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THE MAGNETIC LAPLACIAN ACTING ON DISCRETE CUSPS

SYLVAIN GOLÉNIA AND FRANÇOISE TRUC

Abstract. We study several toy-models of cups-like weighted graphs. We
prove that the form-domain of the magnetic Laplacian and that of the non-
magnetic Laplacian can be different. We establish the emptiness of the es-
sential spectrum and compute the asymptotic of eigenvalues for the magnetic
Laplacian.

1. Introduction

The spectral theory of discrete Laplacians on graphs has drawn a lot of attention
for decades. The spectral analysis of the Laplacian associated to a graph is strongly
related to the geometry of the graph. Moreover, graphs are discretized versions of
manifolds. In [AbTr, GoMo], it is shown that for a manifold with cusps, adding a
magnetic field can drastically destroy the essential spectrum of the Laplacian. The
aim of this article is to go along this line in a discrete setting.

We recall some standard definitions of graph theory. A graph is a triple G :=
(E ,V ,m), where V is countable set (the vertices), E : V × V → R+ (the edges) is
symmetric, and m : V → (0,∞) is a weight. We say that G is simple if m = 1 and
E : V × V → {0, 1}.

Given x, y ∈ V , we say that x and y are neighbors if E(x, y) > 0. We denote this
relationship by x ∼ y and the set of neighbors of x by NG(x). We say there is a loop
at x ∈ V if E(x, x) > 0. A graph is connected if for all x, y ∈ V , there exists a path γ
joining x and y. Here, γ is a sequence x0, x1, ..., xn ∈ V such that x = x0, y = xn,
and xj ∼ xj+1 for all 0 ≤ j ≤ n − 1. In this case, we set |γ| := n. A graph G is
locally finite if |NG(x)| is finite for all x ∈ V . In the sequel, we assume that:

All graphs are locally finite, connected with no loops.

We endow a graph G := (E ,V ,m) with the metric ρG defined by

ρG(x, y) := inf{|γ|, γ is a path joining x and y}.

The space of complex-valued functions acting on the set of vertices V is denoted by
C(V) := {f : V → C}. Moreover, Cc(V) is the subspace of C(V) of functions with
finite support. We consider the Hilbert space

ℓ2(V ,m) :=

{

f ∈ C(V),
∑

x∈V

m(x)|f(x)|2 < ∞

}

with the scalar product 〈f, g〉 :=
∑

x∈V m(x)f(x)g(x).
We equip G with a magnetic potential θ : V × V → R such that θx,y := θ(x, y) =

−θy,x and θ(x, y) := 0 if E(x, y) = 0. We define the Hermitian form

QG,θ(f) :=
1

2

∑

x,y∈V

E(x, y)
∣

∣f(x)− eiθx,yf(y)
∣

∣

2
,
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for all f ∈ Cc(V). There is a unique non-negative self-adjoint operator ∆G,θ such that
〈f,∆G,θf〉ℓ2(V,m) = QG,θ(f), for all f ∈ Cc(V). Moreover, the magnetic Laplacian
acts as follows:

(∆G,θf)(x) =
1

m(x)

∑

y∈V

E(x, y)(f(x) − eiθx,yf(y)),

for all f ∈ Cc(V). Notice that ∆G,θ is the Friedrichs extension of ∆G,θ|Cc(V), e.g.,
[RS]. We set

degG(x) :=
1

m(x)

∑

y∈V

E(x, y),

the degree of x ∈ V . We see easily that ∆G,θ ≤ 2 degG(·) in the form sense, i.e.,

0 ≤ 〈f,∆G,θf〉 ≤ 〈f, 2 degG(·)f〉, for all f ∈ Cc(V).(1)

Moreover, since 〈δx,∆G,θδx〉 = degG(x), ∆G,θ is bounded if and only if supx∈V degG(x)
is finite, e.g. [KL, Go].

Another consequence of (1) is

D
(

deg
1/2
G (·)

)

⊂ D
(

∆
1/2
G,θ

)

.(2)

However, the equality of the form-domains

D
(

deg
1/2
G (·)

)

= D
(

∆
1/2
G,θ

)

(3)

is wrong in general for a simple graph, see [Go, BGK]. In fact if θ = 0, (2) is
equivalent to a sparseness condition and holds true for planar simple graphs, see
[BGK]. On a general weighted graph, if (3) holds true,

σess(∆G,θ) = ∅ ⇔ (∆G,θ + 1)−1 is compact ⇔ lim
|x|→∞

degG(x) = ∞,

where |x| := ρG(x0, x) for a given x0 ∈ V . Note that the limit is independent of
the choice of x0. Besides if the latter is true and if the graph is sparse (simple and
planar for instance), [BGK] ensures the following asymptotic of eigenvalues,

lim
n→∞

λn (∆G,θ)

λn

(

degG(·)
) = 1,(4)

where λn(H) denotes the n-th eigenvalue, counted with multiplicity, of a self-adjoint
operator H , which is bounded from below.

The technique used in [BGK] does not apply when the graph is cusp-like (thin
at infinity). The aim of this article is to establish new behaviors for the asymptotic
of eigenvalues, in the magnetic case and also to prove that the form of domains
of the non-magnetic Laplacian is different from that of the magnetic Laplacian.
We find the inspiration by mimicking the continuous case, which was studied in
[AbTr, GoMo].

We present part of our results through the following theorem.

Theorem 1.1. Let n ≥ 3 be an integer. There exist a graph G := (E ,V ,m), a
magnetic potential θ, a constant ν > 0 such that for all κ ∈ R

σess(∆G,κθ) = ∅ ⇔ D
(

∆
1/2
G,κθ

)

= D
(

deg
1/2
G (·)

)

⇔ κ /∈ R/νZ.

Moreover:

1) When κ /∈ R/νZ, we have:

lim
λ→∞

Nλ (∆G,κθ)

Nλ

(

degG(·)
) = 1,

where Nλ(H) := dim ran1]−∞,λ](H) for a self-adjoint operator H.
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2) When κ ∈ R/νZ, the absolutely continuous part of the ∆G,κθ is

σac (∆G,κθ) =
[

e1/2 + e−1/2 − 2, e1/2 + e−1/2 + 2
]

,

with multiplicity 1 and

lim
λ→∞

Nλ

(

∆G,κθP
⊥
ac,κ

)

Nλ

(

degG(·)
) =

n− 1

n
,

where Pac,κ denotes the projection onto the a.c. part of ∆G,κθ.

We now describe heuristically the phenomenon. Compared with the first point,
the constant (n − 1)/n that appears in the second point encodes the fact that a
part of the wave packet diffuses. Moreover, switching on the magnetic field is not a
gentle perturbation because the form domain of the operator is changed.

By Riemann-Lebesgue Theorem, the particle, which is localized in the a.c. part
of the operator, escapes to every compact set. More precisely, for a finite subset
X ⊂ V and all f ∈ D(∆G,0)

‖1X(·)e
it∆G,0Pac,0f‖ → 0, as t → ∞.

Whereas, when the magnetic potential is active, the spectrum of ∆G,κθ is purely
discrete. The particle cannot diffuse anymore. More precisely, for a finite subset
X ⊂ V and an eigenvalue f of ∆G,κθ such that f |X 6= 0, there is c > 0 such that:

1

T

∫ T

0

‖1X(·)e
it∆G,κθf‖2 dt → c, as T → ∞.

The particle is trapped by the magnetic field.

· · · · · ·

Diffusion

Magnetic effect

A cusp-like representation of Z× Z/3Z:

The magnetic field traps the particle by spinning it,

whereas its absence let the particle diffuse.

We now describe the structure of the paper. In Section 2.1, we recall some
properties of the holonomy of a magnetic potential. Besides, in Section 2.2 we
present our main hypotheses and several notions of (weighted) product fo graphs.
Then in Section 2.3 we give a criteria of absence of essential spectrum. Next, in
Section 2.4, we refine the analysis and compute the asymptotic of eigenvalues. We
present the central theorem and finish the section by proving Theorem 1.1.
Notation: N denotes the set of non negative integers and N∗ that of the positive
integers. We denote by D(H) the domain of an operatorH . Its (essential) spectrum
is denoted by σ(H) (by σess(H)). We set δx,y equals 1 if and only if x = y and 0
otherwise and given a set X , 1X(x) equals 1 if x ∈ X and 0 otherwise.
Acknowledgments: We would like to thank Michel Bonnefont, Yves Colin de
Verdière, and Sergiu Moroianu for useful discussions. SG and FT were partially
supported by the ANR project GeRaSic (ANR-13-BS01-0007-01) and by SQFT
(ANR-12-JS01-0008-01).
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2. Main results

2.1. Holonomy of a magnetic potential. We recall some facts about the gauge
theory of magnetic fields, see [CTT3, HiSh] for more details. We recall that a gauge
transform U is the unitary map on ℓ2(V ,m) defined by

(Uf)(x) = uxf(x),

where (ux)x∈V is a sequence of complex numbers with |ux| ≡ 1 (we write ux = eiσx).
The map U acts on the quadratic forms QG,θ by U⋆(QG,θ)(f) = QG,θ(Uf), for all
f ∈ Cc(V). The magnetic potential U⋆(θ) is defined by:

U⋆(QG,θ) = QG,U⋆(θ).

More explicitly, we get:
U⋆(θ)xy = θx,y + σy − σx.

We turn to the definition of the flux of a magnetic potential, the Holonomy.

Proposition 2.1. Let us denote by Z1(G) the space of cycles of G. It is is a free
Z−module with a basis of geometric cycles γ = (x0, x1)+(x1, x2)+ . . .+(xN−1, xN )
with, for i = 0, · · · , N − 1, E(xi, xi+1) 6= 0, and xN = x0. We define the holonomy
map Holθ : Z1(G) → R/2πZ, by

Holθ ((x0, x1) + (x1, x2) + · · ·+ (xN , x0)) := θx0,x1
+ · · ·+ θxN ,x0

.

Then

1) The map θ 7→ Holθ is surjective onto HomZ(Z1(G),R/2πZ).
2) Holθ1 = Holθ2 if and only if there exists a gauge transform U so that U⋆(θ2) = θ1.

The magnetic Schrödinger operator ∆G,θ is uniquely defined up to unitary con-
jugation by G and Holθ.

Lemma 2.2. Let G := (E ,V ,m) be a connected graph of finite volume, i.e., such
that

∑

x∈V m(x) < ∞ and let θ be magnetic potential. We have ker∆G,θ 6= {0} if
and only if Holθ = 0.

Proof. If Holθ = 0 then ∆G,θ is unitarily equivalent to ∆G,0 by Proposition 2.1.
Since the volume is finite, the constant function is in the kernel of the latter.

Conversely, let f 6= 0 with ∆G,θf = 0 and hence QG,θ(f) = 0. This implies that
all terms in the expression of QG,θ(f) vanish. In particular, if E(x, y) 6= 0 we have

(5) f(x) = eiθx,yf(y).

Assume that there is a cycle γ = (x0, x1, . . . , xN = x0), such that Holθ(γ) 6= 0.
Using (5), we obtain that

f(xi) = e−iHolθ(γ)f(xi) .

for all i = 0, . . . , N − 1. Therefore f |γ = 0. Then, since f 6= 0, there is x ∈ V such
that f(x) 6= 0. Using again (5) and by connectedness between x and γ, it yields
that f(x) = 0. Contradiction. Therefore if there exists f ∈ ker (∆G,θ) \ {0} then
Holθ = 0. �

2.2. The setting. Given G1 := (E1,V1,m1) and G2 := (E2,V2,m2) and I ⊂ V2, we
define the product of G1 by G2 through I by G := (E ,V ,m), where V := V1 ×V2 and







m(x, y) := m1(x)×m2(y),
E ((x, y), (x′, y′)) := E1(x, x′)× δy,y′

(
∑

z∈I δy,z
)

+ δx,x′ × E2(y, y′),
θ ((x, y), (x′, y′)) := θ1(x, x

′)× δy,y′ + δx,x′ × θ2(y, y
′),

for all x, x′ ∈ V1 and y, y′ ∈ V2. We denote G by G1 ×I G2. If I is empty, the graph
is disconnected and of no interest for our purpose. If |I| = 1, G1 ×I G2 is the graph
G1 decorated by G2, see [ScAi] for its spectral analysis in the unweighted case. If
I = V2, G1 ×I G2 = G1 × G2, the Cartesian product of G1 by G2.
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· · · · · ·

The graph of Z The graph of Z/3Z

· · · · · ·

The graph of G1 ×I G2, with |I| = 1

· · · · · ·

The graph of G1 ×I G2, with |I| = 2

· · · · · ·

The graph of Z× Z/3Z

Under the representation ℓ2(V) ≃ ℓ2(V1)⊗ ℓ2(V2),

degG(·) = degG1
(·)⊗

1I(·)

m2(·)
+

1

m1(·)
⊗ degG2

(·)(6)

and

∆G,θ = ∆G1,θ1 ⊗
1I(·)

m2(·)
+

1

m1(·)
⊗∆G2,θ2 .(7)

We refer to [RS][Section VIII.10] for an introduction to tensor product of self-adjoint
operators.

In the sequel, we will deal with three types of hypotheses.

(H1) m1(x) tend to 0 as |x| → ∞,
(H2) G2 is finite,
(H3) ∆G1,θ1 is bounded (or equivalently supx∈V1

degG1
(x) < ∞).

2.3. Destroying the essential spectrum. We have a first result of absence of
essential spectrum. We refer to [CTT3] for related results based on the non-triviality
of Holθ in the context of non-complete graphs.

Theorem 2.3. Let G := G1 ×I G2, with |I| > 0, so that G2 is of finite volume,
inf σess(∆G2,0) > 0, and Holθ2 6= 0. If moreover (H1) holds, then ∆G,θ has a
compact resolvent, and

Nλ

(

m−1
1 (·)⊗∆G2,θ2

)

≥ Nλ(∆G,θ), for all λ ≥ 0.

Remark 2.4. With the convention that inf ∅ = ∞, we see that the hypothesis (H2)
ensures that inf σess(∆G2,0) > 0.
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Proof. Kato’s inequality, e.g., [DM][Lemma 2.1] gives:

〈|f |,∆G,0(|f |)〉 ≤ 〈f,∆G,θf〉, for all f ∈ Cc(V).

Combined with Persson’s Lemma, e.g., [KL][Proposition 18], we deduce:

inf σess(∆G2,0) ≤ inf σess(∆G2,θ), for all θ.

Therefore, recalling Lemma 2.2, we infer that inf σ (∆G2,θ2) > 0. Then, note that

∆G,θ ≥
1

m1(·)
⊗∆G2,θ2 ≥ (inf σ (∆G2,θ2))

1

m1(·)
⊗ idV2

,

in the form sense on Cc(V). Then by (H1), the spectrum of the r.h.s. is purely
discrete. Hence, by min-max theory, e.g., [Go], the two other operators have a
compact resolvent. The inequality follows also by min-max theory. �

2.4. The asymptotic of the eigenvalues. From now on, we suppose (H1), (H2),
and (H3). We aim at a more precise result. We set M := supx∈V1

degG1
(x) ×

maxy∈V2
(1/m2(y)) < ∞. Notice that:

1

m1(·)
⊗ degG2

(·) ≤ degG(·) ≤
1

m1(·)
⊗ degG2

(·) +M(8)

and
1

m1(·)
⊗∆G2,θ2 ≤ ∆G,θ ≤ 2M +

1

m1(·)
⊗∆G2,θ2 ,(9)

in the form sense on Cc(V), where we used (1), (6), and (7). Using again (1),

inf σ(∆G2,θ2)

maxy∈V2
degG2

(y)

1

m1(·)
⊗ degG2

(·) ≤ ∆G,θ ≤ 2M +
2

m1(·)
⊗ degG2

(·),

and therefore, combining this result with (8):

inf σ(∆G2,θ2)

maxy∈V2
degG2

(y)

(

degG(·)−M
)

≤ ∆G,θ ≤ 2M + 2degG(·),(10)

Hence, if inf σ(∆G2,θ2) > 0, we get: D(∆
1/2
G,θ ) = D

(

deg
1/2
G (·)

)

. Furthermore, since

lim|x|→∞ degG(x) = ∞, the min-max theory, e.g., [Go], yields that ∆G,θ has a
compact resolvent and

0 <
inf σ(∆G2,θ2)

maxy∈V2
degG2

(y)
≤ lim inf

n→∞

λn(∆G,θ)

λn(degG(·))
≤ lim sup

n→∞

λn(∆G,θ)

λn(degG(·))
≤ 2.

We now refine the asymptotic for ∆G,θ.

Theorem 2.5. Setting G := G1 ×I G2 with |I| > 0 and assuming (H1), (H2), and
(H3), we obtain

D(∆
1/2
G,θ ) = D

(

m
−1/2
1 (·) ⊗∆

1/2
G2,θ2

)

.(11)

Moreover, we have:

1) ∆G,θ has a compact resolvent if and only if Holθ2 6= 0.
2) Assuming that Holθ2 6= 0,

D(∆
1/2
G,θ ) = D

(

deg
1/2
G (·)

)

and

lim
n→∞

λn (∆G,θ)

λn

(

m−1
1 (·) ⊗∆G2,θ2

) = 1.

Furthermore,

Nλ−2M

(

m−1
1 (·) ⊗∆G2,θ2

)

≤ Nλ(∆G,θ) ≤ Nλ

(

m−1
1 (·)⊗∆G2,θ2

)

,(12)

for all λ ≥ 0.
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3) Suppose that degG2
is constant on V2. Take θ2 such that Holθ2 6= 0. Then, for

all a ∈ (0, 1], one can choose m1 such that

lim
λ→∞

Nλ (∆G,θ)

Nλ

(

degG(·)
) = a.(13)

Proof. First note that (11) follows directly from (9). Denoting by {gi}i=1,..,|V2| the
eigenfunctions associated to the eigenvalues {λi}i=1,..,|V2| of ∆G2,θ2 , where λj ≤

λj+1, we see that the eigenfunctions of m−1
1 (·)⊗∆G2

are given by {δx ⊗ gi}, where
x ∈ V1 and i = 1, .., |V2|. Then, using (H1), we observe that

σ
(

m−1
1 (·)⊗∆G2

)

= m−1
1 (V1)× {λ1, . . . , λ|V2|} = m−1

1 (V1)× {λ1, . . . , λ|V2|}.

Besides, 0 ∈ σ
(

m−1
1 (·)⊗∆G2

)

if and only if 0 is an eigenvalue of m−1
1 (·) ⊗∆G2

of
infinite multiplicity if and only if λ1 = 0 if and only if Holθ2 = 0, by Lemma 2.2.
Moreover, recalling (H1), we see that all the eigenvalues of m−1

1 (·)⊗∆G2
which are

not 0 are of finite multiplicity. Therefore, m−1
1 (·)⊗∆G2

has a compact resolvent if
and only if Holθ2 6= 0. Combining the latter and (9), the min-max theory yields the
first point.

We turn to the second point and assume that Holθ2 6= 0. The equality of the
form-domains is given by (10). Taking in account (9), the min-max theory ensures
the asymptotic in λn and the inequalities (12).

We finish with the third point. Note that (8) yields

Nλ−M (m−1
1 (·)⊗ degG2

) ≤ Nλ(degG(·)) ≤ Nλ(m
−1
1 (·)⊗ degG2

), for all λ ≥ 0.

Recalling (12), we compare the l.h.s. with Nλ(m
−1
1 (·) ⊗∆G2,θ2). Since Holθ2 6= 0,

λi 6= 0 for all i = 1, . . . , |V2|. We have:

Nλ

(

1

m1
(·)⊗∆G2,θ2

)

=

∣

∣

∣

∣

{

(x, i),
λi

m1(x)
≤ λ

}
∣

∣

∣

∣

=

|V2|
∑

i=1

∣

∣

∣

∣

∣

(

1

m1

)−1 ([

0,
λ

λi

])

∣

∣

∣

∣

∣

.

On the other hand,

Nλ

(

1

m1(·)
⊗ degG2

)

= |V2| ×

∣

∣

∣

∣

∣

(

1

m1

)−1 ([

0,
λ

degG2

])

∣

∣

∣

∣

∣

.

Take (E1,V1) to be the simple graph of N∗ and choose m1(x) := exp(−x). We get:

Nλ(
1

m1(·)
⊗∆G2,θ2)

Nλ

(

1
m1(·)

⊗ degG2

) ∼

∑|V2|
i=1 ln(λ) − ln(λi)

|V2|(ln(λ)− ln(degG2
))

→ 1, as λ → ∞

and for all c ∈ R,

lim
λ→∞

Nλ−c

(

1
m1(·)

⊗ degG2

)

Nλ

(

1
m1(·)

⊗ degG2

) = 1.(14)

This gives the third point with a = 1.
Setting α > 0 and m1(x) := x−1/α, we obtain:

Nλ(
1

m1(·)
⊗∆G2,θ2)

Nλ

(

1
m1(·)

⊗ degG2

) ∼
λ→∞

1

|V2|

|V2|
∑

i=1

1

(λi degG2
)α

→

{

1, if α → 0,
0, if α → ∞.

Moreover, (14) still holds true. By continuity with respect to α, we obtain the third
point for all a ∈ (0, 1). �
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Remark 2.6. In the case when Holθ2 = 0, for instance when θ2 = 0, we see that

the form-domain is m
−1/2
1 ⊗P⊥

ker(∆G2,θ2
). In particular, the form-domain is not that

of degG(·). Indeed if the two form-domains are the same, the closed graph theorem
yields the existence of c1 > 0 and c2 > 0 so that

c1 degG(·)− c2 ≤ m
−1/2
1 ⊗ P⊥

ker(∆G2,θ2
),

in the form sense on Cc(V). However, note that 0 ∈ σess

(

m
−1/2
1 ⊗ P⊥

ker(∆G2,θ2
)

)

.

whereas deg(·) has a compact resolvent. This is a contradiction with the min-max
theory. We obtain:

D
(

∆
1/2
G,θ

)

= D
(

deg1/2(·)
)

⇔ Holθ2 6= 0

⇔ ∆G,θ has a compact resolvent.

Remark 2.7. In [Go, BGK], the asymptotic in Nλ was not discussed since the
estimates that they obtain seem too weak to conclude. Being able to compute Nλ in
an explicit way, as in (13), is a new phenomenon.

We end this section by proving the results stated in the introduction.

Proof of Theorem 1.1. Take G1 := (E1,V1,m1), where

V1 := N, m1(n) := exp(−n), and E1(n, n+ 1) := exp(−(2n+ 1)/2),

for all n ∈ N and G2 := (E2,V2, 1) to be the simple graph of Z/nZ. Set G := G1×G2,
θ1 := 0 and θ2 such that Holθ2 6= 0.

We have that ∆G,κθ := ∆le
G,κθ ⊕∆he

G,κθ, where

∆le
G,κθ := ∆G1,0 ⊗ P le

κ ,

on (1 ⊗ P le
κ )ℓ2(V ,m), where P le

κ is the projection on ker(∆G2,κθ2) and where

∆he
G,κθ := ∆G1,0 ⊗ P he

κ +
1

m1(·)
⊗ P he

κ ∆G2,κθ2,

on (1⊗P he
κ )ℓ2(V ,m), where P he

κ is the projection on ker(∆G2,κθ2)
⊥. Here le stands

for low energy and he for high energy.
By Lemma 2.2 and Remark 2.6, there exists ν > 0 such that

P le
κ = 0 ⇔ Holκθ2 6= 0 ⇔ κ /∈ R/νZ ⇔ D

(

∆
1/2
G,κθ

)

= D
(

deg
1/2
G (·)

)

.

The proof of Theorem 2.5 gives the first point. Assume that κ ∈ R/νZ. Let

U : ℓ2(N,m1) → ℓ2(N, 1) be the unitary map given by Uf(n) :=
√

m1(n)f(n). We
see that:

U∆le
G,κθU

−1 = ∆N,0 + (e−1/2 − 1)δ0 + e1/2 + e−1/2 − 2 in ℓ2(N),

where ∆N,0 is related to the simple graph of N. The essential spectrum of ∆le
G,κθ is

purely absolutely continuous and equal to [e1/2+ e−1/2− 2, e1/2+ e−1/2+2]. It has
a unique eigenvalue.

We turn to the high energy part. Denote by {λi}i=1,...,n, with λi ≤ λi+1, the
eigenvalues of ∆G2,κθ2. Recall that λ1 = 0 due to the fact that Holκθ2 = 0. By (9),

1

m1(·)
⊗∆G2,κθ2P

he
κ ≤ ∆G,κθ(1⊗ P he

κ ) ≤ 2M +
1

m1(·)
⊗∆G2,κθ2P

he
κ .

Hence, ∆G,κθ(1 ⊗ P he
κ ) has a compact resolvent and

Nλ−2M

(

m−1
1 (·)⊗∆G2,κθ2P

he
κ

)

≤ Nλ

(

∆G,κθ(1⊗ P he
κ )

)

≤ Nλ

(

m−1
1 (·)⊗∆G2,κθ2P

he
κ

)

,
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for all λ ≥ 0. Finally:

Nλ(
1

m1(·)
⊗∆G2,κθ2P

he
κ )

Nλ

(

1
m1(·)

⊗ degG2

) ∼

∑n
i=2 ln(λ) − ln(λi)

n(ln(λ)− ln(degG2
))

→
n− 1

n
, as λ → ∞.

We conclude with (14) for a = 1. �
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