=\theta_{1}$.

The magnetic Schrödinger operator $\Delta_{\mathcal{G}, \theta}$ is uniquely defined up to unitary conjugation by \mathcal{G} and $\operatorname{Hol}_{\theta}$.

Lemma 2.2. Let $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$ be a connected graph of finite volume, i.e., such that $\sum_{x \in \mathcal{V}} m(x)<\infty$ and let θ be magnetic potential. Assume that the function 1 is in the domain of $\operatorname{ker} \Delta_{\mathcal{G}, \theta}$. Then $\operatorname{ker} \Delta_{\mathcal{G}, \theta} \neq\{0\}$ if and only if $\mathrm{Hol}_{\theta}=0$.
Proof. If $\operatorname{Hol}_{\theta}=0$ then $\Delta_{\mathcal{G}, \theta}$ is unitarily equivalent to $\Delta_{\mathcal{G}, 0}$ by Proposition 2.1. Since the volume is finite, the constant function is in the kernel of the latter.

Conversely, let $f \neq 0$ with $\Delta_{\mathcal{G}, \theta} f=0$ and hence $Q_{\mathcal{G}, \theta}(f)=0$. This implies that all terms in the expression of $Q_{\mathcal{G}, \theta}(f)$ vanish. In particular, if $\mathcal{E}(x, y) \neq 0$ we have

$$
\begin{equation*}
f(x)=e^{\mathrm{i} \theta_{x, y}} f(y) \tag{5}
\end{equation*}
$$

Assume that there is a cycle $\gamma=\left(x_{0}, x_{1}, \ldots, x_{N}=x_{0}\right)$, such that $\operatorname{Hol}_{\theta}(\gamma) \neq 0$. Using (5), we obtain that

$$
f\left(x_{i}\right)=e^{-\mathrm{i} \operatorname{Hol}_{\theta}(\gamma)} f\left(x_{i}\right)
$$

for all $i=0, \ldots, N-1$. Therefore $\left.f\right|_{\gamma}=0$. Then, since $f \neq 0$, there is $x \in \mathcal{V}$ such that $f(x) \neq 0$. Using again (5) and by connectedness between x and γ, it yields that $f(x)=0$. Contradiction. Therefore if there exists $f \in \operatorname{ker}\left(\Delta_{\mathcal{G}, \theta}\right) \backslash\{0\}$ then $\operatorname{Hol}_{\theta}=0$.

We exhibit the following coupling constant effect.
Corollary 2.3. Let $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$ be a connected graph of finite volume, i.e., such that $\sum_{x \in \mathcal{V}} m(x)<\infty$ and let θ be a magnetic potential. Assume that the function 1 is in the domain of $\operatorname{ker} \Delta_{\mathcal{G}, \theta}$. Then there is $\nu \in \mathbb{R}$ such that

$$
\operatorname{ker} \Delta_{\mathcal{G}, \lambda \theta} \neq\{0\} \Leftrightarrow \lambda=0 \text { in } \mathbb{R} / \nu \mathbb{Z}
$$

Proof. Let $\Phi:(\mathbb{R},+) \rightarrow\left(\operatorname{Hom}_{\mathbb{Z}}\left(Z_{1}(\mathcal{G}), \mathbb{R} / 2 \pi \mathbb{Z}\right),+\right)$ be defined by $\Phi(\lambda):=\operatorname{Hol}_{\lambda \theta}$. It is a homomorphism of group. Hence its kernel is either dense or equal to $\nu \mathbb{Z}$ for some $\nu \in \mathbb{R}$. Suppose that the kernel is dense. Since for any cycle γ of \mathcal{G}, the map $\lambda \mapsto \operatorname{Hol}_{\lambda \theta}(\gamma)$ is continuous from \mathbb{R} to $\mathbb{R} / 2 \pi \mathbb{Z}$, the kernel of Φ is \mathbb{R}.
2.2. The setting. Given $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, the Cartesian product of \mathcal{G}_{1} by \mathcal{G}_{2} is defined by $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where $\mathcal{V}:=\mathcal{V}_{1} \times \mathcal{V}_{2}$ and

$$
\left\{\begin{aligned}
m(x, y) & :=m_{1}(x) \times m_{2}(y), \\
\mathcal{E}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right): & =\mathcal{E}_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}} m_{2}(y)+m_{1}(x) \delta_{x, x^{\prime}} \times \mathcal{E}_{2}\left(y, y^{\prime}\right), \\
\theta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right): & =\theta_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}+\delta_{x, x^{\prime}} \times \theta_{2}\left(y, y^{\prime}\right),
\end{aligned}\right.
$$

We denote by $\mathcal{G}:=\mathcal{G}_{1} \times \mathcal{G}_{2}$. This definition generalizes the unweighted Cartesian product, e.g., [Ha]. It is used in several places in the literature, e.g., [Ch][Section 2.6] and in [BGKLM] for a generalization.

The graph of $\mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$
The terminology is motivated by the following decomposition:

$$
\Delta_{\mathcal{G}, \theta}=\Delta_{\mathcal{G}_{1}, \theta_{1}} \otimes 1+1 \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}},
$$

where $\ell^{2}(\mathcal{V}, m) \simeq \ell^{2}\left(\mathcal{V}_{1}, m_{1}\right) \otimes \ell^{2}\left(\mathcal{V}_{2}, m_{2}\right)$. The spectral theory of $\Delta_{\mathcal{G}, \theta}$ is wellunderstood since

$$
e^{\mathrm{i} t \Delta_{\mathcal{G}, \theta}}=e^{\mathrm{i} t \Delta_{\mathcal{G}_{1}, \theta_{1}}} \otimes e^{\mathrm{i} t \Delta_{\mathcal{G}_{2}, \theta_{2}}}, \text { for } t \in \mathbb{R} .
$$

We refer to [RS][Section VIII.10] for an introduction to the tensor product of selfadjoint operators.

In this paper, we are motivated by a geometrical situation. A hyperbolic manifold of finite volume is the union of a compact part and of a cusp, e.g., [Th, Theorem 4.5.7]. The cusp part can be seen as the product of $(1, \infty) \times M$, where $\left(M, g_{M}\right)$ is a possibly disconnected Riemannian manifold, endowed with the metric,

$$
y^{-1}\left(d y^{2}+g_{M}\right)
$$

On the cusp part, the infimum of the radius of injectivity is 0 .
To analyze the Laplacian on this product one separates the variables and obtain a decomposition which is not of the type of a Cartesian product, e.g., [GM, Eq. (5.22)] for some details. We aim at mimicking this situation and introduce a twisted Cartesian product. Given $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$, we define the product of \mathcal{G}_{1} by \mathcal{G}_{2} through \mathcal{I} by $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where $\mathcal{V}:=\mathcal{V}_{1} \times \mathcal{V}_{2}$ and

$$
\left\{\begin{aligned}
m(x, y): & =m_{1}(x) \times m_{2}(y), \\
\mathcal{E}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right): & \mathcal{E}_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}\left(\sum_{z \in \mathcal{I}} \delta_{y, z}\right)+\delta_{x, x^{\prime}} \times \mathcal{E}_{2}\left(y, y^{\prime}\right), \\
\theta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right): & =\theta_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}+\delta_{x, x^{\prime}} \times \theta_{2}\left(y, y^{\prime}\right),
\end{aligned}\right.
$$

for all $x, x^{\prime} \in \mathcal{V}_{1}$ and $y, y^{\prime} \in \mathcal{V}_{2}$. We denote \mathcal{G} by $\mathcal{G}_{1} \times_{\mathcal{I}} \mathcal{G}_{2}$. If \mathcal{I} is empty, the graph is disconnected and of no interest for our purpose. If $|\mathcal{I}|=1, \mathcal{G}_{1} \times \mathcal{I} \mathcal{G}_{2}$ is the graph \mathcal{G}_{1} decorated by \mathcal{G}_{2}, see [SA] for its spectral analysis in the unweighted case. If $\mathcal{I}=\mathcal{V}_{2}$ and $m=1$, we notice that $\mathcal{G}_{1} \times \mathcal{I} \mathcal{G}_{2}=\mathcal{G}_{1} \times \mathcal{G}_{2}$.

The graph of $\mathbb{Z} \times_{\mathcal{I}} \mathbb{Z} / 3 \mathbb{Z}$, with $|\mathcal{I}|=1$

The graph of $\mathbb{Z} \times \mathcal{I} \mathbb{Z} / 3 \mathbb{Z}$, with $|\mathcal{I}|=2$

The graph of $\mathbb{Z} \times_{\mathcal{I}} \mathbb{Z} / 3 \mathbb{Z}$, with $|\mathcal{I}|=3$
Under the representation $\ell^{2}(\mathcal{V}, m) \simeq \ell^{2}\left(\mathcal{V}_{1}, m_{1}\right) \otimes \ell^{2}\left(\mathcal{V}_{2}, m_{2}\right)$,

$$
\begin{equation*}
\operatorname{deg}_{\mathcal{G}}(\cdot)=\operatorname{deg}_{\mathcal{G}_{1}}(\cdot) \otimes \frac{1_{\mathcal{I}}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{\mathcal{G}, \theta}=\Delta_{\mathcal{G}_{1}, \theta_{1}} \otimes \frac{1_{\mathcal{I}}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}} \tag{7}
\end{equation*}
$$

If m is non-trivial, we stress that the Laplacian obtained with our product is usually not unitarily equivalent to the Laplacian obtained with the Cartesian product. However, there is a potential $V: \mathcal{V} \rightarrow \mathbb{R}$ such that $\Delta_{\mathcal{G}_{1} \times \mathcal{G}_{2}}$ is unitarily equivalent to $\Delta_{\mathcal{G}_{1} \times \mathcal{V}_{2} \mathcal{G}_{2}}+V(\cdot)$, in $\ell^{2}(\mathcal{V}, m)$.

Definition 2.4. Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$, $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$. We say that $\mathcal{G}=\mathcal{G}_{1} \times_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp if the following hypotheses are satisfied:
(H1) $m_{1}(x)$ tend to 0 as $|x| \rightarrow \infty$,
(H2) \mathcal{G}_{2} is finite,
(H3) $\Delta_{\mathcal{G}_{1}, \theta_{1}}$ is bounded (or equivalently $\sup _{x \in \mathcal{V}_{1}} \operatorname{deg}_{\mathcal{G}_{1}}(x)<\infty$).
We now motivate the choice of the above hypotheses by discussing the radius of injectivity. We start by defining a different metric on \mathcal{V}.
Definition 2.5. Given $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, the weighted length of an edge $(x, y) \in \mathcal{E}$ defined by:

$$
L_{\mathcal{G}}((x, y)):=\sqrt{\frac{\min (m(x), m(y))}{\mathcal{E}(x, y)}}
$$

Given $x, y \in \mathcal{V}$, we define the weighted distance from x to y with respect to this length by:

$$
\rho_{L_{\mathcal{G}}}(x, y)=\inf _{\gamma} \sum_{i=0}^{|\gamma|-1} L_{\mathcal{G}}(\gamma(i), \gamma(i+1))
$$

where γ is a path joining x to y.
The square root is not necessary for our purpose and seems unnatural. The choice is motivated by setting of intrinsic metrics, see [Ke] for a survey on this subject.

Finally we give the definition for the radius of injectivity in the discrete setting. We follow [BL].

Definition 2.6. Given $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, the girth at $x \in \mathcal{V}$ of \mathcal{G} w.r.t. the weighted length $L_{\mathcal{G}}$ is
$\operatorname{girth}(x):=\inf \left\{L_{\mathcal{G}}(\gamma), \gamma\right.$ simple cycle of unweighted length ≥ 3 and containing $\left.x\right\}$, where simple cycle means a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex. We use the convention that the girth is $+\infty$ if there is no such cycle.

$$
\operatorname{girth}(\mathcal{G}):=\inf _{x \in \mathcal{V}} \operatorname{girth}(x)
$$

The radius of injectivity (at x) of \mathcal{G} with respect to $L_{\mathcal{G}}$ is half the girth (at x). We denote the radius of injectivity by $\operatorname{rad}(\mathcal{G})$ (at x by $\operatorname{rad}(x)$ respectively)

Note that with this definition, the radius of injectivity of a tree is $+\infty$.
Proposition 2.7. Given $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$ Assume that $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. We have:
(1) $\operatorname{rad}\left(\mathcal{G}_{1}\right)>0$.
(2) If $\operatorname{rad}\left(\mathcal{G}_{2}\right)<\infty$, then $\operatorname{rad}(\mathcal{G})=0$.

Proof. (1) Assume that $\operatorname{rad}\left(\mathcal{G}_{1}\right)=0$. Then for all $\varepsilon>0$, there is $x \sim y$ in \mathcal{V}_{1} such that $L_{\mathcal{G}_{1}}((x, y))<\varepsilon$. In particular, we have $\operatorname{deg}_{\mathcal{G}_{1}}(x)>\varepsilon^{-2}$ or $\operatorname{deg}_{\mathcal{G}_{1}}(y)>\varepsilon^{-2}$. This is in contradiction with (H3).
(2) Since $\operatorname{rad}\left(\mathcal{G}_{2}\right)<\infty$, for all $x \in \mathcal{V}_{1}$, there is a pure cycle contained in $\{x\} \times \mathcal{V}_{2}$. Moreover, for all $x \in \mathcal{V}_{1}$ and $a \sim b$ in \mathcal{V}_{2}, since $\mathcal{E}(x, x)=0$, we have:

$$
L_{\mathcal{G}_{1} \times \mathcal{I}_{2}}(((x, a),(x, b)))=\sqrt{m_{1}(x)} L_{\mathcal{G}_{2}}((a, b))
$$

By (H1) we obtain that $\operatorname{rad}(\mathcal{G})=0$.
In contrast with this result we see that under the same hypotheses, the Cartesian product is not small at infinity. More precisely, we have:

Proposition 2.8. Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$. Assume that (H1), (H2), and (H3) are satisfied. Then $\operatorname{rad}\left(\mathcal{G}_{1} \times \mathcal{G}_{2}\right)>0$.
Proof. Assume that $\operatorname{rad}\left(\mathcal{G}_{1} \times \mathcal{G}_{2}\right)=0$. For all $\varepsilon>0$, there are $x_{1} \sim y_{1}$ in \mathcal{V}_{1} and $x_{2} \sim y_{2}$ in \mathcal{V}_{2} such that

$$
\left.\begin{array}{rl}
\varepsilon & >L_{\mathcal{G}_{1} \times \mathcal{G}_{2}}\left(\left(\left(x_{1}, x_{2}\right),\left(x_{1}, y_{2}\right)\right)\right)
\end{array}\right)=L_{\mathcal{G}_{2}}\left(\left(x_{2}, y_{2}\right)\right) .
$$

The first line is in contradiction with (H2) and the second line with (H3).
2.3. Destroying the essential spectrum. We have a first result of absence of essential spectrum. We refer to [CTT3] for related results based on the non-triviality of Hol_{θ} in the context of non-complete graphs. See also [BGKLM] for similar ideas.

Proposition 2.9. Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{G}:=\mathcal{G}_{1} \times \mathcal{I} \mathcal{G}_{2}$, with $|\mathcal{I}|>0$. Assume that (H1), (H2), and $\operatorname{Hol}_{\theta_{2}} \neq 0$ hold true. Then $\Delta_{\mathcal{G}, \theta}$ has a compact resolvent, and

$$
\mathcal{N}_{\lambda}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right) \geq \mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \theta}\right), \text { for all } \lambda \geq 0
$$

Proof. Note that

$$
\Delta_{\mathcal{G}, \theta} \geq \frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}
$$

in the form sense on $\mathcal{C}_{c}(\mathcal{V})$. Since (H1) and (H2) hold, Lemma 2.2 ensures that 0 is not in the spectrum of $\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)$. Hence the spectrum of the r.h.s. is purely discrete. By min-max theory, e.g., [Go], the operator $\Delta_{\mathcal{G}, \theta}$ has a compact resolvent.
2.4. The asymptotic of the eigenvalues. From now on, we focus on the case when the graph is a discrete cusp and aim at a more precise result. To start off, we give the key-stone of our approach:
Proposition 2.10. Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$ nonempty. Assume that $\mathcal{G}:=\mathcal{G}_{1} \times_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. We set

$$
\begin{equation*}
M:=\sup _{x \in \mathcal{V}_{1}} \operatorname{deg}_{\mathcal{G}_{1}}(x) \times \max _{y \in \mathcal{V}_{2}}\left(1 / m_{2}(y)\right)<\infty \tag{8}
\end{equation*}
$$

We have:

$$
\begin{gather*}
\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot) \leq \operatorname{deg}_{\mathcal{G}}(\cdot) \leq \frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot)+M \tag{9}\\
\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}} \leq \Delta_{\mathcal{G}, \theta} \leq 2 M+\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}} \tag{10}
\end{gather*}
$$

in the form sense on $\mathcal{C}_{c}(\mathcal{V})$.
Proof. Use (1), (6), and (7).
We work in the spirit of [Go, BGK, BGKLM] and compare the Laplacian directly with the degree.
Proposition 2.11. Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$ nonempty. Assume that $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. Set M as in (8). We have:

$$
\begin{equation*}
\frac{\inf \sigma\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}{\max _{y \in \mathcal{V}_{2}} \operatorname{deg}_{\mathcal{G}_{2}}(y)}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)-M\right) \leq \Delta_{\mathcal{G}, \theta} \leq 2 M+2 \operatorname{deg}_{\mathcal{G}}(\cdot) \tag{11}
\end{equation*}
$$

in the form sense on $\mathcal{C}_{c}(\mathcal{V})$.
Moreover, assuming that $\inf \sigma\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)>0$, then $\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)$. Furthermore, since $\lim _{|x| \rightarrow \infty} \operatorname{deg}_{\mathcal{G}}(x)=\infty, \Delta_{\mathcal{G}, \theta}$ has a compact resolvent and

$$
0<\frac{\inf \sigma\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}{\max _{y \in \mathcal{V}_{2}} \operatorname{deg}_{\mathcal{G}_{2}}(y)} \leq \liminf _{n \rightarrow \infty} \frac{\lambda_{n}\left(\Delta_{\mathcal{G}, \theta}\right)}{\lambda_{n}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)} \leq \limsup _{n \rightarrow \infty} \frac{\lambda_{n}\left(\Delta_{\mathcal{G}, \theta}\right)}{\lambda_{n}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)} \leq 2
$$

Proof. Use (10) and (1) to get

$$
\frac{\inf \sigma\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}{\max _{y \in \mathcal{V}_{2}} \operatorname{deg}_{\mathcal{G}_{2}}(y)} \frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot) \leq \Delta_{\mathcal{G}, \theta} \leq 2 M+\frac{2}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot)
$$

Then apply (9) to obtain (11). Concerning the statement about the eigenvalue this follows from the standard min-max theory, e.g., [Go].

Here, trying to compare directly $\Delta_{\mathcal{G}, \theta}$ to $\operatorname{deg}_{\mathcal{G}}$ to get sharp results about eigenvalues is too optimistic because it is unclear how to obtain constants arbitrarily close to 1 in front of $\operatorname{deg}_{\mathcal{G}}$, as in [Go, BGK]. To obtain some sharp asymptotics for the eigenvalues of $\Delta_{\mathcal{G}, \theta}$, as in (14), we will use directly (10) and analyze very carefully the operator $m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}$.
Theorem 2.12. Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$, $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$ non-empty. Assume that $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. We obtain that

$$
\begin{equation*}
\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right)=\mathcal{D}\left(m_{1}^{-1 / 2}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}^{1 / 2}\right) \tag{12}
\end{equation*}
$$

Moreover, we have:

1) $\Delta_{\mathcal{G}, \theta}$ has a compact resolvent if and only if $\operatorname{Hol}_{\theta_{2}} \neq 0$.
2) Assuming that $\mathrm{Hol}_{\theta_{2}} \neq 0$,

$$
\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}\left(\Delta_{\mathcal{G}, \theta}\right)}{\lambda_{n}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}=1
$$

Furthermore,

$$
\begin{equation*}
\mathcal{N}_{\lambda-2 M}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right) \leq \mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \theta}\right) \leq \mathcal{N}_{\lambda}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right), \tag{13}
\end{equation*}
$$

for all $\lambda \geq 0$.
3) Suppose that $\operatorname{deg}_{\mathcal{G}_{2}}$ is constant on \mathcal{V}_{2}. Take θ_{2} such that $\operatorname{Hol}_{\theta_{2}} \neq 0$. Then, for all $a \in\left[1,+\infty\left[\right.\right.$, one can choose m_{1} such that

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \frac{\mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \theta}\right)}{\mathcal{N}_{\lambda}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)}=a \tag{14}
\end{equation*}
$$

Proof. First note that (12) follows directly from (10). Denoting by $\left\{g_{i}\right\}_{i=1, \ldots,\left|\mathcal{V}_{2}\right|}$ the eigenfunctions associated to the eigenvalues $\left\{\lambda_{i}\right\}_{i=1, \ldots,\left|\mathcal{V}_{2}\right|}$ of $\Delta_{\mathcal{G}_{2}, \theta_{2}}$, where $\lambda_{j} \leq$ λ_{j+1}, we see that the eigenfunctions of $m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}}$ are given by $\left\{\delta_{x} \otimes g_{i}\right\}$, where $x \in \mathcal{V}_{1}$ and $i=1, . .,\left|\mathcal{V}_{2}\right|$. Then, using (H1), we observe that

$$
\sigma\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}}\right)=\overline{m_{1}^{-1}\left(\mathcal{V}_{1}\right) \times\left\{\lambda_{1}, \ldots, \lambda_{\left|\mathcal{V}_{2}\right|}\right\}}=m_{1}^{-1}\left(\mathcal{V}_{1}\right) \times\left\{\lambda_{1}, \ldots, \lambda_{\left|\mathcal{V}_{2}\right|}\right\}
$$

Besides, $0 \in \sigma\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}}\right)$ if and only if 0 is an eigenvalue of $m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}}$ of infinite multiplicity if and only if $\lambda_{1}=0$ if and only if $\operatorname{Hol}_{\theta_{2}}=0$, by Lemma 2.2. Moreover, recalling (H1), we see that all the eigenvalues of $m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}}$ which are not 0 are of finite multiplicity. Therefore, $m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}}$ has a compact resolvent if and only if $\operatorname{Hol}_{\theta_{2}} \neq 0$. Combining the latter and (10), the min-max theory yields the first point.

We turn to the second point and assume that $\mathrm{Hol}_{\theta_{2}} \neq 0$. The equality of the form-domains is given by (11). Taking in account (10), the min-max theory ensures the asymptotic behavior of λ_{n} and the inequalities (13).

We finish with the third point. Note that (9) yields
$\mathcal{N}_{\lambda-M}\left(m_{1}^{-1}(\cdot) \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right) \leq \mathcal{N}_{\lambda}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right) \leq \mathcal{N}_{\lambda}\left(m_{1}^{-1}(\cdot) \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right)$, for all $\lambda \geq 0$.
Recalling (13), we compare the l.h.s. with $\mathcal{N}_{\lambda}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right)$. Since $\operatorname{Hol}_{\theta_{2}} \neq 0$, $\lambda_{i} \neq 0$ for all $i=1, \ldots,\left|\mathcal{V}_{2}\right|$. We have:

$$
\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right)=\left|\left\{(x, i), \frac{\lambda_{i}}{m_{1}(x)} \leq \lambda\right\}\right|=\sum_{i=1}^{\left|\mathcal{V}_{2}\right|}\left|\left(\frac{1}{m_{1}}\right)^{-1}\left(\left[0, \frac{\lambda}{\lambda_{i}}\right]\right)\right| .
$$

On the other hand,

$$
\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right)=\left|\mathcal{V}_{2}\right| \times\left|\left(\frac{1}{m_{1}}\right)^{-1}\left(\left[0, \frac{\lambda}{\operatorname{deg}_{\mathcal{G}_{2}}}\right]\right)\right| .
$$

Take $\left(\mathcal{E}_{1}, \mathcal{V}_{1}\right)$ to be the simple graph of \mathbb{N}^{*} and choose $m_{1}(x):=\exp (-x)$. We get:

$$
\frac{\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}{\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right)} \sim \frac{\sum_{i=1}^{\left|\mathcal{V}_{2}\right|} \ln (\lambda)-\ln \left(\lambda_{i}\right)}{\left|\mathcal{V}_{2}\right|\left(\ln (\lambda)-\ln \left(\operatorname{deg}_{\mathcal{G}_{2}}\right)\right)} \rightarrow 1, \text { as } \lambda \rightarrow \infty
$$

and for all $c \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \frac{\mathcal{N}_{\lambda-c}\left(\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right)}{\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right)}=1 \tag{15}
\end{equation*}
$$

This gives the third point with $a=1$.
Setting $\alpha>0$ and $m_{1}(x):=x^{-1 / \alpha}$, we obtain:

$$
\frac{\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}{\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right)} \underset{\lambda \rightarrow \infty}{\sim} \frac{1}{\left|\mathcal{V}_{2}\right|} \sum_{i=1}^{\left|\mathcal{V}_{2}\right|}\left(\frac{\operatorname{deg}_{\mathcal{G}_{2}}}{\lambda_{i}}\right)^{\alpha} \rightarrow\left\{\begin{array}{cl}
1, & \text { if } \alpha \rightarrow 0 \\
+\infty, & \text { if } \alpha \rightarrow \infty
\end{array}\right.
$$

The limit as $\alpha \rightarrow 0$ being obvious, we focus on the limit as $\alpha \rightarrow \infty$. The adjacency operator $\mathcal{A}_{\mathcal{G}, \theta}:=\operatorname{deg}_{\mathcal{G}_{2}}-\Delta_{\mathcal{G}_{2}, \theta_{2}}$ acts as

$$
\left(\mathcal{A}_{\mathcal{G}, \theta} f\right)(x)=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} e^{\mathrm{i} \theta_{x, y}} f(y), \text { for all } f \in \mathcal{C}_{c}(\mathcal{V})
$$

Taking the trace, we obtain $\sum_{i=1}^{\left|\mathcal{V}_{2}\right|}\left(\operatorname{deg}_{\mathcal{G}_{2}}-\lambda_{i}\right)=0$. We deduce that there exists at least one eigenvalue λ_{i}, with $1 \leq i \leq\left|\mathcal{V}_{2}\right|$ so that $\operatorname{deg}_{\mathcal{G}_{2}}-\lambda_{i}>0$, hence the result.

Moreover, (15) still holds true. By continuity with respect to α, we obtain the third point for all $a \in[1,+\infty[$.

Remark 2.13. In the case when $\operatorname{Hol}_{\theta_{2}}=0$, for instance when $\theta_{2}=0$, we see that the form-domain is $m_{1}^{-1 / 2} \otimes P_{\operatorname{ker}\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}^{\perp}$. In particular, the form-domain is not that of $\operatorname{deg}_{\mathcal{G}}(\cdot)$. Indeed if the two form-domains are the same, the closed graph theorem yields the existence of $c_{1}>0$ and $c_{2}>0$ so that

$$
c_{1} \operatorname{deg}_{\mathcal{G}}(\cdot)-c_{2} \leq m_{1}^{-1 / 2} \otimes P_{\operatorname{ker}\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}^{\perp}
$$

in the form sense on $\mathcal{C}_{c}(\mathcal{V})$. However, note that $0 \in \sigma_{\mathrm{ess}}\left(m_{1}^{-1 / 2} \otimes P_{\operatorname{ker}\left(\Delta_{\left.\mathcal{G}_{2}, \theta_{2}\right)}\right)}^{\perp}\right)$. whereas $\operatorname{deg}(\cdot)$ has a compact resolvent. This is a contradiction with the min-max theory. We obtain:

$$
\begin{aligned}
\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) & \Leftrightarrow \operatorname{Hol}_{\theta_{2}} \neq 0 \\
& \Leftrightarrow \Delta_{\mathcal{G}, \theta} \text { has a compact resolvent. }
\end{aligned}
$$

Remark 2.14. In [Go, BGK], the asymptotic in \mathcal{N}_{λ} was not discussed since the estimates that they obtain seem too weak to conclude. Being able to compute \mathcal{N}_{λ} in an explicit way, as in (14), is a new phenomenon.

We end this section by proving the results stated in the introduction.
Proof of Theorem 1.1. Let us consider $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$, where

$$
\mathcal{V}_{1}:=\mathbb{N}, \quad m_{1}(n):=\exp (-n), \text { and } \mathcal{E}_{1}(n, n+1):=\exp (-(2 n+1) / 2)
$$

for all $n \in \mathbb{N}$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, 1\right)$ a simple connected finite graph such that $\left|\mathcal{V}_{2}\right|=n$. Set $\mathcal{G}:=\mathcal{G}_{1} \times \mathcal{V}_{2} \mathcal{G}_{2}, \theta_{1}:=0$ and θ_{2} such that $\operatorname{Hol}_{\theta_{2}} \neq 0$.

In the spirit of $[\mathrm{GM}]$, we have that $\Delta_{\mathcal{G}, \kappa \theta}:=\Delta_{\mathcal{G}, \kappa \theta}^{\mathrm{le}} \oplus \Delta_{\mathcal{G}, \kappa \theta}^{\mathrm{he}}$, where

$$
\Delta_{\mathcal{G}, \kappa \theta}^{\mathrm{le}}:=\Delta_{\mathcal{G}_{1}, 0} \otimes P_{\kappa}^{\mathrm{le}}
$$

on $\left(1 \otimes P_{\kappa}^{\text {le }}\right) \ell^{2}(\mathcal{V}, m)$, where $P_{\kappa}^{\text {le }}$ is the projection on $\operatorname{ker}\left(\Delta_{\mathcal{G}_{2}, \kappa \theta_{2}}\right)$ and where

$$
\Delta_{\mathcal{G}, \kappa \theta}^{\mathrm{he}}:=\Delta_{\mathcal{G}_{1}, 0} \otimes P_{\kappa}^{\mathrm{he}}+\frac{1}{m_{1}(\cdot)} \otimes P_{\kappa}^{\mathrm{he}} \Delta_{\mathcal{G}_{2}, \kappa \theta_{2}}
$$

on $\left(1 \otimes P_{\kappa}^{\text {he }}\right) \ell^{2}(\mathcal{V}, m)$, where $P_{\kappa}^{\text {he }}$ is the projection on $\operatorname{ker}\left(\Delta_{\mathcal{G}_{2}, \kappa \theta_{2}}\right)^{\perp}$. Here le stands for low energy and he for high energy.

By Lemma 2.2, Corollary 2.3, and Remark 2.13, there exists $\nu>0$ such that

$$
\begin{aligned}
P_{\kappa}^{\mathrm{le}}=0 & \Leftrightarrow \quad \operatorname{Hol}_{\kappa \theta_{2}} \neq 0 \\
& \Leftrightarrow \kappa \neq 0 \text { in } \mathbb{R} / \nu \mathbb{Z} \quad \Leftrightarrow \quad \mathcal{D}\left(\Delta_{\mathcal{G}, \kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)
\end{aligned}
$$

The proof of Theorem 2.12 gives the first point. Assume that $\kappa \in \mathbb{R} / \nu \mathbb{Z}$. Let $U: \ell^{2}\left(\mathbb{N}, m_{1}\right) \rightarrow \ell^{2}(\mathbb{N}, 1)$ be the unitary map given by $U f(n):=\sqrt{m_{1}(n)} f(n)$. We see that:

$$
U \Delta_{\mathcal{G}, \kappa \theta}^{\mathrm{le}} U^{-1}=\Delta_{\mathbb{N}, 0}+\left(e^{-1 / 2}-1\right) \delta_{0}+e^{1 / 2}+e^{-1 / 2}-2 \text { in } \ell^{2}(\mathbb{N})
$$

where $\Delta_{\mathbb{N}, 0}$ is related to the simple graph of \mathbb{N}. By using for instance some Jacobi matrices techniques, it is well-known that the essential spectrum of $\Delta_{\mathcal{G}, k \theta}^{\mathrm{le}}$ is purely absolutely continuous and equal to

$$
\sigma_{\mathrm{ac}}\left(\Delta_{\mathcal{G}, \kappa \theta}^{\mathrm{le}}\right)=\left[e^{1 / 2}+e^{-1 / 2}-2, e^{1 / 2}+e^{-1 / 2}+2\right]
$$

with multiplicity one, e.g., [We]. It has a unique eigenvalue and it is negative.
We turn to the high energy part. Denote by $\left\{\lambda_{i}\right\}_{i=1, \ldots, n}$, with $\lambda_{i} \leq \lambda_{i+1}$, the eigenvalues of $\Delta_{\mathcal{G}_{2}, \kappa \theta_{2}}$. Recall that $\lambda_{1}=0$ due to the fact that $\operatorname{Hol}_{\kappa \theta_{2}}=0$. $\mathrm{By}(10)$,

$$
\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \kappa \theta_{2}} P_{\kappa}^{\mathrm{he}} \leq \Delta_{\mathcal{G}, \kappa \theta}\left(1 \otimes P_{\kappa}^{\mathrm{he}}\right) \leq 2 M+\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \kappa \theta_{2}} P_{\kappa}^{\mathrm{he}} .
$$

Hence, $\Delta_{\mathcal{G}, \kappa \theta}\left(1 \otimes P_{\kappa}^{\text {he }}\right)$ has a compact resolvent and

$$
\begin{aligned}
& \mathcal{N}_{\lambda-2 M}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \kappa \theta_{2}} P_{\kappa}^{\mathrm{he}}\right) \leq \mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \kappa \theta}\left(1 \otimes P_{\kappa}^{\mathrm{he}}\right)\right) \\
& \leq \mathcal{N}_{\lambda}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \kappa \theta_{2}} P_{\kappa}^{\mathrm{he}}\right),
\end{aligned}
$$

for all $\lambda \geq 0$. Finally:

$$
\frac{\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \kappa \theta_{2}} P_{\kappa}^{\text {he }}\right)}{\mathcal{N}_{\lambda}\left(\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}\right)} \sim \frac{\sum_{i=2}^{n} \ln (\lambda)-\ln \left(\lambda_{i}\right)}{n\left(\ln (\lambda)-\ln \left(\operatorname{deg}_{\mathcal{G}_{2}}\right)\right)} \rightarrow \frac{n-1}{n}, \text { as } \lambda \rightarrow \infty
$$

We conclude with (15) for $a=1$.

References

[BGK] M.Bonnefont, S.Golénia, and M.Keller: Eigenvalue asymptotics for Schrödinger operators on sparse graphs, to appear in Ann. Inst. Fourier.
[BGKLM] M.Bonnefont, M.Keller, S.Golénia, S.Liu, and F.Münch: Magnetic sparseness and Schrödinger operators on graphs, in preparation.
[BL] S.Brooks and E.Lindenstrauss: Non-localization of eigenfunctions on large regular graphs, Israel J. Math. 193 (2013), no. 1, 1-14.
[CTT2] Y.Colin de Verdière, N.Torki-Hamza, and F.Truc: Essential self-adjointness for combinatorial Schrödinger operators II: metrically non complete graphs, Math. Phys. Anal. Geom. 14 (2011), no. 1, 21-38.
[CTT3] Y.Colin de Verdière, N.Torki-Hamza, and F.Truc: Essential self-adjointness for combinatorial Schrödinger operators III: Magnetic fields, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), no. 3, 599-611.
[Ch] F.R.K. Chung: Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. xii+207 pp. ISBN: 0-8218-0315-8
[DM] J. Dodziuk and V. Matthai: Kato's inequality and asymptotic spectral properties for discrete magnetic Laplacians. The ubiquitous heat kernel, Cont. Math. 398, Am. Math. Soc. (2006), 69-81.
[Go] S.Golénia: Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians, J. Funct. Anal. 266 (2014), no. 5, 2662-2688.
[Ha] F.Harary: Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London 1969 ix+274 pp.
[GM] S.Golénia and S.Moroianu: Spectral analysis of magnetic Laplacians on conformally cusp manifolds, Ann. Henri Poincaré 9 (2008), no. 1, 131-179.
[HS] Y.Higuchi and T.Shirai: Weak Bloch property for discrete magnetic Schrödinger operators, Nagoya Math. J. 161 (2001), 127-154.
[Ke] M.Keller: Intrinsic metric on graphs: a survey, Mathematical technology of networks, 81-119, Springer Proc. Math. Stat., 128, Springer, Cham, 2015.
[KL] M.Keller and D.Lenz: Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom. 5, no. 4, (2010) 198-224.
[LLPP] C. Lange, S. Liu, N. Peyerimhoff, and O. Post: Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians, Calc. Var. Partial Differential Equations 54, no. 4, (2015), 4165-4196.
[MT] A.Morame and F.Truc: Magnetic bottles on geometrically finite hyperbolic surfaces, J. Geom. Phys. 59 (2009), no. 7, 1079-1085.
[RS] M. Reed and B. Simon: Methods of Modern Mathematical Physics, Tome I-IV: Analysis of operators Academic Press.
[SA] J.Schenker and M.Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), no. 3, 253-262.
[Th] W.P. Thurston: Three-Dimensional Geometry and Topology - Volume 1, Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997.
[We] J. Weidmann: Zur Spektraltheorie von Sturm-Liouville-Operatoren, Math. Z. 981967 268-302.

Institut de Mathématiques de Bordeaux, 351, cours de la Libération F-33405 Talence CEDEX

E-mail address: sylvain.golenia@math.u-bordeaux.fr
Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d'Hères Cedex, France

E-mail address: francoise.truc@ujf-grenoble.fr

[^0]: 2010 Mathematics Subject Classification. 34L20, 47A10, 05C63, 47B25, 47A63, 81Q10.
 Key words and phrases. discrete magnetic Laplacian, locally finite graphs, eigenvalues, asymptotic, form-domain.

