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FOURIER ANALYSIS METHODS FOR THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

RAPHAEL DANCHIN

ABSTRACT. In the last three decades, Fourier analysis methods have known a growing
importance in the study of linear and nonlinear PDE’s. In particular, techniques based
on Littlewood-Paley decomposition and paradifferential calculus have proved to be very
efficient for investigating evolutionary fluid mechanics equations in the whole space or in
the torus. We here give an overview of results that we can get by Fourier analysis and
paradifferential calculus, for the compressible Navier-Stokes equations. We focus on the
Initial Value Problem in the case where the fluid domain is R (or the torus T¢) with
d > 2, and also establish some asymptotic properties of global small solutions. The time
decay estimates in the critical regularity framework that are stated at the end of the
survey are new, to the best of our knowledge.

1. INTRODUCTION

In the Eulerian description, a general compressible fluid evolving in some open set 2
of R is characterized at every material point z in  and time ¢ € R by its velocity field
u=u(t,r) € R density o = o(t,x) € Ry, pressure p = p(t,x) € R, internal energy by unit
mass e = e(t,z) € R, entropy by unit mass s = s(t,x) and absolute temperature T = T'(t, x).
In the absence of external forces, those quantities are governed by:

e The mass balance:
0o + div (pu) = 0.
e The momentum balance':
O(ou) + div(ou ® u) = divr — Vp,

where 7 stands for the viscous stress tensor.
e The energy balance:

6t<g(e + @)) + div <Q(6 + @)u) =div (7 - u + pu) — divg,

where ¢ is the heat flux vector.
e The entropy inequality:

(1) Br(0s) + div (gsu) > —div (%)-

In what follows, we concentrate on so-called Newtonian fluids®. Hence (see e.g.[2]) T is
given by:

r ¥ \divuld + 2uD(u),

lWith the convention that (div(a ® b))j def >, 0i(a’ b).

2That is to say: the viscous stress tensor 7 is a linear function of D,u, invariant under rigid transforms,
there is no internal mass couples (and thus the angular momentum is conserved), and the fluid is isotropic
(viz. the physical quantities depend only on (t,x)).
1



2 RAPHAEL DANCHIN

where the real numbers A and p are the viscosity coefficients and D(u) def $(Du+TDu) is
the deformation tensor.

If we assume in addition that the Fourier law ¢ = —kVT is satisfied then we get the
following system of equations:

o + div (ou) =0,
(2) ¢ (ou) + div (ou ® u) — 2div (uD(u)) — V(Adivu) + Vp = 0,

O (0e) + div (geu) + pdivu — div (kVT) = 2uD(u) : D(u) + M(divu)?.
We shall further postulate that the entropy s is interrelated with p, T' and e through the
so-called Gibbs relation

Tds = de +pd<%),

and thus we get the following evolution equation for s:

(3) T (8 (0s) + div(osu)) = 7 - D(u) — divg.
For the entropy inequality to be satisfied, a necessary and sufficient condition is thus
VT?
T:D(u)—i—k% >0,

which yields the following constraints on A, g and k:
k>0, >0 and 2u+di>0.

In order to close System (2) which is composed of d+2 equations for d+4 unknowns (namely
0, e,p, Tand u',---  u?), we need another two state equations interrelating p, o, e, s and T.
In this survey, for simplicity we shall focus on barotropic gases that is p depends only on
the density and A and p are independent of T. Therefore the system constituted by the
first two equations in (2), the so-called barotropic compressible Navier-Stokes system :

() Oro + div (pu) =0,
O (ou) + div (ou ® u) — div (2uD(u) + Adiveld) + Vp =0

where p def P(p) for some given smooth function P, is closed.

Our main goal is to solve the Initial Value Problem (or Cauchy Problem) for (4) sup-
plemented with initial data (gg,uo) at time ¢t = 0 in the case where the fluid domain
s the whole space or the torus. We will concentrate on the local well-posedness issue for
large data with no vacuum, on the global well-posedness issue for small perturbations of
a constant stable equilibrium, and will give exhibit some of the qualitative properties of
the constructed solutions. As regards global results, the concept of critical reqularity is
fundamental. Indeed, experience shows that whenever the PDE system under considera-
tion possesses some scaling invariance with respect to space and time dilations (which is
in general the case when it comes from mathematical physics) then appropriate so-called
critical norms or quantities essentially control the (possible) finite time blow-up and the
asymptotic properties of the solutions.

If modifying the pressure law accordingly then the barotropic system (4) we are here
considering has the following scaling invariance:

(5) o(t,z) ~ o(£%t, lx), u(t, z) ~ bu(f’t, Lx), > 0.
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More precisely, (g, u) is a solution to (4) if and only if so does (g, u¢), with pressure function
¢2P. This means that we expect optimal solution spaces (and norms) for (4) to have the
scaling invariance pointed out above.

The rest of these notes unfolds as follows. In the next section, we present the basic
tools and estimates that will be needed to study System (26). Then we concentrate on the
local well-posedness issue for (26) in critical spaces. Section 4 is dedicated to solving (4)
globally for small data. The last section is devoted to asymptotic results for the system.
We concentrate on the low Mach number limit and on the decay rates of global solutions
in the critical regularity framework.

2. THE FOURIER ANALYSIS TOOLBOX

We here shortly introduce the Fourier analysis tools needed in this survey, then state
estimates for the heat and transport equations that will play a fundamental role. For the
sake of conciseness, some proofs are just sketched or omitted. Unless otherwise specified,
the reader will find details in [1], Chap. 2 or 3.

2.1. The Littlewood-Paley decomposition. The Littlewood-Paley decomposition is a
dyadic localization procedure in the frequency space for tempered distributions over R¢.
One of the main motivations for using it when dealing with PDEs is that the derivatives
act almost as dilations on distributions with Fourier transform supported in a ball or an
annulus, as regards LP norms. This is exactly what is stated in the following proposition:

Proposition 2.1 (Bernstein inequalities). Let 0 < r < R.
o There exists a constant C so that, for any k € N, couple (p,q) in [1,00]% with
q > p > 1 and function u of LP with U supported in the ball B(0,\R) of R¢ for
some X > 0, we have D*u € L9 and
11
|DFul|pa < CFFINFG=3) | .
o There exists a constant C' so that for any k € N, p € [1,00] and function u of LP
with Supp U C {€ € R /rX < €] < RA} for some A > 0, we have
MNolul| e < C*HY|DRul| .

As general solutions to nonlinear PDE’s need not be spectrally localized in annuli, we
want a device for splitting any function or distribution into a sum of spectrally localized
functions. To this end, fix some smooth radial non increasing function x with Suppy C
B(0, %) and y =1 on B(0, %), then set p(&) = x(£/2) — x(§). We thus have

> p277) =1 in R\ {0}
JEZL
The homogeneous dyadic blocks Aj are defined by

Aju def ©(279D)u def F Y277 ) Fu) = 2jdh(2j-) wu with p % Flo.

We also introduce the low frequency cut-off operator Sj:

Sju def x(277D)u def F Y x(©277)Fu) = 29h(27) xu  with h def Fly.

Let us emphasize that operators Aj and S'j are continuous on LP with norm independent
of j, a property that would fail if taking a rough cut-off function x (unless p = 2 of course).



4 RAPHAEL DANCHIN

The price to pay for smooth cut-off is that Aj is not an L? orthogonal projector. However
the following important quasi-orthogonality property is fulfilled:

(6) AjAL =0 if |j—k|>1.

The homogeneous Littlewood-Paley decomposition for u reads
J

This equality holds modulo polynomials only. In order to have equality in the distributional
sense, one may consider the set S} of tempered distributions u such that

dim ||Sjulpe~ = 0.
j——o00

As distributions of S}, tend to 0 at infinity, one can easily conclude that (7) holds true in
S’ whenever u is in S},

2.2. Besov spaces. It is obvious that for all s € R, we have
(8) C M ulle < 302781 Ajul72 < Cllull..
JEZ
and it is also not very difficult to prove that for s € (0,1),
9) C_lHuHCO,S < sup 25| Ajul L= < Cllull¢o,s» se (0,1).
€z

J

In (8) and (9), we observe that three parameters come into play: the regularity parameter
s, the Lebesgue exponent that is used for bounding Aj;u and the type of summation that
is done over Z. This motivates the following definition:

Definition 2.1. For s e R and 1 < p,r < oo, we set
1

def Lo o
HUHB;’T = <ZQT]SHAJUHEP> if r<oo and HUHB;m

JEZ

d .
zefsupQJSHAjuHLp.
JEZ

We then define the homogeneous Besov space B;r to be the subset of distributions u € S},
such that |lul|l g, < oo.
p,T

We shall often use the following classical properties:

e Scaling invariance: For any s € R and (p,r) € [1,+0c]? there exists a constant C

such that for all A > 0 and v € Bj ., we have

10 C N ullne < w5 < CNTF [ul;
(10) Flullg, < lu)lg, < ONF ull, -

o Completeness: B;r is a Banach space whenever s < d/p or s < d/p and r = 1.
e Fatou property: if (un)nen is a bounded sequence of functions of B;T that converges
in S’ to some u € ) then u € By, and HUHB;,T < Climinf HunHB;,r'

e Duality: If u is in S; then we have
[ullg, = < Csup(u, é)
p,T ¢

where the supremum is taken over those ¢ in SN BI;ST, such that [|¢[|53-s < 1.
) p,,'r,
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e Interpolation: The following inequalities are satisfied for3 all 1 < p,ry, 79,7 < o0,

s1# sg and 0 € (0,1):
—0
il -0 S Il

e Action of Fourier multipliers: If F' is a smooth homogeneous of degree m function

on R?\ {0} then
(11) F(D): By, — By,™
In particular, the gradient operator maps B;r in B;;l.

Proposition 2.2 (Embedding for Besov spaces on R9). (1) Foranyp € [1, 00| we have
the continuous embedding 32,1 — [P — B0

(***)
(2) IfseR, 1<p;<pa<ooandl<rs <ry<oo, thenB;”l <—>Bp27r2
3) Fors' < sandanyl <p,ry,ry < oo, the embedding o in B is locally com-
Yy DPs ) 9 of By, p.r2 Yy
L —d(L L)
pact, i.e. for any ¢ € S, the map u — @u is compact from B to B;M2 PLop2n
d

(4) The space B;;l 1s continuously embedded in the set of bounded continuous functions
(going to 0 at infinity if, additionally, p < c0).

pl 1

2.3. Paraproduct and nonlinear estimates. Formally, the product of two tempered
distributions u and v may be decomposed into

(12) wv = Tyv + R(u,v) + Tyu

with
Tvd—efZS] 1uA v and R(u,v) defz Z A uA
Joli'=il<1

The above operator T is called “paraproduct” whereas R is called “remainder”. The
decomposition (12) has been first introduced by J.-M. Bony in [3]. We observe that in
Fourier variables the sum in T,v is locally finite, hence T, v is always defined. We shall see
however that it cannot be smoother than what is given by high frequencies, namely v. As
for the remainder, it may be not defined, but if it is then the regularity exponents add up.
All that is detailed below:

Proposition 2.3. Let (s,7) € R x [1,00] and 1 < p,p1,p2 < oo with 1/p =1/p1 + 1/pa.
o We have:
Tl < lullnlollsy  and [Tuvllggee S Nl ol . i £<00
o Ifsy+sy>0and 1/r=1/r1 +1/ry <1 then
1R (s 0| gor oo S Mlull o | Mollse
e Ifsy+sy=0and 1/ri +1/ro > 1 then

[R(us)lgg SNl Ivllgs

Putting together decomposition (12) and the above results, one may get the following
product estimate that depends only linearly on the highest norm of u and wv:

3With the convention that A < B means that A < CB for some ‘harmless’ positive constant C.
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Corollary 2.1. Let u and v be in L>® N B;T for some s > 0 and (p,r) € [1,00]%. Then
there exists a constant C' depending only on d, p and s and such that

HUUHB;T < C(HUHLOOHUHB;T + HvHLooHU||st”).

4
Remark 2.1. Because B, is embedded in L™, we deduce that whenever p < +oo, the
d d

product of two functions in Bzil s also in Bﬁl and that for some constant C = C(p,d):

< Cllull 4 vl
B

]| 4
BI%

a a
P P
Bp,l p,1 1

Let us finally state a composition result.

Proposition 2.4. Let F' : R — R be smooth with F(0) = 0. For all 1 < p,r < oo and
s >0 we have F(u) € By ., N L> foru € By, N L>, and

(13) IF@5, < Cllullg,
with C' depending only on ||u||p~, F' (and higher derivatives), s, p and d.

2.4. Endpoint maximal regularity for the linear heat equation. This paragraph is
dedicated to mazimal regularity issues for the basic heat equation

(14) ou — Au = f, Uj— = U-

In the case ug = 0, we say that the functional space X endowed with norm || - || x has the
maximal regularity property if

(15) 10w, D3ullx < Ol fllx-

Fourier-Plancherel theorem implies that (15) holds true for X = L?(Ry x R%). From more
complicated tools based on singular integrals and heat kernel estimates, one may gather
that (15) is true for X = L"(R; LP(R%)) whenever 1 < p,r < +oo. However, the endpoint
cases where one of the exponents p or r is 1 or +oo are false.

One of the keys to the approach presented in these notes is that (15) is true for X =
L'(Ry; B;l(Rd)), a consequence of the following lemma:

Lemma 2.1. There exist two positive constants ¢ and C' such that for any j € Z, p € [1, 0]
and X € Ry, we have for all uw € 8" with Aju in LP :

12 Ajul e < Cem (| Aul| .

Proof. A suitable change of variable reduces the proof to the case 7 = 0. Then consider a
function ¢ in D(R?\ {0}) with value 1 on a neighborhood of Supp ¢. We have

e’\AAou = F! <¢e*’\"‘2Afo\u>
= gaxAgu with gy(z) % (2m)d / £1a16) g £)e=NEP e
Integrating by parts yields
ga(@) = (14 |z[*) 7 /Rd e@lO(1d — Ag)d(gb(,g)e—w?)dg

Combining Leibniz and Faa-di-Bruno’s formulae to bound the integrant, we get

l9a(2))] < (L +Jaf?) e,
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and thus
(16) lgallzr < Cem.
Now the desired inequality (with j = 0) just follows from L' LP — LP. O

Theorem 2.1. Let u satisfy (14). Then for any p € [1,00] and s € R the following
inequality holds true for all t > 0 :

t t
(") IO, + [ 1920l a7 < gy, + [ 171, 07
Proof. If u satisfies (14) then we have for any j € Z,

Aju(t) = etAAjuo + /Ot B(tiT)AAjf(’T) dr.
Taking advantage of Lemma 2.1, we thus have
(18) |Au@)llzr < e |Azuollo + /0 B DA (1) 5
Multiplying by 27¢ and summing up over j yields

1 . . t 1 .
S 2 Ajut) e S ZG’CO2Q“2JS\IAJ'1L0||LP +/ e~c02 (t=7) S A F(7) e dr
j j 0 j
whence

lall oo, S ol + 1105 )
Note that integrating (18) with respect to time also yields

- o2 . .
22| Agullprozey S (1= ) (1 Aguolle + 145l 00) ).
Therefore, multiplying by 27, using Bernstein inequality and summing up over j yields

—cp2% js A A
(19) 1Vl S (1= )2 (1aguolle + 1857120 )
J

which is even slightly better than what we wanted to prove O

Remark 2.2. Starting from (18) and using general convolution inequalities in Ry gives
a whole family of estimates for the heat equation. However, as time integration has been
performed before summation over j, the norms that naturally appear are

def
-

: def
[ - ”Z?(Bi’,c ‘QJUH Mzgwn|,.  where - llzeyy = I lzeonize@ey-

With this notation, (18) implies that

ul vz Slullgy 41F, sz for 1<pm<p <o
Il e, S Mool 01, v

t b,
The relevancy of the above norms in the mazximal reqularity estimates has been first noticed
(in a particular case) in the pioneering work by J.-Y. Chemin and N. Lerner [6], then
extended to general Besov spaces in [5]. They will play a fundamental role in the proof of
decay estimates, at the end of the paper.

Let us point out that results in the spirit of Propositions 2.3 and 2.4 may be easily proved
for LY (Bgﬂ,) spaces, the general rule being just that the time exponents behave according to
Holder inequality.
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2.5. The linear transport equation. Here we give estimates in Besov spaces for the
following transport equation:

{Bta—i-v-vxa—i-)\a:f in R xR

(20) a‘t:O = ao ln Rd,

where the initial data ag = ag(z), the source term f = f(¢,z), the damping coefficient
A > 0 and the time dependent transport field v = v(t, z) are given.

Assuming that ap € X and f € L} _(R4; X), the relevant assumptions on v for (20) to
be uniquely solvable depend on the nature of the Banach space X. Broadly speaking, in
the classical theory based on Cauchy-Lipschitz theorem, v has to be at least integrable in
time with values in the set of Lipschitz functions, so that it has a flow 1. This allows to
get the following explicit solution for (20):

t
2 aft,a) = Nao(wy (@) + [ €N prun (v @)
0
Theorem 2.2. Let 1 <p<p; <00, 1 <r<oo and s € R satisfy

. d d
—m1n<—,—l) <s<l+—-
p1 p D

Then any smooth enough solution to (20) fulfills

lalze g ) + Alalzy g < €O (laollg, + 17 17505,)

with .
d
v Y [Ive) , e
0 Byl osoNLoe
In the case s =1+ pil and r = 1, the above inequality is true with V'(t) = ||[Vo(t)| a .
r1,1
Proof. Applying Aj to (20) gives
(22) 8,5Aja +v- VAja + )\Aja = Ajf + Rj with Rj déf [’U . V, Aj]a.
Therefore, from classical LP estimates for the transport equation, we get
(23) [1Aja(®)]lze + Al Ajall i ey < 1A a0l
b, . ldivol|pee |
[ (18l + 1 e + EEE A )
We claim that the remainder term Rj satisfies
(24) R ®)llzr < Cej(H27[Vo@)ll | o la(®)llss, with [[(c;(@)]ler = 1.

Bp,,coNL>
Indeed, from Bony’s decomposition, we infer that (with the summation convention over
repeated indices):

(25) R; = [Ty, Aj|0ka + TakAjavk — ATy, 0% + R0, 0, Aja) — AjR(WF, Oya).

The first term is the only one where having a commutator improves the estimate. Indeed,
owing to the properties of spectral localization of the Littlewood-Paley decomposition, we
have ) ) ) )
[Tvk,Aj]aka = Z [Sj/,lvk, Aj]akAj/a.
lj—j'|<4
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Now, remark that
[Sjr—10", AjlokAjra(z) = de/Rdh(Qj(ﬁﬂ — ) (Sy10" (@) — S0 () kA jraly) dy.
Hence using the mean value formula and Bernstein inequalities yields
1T, Ajlokalle S 2771851 Vullee Y 0kAjalle SVl Y 1A allLe.
I3/ —jl<4 7' —71<4

Bounding the third and last term in (25) follows from Proposition 2.3. Regarding the
second term, we may write

TakAja’U = Z Sv_l(?kAja Aj/’U 5
i'2j-3
hence using Bernstein inequality,
X o .
1Tpa,00" e S D 277 NAallze VA0l 1o,
3’253
and convolution inequality for series thus ensures (24) for that term.
Finally, we have
A R Bka Z 3k /a -1+ Aj/ + Ajurl)vk,
l7'—jl<1
whence, by virtue of Bernstein inequality,
IR(W*, dka)lle S Y [Ayalel[Volle,
7' —j1<1
and that term is thus also bounded by the r.h.s. of (24).
Let us resume to (22). Using (23) and (24), multiplying by 27% then summing up over j
and using the notations of Remark 2.2 yields
t
lallzcég, ) + Melzyey ) < loollsy, + 155, +C | VVlellsy dr
Then applying Gronwall’s lemma gives the desired inequality for a. O

3. THE LOCAL EXISTENCE IN CRITICAL SPACES

This section is dedicated to solving (4) locally in time, in critical spaces. For simplicity,

we focus on the case where the density goes to 1 at co. Setting a def o0 — 1 and looking for
reasonably smooth solutions with positive density, System (4) is equivalent to

oa+u-Va=—(1+a)divuy,

26 1 ~
(26) ou+u-Vu— Jj_ua + VG(a) = = div (28(a)D(u) + A(a)divu1d),
where* G(a) def Pll(r;a), AL pA 4+ (A + p)Vdiv with ) e )\( ) and p def w(1),

A(z) €l +2) — u(1) and A(z) €A1 +2) - A1),

4In our approach, the exact value of functions G, X and 1 will not matter. We shall only need enough
smoothness, and vanishing at 0 for A and .
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The scaling invariance properties for (a,u) are those pointed out for (4). Critical norms
for the initial data are thus invariant for all £ > 0 by

ap(z) ~ ag(fx) and wg(x) ~ lug(lx).

In all that follows, we shall only consider homogeneous Besov spaces having the above
scaling invariance and last index 1. There are good reasons for that choice, which will be
explained throughout. Remembering (10), we thus take

d d

. g Ld_q
(27) ap € By, and wup € By, .

In order to guess what is the relevant solution space, we just use the fact that a is governed
by a transport equation and that w may be seen as the solution to the following Lamé
equation:

(28) Ou — Au = f, ul—o = up.

In the whole space case, the solutions to (28) also satisfy the estimates of Theorem 2.1 and
Remark 2.2 whenever the following ellipticity condition is fulfilled:

(29) p>0 and v ANyou>o0.

Indeed, if we denote by P and Q the orthogonal projectors over divergence-free and poten-
tial vector fields, then we have

OPu — pAPu=Pf and 0;Qu—vAQu= Qf.
In particular, applying Theorem 2.1 yields for all ¢ > 0:

: ¢
HPu(t)HB;1 -+ ,u/o HVQPUHBSJ dr < C(HPUOHJE;;l +/0 HPJCHB;’1 d7'>7

t t
. 2 . . . .
I1QuOls,, +v [ 190ulyy, dr < C(10ul, + [ 10515, ar)

As P and Q are continuous on B;,l (being 0 order multipliers) we conclude that
t t

_ . 2.1 , . .

(30) Hu(t)HB;l + min(y, 1/)/0 |V UHB;l dr < C(HUOHB;1 +/0 HfHB;l d7'>

|
So, in short, starting from ug € B, , we expect u in (26) to be in

.49

E,(T) ¥ {u e c(l0,T); B

p,

), Oy, V2u € LY(0,T; Bﬁ;l)}-
In particular Vu has exactly the regularity needed in Theorem 2.2 to ensure the conserva-
tion of the initial regularity for a, and we thus expect a € C([0,T7; Bp%’ 1)-

The rest of this section is devoted to the proof of the following statement:

Theorem 3.1. Let the viscosity coefficients X and p depend smoothly on o, and satisfy
(29). Assume that (ag,up) fulfills (27) for some 1 < p < 2d, and that d > 2. If in addition
1+ aq is bounded away from 0 then (26) has a unique local-in-time solution® and (a,u) with

. a
a in C([0,T); By ) and u in Ey(T).

5Ovving to Remark 2.2 and to Theorem 2.2 the constructed solution will have the additional property
~ L4 ~ . 4d
that w € L7 (B, ) and that a € LT (B,,).
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We propose two different proofs for Theorem 3.1. The first one uses an iterative scheme
for approximating (26) which consists in solving a linear transport equation and the Lamé
equation with appropriate right-hand sides. Taking advantage of Theorem 2.2 and of (30),
it is easy to bound the sequence in the expected solution space on some fixed time interval
[0, 7] with T > 0. However, because the whole system is not fully parabolic, the strong
convergence of the sequence is shown for a weaker norm corresponding to ‘a loss of one
derivative’. For that reason, that approach works only® if 1 < p < d and d > 3. The
same restriction occurs as regards the uniqueness issue, although the limit case p = d, or
d =2 and p < 2 is tractable by taking advantage of a logarithmic interpolation inequality
combined with Osgood lemma (see the end of this section).

The second proof consists in rewriting (26) in Lagrangian coordinates. Then the density
becomes essentially time independent, and one just has to concentrate on the velocity
equation that is of parabolic type for small enough time, and can thus be solved by the
contracting mapping argument.

3.1. The classical proof in Eulerian coordinates. We here present the direct approach
for solving (26). Our proof covers only the case d > 3 and 1 < p < d as regards existence,
and 1 < p < d with d > 2 for uniqueness (variations on the method would allow to get
existence for the full range 1 < p < 2d with d > 2, though). To simplify the presentation,
we assume that A and p are density independent so that (26) rewrites

oa+u-Va=—(1+a)divuy,
ou — Au= —u - Vu — I(a)Au — V(G(a)),

Wlth I((Z) d:ef liLa and Gl(a) déf P’l(j:za) .

Furthermore, we suppose that for a small enough constant ¢ = ¢(p,d, G),

(31) laoll

Step 1: An iterative scheme. We set ag def Spao and ugy def Snuo, and define the first term

(a®,u®) of the sequence of approximate solutions to be

o def o

def
a® Fa) and W= e,

where (e*4);>0 stands for the semi-group of operators associated to (28).

+ n+1

Next, once (a™,u™) has been constructed, we define a”*! and u"*! to be the solutions

to the following linear transport and Lamé equations:

(32) Oa™ !t 4 - Vat = —(1 + a)divu?®,
Ot — Au"tt = —ym - V" — I(a™)Au™ — V(G(a™)),
supplemented with initial data ag'H and ug'H.

6Let us emphasize however that one may modify the iterative scheme for constructing solutions, then
resort to compactness arguments to get existence for the full range 1 < p < 2d and d > 2.
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Step 2: Uniform estimates in the case 1 < p < 2d and d > 2. As the data are smooth,
it is not difficult to check (by induction) that o™ and u™ are smooth and globally defined.
d

We claim that there exists some 7" > 0 such that (a")nen is bounded in C([0, T; BPEJ) and
da

(u")nen is bounded in the space E,(T'). Indeed, Theorem 2.2 and the fact that Bg1 is
stable by product imply that for some C' > 1,

la™ (D) ¢ <llag™ 4 + C/ (Lt lla™l g Jdive™] 4 dt
BP P BP
p,1 P p 1 p,1
v [CIm g o
By By
Let U™(T) = def |Vu™]] 4 . Applying Gronwall’s lemma and using the definition of af ™!,
T ,1
we thus get ’
(33) a4 < Dllagll g+ (1[0 g (9D 1),
LFE(By,) By, LF(Bgy)
Therefore, assuming that ag fulfills (31) with some small enough ¢, that
(34) la™| 4 <4Cc
L¥(Byy)
and that
(35) cU™(T) <log(l+ c),

we conclude from ( 3) that a"*! also satisfies (34) for the same T. At this point, let us

observe that as B” 1 is continuously embedded in L>, one may take ¢ so small as

(36) la"| & <4Cc implies |a"|po(jo,1]xre) < 1/2-
7By
Let us now prove estimates for the velocity. From (30), we get for some constant C

depending only on A and p,

T
I ey ay < € ol g o+ [ a9 Ha) A + DGy
Bﬁl 0 51
The terms in the r.h.s. may be bounded by means of Propositions 2.3 and 2.4 (remembering

(36)) if d > 2 and 1 < p < 2d. We get for some C' = C'(p,d, G):

p,1 T p,l) T pl) (B )

+T||a™|] d >
L (B)))

I ayay < € (Juoll g o+ (el g+ g )19l

Using (34) and the definition of U™, this implies that
1™, ey < C'(lluoll 4 + (AC+ UNTDIu" | 5y(r) +40T)-

p,1

Therefore, assuming that (35) is fulfilled and taking smaller ¢ if needed, we get

[+ g,y < —Hu"llEp 1)+ C(luoll s, +4CeT),

pl
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and thus, if
(37) [u™|| 5, (1) < 2C”(HuoH 4, +4cCT)

p 1
then u"*! also satisfies (37).
To complete the proof, we still have to justify that (35) is fulfilled at rank n + 1. From
the definition of || - ||z, (r), embedding and (37) (at rank n + 1), we know that there exists
some constant C” so that

UrtN(T )<C”(||uOH a_y +T).

p 1
Hence there exists a constant ¢ > 0 such that if 7" and wg satisfy
(38) luoll 4y +cT' <
BP

p,1
then both (35) and (37) are fulfilled at rank n + 1.

def f o4

If |[ug|| a_, > ¢ then we split u™ into u}} +u" with u} (1) = e*Auf. Denoting uy, defe uo
BP

p,1 .
and observing that u} = S,ur, we discover that

UNT) < |IVuzll o +[VE"[ o <CVur] a4 +[Va"[]
r(Bya L (By, L (Bg, r(By1)
The term with uy, goes to 0 for T tending to 0 with a speed of convergence that may be
described according to (19). To handle the second term, we observe that u"*! satisfies

ot — Au = - VUt — W - VIt — - Vb — V(G(a™)) — I(a™)Au",

Because u"*1(0) = 0, combining (30), product laws in Besov spaces and (31), we get

T
(39) (17" g, T)<C</ [ a s [[Vu"] 4 dt+/ urll a l[a™] 4 dt
0 By By By By
ST T T P TP L PR L T
LT(Bp,l ) LT (Bpl ) T(Bp,l) LT(Bp,l ) L%?(Bp,l)
Arguing by interpolation yields for any 5 > 0,
[, TN g sl a1 g OB, g I
p p LT(Bpl ) T pl T pl) LOO(B ,1 )
Besides, as |lur]| a , <Cllugll «_,, Inequality (39) implies that
T p,1 B;f,l
174 iy < €U+ Aol gy + 87l g + 0, VI
pl T p,1

+lluoll L a_,[jur a + (T +fjur a” 4 )
ol g alluel, oo+ B g ™l

p,1 T\"p,1

Choosing 8 = 1/(4C||ug|| a_,), remembering (34) and (35) (taking ¢ smaller if needed),
BP

p,1
and that
(40) Ut woll o Dlurll 4y <e
Bp,l T Bp,l )
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we conclude that there exists C”” so that

[@ ) gy ey < —HU"HEP ) +C"c
Hence [[u"||g,(ry < 2C"c implies that [[a" || g (1) < 2C"¢c, and thus (37) is fulfilled at
rank n + 1 if ¢ has been chosen small enough.

Finally, let us notice that there exists some T > 0 so that

Z(l _ e—c022JT>2J(—— )HA | < c

: — 1 fluoll g
J

Hence (19) ensures that (40) is satisfied for this choice of T.

Step 3: Convergence in the case 1 < p < d and d > 3. Let &a” def a1l — " and U def

u™t! — ™. The couple (&1, u"*1!) satisfies

(41) 8t5an+1+un+1 V(SCLnJrl ZZ 15Fin7
at(gun-i-l At = ZZ 1

with o % _gn . overtl e gndivertt, e a4 o)divaun,
6y L (1(am) - 1@™)) Aut, aay -1y Asr, &y V(G - GamtY),
e v T e N L v

Owing to the first equation, one can perform estimates for (&™,u™) only in a space with
|
one less derivative, namely in C([0,7]; By, ) x F,(T) with

def N N e
Fy(T) € c([0,T); B2, )N LY(0,T; BY,).

Now, using the same type of computations as in Step 3, we get for all ¢ € [0, T/,

(H&L"II a_y o+ [loa™ Wl) T

pl

+Cla" |

t
[&a™ @) ay < (&™) a4y +C/ [Vu )
BP B]f,1 0

d
BP
p,1 p

t
+ [ascpe,
0 B

Using the bounds provided by the previous step, we thus get, taking ¢ smaller if needed,

" dr.
Bf)” 4

)1 pl

ST
L

(42) o™ g, <@ H0)]] 4 —H&L”H a_y + 20" g, -
& BY LBy )

t p,1 p,1

As in the previous step, bounding "' in F,(T) follows from (30) and product laws.
However, as less regularity is available, one has to make the stronger assumption

(43) d>3 and 1<p<d.
Taking ¢ smaller if needed, we eventually get thanks to (34), (35) and (37)

n n 1 n n
16" |y < Clu “(O)IIBg_Q + g(ll&z HLOO st 16" || 2, (7)) -
p,1

T p,1
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Combining with (42) yields
o+ gy < CUE O+ AP O )

T \FPp,1 p,1 Bzul
F2E g A ).
LE(Byy )

Summing up over n € N, we conclude that (a” — a%),eny and (u™ — u®),en converge in
Ld g
C([0,T]; By, ) and in Fp(T), respectively.

Step 4: Checking that the limit is a solution and upgrading reqularity. From Step 3, we
know that there exists a and w so that

Ld g
a” —ag— a—ag in LOO(O,T;B;J) and u" —up —u—wuy in Fu(T).

The bounds of Step 2 combined with Banach-Alaoglu theorem imply that in addition

.4 .d_q
a" —a in L>(0,T;By,) weak * and u" —wu in L*(0,75B}, ) weak *.

Routine verifications thus allow to pass to the limit in (32).

.d_o9
The previous step tells us that VZu is in L'(0,T; B; 1 ). To upgrade the regularity
exponent by 1, let us write that for all J € N:

T d . T o d R
) RELIN STPYED S L T S Y
l71<J l71<J

T . d . .
+27 3 / 2762 A V2 — AV | o dt.
j1< 0
The first term is bounded by the r.h.s. of (37) while, by virtue of Step 3, the second one
tends to 0 when n goes 0. Hence, letting J tend to +oc ensures that ||V2u||  «_, is finite.
1 P

T\"p,1
da

Next, as (a,u) satisfies (26), Theorem 2.2 and Inequality (30) imply that a € E%O(Bzil)
~ | ]
and that u € L (B}, ), which, combined with the fact that a —ag € C([0,77; B}, ) and
.49 .4 .41
u—ug € C([0,T]; By, ) implies that a € C([0,T]; By,) and u € C([0,T]; By, ).

Step 5: Uniqueness. Consider two solutions (a!,u') and (a?,u?) of (26) with the above

regularity. The difference (da, du) def

(44) Ohda +u? - Véu =32 oF;,
o — Adu = 30_, 8G;,

(a?—a',u?—u') satisfies

with o Y sval, Y mdive?, oS 1+ aY)diveu,

Gy ¥ (1(ah) — I(a®) Au?, Gy & —1(at) Adu, G5 ¥ V(G(al) — G(a?)),

PP E vX VR e AL YRR v
Mimicking the computations of Step 3, it is easy to see that if (43) is fulfilled then (&, du) =

Ld_
0in C([0,T); BE, ) x Fy(T).
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It turns out that the limit case d = 2 or p = d tractable even though
(45) (&z € 3371 and Au’ € Bgl) implies dwAu® € Bd_éO only.
Now, applying Theorem 2.2 and product laws (see Proposition 2.3) gives

2
u 0
l ”LTl (32!’1).

180l ey < (18000 + (U oy el ) e

Regarding du, owing to (45), one has to apply Remark 2.2 rather than Theorem 2.1, which
enables us to control the following quantity:

Sull~1 - def 2| A :du

Il 55,y 02 N g
which is slightly weaker than H(;U’HLlT(Bé’l)'

Inserting the following logarithmic interpolation inequality (see [15]):

oull 1 50+ ||&‘"Z1T<Bsw>>

46 S . < dull=1 , - I +
(46) [ HLlT(Bé’I)NH HLIT(Bé,oo) og(e H@HZ,}F(B;OO)

in the estimate for du and using Osgood lemma (see e.g. [1], Chap. 3), we end up with

exp(— ftozd’r)
161l e g+ 10l e ey S (18O gy +IEON 0 )™

where « is in L(0,T') and depends only on the high norms of the two solutions. This yields
uniqueness on [0, 7).

3.2. The Lagrangian approach. We now propose another proof of the local well-posedness
of (26), which will provide us with the statement of Theorem 3.1 in its full generality. It is
based on the Lagrangian formulation of the system under consideration.

To make it more precise, we need to introduce more notation. First, we agree that for a
C! function F : R — R% x R™ then divF : R? — R™ is defined by

d
(divFyY N 0,F; for 1<j<m,

i=1

and that for A = (A4;j)1<i j<a and B = (Bj;)1<i j<d two d X d matrices,

A:B=TrAB = ZAZ]B]Z
V)

The notation adj (A) designates the adjugate matrix that is the transposed cofactor matrix
of A. Of course if A is invertible then we have adj(A) = (det A) A~!. Finally, given some
matrix A, we define the “twisted” deformation tensor and divergence operator (acting on
vector fields z) by the formulae

def 1
2

We recall the following classical result (see the proof in e.g. [16]).

Da(z) ¥ (D2 A+TA-V2) and divaz T4 Vz=Dz: A
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Lemma 3.1. Let K be a C! scalar function over R? and H, a C' vector-field. Let X be a
C! diffeomorphism such that J def det(DyX) > 0. Then we have

(47) V.K = J ! div, (adj (D, X)K),
(48) div, H = J ! div, (adj (D, X)H).
Let X be the flow associated to the vector-field u, that is the solution to
t
(49) X(t) =y + [ u(rX(ry) dr
0

Let o(t,y) def o(t,X(t,y)) and u(t,y) = u(t, X (t,y)). Formally, we see from the chain rule
and Lemma 3.1 above that (o, u) satisfies (4) if and only if (g, u) fulfills

9(Jo) =0
(50) { o0t — div (adj (DX) (20(2) Da() + A(2) divaald + P(9)1d)) = 0

def (DyX)~! and

with J % det DX, A
t

(51) X(t,y) = y+/ a(r,y)dr.
0

The first equation means that o = J gy, and the velocity equation thus recasts in:

LQO (ﬂ) = Qaldiv (Il (’l_L, ﬂ) + I (’l_L, ’E) + IB(E’ ’E) + I4(ﬂ))

with

(52) Ly, (u) def Ayu — 05 div (216(00) D(w) + Ao )divuId )

and
Lv,w) € (adj(DX,) - 1d) (u(J; 00) (Dw Ay + TAy Vi) + A(J; L 00)(TA, - V)Id)
Lw,w) € (T o) — p(00)) (Dw Ay +TA, Vo) + (A5 00) — Aeo)) ("A, = Vew)Id
Lw,w) € ploo) (Dw(A, —1d) + (A, — 1d)Vw) + Ago)(T(A, — 1d) : Vu)Id
Lv) % —adj(DX,)P(eod; ),

where X, is given by (49) with v instead of u, 4, def

(DX,)~"! and J, % det DX,
So finally, in order to solve (50) locally, it suffices to show that the map

(53) v u

with u the solution to

{ Ly (u) = g div (Ii(v,v) + Ir(v,v) + I3(v,v) + I4(v)),

ule=o = uo
has a fixed point in E,(T") for small enough 7.

In order to treat the case where g is just bounded away from zero, we need to generalize
(30) to the following Lamé system with nonconstant coefficients:

(54) Oyu — 2adiv (uD(u)) — bV (Adivu) = f,
where a, b, A and p satisfy the following uniform ellipticity condition:
def . . .
55 a = mln( inf ap)(t, ), inf 2ap + bA)(t, x ) > 0.
( ) (t,x)e[O,T}de( ,u)( ) (t,m)e[o,T]de( . )( )
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In [16], the following statement has been proved.
Proposition 3.1. Let a, b, A\ and p be bounded functions satisfying (55). Assume that

.41
aVu, bV, uVa and A\Vb are in L*(0,T}; By, ) for some 1 < p < co. There exist n > 0
and o > 0 such that if for some m € Z we have

. . (6%
56 i inf Spn(2 bA)(t, 1), inf S tx)) > =,
(56) mm<(t,m)el[3,T]de (2ap + bA)(t, z) (t:v)el[élT}x]Rd (an)( x)) 2
(57) 1(Id = 8,)(uVa, aVu, AVb,VA)| 4y <na
L°°(B”1 )

then the solutions to (54) satisfy for all t € [0,T],

HUHL?O(BS ) + Oé||uHL1(Bs+2)

< il gy, + 1113085,0) 0 (£ [ 1800650V 0.0 4 ar )
pl

whenever —min(d/p,d/p’) < s <d/p— 1.

In order to show that ® in (53) admits a fixed point in E,(T), we introduce, as in the
previous subsection, the solution uz, in E£,(7T") to

LluL = 0, u|t:0 = Uug.
We want to apply Banach fixed point theorem to ® in some suitable closed ball B Ep(T) (ur, R).
Let v be in By, (r)(ur, R) and u def ®(v). Denoting u def ur, we see that
(58) { £/|9017 = Qaldiv (Il(v,v) + Iy (v,v) + I3(v,v) + I4(v)) + (L1 — Ly, )ur,
Ult=0 = 0.

The existence of some m € Z so that

min(inf S (Q'U(QO) + Alo )> nf Sy, ( (90))> >2
R 20 A 20 2
. / A A/
and [|(1d - 5,,) (1) vy, %) gy, M) g XG0 )| | <o
9 20 ) Q0 By,

is ensured by the fact that all the coefficients (minus some constant) belong to the space

B” 1 which is defined in terms of a convergent series and embeds continuously in the set of
bounded continuous functions. Hence, if one can show that the right-hand side of (58) is

|
in LY(0,T; B}, ) (which will be carried out in the next step) then we will be allowed to
apply Proposition 3.1 to bound @ in E,(T).
First step: Stability of BEP(T) (ur,R). Let v € BEP(T) (ur, R) and u be given by (58). Let

ag def 0o — 1. Proposition 3.1, product laws in Besov spaces and Proposition 2.4 imply that

(59) Nl r) < e (I(En = Ly Jusl

.4
LBy )

+ (14 flaoll g ) (Ia(v)

pl

.B'U\Q

I Mw
I
@
@

SRS

for some constant C,, depending only on go.
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In what follows, we assume that T and R have been chosen so that, for a small enough
positive constant c,

T
(60) / Vo] a dt <ec.
0 By,

Now, using the decomposition
(L1 = Lgy)ur, = (g5 " — 1)div (2(00) D(ur) + Ago)divuz I1d)
v (2((00) — (1) D(w) + (Ago) — A(D)divuld),

|
and Proposition 2.4, we see that (Li — L, )ur, € L*(0,T; B}, ) and
(61) (L1 = LooJurll | s Sllaoll g (14 llaoll 4 ) D]

d
p
T\"p,1 ) p,1 Bp,l T( pl)

Likewise, flow and composition estimates (see the appendix) ensure that

(62)  [L(wv,w)l a4, N(1+HaoH )| Do HDwH ¢ fori=1,23,
1 P 1 (BP )
T\ Pp,1 pl T pl p,1

(63) 1L@I g ST+ ool g JA+ Dol g ).
T(Bp,l) Bp,l T pl)

So plugging the above inequalities in (59) and keeping in mind that v satisfies (60), we get
after decomposing v into v + ur:

[,z < CeComT (Lt llaol g (T + llaol_g WDzl | g )
By, By, Ly (BY,)
HDwl? g 4 (1Durl g +UDF] g )T )
%"(B;),l) LT(Bp,l) LT(Bp,l) T(Bp 1)
Now, because v € BE,,(T) (0, R),
[,y < O (14 laoll s ) (T + llaoll s 1Durl] 4 )
BP71 Bpl LT(BPJ)
R+ |Durll o )IDurll 4 +R2).
%“ pl) T(Bgf),l)
Therefore, if we first choose R so that for a small enough constant 7,
(64) (1+ llaoll 4 )*R <
B,
and then take T so that
(65)  CoT <log2, T<R? laoll «||Durll 4 <R |Dur] 4 <R,
BY, Lh(By, L (B} )

then we may conclude that ® maps B B,(1) (uL, R) into itself.

Second step: contraction estimates. Let us now establish that, under Condition (65), the
map P is contractive. We consider two vector-fields vl and v? in B Ep(T) (ur, R), and set

ul d:effﬁ(vl) and u? & ®(v?). Let du dof 2 — ol and & % 2 — v, We have

Lygbu = 05 'div (1 (0%, 0%) = [ (0',0"))

F(I(0?,0?) = L', 0) + (307 0?) = L', o) + (L(0%) - L")
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So applying Proposition 3.1 (recall that Cp,T" < log2), we get

(6) 8u] ) < CL+ oo g ) (ZHI 2, 0%) — Lo
pl

d
Ly (Byy)
L) = LD 4 )
Ly (Byy)
In order to deal with the first term of the right-hand side, we use the decomposition

I(v2,0%) — (vl 0!) = )\(J;QIQO)(TAUQ : Vo?) (adj (DX,2) —adj (DX,1))
+ (adj (DX,1) —1d) (A(J : Y00) = MJ:' 00)) (TAy2 = Vo?)
+ (adj (DX,1) —Id )A(J 1 00) (TAe — TA) - Vol + TAe : Vo)

+ terms pertaining to pu.

Taking advantage of product laws in Besov spaces, of Proposition 2.4 and of the flow
estimates in the appendix, we deduce that for some constant C,, depending only on go:

11 (v?,0%) = Li(v', 01| < Cpol|(Dv', Dv?)] 1ol

d d
Ly(Byy) Ly (Byy) (B D

Similar estimates may be proved for the next two terms of the right-hand side of (66).
Concerning the last one, we use the decomposition

Li(v*) = Ii(v") = (adj (DX 1) — adj (DX ,2))P(J.;' 00) — adj (DX 1 )(P(J 5  00) — P(J ;1 00)).

Hence
[1a(v?) = LMl 4 <CO+aol 4 )THD&JH d
Ly (B]) Bl Lh(BL,)
We end up with
16ull 5, (1) < C(1+llaol| .« )*(T + (Dv', Dv?)| 4 )HD&)H
o Bl LL(BE)) IR

Given that v! and v? are in B £,(1)(uL, R), our hypotheses over T" and R (with smaller n
n (64) if need be) thus ensure that,

16ull g, () < _H&}HEP

Hence ® admits a unique fixed point in B B, (1) (UL, R).

Third step: Regularity of the density. Set o def J1oo. By construction (g,u) satisfies (50)
and a def o — 1 is given by
a=(J; ' —1)ag + ag.

d

.4 .d
From the appendix, as Du € L*(0, T;B) ) we have J,; ! — 1 belongs to C([0, T); B,4)-

. d
Hence a is in C([0,T; By ), too. Because Bzf | is continuously embedded in L*°, the density
remains bounded away from 0 on [0, 7] (taking T" smaller if needed).
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Last step: Uniqueness and continuity of the flow map. Let the data (o}, u}) and (o3, u?)
fulfill the assumptions of Theorem 3.1, and let (o', u!) and (02, u?) be the corresponding

solutions. Setting du def u? — u', we see that

3
Loy (0u) = (Lyy = Lyg)(w?) + (o) v (D (122 0?) = Bt ul)) + (B (u?) — ()
j=1
3
(ob)Maiv (32 ((1F = I ul) + (13 = IH(wh)),
j=1

where Ii, I%, Tt and Ii correspond to the quantities that have been defined just above
(53), with density gj. Compared to the second step, the only definitely new terms are
(Lg(l) — ng)(u2) and the last line. As regards (Lg(l) — LQ%)(uQ), we have for t < T,

1Ly = L)@l s, < C ol

Li(Byy )

a Dl a
1 Li(By,)

The other new terms satisfy analogous estimates. Hence, applying Proposition 3.1 yields
if dpg is small enough:

1
16ul| £, ) < Cy ((t + || Du HL%(B% : + [[0ull &2, (1)) 10wl £, 1)

p,1

+duoll a + ool « E+[|Dutl] 4 ).
BP, B L}

d d
15 zil t (Bzil)
An obvious bootstrap argument thus shows that if ¢, dug and dpg are small enough then

lloullz, @) < QCQO(H&LOHB 1 + H5PoHBg ).

a
p
P, p,1

As regards the density, we have & = Ju_lléao + (Ju_g1 — Ju_ll)ag. Hence for all ¢ € [0, 7],

lda(®)]] Mol

d
P
BP,I

<C@+|Dull|
L} (B

d
P
p,1

a [|Doul|
o1 Li(By,)
So we get uniqueness and continuity of the flow map on a small time interval. Then iterating
the proof yields uniqueness on the initial time interval [0, 7], as well as Lipschitz continuity
of the flow map.

It is now easy to conclude to Theorem 3.1 in its full generality, as a mere corollary
of the following proposition which states the equivalence of Systems (26) and (50) in our
functional setting (see the proof in [16]).

d

Proposition 3.2. Let 1 < p < 2d. Assume that the couple (p,w) with (0—1) € C([0,T7; Bp;,l)
and u € E,(T) is a solution to (26) such that

T
(67) / |Vul| o« dt <ec.
0 BPP,I

Let X be the flow of u defined in (49). Then the couple (o, u) def (00 X,uo X) belongs to
the same functional space as (o,u), and satisfies (50).
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.4
Conversely, if (0 — 1,u) belongs to C([0,T]; By ;) x Ep(T) and (o, u) satisfies (50) and,
for a small enough constant c,

T
(68) / IVal o di<e
0 B;jl

then the map X, d:efX(t, 2) defined in (51) is a C diffeomorphism on RY and the couple

(0, u)(t) d:ef(é(t) o X1 a(t) o X;Y) satisfies (26) and has the same regularity as (o,1).

4. THE GLOBAL EXISTENCE ISSUE

This section is devoted to the proof of global existence of strong solutions for small
perturbations of the constant state (o, u) = (1,0), under the stability assumption P'(1) > 0.
For simplicity, we assume that the viscosity functions A and u are constant.

Let us emphasize that the approach we used so far to solve (26) cannot provide us with
global-in-time estimates (even if both ag and ug are small) because we completely ignored
the coupling between the mass and momentum equation through the pressure term and
looked at it as a low order source term, just writing

ou — Au = —u - Vu — I(a)Au — V(G(a)).
Then, applying Inequality (30) and product laws in Besov spaces led to

t
69 ullg §C<u0 i, + |u|lg a 4 +|u|lg +/add7'>'
(69)  lullg, | HB& » +llulls, ) (I ”@0(351) lull 1)) ; | HB:l
At the same time, as a is a solution to a transport equation, we can only get bounds on
l|all ~a and the last term of (69) is thus out of control for ¢ — +oo.
L (By1)

4.1. The linearized compressible Navier-Stokes system, and main result. The key
to proving global results is a refined analysis of the linearized system (26) about (a,u) =
(0,0) taking the coupling between the mass and momentum equation through the pressure
term into account. The system in question reads:

{ Ora + divu = f,

(70) Ou — pAu — (A + p)Vdivu + P'(1)Va = g.

Applying the orthogonal projectors P and Q over divergence-free and potential vector-

fields, respectively, to the second equation, and setting « def P'(1) and v def A+ 2pu, System
(70) translates into

Ora + divQu = f,
(71) 9 Qu —vAQu + aVa = Qy,
OPu — pAPu = Pg.

We see that Pu satisfies an ordinary heat equation, which is uncoupled from a and Qu.

For studying the coupling between a and Qu, it is convenient to set v def |D|~divu (with

F(|D[*u)(§) def |€]°u(€)), keeping in mind that, according to (11), bounding v or Qu is

equivalent, as one can go from v to Qu or from Qu to v by means of a 0 order homogeneous
Fourier multiplier.
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For notational simplicity, we assume from now on that” o = v = 1. Hence (a, v) satisfies
the following 2 x 2 system:

{ dia+ |DJv = f,

73
(73) Ow—Av—|Dja=h

def |D|~tdivg.
Taking the Fourier transform with respect to x, and denoting p \5 | with & € R? the
Fourier variable, System (73) translates into

~

(74) %<g>:Mp<g>+<£> with M,,d_ef<2__pp2>-

e In the low frequency regime p < 2, M, has two complex conjugated eigenvalues:

of p? . of [4
Aelp) © =L (1£i8(p)) with s<>“\/;—1

which have real part —p?/2, exactly as for the heat equation with diffusion 1/2.
e In the high frequency regime p > 2, there are two distinct real eigenvalues:
2
A(p) =B £ ) with R 15
As 1 — R(p) ~ 2/p? for p — 400, we have A\ (p) ~ —p? and A_(p) ~ —1- In other
words, a parabolic and a damped mode coexist.
Optimal a priori estimates may be easily derived by computing the explicit solution of
(73) explicitly in the Fourier space. Below, we present an alternative method which is
generalizable to much more complicated systems where explicit computations are no longer
possible (see e.g. [17]).
Fix some p > 0 and consider the corresponding solution (A,V) of (74) in the case

f h=0. We easily get the following three identities:

2 _
(75) 2dt|A| + pRe (AV) =0,
(76) 2dt|V|2+p [VI* = pRe (AV) =0,
d _
(77) - Re (AV) + p|V|® = p|A]? + p?Re (AV) = 0,
from which we deduce
d _
(78) 55.@ + A V)P =0 with £2 9 2[4, V)P + [pA]2 - 20Re (AT).

Using Young inequality, we discover that there exists some constant Cy > 0 independent
of p so that

(79) Co 'L < (A, pA V)P < CoL,

Combining with (78), we conclude that there exists a universal constant ¢y > 0 so that
2 —co min(1,p2)t p2

(80) Lo(t) <e (1) L£5(0) for all t>0.

"Which is not restrictive as the rescaling
(72) a(t,x) ZE(%L@@ and  u(t,z) = au(t,
ensures that (a,u) satisfies (71) with a =v = 1.

“f5

z)
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In the case of general source terms ]/”\and % in (74), using Duhamel formula and applying
the above inequality to A(t) = a(t, p) and V (t) = v(t, p) thus leads to

t .
(1) 1(@pa5)(0)] + min(1, ) [ |<a,paﬁ>|d7sc(uao,pao,ao)u / I(f,pf,h)ldT)

Note that as
0 + p°v = h + pa,

" ¢ ¢
,02/ [o(7)| dr < |vp] —|—/ |h(7)|dr —|—/ |pa(T)| dr.
0 0 0

And thus, bounding the last term according to (81), we get the following inequality which
provides the full parabolic smoothing for v:

we also have

t t
(82) |(@ o, 5)()| + min(p, p*) / @l dr + / 3] dr
0 0
t o~ A~ A~
gc(uao,pao,ao)u / I(f,pf,h)|d7>-
0

From Inequality (80) and Fourier-Plancherel theorem, it is easy to obtain estimates of
L? type for the solutions to (70). Optimal informations will be obtained if splitting the
unknowns into frequency packets of comparable sizes. To this end, one may apply Ay to

(70) and get

8,54]?0, + diVA.k Qu = Akf, )
(83) 0 Ak Qu — AALQu + VAra = A Qg
8,5Ak7)u — MAAkPu = AkPg.

In the case with no source term then using (80) combined with Fourier-Plancherel theorem
readily yields for some universal constant Cy, and ¢y depending only on p,

I(Ara, ApVa, Agu)(t)] 12 < Coe™ ™2 (Aa, ApVa, Agu)(0)]| 2.
Then, for general source terms, using Duhamel’s formula and repeating the computations
leading to (82), we end up with
t t
(84) H(Aka, AkVa, Aku)(t)HLz + min(l, Qk) / HAkVaHLz dr + 22k / HAkuHL2 dr
0 0

t
S C <H(Aka0, AkVao, AkUO)HL2 + / H(Akf, Aka, Akg)HLz dT> .
0

Multiplying both sides by 2¥%, taking the supremum on [0, ] then summing up on k > kg
or k < kg, we conclude to the following;:

Proposition 4.1. Let s € R and (a,u) satisfy (70) with P'(1) = v = 1. Let kg € Z. Then
we have for some constant C' depending only on ko and u, and all t > 0,

I(a, U)HLOO(BS )+ @ W)l gy S C(H(amuO)Hes +1I(f. )Ml By):

||aHLoo(BS+1 + HaHLl BS+1 + ||uHLoo(Bs + Hu||L1(BS+2)

h
(HaollBs+1+lluOll : +||f||L1(Bs+1 + llgllf B3 )
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where we used the notation

(85) 2, = 3 2 NAkzle and (lzly, = 57 27 Az] .
PR k<ko PR k>ke

The high frequencies inequality means that in order to get optimal estimates, it is suitable
to work with the same regularity for Va and u. In contrast, for low frequencies, one has to
work in the same space for a and u, a fact which does not follow from our rough scaling
considerations (5) but is fundamental to keep the pressure term under control in (26).

Granted with the above proposition, it is now natural to look at (26) as System (70)
with right-hand side

f=—-div(au) and ¢g=—u-Vu—I(a)Au—k(a)Va where k(a) def G'(a) — G'(0).

The problem is that f will cause a loss of one derivative as there is no smoothing effect for
a in high frequency. A second limitation of Proposition 4.1 is that it concerns Besov spaces
related to L? whereas we know the system to be locally well-posed in more general Besov
spaces (see Theorem 3.1). To overcome the first problem, let us include the convection
terms in our linear analysis, thus considering:

(86) oa+v-Va+divu = f,
Ou+v-Vu — pAu— (A4 p)Vdivu + aVa = g,

where v stands for a given time-dependent vector field.

Proposition 4.2. Let —d/2 < s < d/2 and (a,u) satisfy (86) with « =v = 1. Let ko € Z.
Then we have for some constant C depending only on kg and u, and all t > 0,

J4 h
@, Va, )z sy + lalzy geie) + 1Vl 7y gy )+ lullpy g2y
t
< C(H(amVGOWO)HBZ;1 HI VDL s ) +/0 HVUHBQg’l I{a, Va, w)ll 3| dT)'

Proof. Applying Ay, to (86) yields:
Oray, + Ak(?} . Va) + divug = fi,
Orug + Ag(v - Vu) — pAug — (A + p)Vdivug + Vag = gy,
with ay def Aka, U, def Aku, S def Akf and g def Akg.
Keeping in mind the proof of Proposition 4.1, we introduce

def
3 9] (ag w32 + [ VaglZa + (ur | Vag) ge.

Now, remembering that A\ 4+ 2u = 1, we get

1d
(87) 5= Lk + ullVPuklFe + [V Qur, Var) |72 = (gr | (2ur+Var)) o +2(fu | ar) 2

2 dt
+ (ka | Vak)LQ — Q(Ak(v -Va) | ak)L2 — Q(Ak(v . Vu)|uk)L2
(AkV(v -Va) | Vak)LQ — (Ak(v -Vu) | Vak)LQ — (AkV(v -Va) | uk)LQ.

Let us explain how to bound the convection terms. To handle the second and third terms
of the second line, we proceed as explained below, taking b € {a,u®, - - - ,ud}.
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Integrating by parts and setting

Ri(v,b) ¥ Ay (v - Vb) — v - VAR,

we discover that

(Ak(v . Vb) ’ bk)LQ = /(U . ka) b dx —i—/Rk(U,b) by dx

1 .
< —§/|bk|2d1vvdﬂz+ [ Re(v, 0)|| 22 [|bx || 22

Bounding the last term according to (24), we thus get
; K
(Belv- V) | b) ] < Ces2 90l Bl el

d
2
)1

with (cx)zez in the unit sphere of ¢1(Z).
Next, we use the fact that for ¢ € {1,--- ,d},

8;Ap(v-Va) =v-Var + Ri(v,a) with Ri(v,a) def [0;Ar, 0] - Va.
By adapting the proof of (24), it is easy to prove that

1Fa(w,)ll12 < Ca2 ™|Vl g [alg .

2,1

Then using an integration by parts, exactly as above, we conclude that

‘(AkV(v . Va)|Vak)L2

—k
< Ca2 ™|Vl _y IVallgy, [Vanlze.

2,1

Finally, to handle the last two convection terms, we use the fact that
(Ak(v -Vu) | Vak)LQ + (AkV(v -Va) | uk)LQ
= (v Vup|Vag) 1o + (v V)Vap)|ug) 1o + (Ri(v.w) | Vag) , + (Be(v,a) | ug) .

Integrating by parts in the first two terms of the second line and using again (24) to bound
the last two terms eventually leads to

[(A(v- V) | Vag) 2 + (AT (0 - Va) | ),

< CckQ_kSHVvH _
B

(IVall g 2 + sl g Vnlz2)-

d
2
2,1

Because Ly ~ ||(ar, Vag, ug)| 2, we thus conclude that

1d

(88) 5553+ HIVPulZ + (Y Qus, Var)| 22

< (G Vi g0z + Cex25V0ll g li(a, Va,u)llg; )L

2,1

which after time integration and multiplication by 2% yields

t t
255 £4(t) + 02" min(1, 2% / (s Vag, w2 dr < 2L4(0) + / 2 gy 12 dr
0 0

t
+/0 Vol g (@ Va, ullg,  dr.

2,1
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Taking the supremum on [0, ¢] then summing up over k, we thus get
t
89) e Valzm sy + [ Mol dr+ [ 1Valy, dr

< (@, Va, u)(O)] 5, / (7, V7.9)l 5, dr + / IV 4 0, V)l g, .

Finally, using the fact that
Ou+v-Vu — pAu— (A + p)Vdivu = g — Va,

localizing according to Ay, and arguing as above, we find out that

T / ol gt < 0}, / lg — Vall s, dr + / IVl g ol o

Then bounding Va according to (89) completes the proof of the proposmon. ] O

It turns out to be possible to extend the above proposition to more general Besov spaces
related to the LP spaces with p # 2. The proof relies on a paralinearized version of System
(86) combined with a Lagrangian change of variables (see [4, 7]). Here, in order to solve
(26) globally, we shall follow a more elementary approach based on the paper by B. Haspot
[22] : we use Proposition 4.1 only for bounding low frequencies, and perform a suitable
quasi-diagonalization of the system to handle high frequencies. This eventually leads to
the following statement® that will be proved in the rest of this section:

Theorem 4.1. Let d > 2. Let p € [2,min(4,2d/(d — 2)] with, additionally, p # 4 if d = 2.
Assume with no loss of generality that P'(1) =1 and v = 1. There em’sts a universal integer

L2
ko € N and a small constant ¢ = c(p,d, u, G) such that if ag € B”1 and ug € By, with

.d_q .
besides (af,ub) in B3, (with the notation 2t = Spyr12 and 2 = z — 2*) satisfy

def
(90) Xpo = |1 (ag, w0l 4 gt laoll" 4 + lluol" 4, <
2,1 By B,
then (26) has a unique global-in-time solution (a,w) in the space X, defined by

d

d
(a,0)" € Go(Ry; B )N LR BET),  ab € Go(Rys BL) N EM(R4; B,

d diq

uhegb(RJr;Bpl )le(RJraB )

where we agree that Cy(R.; .571) —fC(RjL7 )ﬂLOO(R+,B 1), SER, 1<¢q <.
Furthermore, we have for some constant C = C(p,d, u, G),
(91) [(a,u)llx, < CXpp.

Remark 4.1. Condition (90) is satisfied for small ay and large highly oscillating velocities:
take u§ : x — ¢(z)sin(e 1z - w)n with w and n in S and ¢ € S(R?). Then

_4d .
lill g-v=Crif p>d

p,1

8The reader may refer to [18] for a slightly more general result.
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and ||| , | has fast decay with respect to . Hence such data with small enough € generate
4o

2,1
global unique solutions in dimension d = 2, 3.

Remark 4.2. One may extend the above global result to 2d/(d +2) < p < 2 provided the
following smallness condition is fulfilled:

laoll g1 g +lluoll g, <.
2,1 2.1 2,1

Indeed, Theorem 5.1 provides a global small solution in Xo. Therefore it is only a matter of

checking that the constructed solution has additional reqularity X,. This may be achieved

by following Steps 8 and 4 of the proof below, knowing already that the solution is in Xs.

The condition that 2d/(d + 2) < p comes from the part u* - Va of the convection term in
d

the mass equation, as Vu’ is only in LI(R+;B§ 1), and the reqularity to be transported is
d

B;l. Hence we need to have d/p < d/2+1 (see Theorem 2.2). The same condition appears
when handling k(a)Va.

Remark 4.3. Using space CN'b(]RJr;Bil) rather than just Cb(]RJr;Bil) is not essential in
the proof of Theorem 4.1. We chose to present that slightly more accurate result, as it will
be needed when investigating time decay estimates, at the end of the survey.

4.2. Global a priori estimates. Consider a smooth solution (a, u) to (26) satisfying, say,

(92) lall Lo (r . xRy < 1/2.
We want to find conditions under which the following quantity:
def
Xp() = a4, +(a,u)
TeoB27h

[N
t 2,1 L} N

t(BQ,l )

h h
+all> 4 +all
L L1

h h
| I 77
0 (B;,l) P 1,0 P 1

¢ (Bp1) & (Bpa

satisfies (91) for all ¢ € R,.
Rewriting System (26) as follows:

Oa +divu = f ©f_div (au),
Ou—Au+Va=g ef V- I(a)Au — k(a)Va,
we shall take advantage of Proposition 4.1 with s’ = d/2 — 1 to bound the low frequency

part of (a,u). To handle high frequencies, following [22], we shall use the facts that, up to
low order terms:

e Pu satisfies a heat equation (hence parabolic smoothing in any Besov space);
e The effective velocity

(93) w d:er(—A)fl(a —divu)

satisfies a heat equation;
e The high frequencies of a have exponential decay.

First step: Low frequencies. From Proposition 4.1, we readily infer that

94 a, )|’ + [[(a, w)||* < |(ao, uo)|* +1(f, )|l .
O el g+l Sl I
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Second step: high frequencies, the incompressible part of the velocity. To handle Pu, we
just use the fact that

OsPu — uAPu = Py.

Hence, according to Remark 2.2 (restricted to high frequencies)

<O(Pul’ 4, +1Pol" ).

(95) [Pul®  a, +plPul” .,
Loo( P ) Ll P L%(BPPJ )

t BP,I t\"p,1 p,1

Third step: high frequencies, the effective velocity and the density. On the one hand, the
effective velocity w defined in (93) fulfills

dw — Aw = V(=A)"L(f = divg) + w — (-A) "' Va.

Therefore, Theorem 2.1 and the fact that V(—A)~! is an homogeneous Fourier multiplier
of degree —1 imply that

def h h h
96) Jwl o Ellwl®  a Flwl® 4 < O(fwoll” o
o~ P gy T gy = Ol
+If —divgll" 4, +lw—(=A)'Va|* ).
Li(Byy ) LBy, )
On the other hand, we have
(97) da + div (au) + a = —divw.

We claim that

(98) llaf"
LOO

d
©(Byy)

t
SC<HaoH’T¢ + [[dive|* +/ [Vull a llall .
) Bl LiBr) Jo By, B

dT) .
1

ST

Indeed, as in the proof of Theorem 2.2, let us apply Ay, to (97). We get
O Aa +u-VAra+ Aga = —Ak(adivu) — Apdivw + Ry,
where, according to (24), the remainder term Ry, satisfies:

HaHBp% with chzl

. d
Vk € Z, || Rillr < Cen2 v ||Vl
B 1 keZ

1

ST

and

IN

C||divul|
B il
Therefore evaluating the LP norm of Aja seen as the solution to a transport equation,
d
multiplying by 2°» and summing up over k > ko yields (98).

Next, let us observe that, owing to the high frequency cut-off, we have for some universal
constant C),

(99) Jwl" o, < C27%0Yw|",, | and [|(-A)'Va|", , < C27%0a|”, .
By, By, o By,
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In consequence, combining (96) and (98), and choosing kg large enough yields

(100) fully -+ lalo)]" o= (Il o, + ol
1

d
I(B;?

@ @I&

P,

1 ,1
h
el e’ g + [ i lel g dr):
B
p pl

Fourth step: end of the proof of the linear estimate. Putting Inequality (100) together with
(94) and (95) and observing that

lull’s

)

b o SIPully g + el o+ Ol +la]”

d
LBy, ) Li(Byy)
we come to the conclusion (if ky has been taken large enough) that
X0 < O (X0 + [ UG g+ 171" gy + ol g+ 190y Tl ) )
B2 1 p,l p 1 BPyl BP»I

Fifth step : nonlinear estimates. It is only a matter of proving that under hypothesis (92),
we have

o0 [P g+ 11 g+l g, + 19,

21 pl pl

lall . 4
B,

2
% )dT SCXp(t)
pl

As p > 2, it is clear that the last term of the r.h.s. of (101) is bounded by CX2(t). Next,
arguing exactly as in the proof of the local existence, we easily get for 1 < p < 2d,

||f|| o < Cllall

[

d_ . d a4
By, Y Ly (Byy) Li(Byy)
lall,, ygs < Ul gs 191, o
Lt(Bp,l ) Lt (Bpl (B 1)
Hall g 192l g el g 19l g )
Bp Bpl ) (Bp p,1 )

Therefore, using the definition of X, (¢) and embedding (recall that p > 2), we get
10/, Q)Hh -1 < CX;(1).

pl

So we are left with the proof of
(102) I 91
Ll

Let us admit the following two inequalities (the first one being proved in [18] and the second

one being a particular case of Proposition 2.3 followed by suitable embedding, owing to
1<p/2<2):

(103) [ Tabll ., 1y g 4 CHaH a_i[[bllps if d=2 and 7 <p <min(4, 2%),

P
2,1 pl

(104) ||R(a,b)|] ooipd i < C’||aH g IHbHBS it s>1-— min(%, 1%) and 1<p<4.
2,1 Br,
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. d
In order to prove (102) for f, it suffices to bound (au)’ in Ll(O,t;Bil). Now, using
Bony’s decomposition and the fact that a = a* 4+ a”, we see that

(105) (au)’ = (T,u)’ + (R(a,u))g + (Tuag)z + (Tuah)z.

The first three terms may be bounded thanks to Prop. 2.3 and Inequalities (103), (104)
with s = % — 1. Observing that |z||%, < CHzHBgl for any Besov norm, we get
r,1 Ty

a <Cla d_; ||u d
oty SOl g
|

da

.d_q .
Because BJ, is embedded in BZ! _, the above right-hand sides may be bounded by

, 00,007
CXg(t). To handle the last term of (105), we just have to observe that owing to the
spectral cut-off, there exists a universal integer Ny so that

(Tuah)g = Sk0+1 ( Z Sk,lu Akah) .
|k—Fko|<No

Hence ||T;,a"|| 4R gkos > |k—ko|<No |Sk—1u Aa”|| ;2. Now, if 2 < p < min(d, 2d/(d — 2))
B3, -
then we may use for |k — ko| < Ny

d . . . d. .
2k°§HSk,1u AkahHL2 S CQkO HSk,luHLd (Qkp HAkahHLp),
and if d < p < 4 then
. . d . d .
2405 ||Sy_yu Agal|| 2 < 0270 (2FG |8yl o) (257 | Agal| 1),

Hence one may conclude that f satisfies (102). Bounding g is similar (see [18]).

Last step: Global estimate. Putting all the previous estimates together, we get
(106) X,(t) < C(X,(0) + X2(0).

Now it is clear that as long as

(107) 20X,(t) <1,

Inequality (106) ensures that

(108) X,(t) <20X,(0).

Using a bootstrap argument, one may conclude that if X,(0) is small enough then (92) and
(107) are satisfied as long as the solution exists. Hence (108) holds globally in time.
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4.2.1. The proof of Theorem 4.1. We just give the important steps. We fix some initial
data so that Xg is small enough. First, Theorem 3.1 implies that there exists a unique

.41
maximal solution (a,u) to (26) on some time interval [0,7™[, with a € C([0,T%); B}, ),
441
1oc(0,T*: B}y ). From (26) and Propo-

sition 4.1, one may check that the additional low frequency information is preserved on
[0,7%): we have

.41
llall oo (0,7 xrey < 1/2 and w € C([0,T%); By ) N L,

l . -1 1 . patl l . -1 1 . patl
a GC([07T )3322,1 )mL (07T 3322,1 ) and  u GC([07T )3322,1 )leoc(07T 3322,1 )

Let us assume (by contradiction) that T* < co. Then applying (108) for all ¢t < T* yields
Fllull. 4, <CXo

a4 y
7 (Bp.1) LE(Bpy )

A
If Xo is so small as (108) to imply that both (31) and (67) are fulfilled on [0,7*) then,
for all ¢ty € [0,7*), one can solve (26) starting with data (a(tg),u(tp)) at time ¢ = to and
get a solution according to Theorem 3.1 on the interval [tg, T + to] with T' independent of
to. Choosing tg > T* — T thus shows that the solution can be continued beyond T, a
contradiction. O

5. ASYMPTOTIC RESULTS

In this section, we focus on two types of asymptotic issues for small global solutions to
(4) that received a lot of attention since the eighties: the low Mach number asymptotic,
and the long time behavior. We shall see that essentially optimal results may be obtained
by very simple arguments from the global result we established in the previous section.

5.1. The low Mach number limit. This subsection is devoted to the rigorous justifica-
tion of the convergence of (4) to the incompressible Navier-Stokes equations

ou+u-Vu— pAu+ VII =0,
(109) { divu =0,
in the so-called ill-prepared data case, where we only assume that 6_1(;)8 — 1) and uf are

suitably bounded. In particular, if we set a® def e~ 1(p® —1), this means that (9;a®, ;u®)|i=o
is of order 1/e, and that one cannot exclude highly oscillating acoustic waves. More con-
cretely, we have to pass to the limit € — 0 in:

( d' £
atae+ 1vu _ —diV(aeua),
€ £ 5
(110) o +ue - s - AL VM) g
1 + 80/8 £ £
* 1+ caf div (2f1(ea®) D(u®) + X(Eae)divueld).

Before stating our main results, let us introduce some notation. In this section, we agree
that for z € S’(R?),

(111) 208 4t Z Ajz and 2P def Z Ajz,
27 3<270 27 5>270
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for some large enough nonnegative integer jy depending only on p, d, and on the functions

k, Av, p/v with v def A =+ 2u. The corresponding “truncated” semi-norms are defined by
¢ def 0, h def h,
(112) =115, Sl and |2 I e E T

Keeping in mind the linear analysis we performed for (70) in the case v = 1 and ¢ = 1, and
combining with the change of variable

(113) (a,u)(t, z) ¥ e(a®, ) (20t evar),

we expect the threshold between low and high frequencies to be at 1/ with & def ev, and
it is thus natural to consider families of data (af, ug) such that

0F hE hE
[ (ag, ug)|| ,6%_1 + llagl™g 4+ llugl™s_,
Bs Br, By,

is bounded independently of . We expect the corresponding solutions of (110) to be uni-
formly in the space X%, defined by

. (aff,uff)eﬁb(ﬂh;B;l )ﬂLl(R+,B221 ),
~ .4
o a"F e C(Ry; By, )ﬂLl(R+,B” ),

- d d+1
o u"F € Cy(Ry; B2, )mL (Ry; B2y ),

and endowed with the norm:

def h,g ~11 . [1hE
law)lxz, = l@w)™ ,  +lul™ . +&al™
L=(B3y ) Le(BY, ) L=(BP))
LE h,e — h,e
l(aw)| 4 Fvlul™ g, e el
LY(B3y ) LYBY, ) LY(By;)

One can now state our main result of convergence in the small data case, the reader being
referred to [13, 14] for the large data case and stronger results of convergence.

Theorem 5.1. Assume that the fluid domain is either R or T4, that the initial data (af, ug)
are as above and that p is as in Theorem 4.1. There exists a constant n independent of €
and of v such that if

def 0F h,E h,E
(114) Co" = |I(ag, ug)|l Z _, bl ;,ﬁalaéll ‘; <,

B B
271 p,1 p,1

then System (110) with initial data (af,ug) has a unique global solution (a°,u®) in the space
XP?, with, for some constant C' independent of € and v,

(115) (%, u) | xz,, < CCR™.

In addition, Qu° converges weakly to 0 when € goes to 0, and, if Puy — vo then Pu°
converges in the sense of distributions to the unique solution of (109) supplemented with
mitial data vg.

Proof. Performing the change of unknowns given in (113) and the change of data

(116) (ag, up)(x) def e(ag, ug)(eve)
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reduces the proof of the global existence to the case ¥ = 1 and € = 1, which was done in
Theorem 4.1. Back to the original variables will yield the desired uniform estimate (115)
under Condition (114). Indeed, we notice that we have up to some harmless constant:

0F hE ~ h,E 01 h,1 h,1
1(ag, ug) ™%, + g™, +Ellagl™s = v(ll(ao, uo)ll7y_, + lluol™y_, + llaol™, )
2 P p 2 p p

2,1 Bp,1 Bp,l 2,1 Bp,l Bp,l
and
I, w)llxr, = vi(au)llxr, -

Granted with the uniform estimates established in the previous section, it is now easy to
pass to the limit in the system in the sense of distributions, by adapting the compactness
arguments of P.-L. Lions and N. Masmoudi in [24].

More precisely, consider a family (af,u) of data satisfying (114) and Puj — vy when
e goes to 0. Let (a®,u®) be the corresponding solution of (110) given by the first part of
Theorem 5.1. Because

h,e h,e

(117) lasI™S_, < Elagll™5 |
P BP

p,1 p,1

Ld_q  .d
the data (ag, ug) are uniformly bounded in B}, x B ;. Likewise, (115) ensures that (a°, u®)
.41
is bounded in the space Cp(R; B;l ). Therefore there exists a sequence (e, )nen decaying
L4
to 0 so that (ag",ug") — (ao,uo) in Bj, (with Pug = vg) and

da

(118) (@™, u") = (a,u) in L°(Ry; Bg1 ) weak x.
The strong convergence of the density to 1 is obvious: we have o°" = 14¢,a°", and (a*" )pen

d
is bounded in L?(R; B;f,l)' In order to justify that divu = 0, we rewrite the mass equation
as follows:
divu™ = —g,div (a®"u") — £,0pa"".
d
Given that a** and u®" are bounded in L?(R; B?,) (use the definition of X2, and interpo-

d_q

lation), the first term in the right-hand side is O(g,,) in L*(R; Bp%1 ). As for the last term,
it tends to 0 in the sense of distributions, by virtue of (118). We thus have divu®» — 0,
whence divu = 0.

To establish that u is a solution to (109), let us project the velocity equation onto
divergence-free vector fields:

1
(119) Oy Put" — ,U,A’PUE” = —P(ua" . VUE”) — P(m/&f”) .
Because Qu = 0, the left-hand side weakly converges to d;u — pAwu. To prove that the last
d
term tends to 0, we use the fact that having £(a®)"€ and (a®)* bounded in L>*(Bj,) and
]
L*(B, ), respectively, implies that, for all a € [0, 1],

.41
(120) ¢° s bounded in L®(BE, ).
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L2
Now, Auf is bounded in Ll(BJ;i1 ) and p < 2d. Hence, according to product laws in Besov

~ 824
spaces, composition inequality and (120), we get (1+ea®) "t Au® = O(1~?) in Ll(BJ;i1 Oé),

whenever 2max(0, 1 — %) < a < 1. Hence the last term of (119) goes strongly to 0 for some
appropriate norm.
In order to prove that P(u" - Vu®") — P(u - Vu), we note that

1
u™ - Vu™ = §V|Qu€"|2 + Pu™ - Vu™ 4+ Qu™ - VPu™".

Projecting the first term onto divergence free vector fields gives 0, and we also know that
Pu = u. Hence we just have to prove that

(121) P(Pu™ - Vu™) = P(Pu-Vu) and P(Qu™ - VPu™)— 0.

This requires our proving results of strong convergence for Puf". To this end, we shall

exhibit uniform bounds for 9;Pu" in a suitable space. First, arguing by interpolation,
d 2

. 3
we see that (VZu") is bounded in L™(By,™ ) for any m > 1. Choosing m > 1 so
that 2 — 3 > —dmin(%, 1) (this is possible as p < 2d) and remembering that (e"a®") is

m
2

. d Ldy 2 g
bounded in L*°(By} ), we thus get ((14ena®") "L Aufr) bounded in Lm(BIfjm ). Similarly,
2

. | .dy2 o9
combining the facts that (u*") and (Vu®) are bounded in L>(B,; ) and Lm(BIfjm )

. i_i_l_g
respectively, we see that (u*" - Vu") is bounded in L™(B;; ™ ), too. Computing 0;Pu"
. é+1_3
from (119), it is now clear that (9;Pu") is bounded in L™(B;; ™ ). Hence (Pu®" — Puy")
42 _3 4_1

. . 1—L . DD
is bounded in C"~m (Ry; B4
d, 2

| Ldy
embedding of By, in Bj; ™ s locally compact (see e.g. [1], page 108), we conclude by

). As Pucm is also bounded in Cp(Ry; B;f,l ), and as the

means of Ascoli theorem that, up to a new extraction, for all ¢ € S(R%) and T > 0,
. i+£,3
(122) ¢Pu — ¢Pu in C(0, T By, ™ ).
]
Interpolating with the bounds in Cy(R; By, ), we can upgrade the strong convergence in

d
(122) to the space C([0,T7; B;l ' Oé) for all small enough o > 0, and all 7' > 0. Combining
with the properties of weak convergence for Vu®* to Vu, and Qu®" to 0 that may be
deduced from the bounds of u®", it is now easy to conclude to (121). One can use for
instance the fact that for all m > 1, we have

e : m '%""%_2 e : m '%+%_1
Vu — Vu in L™(B, ) weak * and Qu" —0 in L™(Bj, ) weak k.

O

5.2. Time decay estimates. In the present subsection, we show that under a mild addi-
tional decay assumption that is satisfied if the data are in L!(R?) for instance, the L? norm

(the B%l norm in fact) of the global solutions constructed in Theorem 4.1 decays like 4
for t — +00, exactly as for the linearized equations. This fact has been first observed by
A. Matsumura and T. Nishida in [25] in the case of solutions with high Sobolev regularity.
The adaptation to the L? type critical regularity framework has been carried out recently
by M. Okita in [27], in dimension d > 3. Below, we give a more accurate description of the
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time decay, emphasizing a better decay for high frequencies. This is the key to handling
any dimension d > 2. For simplicity, we concentrate on the L? type framework, even though
we expect similar results to be true in the more general LP framework of Theorem 4.1.

Theorem 5.2. Let the data (ag,up) satisfy the assumptions of Theorem 4.1 with p = 2 and
d
assume with no loss of generality that P'(1) = 1 and that v = 1. Denote (1) el /1 + 72

and « :efmln(% +2, g + % —e¢) with € > 0 arbitrarily small. There ezists a positive constant

¢ so that if in addition
d . .
(123) Do éf;filf (1F(Agao) |z + IF (Aruo) | <) <
SKR0

then the global solution (a,u) given by Theorem 4.1 satisfies for all t > 0,

(124) D(t) < C(Do + H(aoavamuo)HBg_l)
21
. def ds a
with D(t) = sup (1) 172 (0, 0]} e+ IO (Va0 g +[7Vul”
36(_%72} LR L (B ) Ly (B3'y)

Proof. Throughout the proof, we shall use repeatedly that for 0 < o; < 09, we have:
t
(125) / (t—7) 7 (1) %%dr S ()" if in addition o > 1.
0

Step 1: Bounds for the low frequencies. Denoting by E(D) the semi-group associated to
(70), we have for all k € Z,

Avat) \ _ ey [ Dkao \ (" -nmm) Apfi(7)
(126) ( Aju(t) > = < Ajug ) /0 - A (fotfa+F)(7) "
with f; dof Qv (au), fo def . Vu, f3 def k(a)Va and f4 def I(a)Au.
(D)

From an explicit computation of the action of e/*(P) in Fourier variables (see e.g. [4]),
we discover that there exist positive constants ¢ and C' depending only on kg and such that

|F(APV U ()] < Ce P | FU ()| for all |¢] < 2.
Therefore, for all k < kg,

[P AL U2, < / o200l FALU(6)]2 de

S IFAU|Fw2b oo™,
We thus get up to a change of ¢,
(120)  0AtE 3 DA $ (sup IFAUe ) 3 (ViR e
k<kg

k<ko k<ko
As for any o > 0 there exists a constant C, so that
2%) up Y B <
120 pez,

we get from (127) that for s > —d/2,

sup t%+§\|etE(D)U||€-S < Oy sup || FALU || poe.
t>0 2,1 k<ko
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It is also obvious that for s > —d/2,

[P, S U, S sup [ FAU] e
2,1 2,1 k<ko

Hence we conclude that

(129) sup(t) 13 (|PD UL < sup |FARU| 1o
>0 217 k<kg

Next, we claim that for all s € (—d/2,2] and i € {1,--- ,4}, we have

t
130) [ e-n T s PR dr S (07 (00 + X0)
0 k<ko
with X0 20, Va il g+ [ (ol g+ lall g+l )
LZ?O(B22,1 ) 0 BQ2’1+ 322’1 B22,1

Of course, as the Fourier transform maps L! to L, it suffices to prove (130) with || ;|11
instead of supy<y, |FAkfill Lo~

To bound the term with f1, we use the following decomposition:
fi =u-Va+ adivu’ + adivu®.

Now, from Cauchy-Schwarz inequality and the definition of D(t), one may write
¢ _d_s d dy1
[e=n i Yoyl dr < (s @ um)lz) ( sup (7)1 a0 12)
0 0<r<t 0<r<t

x /0 (t—7) "1 3(r) "2 2 dr
S (07D,

where we used (125) and the fact that 0 < % +35 < %l + 3

Bounding the term with a divu! is totally similar. Regarding the term with a divu”, we
use that if £ > 2,

S

t 1
/ (t — )53 | (adiva) (7) | 2 dr S / (t —7)" 575 |a(r)| g2 | dive (7)| 2 dr
0 0

+/1 (t—7) 755 (1) (7)) | o) (7 [[div (7)) dr-

Therefore, as —d/2 < s < 2, we get

@ [ =) i) )l dr 5 (s )z ) [ vl ()2 dr

T€[0,t]

d .
+( sup (M5 fla() 22 ) (sup rlidivel (7]l ),
T€[0,¢] T€[0,¢]

and (130) is thus satisfied by the term with adivu” if ¢ > 2, the case t < 2 being obvious
as (t) ~land (t —7) ~ 1 for 0 <7 <t <2 and one may write

t
/0 ladivu|| 1 dr < lal| L2 (2 lldive® | 2 2) S X2(0).
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Handling the terms with fy and f3 is totally similar: k(a)Va and u - Vu! may be treated
as u - Va, and u - Vu?, as adivu”. For f, we write that

fa = I(a)Au® 4 I(a) Au”.
Now, we have

el

t
/ (t— 7y 4=5 | 1(a) Al 1 dr
0

< (sup (1) (sup (VEITAE ) [ 0= E 30 R

T€[0,t] T€[0,t]
Hence, thanks to (125), the term with I(a)Au’ fulfills (130). Finally, for ¢ > 2,
t d s d s 1
J=n @A dr s @75 [ ale 92 e dr
0 0

+/1t<t—7>—i—

hence, because —d/2 < s < 2 and H’Tv2uh||L§o(L2) < |rVul?
L

(P51 5 la(r)|2) (T V2 ()| 2 ) dr

M)

)

§
& (Ba1)

d
4

/t(t—ﬂZ;HI(a)Auth dr < (t)"172(D(t) + X2(t)) for t>2.
0

Obviously, as (t) ~ 1 and (t — 7) ~ 1 for 0 < 7 <t < 2, we have the following inequality:

d

t
/ (t — )" 173 I(a) AuP| 2 dr < ()13 X%(t) for t <2,
0

which completes the proof of (130). Combining with (129) and using Duhamel’s formula,
we conclude that for all ¢ > 0 and s € (—d/2,2],

(131) 5 (a,0)||%. < Do+ DA(t) + X2(b).

l
||B§’l

Step 2: Decay estimates for the high frequencies of (Va,u). We here want to bound the
second term of D(t). Recall that Theorem 4.1 ensures that

(Va,u) - < CX(0) forall T >0.

I
L (B,

Therefore it suffices to bound ||t*(Va,w)|| _ ,%_1) for, say, T' > 2.
L7 (B34

Now, the starting point is Inequality (87) which implies that for k¥ > ko and for some
co = c(ko) > 0, we have

1d

5t c0h < (109 5 90) e

| Ri(w, @) g2 + | Ry w)| 2 + | By (us @)l 2 + HVUHLwﬁk)ﬁk

with f def —adivu, g = —k(a)Va—1I(a)Au, Ry (u,b) def Ap(u-Vb)—u-VAgb for b € {a,u},
and fi;(u, a) def iAp(u - Va) — u - VdAa.
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After time integration, we discover that

t
L0 < L0)+ [ (1T falle + 1Bl
R 0) 22 + | R, 0) 22 + |Vl e L) d,

whence, remembering that £, = ||[(AxVa, Agu)|| 2 for k > ko,
t
t*(AxVa, Agu)(t)llz2 < t%e™"[[(ArVa, Agu)(0)]| 2 +t°‘/ e (H(ka,gk)llL2
0
| Ri(us @)l 2 + || Ri(w w) 2 + | Bie(ws @) g2 + [V o< | (A Va, A/fU)llL?)dT

and thus, multiplying both sides by 2’“(%_1), taking the supremum on [0, 7], and summing
up over k > ko,

(132) [[t*(Va,w)|l. .4y S|(Vag,uo)|™ 4+ Z sup (t“/ CO(T—t)2k(g_1)Sde>
L7 Bz ) B3,

T 2%1 >ko 0<t<T

with S, %520 'S¢ and

d f def def
St Z NV frgi)llzz,  Sp = |Re(w,a)|lzz,  Si = || Ri(w, )]z,
def d f
St S | Ri(u,a)llzz, Sk = ||Vl ool [(ArVa, Agu)| e
In order to bound the sum, we first notice that
S sup <t0‘ [eor=n25, 0 d7> T D) dr
k> ko 0StS2 0 0 k>ko

Hence taking advantage of (24) and of a similar inequality for Ry, (u,a), we end up with

2
sup ta/ co(T— t)Qk(——l)SdeS/ <H(Vf g)H g1t HVUH 4 H(a Va, u)HB%ﬂ)dT.

ksz OStS2 0 2,1

Bounding V f and g as in the proof of Theorem 4.1 leads to

t
(133) > sup t° / e0(T=0ok(5-1) G, dr < X2(2).
fohy 0<t<2 Jo

To bound the supremum on [2, 7], we split the integral on [0, ¢] into integrals on [0,1] and
[1,t], respectively. The [0, 1] part of the integral is easy to handle: we have

1 1
sup ta/ eco(T*t)Qk(%fl)Sk(T) dr < sup taegt/ Qk(%fl)sk dr
foT 26T Jo KTy 2SIST 0
/ S 2k g, ar.
0 k>ko
Hence
1
(134) Z sup <to‘/ ecO(T_t)Qk(g_l)Sk(T) d7'> < X2(1).
2<t<T 0

k>ko
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Let us finally consider the [1,¢] part of the integral for 2 < ¢ < T. We shall use repeatedly
the following inequality

(135) IVl S D),

d
L (B3y)
which is straightforward as regards the high frequencies of u and stems from

Irvulle SIS 2VUI|£ S ) 2u||

. d
Lg*(B3y) Lo (B3h)

for the low frequencies of w.

Regarding the contribution of S}, we first notice that, by virtue of (125),

t
d
(136) > sup ¢ [ 0FED Sy dr < [ (ThI
k>ko 2st<T 1 L%O(B2,1

IToVAIR g

d
2
LT 2,1 T 2,1 T 2,1)

The high frequencies of the first term of the r.h.s. is obviously bounded by D(T'). As for
the low frequencies, we notice that if d < 4 then for all small enough & > 0,

Now, product laws in tilde spaces ensures that
1 .
y o Sletall g vl

(137) Irs=call’ 4 SIrsal! g, <D(T)
L%O(BQQJ) T( 21 )
and if d > 5, taking s = 2 in the first term of D(T),
d
(138) el S Il g < D).
7 D31

Therefore, using (135) and remembering the definition of «, we get

VAt 4 S D).
F (B3,
Next, we have
7% (k(a)Va )||~ 541 Slla H~ " Ir%all” 4 < X(T)D(T)
B3, ) (B31) L3 (Bsh)
and, according to (137) and (138)
|7 (k(a)V )H~ g STl g T el . S D).
LE (B 21 ) LT (32,1) L%O(Bg,l)
We also see that
lr*I(a)Aull__ .4 LSVl (Pl el ).
(3221 ) L%O(BQQJ 1)( L%‘O(BQ(%J) L%O(B2g,l))

The first term of the r.h.s. may be bounded by virtue of (135), and it is also clear that
the last term is bounded by D(T'). As for the second one, we use again (137) and (138).
Resuming to (136), we end up with

t
sup to‘/ co(r= t)2k(7_1)5%(7') dr < D*(T).

fohy 2StST 1
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To bound the term with Sl%, we use the fact that

t t
/ e Ryy(u, a)|| 2 dr < || Ri(ru, 7 a) || oo 12) / e g7,
1 1

Hence, thanks to (125) and to (24) (adapted to tilde spaces),
t
sup <ta/ ecO(T*t)2k(%*1)Sg(T) d7'> < Z Qk(%fl)HRk(Tu,Tafla)HLoo(p)
| 2<t<T 1 T T

< Tvu Ta_la .
SVl g 17 el g

k>k

The first term of the r.h.s. may be bounded thanks to (135), and the high frequencies
of the last one are obviously bounded by D(T). To bound [[r**al|® , |, we use the
o (B2

7 P31
following two inequalities
= tallt g, S Tal i d <6,
L%)(B22,1 ) L%O(B22,1
-1, —1_¢ .
" a”~%°<3§;1 S el g if d=7.

Because a— 1 = % — % —eifd<6,anda—1= %—i— 1if d > 7, the r.h.s. above are bounded
by D(T). We eventually get

t
sup ta/ eco(T*t)Qk(%fl)Sz(T) dr < D*(T).

fohy 2StST 1

The terms Sg’ and S,‘i may be treated along the same lines.
Finally, using product laws and (125), we get

t
sup ta/ ecO(T*t)2k(%*1)Sg(T) dr
1

fh 25T

t

SIvul_ g I Vel sw e [ e 0radr S D)
L (B3) LpB7, He<t<T J1

Putting all the above inequalities together, we conclude that

t
sup (ta / e0(T=ok(5-1) g, (1) dT> < D(T)X(T) + D*(T).

fs g 25T 1

Then plugging this latter inequality, (133) and (134) in (132) yields

(139) ) (Va,w)l g S 1(Vag,uo)ll” 4, + X*(T) + DX(T).
LOO(B2 B2

T 2,1 2,1

Step 8: Decay estimates with gain of regularity for the high frequencies of Vu. In order to
bound the last term of D(t), we shall use the fact that the velocity u satisfies

Ou— Au=F def —(1+k(a))Va —u-Vu—I(a)Au,

whence

O (tAu) — A(tAu) = Au + tAF.
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Because the maximal regularity estimates for the Lamé semi-group are the same as for the
heat semi-group (see the beginning of Section 3), we deduce from Remark 2.2 that

[tAul 4 SAu® +HtAFHh A
g-1 1 $-3
Ly 32,1 t(BQI Lge 2,1 )

whence, using the bounds given by Theorem 5.1,

(140) [tV SXO) +[ITFI"

d
L (Bzy) Ly*(B3y )

In order to bound the last term, we notice that, because a > 1, we have

Irval 4 IR < lm)al

~ .4 -
L (321 L?°(322,1)

Next, product and composition estimates adapted to tilde spaces give

ITk(@Val" ., Slrzal> . < D(b),
Lfo(BQQ,l ) L?O(B22,1)
as well as
h
IrueVull g Sl g 79l g
Lge 21 Lge 21 Ly (32,1)
and
h
Iri@Aul? g Sl g \|Tv2u||~
Lt (BQI 2 t (B 2,1 )

Therefore, resuming to (140) and remembering (135), we get

< X(0) + DX (t) + D*(t) + [[(m)%al"

HtVuH" 4
L (Bgy)

d
L (BZ,)

Finally, bounding the last term according to (139), and adding up the obtained inequality
to (131) and (139) yields

D(t) < Do + H(Vao,uo)H];%_l + X2(t) + D*().

2,1

As Theorem 5.1 ensures that X (¢) is small, on can now conclude that (124) is fulfilled for
all time if Dy and |(Vao,uo)|" are small enough. O

d

d_q

2
B4

6. APPENDIX

Here we recall various estimates for the flow that have been used repeatedly in the proof
of Theorem 3.1. More details may be found in [16] or [19].

Recall that if v : [0,7) x R? — R? is measurable, such that ¢ + v(¢,z) is in L'(0,T) for
all z € R% and in addition Vv € L'(0,T; L) then it has, by virtue of the Cauchy-Lipschitz
theorem, a unique C' flow X, satisfying

¢
Xo(t,y) =y +/ v(1, Xy(7,y))dr for all t€0,T).
0

In addition, for all ¢ € [0,T), the map X,(t,) is a C'-diffeomorphism over R
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Lemma 6.1. Let p € [1,00). Let v(t,y) d:efv(t,X(t,y)). Under Assumption (60), we have
for all t € [0,T7,

(141) [1d —adj (DX, (1))]] |

da d
(142) [Md = Ay@)[| o SIDo[| 4,
By, Li(Byy)
(143) ladj (DX, (8))"Au(8) = 1d| o S1DT| 4
By, Li(By,)
(144) 1750 @) =1 g SIDoll g
By Li(By)

Proof. As an example, let us prove the last item. We have thanks to the chain rule,

(145)  Jyu(t,y) =1 —i—/o divo(r, Xy (1,9)) Ju(T,y)dr =1 +/0 (Do : adj (DX,))(T,y) dT.

Hence, if Condition (60) holds then we have (144) for J,, a consequence of the fact that
el

Bp;, | is an algebra, and of (141). In order to get the inequality for J, !, it suffices to notice
that

T ty) — 1= 1+ (L(ty) —1) " —1=) (-1 /t Do : adj (DX,,) dr.
E>1 0

O

Lemma 6.2. Let U1 and vy be two vector-fields satisfying (60), and & d:efT)Q — 1. Then we
have for all p € [1,00) and t € [0,T]:

(146) [Av, — Au, |

.a .d
L (B, t(By1)
(147) ladj (DXo,) —adj (DXy)| 4 SD&] 4,
L (By4) Li(By1)
(148) [Joy = Junll 0 S DO 4
(B L{(B)1)

Proof. In order to prove the first inequality, we use the fact that, for ¢ = 1,2, we have
t
Ay, =(1d +C) 7 =) (-DFCF with Ci(t) = / Du; dr.
k>0 0
Hence

k-1
ottt ([ o) o

k>1 k>1j=0

d
So using the fact that B, is a Banach algebra, it is easy to conclude to (146). Proving
the second inequality is similar. O
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