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FOURIER ANALYSIS METHODS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

In the last three decades, Fourier analysis methods have known a growing importance in the study of linear and nonlinear PDE's. In particular, techniques based on Littlewood-Paley decomposition and paradifferential calculus have proved to be very efficient for investigating evolutionary fluid mechanics equations in the whole space or in the torus. We here give an overview of results that we can get by Fourier analysis and paradifferential calculus, for the compressible Navier-Stokes equations. We focus on the Initial Value Problem in the case where the fluid domain is R d (or the torus T d ) with d ≥ 2, and also establish some asymptotic properties of global small solutions. The time decay estimates in the critical regularity framework that are stated at the end of the survey are new, to the best of our knowledge.

Introduction

In the Eulerian description, a general compressible fluid evolving in some open set Ω of R d is characterized at every material point x in Ω and time t ∈ R by its velocity field u = u(t, x) ∈ R d , density ̺ = ̺(t, x) ∈ R + , pressure p = p(t, x) ∈ R, internal energy by unit mass e = e(t, x) ∈ R, entropy by unit mass s = s(t, x) and absolute temperature T = T (t, x). In the absence of external forces, those quantities are governed by:

• The mass balance: ∂ t ̺ + div (̺u) = 0. • The momentum balance 1 : ∂ t (̺u) + div (̺u ⊗ u) = div τ -∇p, where τ stands for the viscous stress tensor.

• The energy balance:

∂ t ̺ e + |u| 2 2 + div ̺ e + |u| 2
2 u = div (τ • u + pu) -div q, where q is the heat flux vector.

• The entropy inequality:

(1) ∂ t (̺s) + div (̺su) ≥ -div q T • In what follows, we concentrate on so-called Newtonian fluids 2 . Hence (see e.g. [START_REF] Batchelor | An introduction to fluids Dynamics[END_REF]) τ is given by: τ def = λdiv u Id + 2µD(u), 1 With the convention that div (a ⊗ b) j def = i ∂i(a i b j ). 2 That is to say: the viscous stress tensor τ is a linear function of Dxu, invariant under rigid transforms, there is no internal mass couples (and thus the angular momentum is conserved), and the fluid is isotropic (viz. the physical quantities depend only on (t, x)).

where the real numbers λ and µ are the viscosity coefficients and D(u) def = 1 2 (Du + T Du) is the deformation tensor.

If we assume in addition that the Fourier law q = -k∇T is satisfied then we get the following system of equations:

(2)    ∂ t ̺ + div (̺u) = 0, ∂ t (̺u) + div (̺u ⊗ u) -2div (µD(u)) -∇(λdiv u) + ∇p = 0, ∂ t (̺e) + div (̺eu) + pdiv u -div (k∇T ) = 2µD(u) : D(u) + λ(div u) 2 .

We shall further postulate that the entropy s is interrelated with p, T and e through the so-called Gibbs relation

T ds = de + p d 1 ̺ ,
and thus we get the following evolution equation for s:

(3) T ∂ t (̺s) + div (̺su) = τ • D(u) -div q.

For the entropy inequality to be satisfied, a necessary and sufficient condition is thus

τ : D(u) + k |∇T | 2 T ≥ 0,
which yields the following constraints on λ, µ and k: k ≥ 0, µ ≥ 0 and 2µ + dλ ≥ 0.

In order to close System (2) which is composed of d+2 equations for d+4 unknowns (namely ̺, e, p, T and u 1 , • • • , u d ), we need another two state equations interrelating p, ̺, e, s and T.

In this survey, for simplicity we shall focus on barotropic gases that is p depends only on the density and λ and µ are independent of T. Therefore the system constituted by the first two equations in [START_REF] Batchelor | An introduction to fluids Dynamics[END_REF], the so-called barotropic compressible Navier-Stokes system :

(4) ∂ t ̺ + div (̺u) = 0, ∂ t (̺u) + div (̺u ⊗ u) -div 2µD(u) + λ div u Id + ∇p = 0 where p def = P (̺) for some given smooth function P, is closed.

Our main goal is to solve the Initial Value Problem (or Cauchy Problem) for (4) supplemented with initial data (̺ 0 , u 0 ) at time t = 0 in the case where the fluid domain Ω is the whole space or the torus. We will concentrate on the local well-posedness issue for large data with no vacuum, on the global well-posedness issue for small perturbations of a constant stable equilibrium, and will give exhibit some of the qualitative properties of the constructed solutions. As regards global results, the concept of critical regularity is fundamental. Indeed, experience shows that whenever the PDE system under consideration possesses some scaling invariance with respect to space and time dilations (which is in general the case when it comes from mathematical physics) then appropriate so-called critical norms or quantities essentially control the (possible) finite time blow-up and the asymptotic properties of the solutions.

If modifying the pressure law accordingly then the barotropic system (4) we are here considering has the following scaling invariance: [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] ̺(t, x) ̺(ℓ 2 t, ℓx), u(t, x) ℓu(ℓ 2 t, ℓx), ℓ > 0.

More precisely, (̺, u) is a solution to (4) if and only if so does (̺ ℓ , u ℓ ), with pressure function ℓ 2 P. This means that we expect optimal solution spaces (and norms) for [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF] to have the scaling invariance pointed out above.

The rest of these notes unfolds as follows. In the next section, we present the basic tools and estimates that will be needed to study System [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF]. Then we concentrate on the local well-posedness issue for [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] in critical spaces. Section 4 is dedicated to solving [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF] globally for small data. The last section is devoted to asymptotic results for the system. We concentrate on the low Mach number limit and on the decay rates of global solutions in the critical regularity framework.

The Fourier analysis toolbox

We here shortly introduce the Fourier analysis tools needed in this survey, then state estimates for the heat and transport equations that will play a fundamental role. For the sake of conciseness, some proofs are just sketched or omitted. Unless otherwise specified, the reader will find details in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 2 or 3.

2.1. The Littlewood-Paley decomposition. The Littlewood-Paley decomposition is a dyadic localization procedure in the frequency space for tempered distributions over R d . One of the main motivations for using it when dealing with PDEs is that the derivatives act almost as dilations on distributions with Fourier transform supported in a ball or an annulus, as regards L p norms. This is exactly what is stated in the following proposition: Proposition 2.1 (Bernstein inequalities). Let 0 < r < R.

• There exists a constant C so that, for any k ∈ N, couple (p, q) in [1, ∞] 2 with q ≥ p ≥ 1 and function u of L p with u supported in the ball B(0, λR) of R d for some λ > 0, we have D k u ∈ L q and

D k u L q ≤ C k+1 λ k+d( 1 p -1 q ) u L p .
• There exists a constant C so that for any k ∈ N, p ∈ [1, ∞] and function u of L p with Supp u ⊂ {ξ ∈ R d / rλ ≤ |ξ| ≤ Rλ} for some λ > 0, we have

λ k u L p ≤ C k+1 D k u L p .
As general solutions to nonlinear PDE's need not be spectrally localized in annuli, we want a device for splitting any function or distribution into a sum of spectrally localized functions. To this end, fix some smooth radial non increasing function χ with Supp χ ⊂ B(0, 4 3 ) and χ ≡ 1 on B(0, 3 4 ), then set ϕ(ξ) = χ(ξ/2) -χ(ξ). We thus have

j∈Z ϕ(2 -j •) = 1 in R d \ {0}•
The homogeneous dyadic blocks ∆j are defined by

∆j u def = ϕ(2 -j D)u def = F -1 (ϕ(2 -j •)Fu) = 2 jd h(2 j •) ⋆ u with h def = F -1 ϕ.
We also introduce the low frequency cut-off operator Ṡj :

Ṡj u def = χ(2 -j D)u def = F -1 (χ(2 -j •)Fu) = 2 jd ȟ(2 j •) ⋆ u with ȟ def = F -1 χ.
Let us emphasize that operators ∆j and Ṡj are continuous on L p , with norm independent of j, a property that would fail if taking a rough cut-off function χ (unless p = 2 of course).

The price to pay for smooth cut-off is that ∆j is not an L 2 orthogonal projector. However the following important quasi-orthogonality property is fulfilled:

(6) ∆j ∆k = 0 if |j -k| > 1.

The homogeneous Littlewood-Paley decomposition for u reads

(7) u = j ∆j u.
This equality holds modulo polynomials only. In order to have equality in the distributional sense, one may consider the set S ′ h of tempered distributions u such that lim j→-∞ Ṡj u L ∞ = 0. As distributions of S ′ h tend to 0 at infinity, one can easily conclude that [START_REF] Chen | Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity[END_REF] holds true in S ′ whenever u is in S ′ h . 2.2. Besov spaces. It is obvious that for all s ∈ R, we have ( 8)

C -1 u 2 Ḣs ≤ j∈Z 2 2js ∆j u 2 L 2 ≤ C u 2 Ḣs ,
and it is also not very difficult to prove that for s ∈ (0, 1), ( 9)

C -1 u Ċ0,s ≤ sup j∈Z 2 js ∆j u L ∞ ≤ C u Ċ0,s , s ∈ (0, 1).
In [START_REF] Chen | On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces[END_REF] and ( 9), we observe that three parameters come into play: the regularity parameter s, the Lebesgue exponent that is used for bounding ∆j u and the type of summation that is done over Z. This motivates the following definition: We then define the homogeneous Besov space Ḃs p,r to be the subset of distributions u ∈ S ′ h such that u Ḃs p,r < ∞.

We shall often use the following classical properties:

• Scaling invariance: For any s ∈ R and (p, r) ∈ [1, +∞] 2 there exists a constant C such that for all λ > 0 and u ∈ Ḃs p,r , we have

(10) C -1 λ s-d p u Ḃs p,r ≤ u(λ•) Ḃs p,r ≤ Cλ s-d p u Ḃs p,r
.

• Completeness: Ḃs p,r is a Banach space whenever s < d/p or s ≤ d/p and r = 1.

• Fatou property: if (u n ) n∈N is a bounded sequence of functions of Ḃs p,r that converges in S ′ to some u ∈ S ′ h then u ∈ Ḃs p,r and u Ḃs p,r ≤ C lim inf u n Ḃs p,r . • Duality: If u is in S ′ h then we have u Ḃs p,r ≤ C sup φ u, φ
where the supremum is taken over those

φ in S ∩ Ḃ-s p ′ ,r ′ such that φ Ḃ-s p ′ ,r ′ ≤ 1.
• Interpolation: The following inequalities are satisfied for3 all 1 ≤ p, r 1 , r 2 , r ≤ ∞, s 1 = s 2 and θ ∈ (0, 1): 

u Ḃθs 2 +(1-θ)s 1 p,r u 1-θ Ḃs 1 p,r 1 u θ Ḃs 2 p,r 2
p,1 ֒→ L p ֒→ Ḃ0 p,∞ . (2) If s ∈ R, 1 ≤ p 1 ≤ p 2 ≤ ∞ and 1 ≤ r 1 ≤ r 2 ≤ ∞, then Ḃs p 1 ,r 1 ֒→ Ḃs-d( 1 p 1 -1 p 2 ) p 2 ,r 2 .
(3) For s ′ < s and any 1 ≤ p, r 1 , r 2 ≤ ∞, the embedding of Ḃs p,r 1 in Ḃs ′ p,r 2 is locally compact, i.e. for any ϕ ∈ S, the map u → ϕu is compact from Ḃs

p 1 ,r 1 to Ḃs ′ -d( 1 p 1 -1 p 2 ) p 2 ,r 2 .
(4) The space Ḃ d p p,1 is continuously embedded in the set of bounded continuous functions (going to 0 at infinity if, additionally, p < ∞).

2.3.

Paraproduct and nonlinear estimates. Formally, the product of two tempered distributions u and v may be decomposed into

(12) uv = T u v + R(u, v) + T v u with T u v def = j Ṡj-1 u ∆j v and R(u, v) def = j |j ′ -j|≤1 ∆j u ∆j ′ v.
The above operator T is called "paraproduct" whereas R is called "remainder". The decomposition [START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF] has been first introduced by J.-M. Bony in [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. We observe that in Fourier variables the sum in T u v is locally finite, hence T u v is always defined. We shall see however that it cannot be smoother than what is given by high frequencies, namely v. As for the remainder, it may be not defined, but if it is then the regularity exponents add up.

All that is detailed below:

Proposition 2.3. Let (s, r) ∈ R × [1, ∞] and 1 ≤ p, p 1 , p 2 ≤ ∞ with 1/p = 1/p 1 + 1/p 2 .
• We have:

T u v Ḃs p,r u L p 1 v Ḃs p 2 ,r and 
T u v Ḃs+t p,r u Ḃt p 1 ,∞ v Ḃs p 2 ,r , if t < 0. • If s 1 + s 2 > 0 and 1/r = 1/r 1 + 1/r 2 ≤ 1 then R(u, v) Ḃs 1 +s 2 p,r u Ḃs 1 p 1 ,r 1 v Ḃs 2 p 2 ,r 2 . • If s 1 + s 2 = 0 and 1/r 1 + 1/r 2 ≥ 1 then R(u, v) Ḃ0 p,∞ u Ḃs 1 p 1 ,r 1 v Ḃs 2 p 2 ,r 2 
.

Putting together decomposition [START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF] and the above results, one may get the following product estimate that depends only linearly on the highest norm of u and v: Corollary 2.1. Let u and v be in L ∞ ∩ Ḃs p,r for some s > 0 and (p, r) ∈ [1, ∞] 2 . Then there exists a constant C depending only on d, p and s and such that 

uv Ḃs p,r ≤ C u L ∞ v Ḃs p,r + v L ∞ u Ḃs p,r . Remark 2.1. Because Ḃ d p p,1 is embedded in L ∞ ,
Ḃ d p p,1 ≤ C u Ḃ d p p,1 v Ḃ d p p,1 .
Let us finally state a composition result.

Proposition 2.4. Let F : R → R be smooth with F (0) = 0. For all 1 ≤ p, r ≤ ∞ and s > 0 we have

F (u) ∈ Ḃs p,r ∩ L ∞ for u ∈ Ḃs p,r ∩ L ∞ , and (13) 
F (u) Ḃs p,r ≤ C u Ḃs p,r
with C depending only on u L ∞ , F ′ (and higher derivatives), s, p and d.

2.4.

Endpoint maximal regularity for the linear heat equation. This paragraph is dedicated to maximal regularity issues for the basic heat equation ( 14)

∂ t u -∆u = f, u |t=0 = u 0 .
In the case u 0 ≡ 0, we say that the functional space X endowed with norm • X has the maximal regularity property if

(15) ∂ t u, D 2 x u X ≤ C f X . Fourier-Plancherel theorem implies that (15) holds true for X = L 2 (R + × R d ).
From more complicated tools based on singular integrals and heat kernel estimates, one may gather that (15) is true for X = L r (R + ; L p (R d )) whenever 1 < p, r < +∞. However, the endpoint cases where one of the exponents p or r is 1 or +∞ are false.

One of the keys to the approach presented in these notes is that (15) is true for X = L 1 (R + ; Ḃs p,1 (R d )), a consequence of the following lemma: Lemma 2.1. There exist two positive constants c and C such that for any j ∈ Z, p ∈ [1, ∞] and λ ∈ R + , we have for all u ∈ S ′ with ∆j u in L p :

e λ∆ ∆j u L p ≤ Ce -c 0 λ2 2j ∆j u L p .
Proof. A suitable change of variable reduces the proof to the case j = 0. Then consider a function φ in D(R d \ {0}) with value 1 on a neighborhood of Supp ϕ. We have

e λ∆ ∆0 u = F -1 φe -λ|•| 2 ∆0 u = g λ ⋆ ∆0 u with g λ (x) def = (2π) -d e i(x|ξ) φ(ξ)e -λ|ξ| 2 dξ.
Integrating by parts yields

g λ (x) = (1 + |x| 2 ) -d R d e i(x|ξ) (Id -∆ ξ ) d φ(ξ)e -λ|ξ| 2 dξ.
Combining Leibniz and Faá-di-Bruno's formulae to bound the integrant, we get

|g λ (x))| ≤ C(1 + |x| 2 ) -d e -c 0 λ ,
and thus ( 16)

g λ L 1 ≤ Ce -c 0 λ .
Now the desired inequality (with j = 0) just follows from L 1 ⋆ L p → L p .

Theorem 2.1. Let u satisfy [START_REF] Danchin | Zero Mach number limit for compressible flows with periodic boundary conditions[END_REF]. Then for any p ∈ [1, ∞] and s ∈ R the following inequality holds true for all t > 0 :

(17) u(t) Ḃs p,1 + t 0 ∇ 2 u Ḃs p,1 dτ ≤ C u 0 Ḃs p,1 + t 0 f Ḃs p,1 dτ •
Proof. If u satisfies ( 14) then we have for any j ∈ Z,

∆j u(t) = e t∆ ∆j u 0 + t 0 e (t-τ )∆ ∆j f (τ ) dτ.
Taking advantage of Lemma 2.1, we thus have

(18) ∆j u(t) L p e -c 0 2 2j t ∆j u 0 L p + t 0 e -c 0 2 2j (t-τ ) ∆j f (τ ) L p dτ.
Multiplying by 2 js and summing up over j yields

j 2 js ∆j u(t) L p j e -c 0 2 2j t 2 js ∆j u 0 L p + t 0 e -c 0 2 2j (t-τ ) j ∆j f (τ ) L p dτ whence u L ∞ (0,t; Ḃs p,1 ) u 0 Ḃs p,1 + f L 1 (0,t; Ḃs p,1
) . Note that integrating [START_REF] Danchin | The incompressible limit in L p type critical spaces[END_REF] with respect to time also yields

2 2j ∆j u L 1 (0,t;L p ) 1 -e -c 0 2 2j t ∆j u 0 L p + ∆j f L 1 (0,t;L p ) .
Therefore, multiplying by 2 js , using Bernstein inequality and summing up over j yields

(19) ∇ 2 u L 1 (0,t; Ḃs p,1 ) j 1 -e -c 0 2 2j t 2 js ∆j u 0 L p + ∆j f L 1 (0,t;L p ) ,
which is even slightly better than what we wanted to prove Remark 2.2. Starting from (18) and using general convolution inequalities in R + gives a whole family of estimates for the heat equation. However, as time integration has been performed before summation over j, the norms that naturally appear are

• L a t ( Ḃσ b,c ) def = 2 jσ • L a t (L b ) ℓ c where • L a t (L b ) def = • L a ((0,t);L b (R d )) .
With this notation, [START_REF] Danchin | The incompressible limit in L p type critical spaces[END_REF] implies that

u L ρ 1 t ( Ḃs+ 2 ρ 1 p,r ) u 0 Ḃs p,r + f L ρ 2 t ( Ḃs-2+ 2 ρ 2 p,r ) for 1 ≤ ρ 2 ≤ ρ 1 ≤ ∞.
The relevancy of the above norms in the maximal regularity estimates has been first noticed (in a particular case) in the pioneering work by J.-Y. Chemin and N. Lerner [START_REF] Chemin | Flot de champs de vecteurs non-lipschitziens et équations de Navier-Stokes[END_REF], then extended to general Besov spaces in [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF]. They will play a fundamental role in the proof of decay estimates, at the end of the paper.

Let us point out that results in the spirit of Propositions 2.3 and 2.4 may be easily proved for L ρ t ( Ḃσ p,r ) spaces, the general rule being just that the time exponents behave according to Hölder inequality.

2.5.

The linear transport equation. Here we give estimates in Besov spaces for the following transport equation:

(20) ∂ t a + v • ∇ x a + λa = f in R × R d a |t=0 = a 0 in R d ,
where the initial data a 0 = a 0 (x), the source term f = f (t, x), the damping coefficient λ ≥ 0 and the time dependent transport field v = v(t, x) are given.

Assuming that a 0 ∈ X and f ∈ L 1 loc (R + ; X), the relevant assumptions on v for (20) to be uniquely solvable depend on the nature of the Banach space X. Broadly speaking, in the classical theory based on Cauchy-Lipschitz theorem, v has to be at least integrable in time with values in the set of Lipschitz functions, so that it has a flow ψ. This allows to get the following explicit solution for [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF]:

(21) a(t, x) = e -λt a 0 (ψ -1 t (x)) + t 0 e -λ(t-τ ) f (τ, ψ τ (ψ -1 t (x))) dτ. Theorem 2.2. Let 1 ≤ p ≤ p 1 ≤ ∞, 1 ≤ r ≤ ∞ and s ∈ R satisfy -min d p 1 , d p ′ < s < 1 + d p 1 •
Then any smooth enough solution to (20) fulfills

a L ∞ t ( Ḃs p,r ) + λ a L 1 t ( Ḃs p,r ) ≤ e CV (t) a 0 Ḃs p,r + f L 1 t ( Ḃs p,r )
with

V (t) def = t 0 ∇v(τ ) Ḃ d p 1 p 1 ,∞ ∩L ∞ dτ.
In the case s = 1 + d p 1 and r = 1, the above inequality is true with V ′ (t) = ∇v(t)

Ḃ d p 1 p 1 ,1
.

Proof. Applying ∆j to [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] gives

(22) ∂ t ∆j a + v • ∇ ∆j a + λ ∆j a = ∆j f + Ṙj with Ṙj def = [v • ∇, ∆j ]a.
Therefore, from classical L p estimates for the transport equation, we get

(23) ∆j a(t) L p + λ ∆j a L 1 t (L p ) ≤ ∆j a 0 L p + t 0 ∆j f L p + Ṙj L p + div v L ∞ p ∆j a L p dτ.
We claim that the remainder term Ṙj satisfies (24) Ṙj (t) L p ≤ Cc j (t)2 -js ∇v(t)

Ḃ d p 1 p 1 ,∞ ∩L ∞ a(t) Ḃs p,r with (c j (t)) ℓ r = 1.
Indeed, from Bony's decomposition, we infer that (with the summation convention over repeated indices):

(25) Ṙj = [T v k , ∆j ]∂ k a + T ∂ k ∆j a v k -∆j T ∂ k a v k + R(v k , ∂ k ∆j a) -∆j R(v k , ∂ k a).
The first term is the only one where having a commutator improves the estimate. Indeed, owing to the properties of spectral localization of the Littlewood-Paley decomposition, we have

[T v k , ∆j ]∂ k a = |j-j ′ |≤4 [ Ṡj ′ -1 v k , ∆j ]∂ k ∆j ′ a. Now, remark that [ Ṡj ′ -1 v k , ∆j ]∂ k ∆j ′ a(x) = 2 jd R d h(2 j (x -y)) Ṡj ′ -1 v k (x) -Ṡj ′ -1 v k (y) ∂ k ∆j ′ a(y) dy.
Hence using the mean value formula and Bernstein inequalities yields

[T v k , ∆j ]∂ k a L p 2 -j Ṡj ′ -1 ∇v L ∞ |j ′ -j|≤4 ∂ k ∆j ′ a L p ∇v L ∞ |j ′ -j|≤4 ∆j ′ a L p .
Bounding the third and last term in [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] follows from Proposition 2.3. Regarding the second term, we may write

T ∂ k ∆j a v k = j ′ ≥j-3 Ṡj ′ -1 ∂ k ∆j a ∆j ′ v k ,
hence using Bernstein inequality,

T ∂ k ∆j a v k L p j ′ ≥j-3 2 j-j ′ ∆j a L p ∇ ∆j ′ v L ∞ ,
and convolution inequality for series thus ensures [START_REF] Lions | Une approche locale de la limite incompressible[END_REF] for that term.

Finally, we have ∆j

R(v k , ∂ k a) = |j ′ -j|≤1 ∂ k ∆j ′ a ( ∆j ′ -1 + ∆j ′ + ∆j ′ +1 )v k ,
whence, by virtue of Bernstein inequality,

R(v k , ∂ k a) L p |j ′ -j|≤1 ∆j ′ a L p ∇v L ∞ ,
and that term is thus also bounded by the r.h.s. of [START_REF] Lions | Une approche locale de la limite incompressible[END_REF].

Let us resume to [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF]. Using [START_REF] Lions | Mathematical Topics in Fluid Dynamics[END_REF] and [START_REF] Lions | Une approche locale de la limite incompressible[END_REF], multiplying by 2 js then summing up over j and using the notations of Remark 2.2 yields

a L ∞ t ( Ḃs p,r ) + λ a L 1 t ( Ḃs p,r ) ≤ a 0 Ḃs p,r + f L 1 t ( Ḃs p,r ) + C t 0 V ′ a Ḃs p,r dτ.
Then applying Gronwall's lemma gives the desired inequality for a.

The local existence in critical spaces

This section is dedicated to solving (4) locally in time, in critical spaces. For simplicity, we focus on the case where the density goes to 1 at ∞. Setting a def = ̺ -1 and looking for reasonably smooth solutions with positive density, System (4) is equivalent to

(26)    ∂ t a + u • ∇a = -(1 + a)div u, ∂ t u + u • ∇u - Au 1 + a + ∇G(a) = 1 1 + a div 2 µ(a)D(u) + λ(a)div u Id , where 4 G ′ (a) def = P ′ (1+a) 1+a , A def = µ∆ + (λ + µ)∇div with λ def = λ(1) and µ def = µ(1), µ(z) def = µ(1 + z) -µ(1) and λ(z) def = λ(1 + z) -λ(1)
. 4 In our approach, the exact value of functions G, λ and µ will not matter. We shall only need enough smoothness, and vanishing at 0 for λ and µ.

The scaling invariance properties for (a, u) are those pointed out for (4). Critical norms for the initial data are thus invariant for all ℓ > 0 by a 0 (x) a 0 (ℓx) and u 0 (x) ℓu 0 (ℓx).

In all that follows, we shall only consider homogeneous Besov spaces having the above scaling invariance and last index 1. There are good reasons for that choice, which will be explained throughout. Remembering [START_REF] Danchin | Global existence in critical spaces for compressible Navier-Stokes equations[END_REF], we thus take

(27) a 0 ∈ Ḃ d p p,1 and u 0 ∈ Ḃ d p -1
p,1 . In order to guess what is the relevant solution space, we just use the fact that a is governed by a transport equation and that u may be seen as the solution to the following Lamé equation:

(28) ∂ t u -Au = f, u| t=0 = u 0 .
In the whole space case, the solutions to (28) also satisfy the estimates of Theorem 2.1 and Remark 2.2 whenever the following ellipticity condition is fulfilled:

(29) µ > 0 and ν def = λ + 2µ > 0.
Indeed, if we denote by P and Q the orthogonal projectors over divergence-free and potential vector fields, then we have

∂ t Pu -µ∆Pu = Pf and ∂ t Qu -ν∆Qu = Qf.
In particular, applying Theorem 2.1 yields for all t ≥ 0: 

Pu(t) Ḃs p,1 + µ t 0 ∇ 2 Pu Ḃs p,
E p (T ) def = u ∈ C([0, T ]; Ḃ d p -1 p,1 ), ∂ t u, ∇ 2 u ∈ L 1 (0, T ; Ḃ d p -1
p,1 ) • In particular ∇u has exactly the regularity needed in Theorem 2.2 to ensure the conservation of the initial regularity for a, and we thus expect a ∈ C([0, T ];

Ḃ d p p,1
). The rest of this section is devoted to the proof of the following statement: Theorem 3.1. Let the viscosity coefficients λ and µ depend smoothly on ̺, and satisfy [START_REF] Valli | Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case[END_REF]. Assume that (a 0 , u 0 ) fulfills (27) for some 1 ≤ p < 2d, and that d ≥ 2. If in addition 1 + a 0 is bounded away from 0 then (26) has a unique local-in-time solution 5 and (a, u) with

a in C([0, T ]; Ḃ d p p,1
) and u in E p (T ). We propose two different proofs for Theorem 3.1. The first one uses an iterative scheme for approximating [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] which consists in solving a linear transport equation and the Lamé equation with appropriate right-hand sides. Taking advantage of Theorem 2.2 and of (30), it is easy to bound the sequence in the expected solution space on some fixed time interval [0, T ] with T > 0. However, because the whole system is not fully parabolic, the strong convergence of the sequence is shown for a weaker norm corresponding to 'a loss of one derivative'. For that reason, that approach works only 6 if 1 ≤ p < d and d ≥ 3. The same restriction occurs as regards the uniqueness issue, although the limit case p = d, or d = 2 and p ≤ 2 is tractable by taking advantage of a logarithmic interpolation inequality combined with Osgood lemma (see the end of this section).

The second proof consists in rewriting [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] in Lagrangian coordinates. Then the density becomes essentially time independent, and one just has to concentrate on the velocity equation that is of parabolic type for small enough time, and can thus be solved by the contracting mapping argument.

3.1. The classical proof in Eulerian coordinates. We here present the direct approach for solving [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF]. Our proof covers only the case d ≥ 3 and 1 ≤ p < d as regards existence, and 1 ≤ p ≤ d with d ≥ 2 for uniqueness (variations on the method would allow to get existence for the full range 1 ≤ p < 2d with d ≥ 2, though). To simplify the presentation, we assume that λ and µ are density independent so that (26) rewrites

∂ t a + u • ∇a = -(1 + a)div u, ∂ t u -Au = -u • ∇u -I(a)Au -∇(G(a)), with I(a) def = a 1+a and G ′ (a) def = P ′ (1+a) 1+a •
Furthermore, we suppose that for a small enough constant c = c(p, d, G),

(31) a 0 Ḃ d p p,1 ≤ c.
Step 1: An iterative scheme. We set a n 0 def = Ṡn a 0 and u n 0 def = Ṡn u 0 , and define the first term (a 0 , u 0 ) of the sequence of approximate solutions to be a 0 def = a 0 0 and u 0 def = e tA u 0 0 ,

where (e tA ) t≥0 stands for the semi-group of operators associated to [START_REF] Serrin | On the uniqueness of compressible fluid motions[END_REF].

Next, once (a n , u n ) has been constructed, we define a n+1 and u n+1 to be the solutions to the following linear transport and Lamé equations:

(32) ∂ t a n+1 + u n • ∇a n+1 = -(1 + a n )div u n , ∂ t u n+1 -Au n+1 = -u n • ∇u n -I(a n )Au n -∇(G(a n )),
supplemented with initial data a n+1 0 and u n+1 0 .

6 Let us emphasize however that one may modify the iterative scheme for constructing solutions, then resort to compactness arguments to get existence for the full range 1 ≤ p < 2d and d ≥ 2.

Step 2: Uniform estimates in the case 1 ≤ p < 2d and d ≥ 2. As the data are smooth, it is not difficult to check (by induction) that a n and u n are smooth and globally defined.

We claim that there exists some

T > 0 such that (a n ) n∈N is bounded in C([0, T ]; Ḃ d p p,1
) and (u n ) n∈N is bounded in the space E p (T ). Indeed, Theorem 2.2 and the fact that Ḃ d p p,1 is stable by product imply that for some C ≥ 1,

a n+1 (T ) Ḃ d p p,1 ≤ a n+1 0 Ḃ d p p,1 + C T 0 (1 + a n Ḃ d p p,1
) div u n

Ḃ d p p,1 dt +C T 0 ∇u n Ḃ d p p,1 a n+1 Ḃ d p p,1
dt.

Let U n (T ) def = ∇u n L 1 T ( Ḃ d p p,1 )
. Applying Gronwall's lemma and using the definition of a n+1 0 , we thus get

(33) a n+1 L ∞ T ( Ḃ d p p,1 ) ≤ Ce CU n (T ) a 0 Ḃ d p p,1 + (1 + a n L ∞ T ( Ḃ d p p,1
)

) e CU n (T ) -1 •
Therefore, assuming that a 0 fulfills (31) with some small enough c, that

(34) a n L ∞ T ( Ḃ d p p,1 )
≤ 4Cc

and that

(35) CU n (T ) ≤ log(1 + c),
we conclude from (33) that a n+1 also satisfies (34) for the same T . At this point, let us observe that as Ḃ d p p,1 is continuously embedded in L ∞ , one may take c so small as (36)

a n L ∞ T ( Ḃ d p p,1 ) ≤ 4Cc implies a n L ∞ ([0,T ]×R d ) ≤ 1/2.
Let us now prove estimates for the velocity. From (30), we get for some constant C depending only on λ and µ,

u n+1 Ep(T ) ≤ C u 0 Ḃ d p -1 p,1 + T 0 u n • ∇u n + I(a n )Au n + ∇(G(a n )) Ḃ d p -1 p,1 dt •
The terms in the r.h.s. may be bounded by means of Propositions 2.3 and 2.4 (remembering (36)) if d ≥ 2 and 1 ≤ p < 2d. We get for some

C ′ = C ′ (p, d, G): u n+1 Ep(T ) ≤ C ′ u 0 Ḃ d p -1 p,1 + a n L ∞ T ( Ḃ d p p,1 ) + u n L ∞ T ( Ḃ d p -1 p,1 ) ∇u n L 1 T ( Ḃ d p p,1 ) +T a n L ∞ T ( Ḃ d p p,1 )
• Using (34) and the definition of U n , this implies that

u n+1 Ep(T ) ≤ C ′ u 0 Ḃ d p -1 p,1 + (4Cc + U n (T )) u n Ep(T ) + 4CcT .
Therefore, assuming that (35) is fulfilled and taking smaller c if needed, we get

u n+1 Ep(T ) ≤ 1 2 u n Ep(T ) + C ′ ( u 0 Ḃ d p -1 p,1 + 4CcT ),
and thus, if

(37) u n Ep(T ) ≤ 2C ′ u 0 Ḃ d p -1 p,1 + 4cCT
then u n+1 also satisfies (37).

To complete the proof, we still have to justify that ( 35) is fulfilled at rank n + 1. From the definition of • Ep(T ) , embedding and (37) (at rank n + 1), we know that there exists some constant C ′′ so that

U n+1 (T ) ≤ C ′′ u 0 Ḃ d p -1 p,1 + cT .
Hence there exists a constant c ′ > 0 such that if T and u 0 satisfy

(38) u 0 Ḃ d p -1 p,1 + cT ≤ c ′
then both ( 35) and ( 37) are fulfilled at rank n + 1.

If u 0 Ḃ d p -1 p,1 ≥ c ′ then we split u n into u n L + u n with u n L (t) def = e tA u n 0 . Denoting u L def = e tA u 0 and observing that u n L = Ṡn u L , we discover that U n (T ) ≤ ∇u n L L 1 T ( Ḃ d p p,1 ) + ∇ u n L 1 T ( Ḃ d p p,1 ) ≤ C ∇u L L 1 T ( Ḃ d p p,1 ) + ∇ u n L 1 T ( Ḃ d p p,1 )
.

The term with u L goes to 0 for T tending to 0 with a speed of convergence that may be described according to [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF]. To handle the second term, we observe that u n+1 satisfies 30), product laws in Besov spaces and (31), we get

∂ t u n+1 -A u n+1 = -u n • ∇u n -u n L • ∇ u n -u n L • ∇u n L -∇(G(a n )) -I(a n )Au n . Because u n+1 (0) = 0, combining (
(39) u n+1 Ep(T ) ≤ C T 0 u n Ḃ d p -1 p,1 ∇u n Ḃ d p p,1 dt + T 0 u L Ḃ d p p,1 u n Ḃ d p p,1 dt + u L L 1 T ( Ḃ d p +1 p,1 ) u L L ∞ T ( Ḃ d p -1 p,1 ) + a n L ∞ T ( Ḃ d p p,1 ) u n L 1 T ( Ḃ d p -1 p,1 ) + T a n L ∞ T ( Ḃ d p p,1 )
• Arguing by interpolation yields for any β > 0,

T 0 u L Ḃ d p p,1 u n Ḃ d p p,1 dt ≤ β u L L ∞ T ( Ḃ d p -1 p,1 ) u n L 1 T ( Ḃ d p +1 p,1 ) + Cβ -1 u L L 1 T ( Ḃ d p +1 p,1 ) u n L ∞ T ( Ḃ d p -1 p,1 )
.

Besides, as u L L ∞ T ( Ḃ d p -1 p,1 ) ≤ C u 0 Ḃ d p -1 p,1
, Inequality (39) implies that

u n+1 Ep(T ) ≤ C U n (T ) + β u 0 Ḃ d p -1 p,1 + β -1 u L L 1 T ( Ḃ d p +1 p,1 ) + a n L ∞ T ( Ḃ d p ) u n Ep(T ) + u 0 Ḃ d p -1 p,1 u L L 1 T ( Ḃ d p +1 p,1 ) + (T + u L L 1 T ( Ḃ d p +1 p,1 ) ) a n L ∞ T ( Ḃ d p p,1 )
•

Choosing β = 1/(4C u 0 Ḃ d p -1 p,1
), remembering (34) and (35) (taking c smaller if needed), and that

(40) (1 + u 0 Ḃ d p -1 p,1 ) u L L 1 T ( Ḃ d p +1 p,1 )
≤ c, we conclude that there exists C ′′′ so that

u n+1 Ep(T ) ≤ 1 2 u n Ep(T ) + C ′′′ c.
Hence u n Ep(T ) ≤ 2C ′′′ c implies that u n+1 Ep(T ) ≤ 2C ′′′ c, and thus (37) is fulfilled at rank n + 1 if c has been chosen small enough.

Finally, let us notice that there exists some T > 0 so that

j 1 -e -c 0 2 2j T 2 j( d p -1) ∆j u 0 L p ≤ c 1 + u 0 Ḃ d p -1 p,1
• Hence [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] ensures that (40) is satisfied for this choice of T.

Step 3: Convergence in the case

1 ≤ p < d and d ≥ 3. Let δa n def = a n+1 -a n and δu n def = u n+1 -u n . The couple (δa n+1 , δu n+1 ) satisfies (41) ∂ t δa n+1 + u n+1 • ∇δa n+1 = 3 i=1 δF n i , ∂ t δu n+1 -Aδu n+1 = 5 i=1 δG n i , with δF n 1 def = -δu n • ∇a n+1 , δF n 2 def = -δa n div u n+1 , δF n 3 def = -(1 + a n )div δu n , δG n 1 def = I(a n ) -I(a n+1 ) Au n+1 , δG n 2 def = -I(a n ) Aδu n , δG n 3 def = ∇(G(a n ) -G(a n+1 )), δG n 4 def = -u n+1 • ∇δu n , δG n 5 def = -δu n • ∇u n .
Owing to the first equation, one can perform estimates for (δa n , δu n ) only in a space with one less derivative, namely in

C([0, T ]; Ḃ d p -1 p,1 ) × F p (T ) with F p (T ) def = C([0, T ]; Ḃ d p -2 p,1 ) ∩ L 1 (0, T ; Ḃ d p p,1
). Now, using the same type of computations as in Step 3, we get for all t ∈ [0, T ],

δa n+1 (t) Ḃ d p -1 p,1 ≤ δa n+1 (0) Ḃ d p -1 p,1 + C t 0 ∇u n+1 Ḃ d p p,1 δa n Ḃ d p -1 p,1 + δa n+1 Ḃ d p -1 p,1 dτ + t 0 1 + C a n Ḃ d p p,1 + C a n+1 Ḃ d p p,1 δu n Ḃ d p p,1 dτ.
Using the bounds provided by the previous step, we thus get, taking c smaller if needed,

(42) δa n+1 L ∞ t ( Ḃ d p -1 p,1 )
≤ δa n+1 (0)

Ḃ d p -1 p,1 + 1 8 δa n L ∞ t ( Ḃ d p -1 p,1 ) + 2 δu n Fp(t) .
As in the previous step, bounding δu n+1 in F p (T ) follows from (30) and product laws. However, as less regularity is available, one has to make the stronger assumption

(43) d ≥ 3 and 1 ≤ p < d.
Taking c smaller if needed, we eventually get thanks to (34), ( 35) and (37)

δu n+1 Fp(T ) ≤ C δu n+1 (0) Ḃ d p -2 p,1 + 1 8 δa n L ∞ T ( Ḃ d p -1 p,1 )
+ δu n Fp(T ) .

Combining with (42) yields

δa n+1 L ∞ T ( Ḃ d p -1 p,1 ) + 4 δu n+1 Fp(T ) ≤ C δa n+1 (0) Ḃ d p -1 p,1 + 4 δu n+1 (0) Ḃ d p -2 p,1 + 5 8 δa n L ∞ T ( Ḃ d p -1 p,1 )
+ 4 δu n Fp(T ) .

Summing up over n ∈ N, we conclude that (a n -a 0 ) n∈N and (u n -u 0 ) n∈N converge in

C([0, T ]; Ḃ d p -1 p,1
) and in F p (T ), respectively.

Step 4: Checking that the limit is a solution and upgrading regularity. From Step 3, we know that there exists a and u so that

a n -a 0 → a -a 0 in L ∞ (0, T ; Ḃ d p -1 p,1
) and u n -u 0 → u -u 0 in F p (T ). The bounds of Step 2 combined with Banach-Alaoglu theorem imply that in addition

a n ⇀ a in L ∞ (0, T ; Ḃ d p p,1 ) weak * and u n ⇀ u in L ∞ (0, T ; Ḃ d p -1
p,1 ) weak * . Routine verifications thus allow to pass to the limit in (32).

The previous step tells us that

∇ 2 u is in L 1 (0, T ; Ḃ d p -2
p,1 ). To upgrade the regularity exponent by 1, let us write that for all J ∈ N:

|j|≤J T 0 2 j( d p -1) ∆j ∇ 2 u L p dt ≤ |j|≤J T 0 2 j( d p -1) ∆j ∇ 2 u n L p dt +2 J |j|≤J T 0 2 j( d p -2) ∆j ∇ 2 u -∆j ∇ 2 u n L p dt.
The first term is bounded by the r.h.s. of (37) while, by virtue of Step 3, the second one tends to 0 when n goes 0. Hence, letting J tend to +∞ ensures that ∇ 2 u

L 1 T ( Ḃ d p -1 p,1 )
is finite.

Next, as (a, u) satisfies ( 26 Step 5: Uniqueness. Consider two solutions (a 1 , u 1 ) and (a 2 , u 2 ) of [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] with the above regularity. The difference (δa, δu)

def = (a 2 -a 1 , u 2 -u 1 ) satisfies (44) ∂ t δa + u 2 • ∇δa = 3 i=1 δF i , ∂ t δu -Aδu = 5 i=1 δG i , with δF 1 def = -δu • ∇a 1 , δF 2 def = -δa div u 2 , δF 3 def = -(1 + a 1 )div δu, δG 1 def = I(a 1 ) -I(a 2 ) Au 2 , δG 2 def = -I(a 1 ) Aδu, δG 3 def = ∇(G(a 1 ) -G(a 2 )), δG 4 def = -u 2 • ∇δu, δG 5 def = -δu • ∇u 1 .
Mimicking the computations of Step 3, it is easy to see that if (43) is fulfilled then (δa, δu) ≡ 

0 in C([0, T ]; Ḃ d p -1 p,1 ) × F p (T ).
δa L ∞ T ( Ḃ0 d,∞ ) ≤ δa(0) Ḃ0 d,∞ + (1 + a 1 L ∞ T ( Ḃ1 d,1 ) ) δu L 1 T ( Ḃ1 d,1 ) e u 2 L 1 T ( Ḃ2 d,1
) .

Regarding δu, owing to (45), one has to apply Remark 2.2 rather than Theorem 2.1, which enables us to control the following quantity:

δu L 1 T ( Ḃ1 d,∞ ) def = sup j 2 j ∆j δu L 1 T (L d ) ,
which is slightly weaker than δu L 1

T ( Ḃ1 d,1
) . Inserting the following logarithmic interpolation inequality (see [START_REF] Danchin | On the uniqueness in critical spaces for compressible Navier-Stokes equations[END_REF]):

(46) δu L 1 T ( Ḃ1 d,1 ) δu L 1 T ( Ḃ1 d,∞ ) log e + δu L 1 T ( Ḃ0 d,∞ ) + δu L 1 T ( Ḃ2 d,∞ ) δu L 1 T ( Ḃ1 d,∞ )
in the estimate for δa and using Osgood lemma (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 3), we end up with

δa L ∞ t ( Ḃ0 d,∞ ) + δu L ∞ t ( Ḃ-1 d,∞ )∩ L 1 t ( Ḃ1 d,∞ ) δa(0) Ḃ0 d,∞ + δu(0) Ḃ-1 d,∞ exp(-t 0 α dτ )
where α is in L 1 (0, T ) and depends only on the high norms of the two solutions. This yields uniqueness on [0, T ].

3.2. The Lagrangian approach. We now propose another proof of the local well-posedness of ( 26), which will provide us with the statement of Theorem 3.1 in its full generality. It is based on the Lagrangian formulation of the system under consideration.

To make it more precise, we need to introduce more notation. First, we agree that for a

C 1 function F : R d → R d × R m then div F : R d → R m is defined by (div F ) j def = d i=1 ∂ i F ij for 1 ≤ j ≤ m,
and that for A = (A ij ) 1≤i,j≤d and B = (B ij ) 1≤i,j≤d two d × d matrices,

A : B = Tr AB = i,j A ij B ji .
The notation adj (A) designates the adjugate matrix that is the transposed cofactor matrix of A. Of course if A is invertible then we have adj (A) = (det A) A -1 . Finally, given some matrix A, we define the "twisted" deformation tensor and divergence operator (acting on vector fields z) by the formulae

D A (z) def = 1 2 Dz • A + T A • ∇z and div A z def = T A : ∇z = Dz : A.
We recall the following classical result (see the proof in e.g. [START_REF] Danchin | A Lagrangian approach for the compressible Navier-Stokes equations[END_REF]).

Lemma 3.1. Let K be a C 1 scalar function over R d and H, a C 1 vector-field. Let X be a

C 1 diffeomorphism such that J def = det(D y X) > 0.
Then we have

∇ x K = J -1 div y (adj (D y X) K), (47) div x H = J -1 div y (adj (D y X) H). (48)
Let X be the flow associated to the vector-field u, that is the solution to (49) X(t, y) = y + t 0 u(τ, X(τ, y)) dτ.

Let ̺(t, y) def = ̺(t, X(t, y)) and ū(t, y) = u(t, X(t, y)). Formally, we see from the chain rule and Lemma 3.1 above that (̺, u) satisfies (4) if and only if (̺, ū) fulfills

(50) ∂ t (J ̺) = 0 ̺ 0 ∂ t ū -div adj (DX) 2µ(̺)D A (ū) + λ(̺) div A ū Id + P (̺)Id = 0 with J def = det DX, A def = (D y X) -1 and
(51)

X(t, y) = y + t 0 ū(τ, y) dτ.
The first equation means that ̺ = J -1 ̺ 0 , and the velocity equation thus recasts in:

L ̺ 0 (ū) = ̺ -1 0 div I 1 (ū, ū) + I 2 (ū, ū) + I 3 (ū, ū) + I 4 (ū) with (52) L ̺ 0 (u) def = ∂ t u -̺ -1 0 div 2µ(̺ 0 )D(u) + λ(̺ 0 )div u Id and I 1 (v, w) def = (adj (DX v ) -Id ) µ(J -1 v ̺ 0 )(Dw A v + T A v ∇w) + λ(J -1 v ̺ 0 )( T A v : ∇w)Id I 2 (v, w) def = (µ(J -1 v ̺ 0 ) -µ(̺ 0 ))(Dw A v + T A v ∇w) + (λ(J -1 v ̺ 0 ) -λ(̺ 0 ))( T A v : ∇w)Id I 3 (v, w) def = µ(̺ 0 ) Dw(A v -Id ) + T (A v -Id )∇w + λ(̺ 0 )( T (A v -Id ) : ∇w)Id I 4 (v) def = -adj (DX v )P (̺ 0 J -1 v ),
where X v is given by (49

) with v instead of u, A v def = (DX v ) -1 and J v def = det DX v .
So finally, in order to solve (50) locally, it suffices to show that the map

(53) Φ : v -→ u with u the solution to L ̺ 0 (u) = ̺ -1 0 div I 1 (v, v) + I 2 (v, v) + I 3 (v, v) + I 4 (v) , u| t=0 = u 0 has a fixed point in E p (T ) for small enough T.
In order to treat the case where ̺ is just bounded away from zero, we need to generalize (30) to the following Lamé system with nonconstant coefficients:

(54) ∂ t u -2adiv (µD(u)) -b∇(λdiv u) = f,
where a, b, λ and µ satisfy the following uniform ellipticity condition:

(55)

α def = min inf (t,x)∈[0,T ]×R d (aµ)(t, x), inf (t,x)∈[0,T ]×R d (2aµ + bλ)(t, x) > 0.
In [START_REF] Danchin | A Lagrangian approach for the compressible Navier-Stokes equations[END_REF], the following statement has been proved.

Proposition 3.1. Let a, b, λ and µ be bounded functions satisfying (55). Assume that a∇µ, b∇λ, µ∇a and λ∇b are in L ∞ (0, T ; Ḃ d p -1 p,1 ) for some 1 < p < ∞. There exist η > 0 and α > 0 such that if for some m ∈ Z we have

min inf (t,x)∈[0,T ]×R d Ṡm (2aµ + bλ)(t, x), inf (t,x)∈[0,T ]×R d Ṡm (aµ)(t, x) ≥ α 2 , ( 56 
) (Id -Ṡm )(µ∇a, a∇µ, λ∇b, b∇λ) L ∞ T ( Ḃ d p -1 p,1 )
≤ ηα (57) then the solutions to (54) satisfy for all t ∈ [0, T ],

u L ∞ t ( Ḃs p,1 ) + α u L 1 t ( Ḃs+2 p,1 ) ≤ C u 0 Ḃs p,1 + f L 1 t ( Ḃs p,1 ) exp C α t 0 Ṡm (µ∇a, a∇µ, λ∇b, b∇λ) 2 Ḃ d p p,1 dτ whenever -min(d/p, d/p ′ ) < s ≤ d/p -1.
In order to show that Φ in (53) admits a fixed point in E p (T ), we introduce, as in the previous subsection, the solution u L in E p (T ) to

L 1 u L = 0, u| t=0 = u 0 .
We want to apply Banach fixed point theorem to Φ in some suitable closed ball BEp(T ) (u L , R).

Let v be in BEp(T ) (u L , R) and u def = Φ(v). Denoting u def = u -u L , we see that (58) L ̺ 0 u = ̺ -1 0 div I 1 (v, v) + I 2 (v, v) + I 3 (v, v) + I 4 (v) + (L 1 -L ̺ 0 )u L , u| t=0 = 0.
The existence of some m ∈ Z so that

min inf R d Ṡm 2 µ(̺ 0 ) ̺ 0 + λ(̺ 0 ) ̺ 0 , inf R d Ṡm µ(̺ 0 ) ̺ 0 > α 2 and (Id -Ṡm ) µ(̺ 0 ) ̺ 2 0 ∇̺ 0 , µ ′ (̺ 0 ) ̺ 0 ∇̺ 0 , λ(̺ 0 ) ̺ 2 0 ∇̺ 0 , λ ′ (̺ 0 ) ̺ 0 ∇̺ 0 Ḃ d p -1 p,1
≤ ηα is ensured by the fact that all the coefficients (minus some constant) belong to the space Ḃ d p p,1 which is defined in terms of a convergent series and embeds continuously in the set of bounded continuous functions. Hence, if one can show that the right-hand side of (58) is in L 1 (0, T ; Ḃ d p -1 p,1 ) (which will be carried out in the next step) then we will be allowed to apply Proposition 3.1 to bound u in E p (T ). 

(59) u Ep(T ) ≤ Ce C̺ 0 T (L 1 -L ̺ 0 )u L L 1 T ( Ḃ d p -1 p,1 ) + 1 + a 0 Ḃ d p p,1 I 4 (v) L 1 T ( Ḃ d p p,1 ) + 3 i=1 I i (v, v) L 1 T ( Ḃ d p p,1 )
for some constant C ̺ 0 depending only on ̺ 0 .

In what follows, we assume that T and R have been chosen so that, for a small enough positive constant c,

(60) T 0 ∇v Ḃ d p p,1 dt ≤ c. Now, using the decomposition (L 1 -L ̺ 0 )u L = (̺ -1 0 -1)div 2µ(̺ 0 )D(u L ) + λ(̺ 0 )div u L Id +div 2(µ(̺ 0 ) -µ(1))D(u) + (λ(̺ 0 ) -λ(1))div u Id ,
and Proposition 2.4, we see that

(L 1 -L ̺ 0 )u L ∈ L 1 (0, T ; Ḃ d p -1 p,1
) and ( 61)

(L 1 -L ̺ 0 )u L L 1 T ( Ḃ d p -1 p,1 ) a 0 Ḃ d p p,1 (1 + a 0 Ḃ d p p,1
)

Du L L 1 T ( Ḃ d p p,1 )
.

Likewise, flow and composition estimates (see the appendix) ensure that

I i (v, w) L 1 T ( Ḃ d p -1 p,1 ) (1 + a 0 Ḃ d p p,1
) Dv

L 1 T ( Ḃ d p p,1 )
Dw

L 1 T ( Ḃ d p p,1 )
for i = 1, 2, 3, (62)

I 4 (v) L 1 T ( Ḃ d p p,1 ) T (1 + a 0 Ḃ d p p,1
)(1 + Dv

L 1 T ( Ḃ d p p,1 )
). (63) So plugging the above inequalities in (59) and keeping in mind that v satisfies (60), we get after decomposing v into v + u L :

u Ep(T ) ≤ Ce C̺ 0 ,mT (1 + a 0 Ḃ d p p,1 ) 2 (T + a 0 Ḃ d p p,1 Du L L 1 T ( Ḃ d p p,1 )
)

+ Du L 2 L 1 T ( Ḃ d p p,1 ) + Du L L 1 T ( Ḃ d p p,1 ) + D v L 1 T ( Ḃ d p p,1 ) D v L 1 T ( Ḃ d p p,1 )
.

Now, because v ∈ BEp(T ) (0, R), u Ep(T ) ≤ Ce C̺ 0 T (1 + a 0 Ḃ d p p,1
)

2 (T + a 0 Ḃ d p p,1 Du L L 1 T ( Ḃ d p p,1 )
)

+(R + Du L L 1 T ( Ḃ d p p,1
)

) Du L L 1 T ( Ḃ d p p,1 ) + R 2 .
Therefore, if we first choose R so that for a small enough constant η,

(64) (1 + a 0 Ḃ d p p,1
) 2 R ≤ η and then take T so that (65)

C ̺ 0 T ≤ log 2, T ≤ R 2 , a 0 Ḃ d p p,1 Du L L 1 T ( Ḃ d p p,1 ) ≤ R 2 , Du L L 1 T ( Ḃ d p p,1 )
≤ R, then we may conclude that Φ maps BEp(T ) (u L , R) into itself.

Second step: contraction estimates. Let us now establish that, under Condition (65), the map Φ is contractive. We consider two vector-fields v 1 and v 2 in BEp(T ) (u L , R), and set

u 1 def = Φ(v 1 ) and u 2 def = Φ(v 2 ). Let δu def = u 2 -u 1 and δv def = v 2 -v 1 .
We have

L ̺ 0 δu = ̺ -1 0 div (I 1 (v 2 , v 2 ) -I 1 (v 1 , v 1 )) +(I 2 (v 2 , v 2 ) -I 2 (v 1 , v 1 )) + (I 3 (v 2 , v 2 ) -I 3 (v 1 , v 1 )) + (I 4 (v 2 ) -I 4 (v 1 )) • So applying Proposition 3.1 (recall that C ̺ 0 T ≤ log 2), we get (66) δu Ep(T ) ≤ C(1 + a 0 Ḃ d p p,1
)

3 i=1 I i (v 2 , v 2 ) -I i (v 1 , v 1 ) L 1 T ( Ḃ d p p,1 ) + I 4 (v 2 ) -I 4 (v 1 ) L 1 T ( Ḃ d p p,1 )
•

In order to deal with the first term of the right-hand side, we use the decomposition

I 1 (v 2 , v 2 ) -I 1 (v 1 , v 1 ) = λ(J -1 v 2 ̺ 0 ) T A v 2 : ∇v 2 adj (DX v 2 ) -adj (DX v 1 ) + adj (DX v 1 ) -Id λ(J -1 v 2 ̺ 0 ) -λ(J -1 v 1 ̺ 0 ) T A v 2 : ∇v 2 + adj (DX v 1 ) -Id λ(J -1 v 1 ̺ 0 ) ( T A v 2 -T A v 1 ) : ∇v 1 + T A v 2 : ∇δv + terms pertaining to µ.
Taking advantage of product laws in Besov spaces, of Proposition 2.4 and of the flow estimates in the appendix, we deduce that for some constant C ̺ 0 depending only on ̺ 0 :

I 1 (v 2 , v 2 ) -I 1 (v 1 , v 1 ) L 1 T ( Ḃ d p p,1 ) ≤ C ̺ 0 (Dv 1 , Dv 2 ) L 1 T ( Ḃ d p p,1 )
Dδv

L 1 T ( Ḃ d p p,1 )
.

Similar estimates may be proved for the next two terms of the right-hand side of (66).

Concerning the last one, we use the decomposition

I 4 (v 2 ) -I 4 (v 1 ) = adj (DX v 1 ) -adj (DX v 2 ) P (J -1 v 2 ̺ 0 ) -adj (DX v 1 ) P (J -1 v 2 ̺ 0 ) -P (J -1 v 1 ̺ 0 ) . Hence I 4 (v 2 ) -I 4 (v 1 ) L 1 T ( Ḃ d p p,1 ) ≤ C(1 + a 0 Ḃ d p p,1
)T Dδv

L 1 T ( Ḃ d p p,1 )
.

We end up with

δu Ep(T ) ≤ C(1 + a 0 Ḃ d p p,1
) 2 T + (Dv 1 , Dv 2 )

L 1 T ( Ḃ d p p,1 )
Dδv

L 1 T ( Ḃ d p p,1 )
.

Given that v 1 and v 2 are in BEp(T ) (u L , R), our hypotheses over T and R (with smaller η in (64) if need be) thus ensure that,

δu Ep(T ) ≤ 1 2 δv Ep(T ) .
Hence Φ admits a unique fixed point in BEp(T ) (u L , R).

Third step: Regularity of the density.

Set ̺ def = J -1 u ̺ 0 . By construction (̺, u) satisfies (50) and a def = ̺ -1 is given by a = (J -1 u -1)a 0 + a 0 .
From the appendix, as Du ∈ L 1 (0, T ; Ḃ d p p,1 ), we have J - Last step: Uniqueness and continuity of the flow map. Let the data (̺ 1 0 , u 1 0 ) and (̺ 2 0 , u 2 0 ) fulfill the assumptions of Theorem 3.1, and let (̺ 1 , u 1 ) and (̺ 2 , u 2 ) be the corresponding solutions. Setting δu def = u 2 -u 1 , we see that

L ̺ 1 0 (δu) = (L ̺ 1 0 -L ̺ 2 0 )(u 2 ) + (̺ 1 0 ) -1 div 3 j=1 (I 2 j (u 2 , u 2 ) -I 2 j (u 1 , u 1 ) + (I 2 4 (u 2 ) -I 2 4 (u 1 )) +(̺ 1 0 ) -1 div 3 j=1 ((I 2 j -I 1 j )(u 1 , u 1 ) + (I 2 4 -I 1 4 )(u 1 ) ,
where I i 1 , I i 2 , I i 3 and I i 4 correspond to the quantities that have been defined just above (53), with density ̺ i 0 . Compared to the second step, the only definitely new terms are

(L ̺ 1 0 -L ̺ 2 0 )(u 2
) and the last line. As regards (L

̺ 1 0 -L ̺ 2 0 )(u 2 ), we have for t ≤ T, (L ̺ 1 0 -L ̺ 2 0 )(u 2 ) L 1 t ( Ḃ d p -1 p,1 ) ≤ C ̺ 1 0 ,̺ 2 0 δρ 0 Ḃ d p p,1
Du 2

L 1 t ( Ḃ d p p,1 )
.

The other new terms satisfy analogous estimates. Hence, applying Proposition 3.1 yields if δρ 0 is small enough:

δu Ep(t) ≤ C ̺ 1 0 (t + Du 1 L 1 t ( Ḃ d p p,1 )
+ δu Ep(t) ) δu Ep(t)

+ δu 0 Ḃ d p p,1 + δρ 0 Ḃ d p p,1 (t + Du 1 L 1 t ( Ḃ d p p,1 )
) .

An obvious bootstrap argument thus shows that if t, δu 0 and δρ 0 are small enough then

δu Ep(t) ≤ 2C ̺ 0 δu 0 Ḃ d p p,1 + δρ 0 Ḃ d p p,1
.

As regards the density, we have δa = J -1

u 1 δa 0 + (J -1 u 2 -J -1 u 1 )a 2 0 .
Hence for all t ∈ [0, T ], δa(t)

Ḃ d p p,1 ≤ C(1 + Du 1 L 1 t ( Ḃ d p p,1
)

) δa 0 Ḃ d p p,1
Dδu

L 1 t ( Ḃ d p p,1 )
.

So we get uniqueness and continuity of the flow map on a small time interval. Then iterating the proof yields uniqueness on the initial time interval [0, T ], as well as Lipschitz continuity of the flow map.

It is now easy to conclude to Theorem 3.1 in its full generality, as a mere corollary of the following proposition which states the equivalence of Systems ( 26) and (50) in our functional setting (see the proof in [START_REF] Danchin | A Lagrangian approach for the compressible Navier-Stokes equations[END_REF]). [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] and has the same regularity as (̺, ū).

(̺, u)(t) def = (̺(t) • X -1 t , ū(t) • X -1 t ) satisfies ( 

The global existence issue

This section is devoted to the proof of global existence of strong solutions for small perturbations of the constant state (̺, u) = (1, 0), under the stability assumption P ′ (1) > 0.

For simplicity, we assume that the viscosity functions λ and µ are constant.

Let us emphasize that the approach we used so far to solve (26) cannot provide us with global-in-time estimates (even if both a 0 and u 0 are small) because we completely ignored the coupling between the mass and momentum equation through the pressure term and looked at it as a low order source term, just writing

∂ t u -Au = -u • ∇u -I(a)Au -∇(G(a)).
Then, applying Inequality (30) and product laws in Besov spaces led to

(69) u Ep(t) ≤ C u 0 Ḃ d p -1 p,1 + u Ep(t) a L ∞ t ( Ḃ d p p,1 ) + u Ep(t) + t 0 a Ḃ d p p,1 dτ •
At the same time, as a is a solution to a transport equation, we can only get bounds on a

L ∞ t ( Ḃ d p p,1 )
and the last term of ( 69) is thus out of control for t → +∞.

4.1.

The linearized compressible Navier-Stokes system, and main result. The key to proving global results is a refined analysis of the linearized system (26) about (a, u) = (0, 0) taking the coupling between the mass and momentum equation through the pressure term into account. The system in question reads:

(70)

∂ t a + div u = f, ∂ t u -µ∆u -(λ + µ)∇div u + P ′ (1)∇a = g.
Applying the orthogonal projectors P and Q over divergence-free and potential vectorfields, respectively, to the second equation, and setting α def = P ′ (1) and

ν def = λ + 2µ, System (70) translates into (71)    ∂ t a + div Qu = f, ∂ t Qu -ν∆Qu + α∇a = Qg, ∂ t Pu -µ∆Pu = Pg.
We see that Pu satisfies an ordinary heat equation, which is uncoupled from a and Qu.

For studying the coupling between a and Qu, it is convenient to set v def = |D| -1 div u (with

F(|D| s u)(ξ) def = |ξ| s u(ξ))
, keeping in mind that, according to [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF], bounding v or Qu is equivalent, as one can go from v to Qu or from Qu to v by means of a 0 order homogeneous Fourier multiplier.

For notational simplicity, we assume from now on that 7 α = ν = 1. Hence (a, v) satisfies the following 2 × 2 system:

(73) ∂ t a + |D|v = f, ∂ t v -∆v -|D|a = h def = |D| -1 div g.
Taking the Fourier transform with respect to x, and denoting ρ def = |ξ| with ξ ∈ R d the Fourier variable, System (73) translates into (74)

d dt a v = M ρ a v + f h with M ρ def = 0 -ρ ρ -ρ 2 •
• In the low frequency regime ρ < 2, M ρ has two complex conjugated eigenvalues:

λ ± (ρ) def = - ρ 2 2 (1 ± iS(ρ)) with S(ρ) def = 4 ρ 2 -1
which have real part -ρ 2 /2, exactly as for the heat equation with diffusion 1/2. • In the high frequency regime ρ > 2, there are two distinct real eigenvalues:

λ ± (ρ) def = - ρ 2 2 (1 ± R(ρ)) with R(ρ) def = 1 - 4 ρ 2 • As 1 -R(ρ) ∼ 2/ρ 2 for ρ → +∞, we have λ + (ρ) ∼ -ρ 2 and λ -(ρ) ∼ -1•
In other words, a parabolic and a damped mode coexist. Optimal a priori estimates may be easily derived by computing the explicit solution of (73) explicitly in the Fourier space. Below, we present an alternative method which is generalizable to much more complicated systems where explicit computations are no longer possible (see e.g. [START_REF] Danchin | On a simplified model for radiating flows[END_REF]).

Fix some ρ ≥ 0 and consider the corresponding solution (A, V ) of (74) in the case f = h = 0. We easily get the following three identities:

1 2

d dt |A| 2 + ρ Re (A V ) = 0, (75) 1 2 d dt |V | 2 + ρ 2 |V | 2 -ρ Re (A V ) = 0, (76) d dt Re (A V ) + ρ|V | 2 -ρ|A| 2 + ρ 2 Re (A V ) = 0, (77) 
from which we deduce (78) 1 2

d dt L 2 ρ + ρ 2 |(A, V )| 2 = 0 with L 2 ρ def = 2|(A, V )| 2 + |ρA| 2 -2ρ Re (A V ).
Using Young inequality, we discover that there exists some constant C 0 > 0 independent of ρ so that (79)

C -1 0 L 2 ρ ≤ |(A, ρA, V )| 2 ≤ C 0 L 2 ρ .
Combining with (78), we conclude that there exists a universal constant c 0 > 0 so that (80) L 2 ρ (t) ≤ e -c 0 min(1,ρ 2 )t L 2 ρ (0) for all t ≥ 0.

7 Which is not restrictive as the rescaling

(72) a(t, x) = a α ν t, √ α ν x and u(t, x) = √ α u α ν t, √ α ν x ensures that ( a, u) satisfies (71) with α = ν = 1.
In the case of general source terms f and h in (74), using Duhamel formula and applying the above inequality to A(t) = a(t, ρ) and V (t) = v(t, ρ) thus leads to

(81) |( a, ρ a, v)(t)| + min(1, ρ 2 ) t 0 |( a, ρ a, v)| dτ ≤ C |( a 0 , ρ a 0 , v 0 )| + t 0 |( f , ρ f , h)| dτ • Note that as ∂ t v + ρ 2 v = h + ρ a, we also have ρ 2 t 0 | v(τ )| dτ ≤ | v 0 | + t 0 | h(τ )| dτ + t 0 |ρ a(τ )| dτ.
And thus, bounding the last term according to (81), we get the following inequality which provides the full parabolic smoothing for v:

(82) |( a, ρ a, v)(t)| + min(ρ, ρ 2 ) t 0 | a| dτ + ρ 2 t 0 | v| dτ ≤ C |( a 0 , ρ a 0 , v 0 )| + t 0 |( f , ρ f , h)| dτ •
From Inequality (80) and Fourier-Plancherel theorem, it is easy to obtain estimates of L 2 type for the solutions to (70). Optimal informations will be obtained if splitting the unknowns into frequency packets of comparable sizes. To this end, one may apply ∆k to (70) and get (83)

   ∂ t ∆k a + div ∆k Qu = ∆k f, ∂ t ∆k Qu -∆ ∆k Qu + ∇ ∆k a = ∆k Qg, ∂ t ∆k Pu -µ∆ ∆k Pu = ∆k Pg.
In the case with no source term then using (80) combined with Fourier-Plancherel theorem readily yields for some universal constant C 0 , and c 0 depending only on µ, ( ∆k a, ∆k ∇a, ∆k u)(t) L 2 ≤ C 0 e -c 0 min(1,2 2k )t ( ∆k a, ∆k ∇a, ∆k u)(0) L 2 .

Then, for general source terms, using Duhamel's formula and repeating the computations leading to (82), we end up with (84) ( ∆k a, ∆k ∇a, ∆k u)(t)

L 2 + min(1, 2 k ) t 0 ∆k ∇a L 2 dτ + 2 2k t 0 ∆k u L 2 dτ ≤ C ( ∆k a 0 , ∆k ∇a 0 , ∆k u 0 ) L 2 + t 0 ( ∆k f, ∆k ∇f, ∆k g) L 2 dτ •
Multiplying both sides by 2 ks , taking the supremum on [0, t] then summing up on k ≥ k 0 or k ≤ k 0 , we conclude to the following: Proposition 4.1. Let s ∈ R and (a, u) satisfy (70) with P ′ (1) = ν = 1. Let k 0 ∈ Z. Then we have for some constant C depending only on k 0 and µ, and all t ≥ 0,

(a, u) ℓ L ∞ t ( Ḃs 2,1 ) + (a, u) ℓ L 1 t ( Ḃs+2 2,1 ) ≤ C (a 0 , u 0 ) ℓ Ḃs 2,1 + (f, g) ℓ L 1 t ( Ḃs 2,1 ) , a h L ∞ t ( Ḃs+1 2,1 ) + a h L 1 t ( Ḃs+1 2,1 ) + u h L ∞ t ( Ḃs 2,1 ) + u h L 1 t ( Ḃs+2 2,1 ) ≤ a 0 h Ḃs+1 2,1 + u 0 h Ḃs 2,1 + f h L 1 t ( Ḃs+1 2,1 ) + g h L 1 t ( Ḃs 2,1 ) ,
where we used the notation

(85) z ℓ Ḃσ p,1 = k≤k 0 2 kσ ∆k z L p and z h Ḃσ p,1 = k≥k 0 2 kσ ∆k z L p .
The high frequencies inequality means that in order to get optimal estimates, it is suitable to work with the same regularity for ∇a and u. In contrast, for low frequencies, one has to work in the same space for a and u, a fact which does not follow from our rough scaling considerations [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] but is fundamental to keep the pressure term under control in [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF].

Granted with the above proposition, it is now natural to look at [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] as System (70) with right-hand side

f = -div (au) and g = -u • ∇u -I(a)Au -k(a)∇a where k(a) def = G ′ (a) -G ′ (0).
The problem is that f will cause a loss of one derivative as there is no smoothing effect for a in high frequency. A second limitation of Proposition 4.1 is that it concerns Besov spaces related to L 2 whereas we know the system to be locally well-posed in more general Besov spaces (see Theorem 3.1). To overcome the first problem, let us include the convection terms in our linear analysis, thus considering:

(86) ∂ t a + v • ∇a + div u = f, ∂ t u + v • ∇u -µ∆u -(λ + µ)∇div u + α∇a = g,
where v stands for a given time-dependent vector field. Then we have for some constant C depending only on k 0 and µ, and all t ≥ 0,

(a, ∇a, u) L ∞ t ( Ḃs 2,1 ) + a ℓ L 1 t ( Ḃs+2 2,1 ) + ∇a h L 1 t ( Ḃs 2,1 ) + u L 1 t ( Ḃs+2 2,1 )
≤ C (a 0 , ∇a 0 , u 0 ) Ḃs 

∂ t a k + ∆k (v • ∇a) + div u k = f k , ∂ t u k + ∆k (v • ∇u) -µ∆u k -(λ + µ)∇div u k + ∇a k = g k , with a k def = ∆k a, u k def = ∆k u, f k def = ∆k f and g k def = ∆k g.
Keeping in mind the proof of Proposition 4.1, we introduce

L 2 k def = 2 (a k , u k ) 2 L 2 + ∇a k 2 L 2 + (u k | ∇a k ) L 2 . Now, remembering that λ + 2µ = 1, we get (87) 1 2 d dt L 2 k + µ ∇Pu k 2 L 2 + (∇Qu k , ∇a k ) 2 L 2 = g k | (2u k +∇a k ) L 2 + 2(f k | a k ) L 2 + ∇f k | ∇a k L 2 -2 ∆k (v • ∇a) | a k L 2 -2 ∆k (v • ∇u)|u k L 2 ∆k ∇(v • ∇a) | ∇a k L 2 -∆k (v • ∇u) | ∇a k L 2 -∆k ∇(v • ∇a) | u k L 2 .
Let us explain how to bound the convection terms. To handle the second and third terms of the second line, we proceed as explained below, taking b ∈ {a,

u 1 , • • • , u d }.
Integrating by parts and setting

R k (v, b) def = ∆k (v • ∇b) -v • ∇ ∆k b, we discover that ∆k (v • ∇b) | b k L 2 = (v • ∇b k ) • b k dx + R k (v, b) b k dx ≤ - 1 2 |b k | 2 div v dx + R k (v, b) L 2 b k L 2 .
Bounding the last term according to [START_REF] Lions | Une approche locale de la limite incompressible[END_REF], we thus get

∆k (v • ∇b) | b k L 2 ≤ Cc k 2 -ks ∇v Ḃ d 2 2,1 b Ḃs 2,1 b k L 2
with (c k ) k∈Z in the unit sphere of ℓ 1 (Z).

Next, we use the fact that for i ∈ {1, • • • , d},

∂ i ∆k (v • ∇a) = v • ∇∂ i a k + R i k (v, a) with R i k (v, a) def = [∂ i ∆k , v] • ∇a.
By adapting the proof of ( 24), it is easy to prove that

R k (v, a) L 2 ≤ Cc k 2 -ks ∇v Ḃ d 2 2,1 ∇a Ḃs 2,1
.

Then using an integration by parts, exactly as above, we conclude that

∆k ∇(v • ∇a)|∇a k L 2 ≤ Cc k 2 -ks ∇v Ḃ d 2 2,1 ∇a Ḃs 2,1 ∇a k L 2 .
Finally, to handle the last two convection terms, we use the fact that

∆k (v • ∇u) | ∇a k L 2 + ∆k ∇(v • ∇a) | u k L 2 = v • ∇u k |∇a k L 2 + (v • ∇)∇a k )|u k L 2 + R k (v, u) | ∇a k L 2 + R k (v, a) | u k L 2 .
Integrating by parts in the first two terms of the second line and using again [START_REF] Lions | Une approche locale de la limite incompressible[END_REF] to bound the last two terms eventually leads to

∆k (v • ∇u) | ∇a k L 2 + ∆k ∇(v • ∇a) | u k L 2 ≤ Cc k 2 -ks ∇v Ḃ d 2 2,1 ∇a Ḃs 2,1 u k L 2 + u Ḃs 2,1 ∇a k L 2 . Because L k ≈ (a k , ∇a k , u k ) L 2 , we thus conclude that (88) 1 2 d dt L 2 k + µ ∇Pu k 2 L 2 + (∇Qu k , ∇a k ) 2 L 2 ≤ (f k , ∇f k , g k ) L 2 + Cc k 2 -ks ∇v Ḃ d 2 2,1 (a, ∇a, u) Ḃs 2,1 L k ,
which after time integration and multiplication by 2 ks yields

2 ks L k (t) + c 0 2 ks min(1, 2 2k ) t 0 (a k , ∇a k , u k ) L 2 dτ ≤ 2 ks L k (0) + t 0 2 ks g k L 2 dτ + t 0 c k ∇v Ḃ d 2 2,1 (a, ∇a, u) Ḃs 2,1
dτ.

Taking the supremum on [0, t] then summing up over k, we thus get

(89) (a, ∇a, u) L ∞ t ( Ḃs 2,1 ) + t 0 (a, u) ℓ Ḃs+2 2,1 dτ + t 0 (∇a, u) h Ḃs 2,1 dτ (a, ∇a, u)(0) Ḃs 2,1 + t 0 (f, ∇f, g) Ḃs 2,1 dτ + t 0 ∇v Ḃ d 2 2,1 (a, ∇a, u) Ḃs 2,1
dτ.

Finally, using the fact that

∂ t u + v • ∇u -µ∆u -(λ + µ)∇div u = g -∇a,
localizing according to ∆k , and arguing as above, we find out that

u L ∞ t ( Ḃs 2,1 ) + t 0 u Ḃs+2 2,1 u(0) Ḃs 2,1 + t 0 g -∇a Ḃs 2,1 dτ + t 0 ∇v Ḃ d 2 2,1 u Ḃs 2,1
dτ.

Then bounding ∇a according to (89) completes the proof of the proposition.

It turns out to be possible to extend the above proposition to more general Besov spaces related to the L p spaces with p = 2. The proof relies on a paralinearized version of System (86) combined with a Lagrangian change of variables (see [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Chen | Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity[END_REF]). Here, in order to solve (26) globally, we shall follow a more elementary approach based on the paper by B. Haspot [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF] : we use Proposition 4.1 only for bounding low frequencies, and perform a suitable quasi-diagonalization of the system to handle high frequencies. This eventually leads to the following statement 8 that will be proved in the rest of this section:

Theorem 4.1. Let d ≥ 2. Let p ∈ [2, min(4, 2d/(d -2)] with, additionally, p = 4 if d = 2.
Assume with no loss of generality that P ′ (1) = 1 and ν = 1. There exists a universal integer

k 0 ∈ N and a small constant c = c(p, d, µ, G) such that if a 0 ∈ Ḃ d p p,1 and u 0 ∈ Ḃ d p -1 p,1 with besides (a ℓ 0 , u ℓ 0 ) in Ḃ d 2 -1
2,1 (with the notation z ℓ = Ṡk 0 +1 z and z h = z -z ℓ ) satisfy

(90) X p,0 def = (a 0 , u 0 ) ℓ Ḃ d 2 -1 2,1 + a 0 h Ḃ d p p,1 + u 0 h Ḃ d p -1 p,1
≤ c then (26) has a unique global-in-time solution (a, u) in the space X p defined by

(a, u) ℓ ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), a h ∈ C b (R + ; Ḃ d p p,1 ) ∩ L 1 (R + ; Ḃ d p p,1 ), u h ∈ C b (R + ; Ḃ d p -1 p,1 ) ∩ L 1 (R + ; Ḃ d p +1 p,1 )
where we agree that C b (R + ; Ḃs q,1 )

def = C(R + ; Ḃs q,1 ) ∩ L ∞ (R + ; Ḃs q,1 ), s ∈ R, 1 ≤ q ≤ ∞. Furthermore, we have for some constant C = C(p, d, µ, G), (91) (a, u) Xp ≤ CX p,0 .
Remark 4.1. Condition (90) is satisfied for small a 0 and large highly oscillating velocities: take u ε 0 : x → φ(x) sin(ε -1 x • ω) n with ω and n in S d-1 and φ ∈ S(R d ). Then 8 The reader may refer to [START_REF] Danchin | The incompressible limit in L p type critical spaces[END_REF] for a slightly more general result.

u ε 0 Ḃ d p -1 p,1 ≤ Cε 1-d p if p > d,
and u ε

0 ℓ Ḃ d 2 -1 2,1
has fast decay with respect to ε. Hence such data with small enough ε generate global unique solutions in dimension d = 2, 3.

Remark 4.2. One may extend the above global result to 2d/(d + 2) ≤ p < 2 provided the following smallness condition is fulfilled:

a 0 Ḃ d 2 -1 2,1 ∩ Ḃ d 2 2,1 + u 0 Ḃ d 2 -1 2,1 ≤ η.
Indeed, Theorem 5.1 provides a global small solution in X 2 . Therefore it is only a matter of checking that the constructed solution has additional regularity X p . This may be achieved by following Steps 3 and 4 of the proof below, knowing already that the solution is in X 2 .

The condition that 2d/(d + 2) ≤ p comes from the part u ℓ • ∇a of the convection term in the mass equation, as ∇u ℓ is only in ) is not essential in the proof of Theorem 4.1. We chose to present that slightly more accurate result, as it will be needed when investigating time decay estimates, at the end of the survey.

L 1 (R + ; Ḃ d 2 2,

4.2.

Global a priori estimates. Consider a smooth solution (a, u) to ( 26) satisfying, say, (92)

a L ∞ (R + ×R d ) ≤ 1/2.
We want to find conditions under which the following quantity:

X p (t) def = (a, u) ℓ L ∞ t ( Ḃ d 2 -1 2,1 ) + (a, u) ℓ L 1 t ( Ḃ d 2 +1 2,1 ) + a h L ∞ t ( Ḃ d p p,1 ) + a h L 1 t ( Ḃ d p p,1 ) + u h L ∞ t ( Ḃ d p -1 p,1 ) + u h L 1 t ( Ḃ d p +1 p,1 )
satisfies (91) for all t ∈ R + .

Rewriting System (26) as follows:

∂ t a + div u = f def = -div (au), ∂ t u -Au + ∇a = g def = -u • ∇u -I(a)Au -k(a)∇a,
we shall take advantage of Proposition 4.1 with s ′ = d/2 -1 to bound the low frequency part of (a, u). To handle high frequencies, following [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF], we shall use the facts that, up to low order terms:

• Pu satisfies a heat equation (hence parabolic smoothing in any Besov space);

• The effective velocity

(93) w def = ∇(-∆) -1 (a -div u)
satisfies a heat equation; • The high frequencies of a have exponential decay.

First step: Low frequencies. From Proposition 4.1, we readily infer that

(94) (a, u) ℓ L ∞ t ( Ḃ d 2 -1 2,1 ) + (a, u) ℓ L 1 t ( Ḃ d 2 +1 2,1 ) (a 0 , u 0 ) ℓ Ḃ d 2 -1 2,1 + (f, g) ℓ L 1 t ( Ḃ d 2 -1 2,1 )
.

Second step: high frequencies, the incompressible part of the velocity. To handle Pu, we just use the fact that

∂ t Pu -µ∆Pu = Pg.
Hence, according to Remark 2.2 (restricted to high frequencies)

(95) Pu h L ∞ t ( Ḃ d p -1 p,1 ) + µ Pu h L 1 t ( Ḃ d p +1 p,1 ) ≤ C Pu 0 h Ḃ d p -1 p,1 + Pg h L 1 t ( Ḃ d p -1 p,1 )
.

Third step: high frequencies, the effective velocity and the density. On the one hand, the effective velocity w defined in (93) fulfills

∂ t w -∆w = ∇(-∆) -1 (f -div g) + w -(-∆) -1 ∇a.
Therefore, Theorem 2.1 and the fact that ∇(-∆) -1 is an homogeneous Fourier multiplier of degree -1 imply that

(96) w h Ep(t) def = w h L ∞ t ( Ḃ d p -1 p,1 ) + w h L 1 t ( Ḃ d p +1 p,1 ) ≤ C w 0 h Ḃ d p -1 p,1 + f -div g h L 1 t ( Ḃ d p -2 p,1 ) + w -(-∆) -1 ∇a h L 1 t ( Ḃ d p -1 p,1 )
.

On the other hand, we have (97) ∂ t a + div (au) + a = -div w.

We claim that

(98) a h L ∞ t ( Ḃ d p p,1 ) + a h L 1 t ( Ḃ d p p,1 ) ≤ C a 0 h Ḃ d p p,1 + div w h L 1 t ( Ḃ d p p,1 ) + t 0 ∇u Ḃ d p p,1 a Ḃ d p p,1 dτ •
Indeed, as in the proof of Theorem 2.2, let us apply ∆k to (97). We get

∂ t ∆k a + u • ∇ ∆k a + ∆k a = -∆k (adiv u) -∆k div w + Ṙk ,
where, according to [START_REF] Lions | Une approche locale de la limite incompressible[END_REF], the remainder term Ṙk satisfies:

∀k ∈ Z, Ṙk L p ≤ Cc k 2 -k d p ∇u Ḃ d p p,1 a Ḃ d p p,1 with k∈Z c k = 1 and a div u Ḃ d p p,1 ≤ C div u Ḃ d p p,1 a Ḃ d p p,1
.

Therefore evaluating the L p norm of ∆k a seen as the solution to a transport equation, multiplying by 2 k d p and summing up over k ≥ k 0 yields (98).

Next, let us observe that, owing to the high frequency cut-off, we have for some universal constant C, (99)

w h Ḃ d p -1 p,1 ≤ C2 -2k 0 w h Ḃ d p +1 p,1 and (-∆) -1 ∇a h Ḃ d p -1 p,1 ≤ C2 -2k 0 a h Ḃ d p p,1
.

In consequence, combining (96) and (98), and choosing k 0 large enough yields

(100) w h Ep(t) + a(t) h Ḃ d p p,1 + a h L 1 t ( Ḃ d p p,1 ) ≤ w 0 h Ḃ d p -1 p,1 + a 0 h Ḃ d p p,1 + f -div g h L 1 t ( Ḃ d p -2 p,1 ) + t 0 ∇u Ḃ d p p,1 a Ḃ d p p,1 dτ •
Fourth step: end of the proof of the linear estimate. Putting Inequality (100) together with (94) and (95) and observing that

u h Ep(t) ≤ Pu h Ep(t) + w h Ep(t) + C a h L ∞ t ( Ḃ d p -2 p,1 ) + a h L 1 t ( Ḃ d p p,1 )
, we come to the conclusion (if k 0 has been taken large enough) that

X p (t) ≤ C k 0 X p (0) + t 0 (f, g) ℓ Ḃ d 2 -1 2,1 + f h Ḃ d p -2 p,1 + g h Ḃ d p -1 p,1 + ∇u Ḃ d p p,1 a Ḃ d p p,1 dτ •
Fifth step : nonlinear estimates. It is only a matter of proving that under hypothesis (92), we have

(101) t 0 (f, g) ℓ Ḃ d 2 -1 2,1 + f h Ḃ d p -2 p,1 + g h Ḃ d p -1 p,1 + ∇u Ḃ d p p,1 a Ḃ d p p,1 dτ ≤ CX 2 p (t).
As p ≥ 2, it is clear that the last term of the r.h.s. of ( 101) is bounded by CX 2 p (t). Next, arguing exactly as in the proof of the local existence, we easily get for 1 ≤ p < 2d,

f L 1 t ( Ḃ d p -1 p,1 ) ≤ C a L 2 t ( Ḃ d p p ,1 ) u L 2 t ( Ḃ d p p,1 ) , g 
L 1 t ( Ḃ d p -1 p,1 ) ≤ C u L ∞ t ( Ḃ d p -1 p,1 )
∇u

L 1 t ( Ḃ d p p,1 )
+ a

L ∞ t ( Ḃ d p p,1 ) ∇ 2 u L 1 t ( Ḃ d p -1 p,1 )
+ a

L 2 t ( Ḃ d p p,1 )
∇a

L 2 t ( Ḃ d p -1 p,1 )
• Therefore, using the definition of X p (t) and embedding (recall that p ≥ 2), we get

(f, g) h L 1 t ( Ḃ d p -1 p,1 ) ≤ CX 2 p (t).
So we are left with the proof of

(102) (f, g) ℓ L 1 t ( Ḃ d 2 -1 2,1 ) ≤ CX 2 p (t).
Let us admit the following two inequalities (the first one being proved in [START_REF] Danchin | The incompressible limit in L p type critical spaces[END_REF] and the second one being a particular case of Proposition 2.3 followed by suitable embedding, owing to

1 ≤ p/2 ≤ 2) : (103) T a b Ḃs-1+ d 2 -d p 2,1 ≤ C a Ḃ d p -1 p,1 b Ḃs p,1 if d ≥ 2 and d d-1 ≤ p ≤ min 4, 2d d-2 , (104) R(a, b) Ḃs-1+ d 2 -d p 2,1 ≤ C a Ḃ d p -1 p,1 b Ḃs p,1 if s > 1 -min d p , d p ′ and 1 ≤ p ≤ 4.
In order to prove (102) for f, it suffices to bound (au) ℓ in L 1 (0, t; Ḃ d 2 2,1 ). Now, using Bony's decomposition and the fact that a = a ℓ + a h , we see that

(105) (au) ℓ = T a u) ℓ + R(a, u) ℓ + T u a ℓ ℓ + T u a h ℓ .
The first three terms may be bounded thanks to Prop. 2.3 and Inequalities (103), ( 104)

with s = d p -1. Observing that z ℓ Ḃσ r,1 ≤ C z Ḃσ r,1
for any Besov norm, we get

(T a u) ℓ L 1 t ( Ḃ d 2 2,1 ) ≤ C a L ∞ t ( Ḃ d p -1 p,1 )
u

L 1 t ( Ḃ d p +1 p,1 ) , (R(a, u)) ℓ L 1 t ( Ḃ d 2 2,1 ) ≤ C a L ∞ t ( Ḃ d p -1 p,1 )
u

L 1 t ( Ḃ d p +1 p,1 )
,

(T u a ℓ ) ℓ L 1 t ( Ḃ d 2 2,1 ) ≤ C u L ∞ t ( Ḃ-1 ∞,∞ ) a ℓ L 1 t ( Ḃ d 2 +1
2,1 )

.

Because Ḃ d p -1 p,1
is embedded in Ḃ-1 ∞,∞ , the above right-hand sides may be bounded by CX 2 p (t). To handle the last term of (105), we just have to observe that owing to the spectral cut-off, there exists a universal integer N 0 so that

T u a h ℓ = Ṡk 0 +1 |k-k 0 |≤N 0 Ṡk-1 u ∆k a h • Hence T u a h Ḃ d 2 2,1 ≈ 2 k 0 d 2 |k-k 0 |≤N 0 Ṡk-1 u ∆k a h L 2 . Now, if 2 ≤ p ≤ min(d, 2d/(d -2)) then we may use for |k -k 0 | ≤ N 0 2 k 0 d 2 Ṡk-1 u ∆k a h L 2 ≤ C2 k 0 Ṡk-1 u L d 2 k d p ∆k a h L p ,
and if d ≤ p ≤ 4 then

2 k 0 d 2 Ṡk-1 u ∆k a h L 2 ≤ C2 k 0 2 k( d p -1) Ṡk-1 u L p 2 k d p ∆k a h L p .
Hence one may conclude that f satisfies (102). Bounding g is similar (see [START_REF] Danchin | The incompressible limit in L p type critical spaces[END_REF]).

Last step: Global estimate. Putting all the previous estimates together, we get

(106) X p (t) ≤ C X p (0) + X 2 p (t)).
Now it is clear that as long as

(107) 2CX p (t) ≤ 1, Inequality (106) ensures that (108) X p (t) ≤ 2CX p (0).
Using a bootstrap argument, one may conclude that if X p (0) is small enough then (92) and (107) are satisfied as long as the solution exists. Hence (108) holds globally in time.

4.2.1.

The proof of Theorem 4.1. We just give the important steps. We fix some initial data so that X 0 is small enough. First, Theorem 3.1 implies that there exists a unique maximal solution (a, u) to ( 26) on some time interval [0, T * [, with a ∈ C([0, T * );

Ḃ d p -1 p,1 ), a L ∞ (0,T * ×R d ) ≤ 1/2 and u ∈ C([0, T * ); Ḃ d p -1 p,1 ) ∩ L 1 loc (0, T * ; Ḃ d p +1
p,1 ). From [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] and Proposition 4.1, one may check that the additional low frequency information is preserved on [0, T * ): we have

a ℓ ∈ C([0, T * ); Ḃ d 2 -1 2,1 ) ∩ L 1 (0, T * ; Ḃ d 2 +1
2,1 ) and

u ℓ ∈ C([0, T * ); Ḃ d 2 -1 2,1 ) ∩ L 1 loc (0, T * ; Ḃ d 2 +1
2,1 ). Let us assume (by contradiction) that T * < ∞. Then applying (108) for all t < T * yields a

L ∞ T * ( Ḃ d p p,1 ) + u L ∞ T * ( Ḃ d p -1 p,1 ) ≤ CX 0 .
If X 0 is so small as (108) to imply that both (31) and ( 67) are fulfilled on [0, T * ) then, for all t 0 ∈ [0, T * ), one can solve [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF] starting with data (a(t 0 ), u(t 0 )) at time t = t 0 and get a solution according to Theorem 3.1 on the interval [t 0 , T + t 0 ] with T independent of t 0 . Choosing t 0 > T * -T thus shows that the solution can be continued beyond T * , a contradiction.

Asymptotic results

In this section, we focus on two types of asymptotic issues for small global solutions to (4) that received a lot of attention since the eighties: the low Mach number asymptotic, and the long time behavior. We shall see that essentially optimal results may be obtained by very simple arguments from the global result we established in the previous section. 5.1. The low Mach number limit. This subsection is devoted to the rigorous justification of the convergence of (4) to the incompressible Navier-Stokes equations (109)

∂ t u + u • ∇u -µ∆u + ∇Π = 0, div u = 0,
in the so-called ill-prepared data case, where we only assume that ε -1 (ρ ε 0 -1) and u ε 0 are suitably bounded. In particular, if we set a ε def = ε -1 (ρ ε -1), this means that (∂ t a ε , ∂ t u ε )| t=0 is of order 1/ε, and that one cannot exclude highly oscillating acoustic waves. More concretely, we have to pass to the limit ε → 0 in:

(110)                ∂ t a ε + div u ε ε = -div (a ε u ε ), ∂ t u ε + u ε • ∇u ε - Au ε 1 + εa ε + ∇a ε ε = k(εa ε ) ε ∇a ε + 1 1 + εa ε div 2 µ(εa ε )D(u ε ) + λ(εa ε )div u ε Id .
Before stating our main results, let us introduce some notation. In this section, we agree that for z ∈ S ′ (R d ), (111) z ℓ,β def = 2 j β≤2 j 0 ∆j z and z h,β def = 

def = ε(a ε , u ε )(ε 2 νt, ενx),
we expect the threshold between low and high frequencies to be at 1/ ε with ε def = εν, and it is thus natural to consider families of data (a ε 0 , u ε 0 ) such that

(a ε 0 , u ε 0 ) ℓ, ε Ḃ d 2 -1 2,1 + a ε 0 h, ε Ḃ d p p,1 + u ε 0 h, ε Ḃ d p -1 p,1
is bounded independently of ε. We expect the corresponding solutions of (110) to be uniformly in the space X p ε,ν defined by

• (a ℓ, ε , u ℓ, ε ) ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), • a h, ε ∈ C b (R + ; Ḃ d p p,1 ) ∩ L 1 (R + ; Ḃ d p p,1 ), • u h, ε ∈ C b (R + ; Ḃ d p -1 p,1 ) ∩ L 1 (R + ; Ḃ d p +1
p,1 ), and endowed with the norm:

(a, u) X p ε,ν def = (a, u) ℓ, ε L ∞ ( Ḃ d 2 -1 2,1 ) + u h, ε L ∞ ( Ḃ d p -1 p,1 ) + ε a h, ε L ∞ ( Ḃ d p p,1 ) +ν (a, u) ℓ, ε L 1 ( Ḃ d 2 +1
2,1 )

+ ν u h, ε L 1 ( Ḃ d p +1 p,1 ) + ε -1 a h, ε L 1 ( Ḃ d p p,1 )
.

One can now state our main result of convergence in the small data case, the reader being referred to [START_REF] Danchin | Zero Mach number limit in critical spaces for compressible Navier-Stokes equations[END_REF][START_REF] Danchin | Zero Mach number limit for compressible flows with periodic boundary conditions[END_REF] for the large data case and stronger results of convergence.

Theorem 5.1. Assume that the fluid domain is either R d or T d , that the initial data (a ε 0 , u ε 0 ) are as above and that p is as in Theorem 4.1. There exists a constant η independent of ε and of ν such that if

(114) C ε,ν 0 def = (a ε 0 , u ε 0 ) ℓ, ε Ḃ d 2 -1 2,1 + u ε 0 h, ε Ḃ d p -1 p,1 + ε a ε 0 h, ε Ḃ d p p,1 ≤ ην,
then System (110) with initial data (a ε 0 , u ε 0 ) has a unique global solution (a ε , u ε ) in the space X p ε,ν with, for some constant C independent of ε and ν, (115) (a ε , u ε ) X p ε,ν ≤ CC ε,ν 0 . In addition, Qu ε converges weakly to 0 when ε goes to 0, and, if Pu ε 0 ⇀ v 0 then Pu ε converges in the sense of distributions to the unique solution of (109) supplemented with initial data v 0 .

Proof. Performing the change of unknowns given in (113) and the change of data

(116) (a 0 , u 0 )(x) def = ε(a ε 0 , u ε 0 )(ενx)
reduces the proof of the global existence to the case ν = 1 and ε = 1, which was done in Theorem 4.1. Back to the original variables will yield the desired uniform estimate (115) under Condition (114). Indeed, we notice that we have up to some harmless constant:

(a ε 0 , u ε 0 ) ℓ, ε Ḃ d 2 -1 2,1 + u ε 0 h, ε Ḃ d p -1 p,1 + ε a ε 0 h, ε Ḃ d p p,1 = ν (a 0 , u 0 ) ℓ,1 Ḃ d 2 -1 2,1 + u 0 h,1 Ḃ d p -1 p,1 + a 0 h,1 Ḃ d p p,1
and (a ε , u ε ) X p ε,ν = ν (a, u) X p 1,1 . Granted with the uniform estimates established in the previous section, it is now easy to pass to the limit in the system in the sense of distributions, by adapting the compactness arguments of P.-L. Lions and N. Masmoudi in [START_REF] Lions | Une approche locale de la limite incompressible[END_REF].

More precisely, consider a family (a ε 0 , u ε 0 ) of data satisfying (114) and Pu ε 0 ⇀ v 0 when ε goes to 0. Let (a ε , u ε ) be the corresponding solution of (110) given by the first part of Theorem 5.1. Because (117) ). In order to justify that div u = 0, we rewrite the mass equation as follows: div u εn = -ε n div (a εn u εn ) -ε n ∂ t a εn .

a ε 0 h, ε Ḃ d p -1 p,1 ε a ε 0 h, ε Ḃ d p p,
Given that a εn and u εn are bounded in L 2 (R + ; Ḃ d p p,1 ) (use the definition of X p ε,ν and interpolation), the first term in the right-hand side is

O(ε n ) in L 1 (R + ; Ḃ d p -1 p,1
). As for the last term, it tends to 0 in the sense of distributions, by virtue of (118). We thus have div u εn ⇀ 0, whence div u = 0.

To establish that u is a solution to (109), let us project the velocity equation onto divergence-free vector fields:

(119) ∂ t Pu εn -µ∆Pu εn = -P(u εn • ∇u εn ) -P 1 1 + ε n a εn Au εn • Because Qu = 0, the left-hand side weakly converges to ∂ t u -µ∆u. To prove that the last term tends to 0, we use the fact that having ε(a ε ) h, ε and (a ε ) ℓ, ε bounded in L ∞ ( Ḃ d p p,1 ) and L ∞ ( Ḃ d p -1 p,1 ), respectively, implies that, for all α ∈ [0, 1],

(120)

ε α a ε is bounded in L ∞ ( Ḃ d p -1+α p,1
).

Now, Au ε is bounded in L 1 ( Ḃ d p -1
p,1 ) and p < 2d. Hence, according to product laws in Besov spaces, composition inequality and (120), we get (1+εa

ε ) -1 Au ε = O( ε 1-α ) in L 1 ( Ḃ d p -2+α p,1
), whenever 2 max(0, 1 -d p ) < α ≤ 1. Hence the last term of (119) goes strongly to 0 for some appropriate norm.

In order to prove that P(u εn • ∇u εn ) ⇀ P(u • ∇u), we note that

u εn • ∇u εn = 1 2 ∇|Qu εn | 2 + Pu εn • ∇u εn + Qu εn • ∇Pu εn .
Projecting the first term onto divergence free vector fields gives 0, and we also know that Pu = u. ). Hence (Pu εn -Pu

εn 0 ) is bounded in C 1-1 m (R + ; Ḃ d p + 2 m -3 p,1
). As Pu εn is also ) for all small enough α > 0, and all T > 0. Combining with the properties of weak convergence for ∇u εn to ∇u, and Qu εn to 0 that may be deduced from the bounds of u εn , it is now easy to conclude to (121). One can use for instance the fact that for all m > 1, we have

∇u εn ⇀ ∇u in L m ( Ḃ d p + 2 m -2 p,1
) weak * and

Qu εn ⇀ 0 in L m ( Ḃ d p + 2 m -1 p,1
) weak * .

Time decay estimates.

In the present subsection, we show that under a mild additional decay assumption that is satisfied if the data are in L 1 (R d ) for instance, the L 2 norm (the Ḃ0 for t → +∞, exactly as for the linearized equations. This fact has been first observed by A. Matsumura and T. Nishida in [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] in the case of solutions with high Sobolev regularity. The adaptation to the L 2 type critical regularity framework has been carried out recently by M. Okita in [START_REF] Okita | Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations[END_REF], in dimension d ≥ 3. Below, we give a more accurate description of the time decay, emphasizing a better decay for high frequencies. This is the key to handling any dimension d ≥ 2. For simplicity, we concentrate on the L 2 type framework, even though we expect similar results to be true in the more general L p framework of Theorem 4.1.

Theorem 5.2. Let the data (a 0 , u 0 ) satisfy the assumptions of Theorem 4.1 with p = 2 and assume with no loss of generality that P ′ (1) = 1 and that ν = 1. Denote

τ def = √ 1 + τ 2 and α def = min( d 4 + 2, d 2 + 1 2 -ε)
with ε > 0 arbitrarily small. There exists a positive constant c so that if in addition

(123) D 0 def = sup k≤k 0 F( ∆k a 0 ) L ∞ + F( ∆k u 0 ) L ∞ ≤ c
then the global solution (a, u) given by Theorem 4.1 satisfies for all t ≥ 0, (124)

D(t) ≤ C D 0 + (a 0 , ∇a 0 , u 0 ) Ḃ d 2 -1 2,1 with D(t) def = sup s∈(-d 2 ,2] τ d 4 + s 2 (a, u) ℓ L ∞ t ( Ḃs 2,1 ) + τ α (∇a, u) h L ∞ t ( Ḃ d 2 -1 2,1 ) + τ ∇u h L ∞ t ( Ḃ d 2 2,1 )
.

Proof. Throughout the proof, we shall use repeatedly that for 0 < σ 1 ≤ σ 2 , we have:

(125)

t 0 t -τ -σ 1 τ -σ 2 dτ t -σ 1 if in addition σ 2 > 1.
Step 1: Bounds for the low frequencies. Denoting by E(D) the semi-group associated to (70), we have for all k ∈ Z, From an explicit computation of the action of e tE(D) in Fourier variables (see e.g. [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF]), we discover that there exist positive constants c and C depending only on k 0 and such that

(t) ∆k u(t) = e tE(D) ∆k a 0 ∆k u 0 - t 0 e (t-τ )E(D) ∆k f 1 (τ ) ∆k (f 2 +f 3 +f 4 )(τ ) dτ with f 1 def = div (au), f 2 def = u • ∇u, f 3 def = k(a) (126) ∆k a 
|F(e tA(D) U )(ξ)| ≤ Ce -c 0 t|ξ| 2 |FU (ξ)| for all |ξ| ≤ 2 k 0 . Therefore, for all k ≤ k 0 , e tE(D) ∆k U 2 L 2 e -2c 0 |ξ| 2 t |F ∆k U (ξ)| 2 dξ F ∆k U 2 L ∞ 2 kd e -c 0 2 2k t . We thus get up to a change of c 0 , (127) t d 4 + s 2 k≤k 0 2 ks e tE(D) ∆k U L 2 sup k≤k 0 F ∆k U L ∞ k≤k 0 ( √ t 2 k ) d 2 +s e -c 0 2 2k t .
As for any σ > 0 there exists a constant C σ so that (128) sup

t≥0 k∈Z t σ 2 2 kσ e -c 0 2 2k t ≤ C σ ,
we get from (127) that for s > -d/2,

sup t≥0 t d 4 + s 2 e tE(D) U ℓ Ḃs 2,1 ≤ C s sup k≤k 0 F ∆k U L ∞ .
It is also obvious that for s > -d/2,

e tE(D) U ℓ Ḃs 2,1 U ℓ Ḃs 2,1 sup k≤k 0 F ∆k U L ∞ .
Hence we conclude that (129) sup

t≥0 t d 4 + s 2 e tE(D) U ℓ Ḃs 2,1 sup k≤k 0 F ∆k U L ∞ .
Next, we claim that for all s ∈ (-d/2, 2] and i ∈ {1, • • • , 4}, we have (130)

t 0 t -τ -d 4 -s 2 sup k≤k 0 F ∆k f i (τ ) L ∞ dτ t -d 4 -s 2 D 2 (t) + X 2 (t) with X(t) def = (a, ∇a, u) L ∞ t ( Ḃ d 2 -1 2,1 ) + t 0 a ℓ Ḃ d 2 +1 2,1 + a h Ḃ d 2 2,1 + u Ḃ d 2 +1 2,1
dτ.

Of course, as the Fourier transform maps L 1 to L ∞ , it suffices to prove (130) with

f i L 1 instead of sup k≤k 0 F ∆k f i L ∞ .
To bound the term with f 1 , we use the following decomposition:

f 1 = u • ∇a + a div u ℓ + a div u h .
Now, from Cauchy-Schwarz inequality and the definition of D(t), one may write

t 0 t -τ -d 4 -s 2 (u • ∇a)(τ ) L 1 dτ ≤ sup 0≤τ ≤t τ d 4 u(τ ) L 2 sup 0≤τ ≤t τ d 4 + 1 2 ∇a(τ ) L 2 × t 0 t -τ -d 4 -s 2 τ -d 2 -1 2 dτ t -d 4 -s 2 D 2 (t),
where we used (125) and the fact that 0 < d 4 + s 2 ≤ d 2 + 1 2 • Bounding the term with a div u ℓ is totally similar. Regarding the term with a div u h , we use that if t ≥ 2,

t 0 t -τ -d 4 -s 2 (adiv u h )(τ ) L 1 dτ 1 0 t -τ -d 4 -s 2 a(τ ) L 2 div u h (τ ) L 2 dτ + t 1 t -τ -d 4 -s 2 τ -1-d 4 τ d 4 a(τ ) L 2 τ div u h (τ ) L 2 dτ. Therefore, as -d/2 < s ≤ 2, we get t s 2 + d 4 t 0 t -τ -d 4 -s 2 (adiv u h )(τ ) L 1 dτ sup τ ∈[0,t] a(τ ) L 2 t 0 div u h (τ ) L 2 dτ + sup τ ∈[0,t] τ d 4 a(τ ) L 2 sup τ ∈[0,t] τ div u h (τ ) L 2 ,
and (130) is thus satisfied by the term with a div u h if t ≥ 2, the case t ≤ 2 being obvious as t ≈ 1 and t -τ ≈ 1 for 0 ≤ τ ≤ t ≤ 2 and one may write

t 0 a div u h L 1 dτ ≤ a L 2 t (L 2 ) div u h L 2 t (L 2 ) X 2 (t).
Handling the terms with f 2 and f 3 is totally similar: k(a)∇a and u • ∇u ℓ may be treated as u • ∇a, and u • ∇u h , as a div u h . For f 4 , we write that

f 4 = I(a)Au ℓ + I(a)Au h . Now, we have t 0 t -τ -d 4 -s 2 I(a)Au ℓ L 1 dτ sup τ ∈[0,t] τ d 4 a(τ ) L 2 sup τ ∈[0,t] τ d 4 +1 ∇ 2 u ℓ (τ ) L 2 t 0 t -τ -d 4 -s 2 τ -1-d 2 dτ.
Hence, thanks to (125), the term with I(a)Au ℓ fulfills (130). Finally, for t ≥ 2,

t 0 t -τ -d 4 -s 2 I(a)Au h L 1 dτ t -d 4 -s 2 1 0 a L 2 ∇ 2 u h L 2 dτ + t 1 t -τ -d 4 -s 2 τ -1-d 4 τ d 4 a(τ ) L 2 τ ∇ 2 u h (τ ) L 2 dτ, hence, because -d/2 < s ≤ 2 and τ ∇ 2 u h L ∞ t (L 2 ) τ ∇u h L ∞ t ( Ḃ d 2 2,1 ) , t 0 t -τ -d 4 -s 2 I(a)Au h L 1 dτ t -d 4 -s 2 D 2 (t) + X 2 (t) for t ≥ 2.
Obviously, as t ≈ 1 and t -τ ≈ 1 for 0 ≤ τ ≤ t ≤ 2, we have the following inequality:

t 0 t -τ -d 4 -s 2 I(a)Au h L 1 dτ t -d 4 -s 2 X 2 (t) for t ≤ 2,
which completes the proof of (130). Combining with (129) and using Duhamel's formula, we conclude that for all t ≥ 0 and s ∈ (-d/2, 2],

(131)

t d 4 + s 2 (a, u) ℓ Ḃs 2,1 D 0 + D 2 (t) + X 2 (t).
Step 2: Decay estimates for the high frequencies of (∇a, u). We here want to bound the second term of D(t). Recall that Theorem 4.1 ensures that (∇a, u)

L ∞ T ( Ḃ d 2 -1 2,1 )
≤ CX(0) for all T ≥ 0.

Therefore it suffices to bound t α (∇a, u)

L ∞ T ( Ḃ d 2 -1 2,1 )
for, say, T ≥ 2. Now, the starting point is Inequality (87) which implies that for k ≥ k 0 and for some c 0 = c(k 0 ) > 0, we have 1 2

d dt L 2 k + c 0 L 2 k ≤ (∇f k , g k ) L 2 + R k (u, a) L 2 + R k (u, u) L 2 + R k (u, a) L 2 + ∇u L ∞ L k L k with f def = -adiv u, g = -k(a)∇a -I(a)Au, R k (u, b) def = ∆k (u • ∇b) -u • ∇ ∆k b for b ∈ {a, u}, and R i k (u, a) def = ∂ i ∆k (u • ∇a) -u • ∇∂ i ∆k a.
After time integration, we discover that

e c 0 t L k (t) ≤ L k (0) + t 0 e c 0 τ (∇f k , g k ) L 2 + R k (u, a) L 2 + R k (u, u) L 2 + R k (u, a) L 2 + ∇u L ∞ L k dτ, whence, remembering that L k ≈ ( ∆k ∇a, ∆k u) L 2 for k ≥ k 0 , t α ( ∆k ∇a, ∆k u)(t) L 2 t α e -c 0 t ( ∆k ∇a, ∆k u)(0) L 2 + t α t 0 e c 0 (τ -t) (∇f k , g k ) L 2 + R k (u, a) L 2 + R k (u, u) L 2 + R k (u, a) L 2 + ∇u L ∞ ( ∆k ∇a, ∆k u) L 2 dτ
and thus, multiplying both sides by 2 k( d 2 -1) , taking the supremum on [0, T ], and summing up over k ≥ k 0 , (132) t α (∇a, u)

L ∞ T ( Ḃ d 2 -1 2,1 ) (∇a 0 , u 0 ) h Ḃ d 2 -1 2,1 + k≥k 0 sup 0≤t≤T t α t 0 e c 0 (τ -t) 2 k( d 2 -1) S k dτ with S k def = 5 i=1 S i k and S 1 k def = (∇f k , g k ) L 2 , S 2 k def = R k (u, a) L 2 , S 3 k def = R k (u, u) L 2 , S 4 
k def = R k (u, a) L 2 , S 5 k def = ∇u L ∞ ( ∆k ∇a, ∆k u) L 2 .
In order to bound the sum, we first notice that

k≥k 0 sup 0≤t≤2 t α t 0 e c 0 (τ -t) 2 k( d 2 -1) S k (τ ) dτ 2 0 k≥k 0 2 k( d 2 -1) S k (τ ) dτ.
Hence taking advantage of (24) and of a similar inequality for R k (u, a), we end up with

k≥k 0 sup 0≤t≤2 t α t 0 e c 0 (τ -t) 2 k( d 2 -1) S k dτ 2 0 (∇f, g) Ḃ d 2 -1 2,1 + ∇u Ḃ d 2 2,1 (a, ∇a, u) Ḃ d 2 -1 2,1
dτ.

Bounding ∇f and g as in the proof of Theorem 4.1 leads to (133)

k≥k 0 sup 0≤t≤2 t α t 0 e c 0 (τ -t) 2 k( d 2 -1) S k dτ X 2 (2).
To bound the supremum on [2, T ], we split the integral on [0, t] into integrals on [0, 1] and [1, t], respectively. The [0, 1] part of the integral is easy to handle: we have 

k≥k 0 sup 2≤t≤T t α 1 0 e c 0 (τ -t) 2 k( d 2 -1) S k (τ ) dτ ≤ k≥k 0 sup 2≤t≤T t α e -c 0 2 t 1 0 2 k( d 2 -1) S k dτ 1 0 k≥k 0 2 k( d 2 - 
τ d 4 + 1 2 u ℓ L ∞ t ( Ḃ1 2,1 ) ≤ D(t)
for the low frequencies of u.

Regarding the contribution of S 1 k , we first notice that, by virtue of (125), ( 136)

k≥k 0 sup 2≤t≤T t α t 1 e c 0 (τ -t) 2 k( d 2 -1) S 1 k (τ ) dτ τ α (∇f, g) h L ∞ T ( Ḃ d 2 -1 2,1 )
. Now, product laws in tilde spaces ensures that

τ α ∇f h L ∞ T ( Ḃ d 2 -1 2,1 ) τ α-1 a L ∞ T ( Ḃ d 2 2,1 )
τ div u

L ∞ T ( Ḃ d 2 2,1 )
.

The high frequencies of the first term of the r.h.s. is obviously bounded by D(T ). As for the low frequencies, we notice that if d ≤ 4 then for all small enough ε > 0, Therefore, using (135) and remembering the definition of α, we get

τ α ∇f h L ∞ T ( Ḃ d 2 -1 2,1 )
D 2 (T ).

Next, we have

τ α (k(a)∇a h ) L ∞ T ( Ḃ d 2 -1 2,1 ) a L ∞ T ( Ḃ d 2 2,1 ) τ α a h L ∞ T ( Ḃ d 2 2,1 )
≤ X(T )D(T ) and, according to (137) and (138),

τ α (k(a)∇a ℓ ) L ∞ T ( Ḃ d 2 -1 2,1 ) τ 1-ε a L ∞ T ( Ḃ d 2 2,1 ) τ α-1+ε a ℓ L ∞ T ( Ḃ d 2 2,1 )
D 2 (T ).

We also see that

τ α I(a)Au L ∞ T ( Ḃ d 2 -1 2,1 ) τ ∇ 2 u L ∞ T ( Ḃ d 2 -1 2,1 ) τ α-1 a ℓ L ∞ T ( Ḃ d 2 2,1 ) + τ α-1 a h L ∞ T ( Ḃ d 2 2,1 )
.

The first term of the r.h.s. may be bounded by virtue of (135), and it is also clear that the last term is bounded by D(T ). As for the second one, we use again (137) and (138).

Resuming to (136), we end up with τ ∇u

L ∞ T ( Ḃ d 2 2,1 ) τ α-1 a L ∞ T ( Ḃ d 2 -1 2,1 )
.

The first term of the r.h.s. may be bounded thanks to (135), and the high frequencies of the last one are obviously bounded by D(T ). To bound τ α-1 a ℓ

L ∞ T ( Ḃ d 2 -1 2,1 )
, we use the following two inequalities

τ α-1 a ℓ L ∞ T ( Ḃ d 2 -1 2,1 ) τ α-1 a ℓ L ∞ T ( Ḃ d 2 -1-2ε 2,1
) Then plugging this latter inequality, (133) and ( 134) in (132) yields (139) τ α (∇a, u)

if d ≤ 6, τ α-1 a ℓ L ∞ T ( Ḃ d 2 -1 2,1 ) τ α-1 a ℓ L ∞ T ( Ḃ2 2 
L ∞ T ( Ḃ d 2 -1 2,1 ) (∇a 0 , u 0 ) h Ḃ d 2 -1 2,1
+ X 2 (T ) + D 2 (T ).

Step 3: Decay estimates with gain of regularity for the high frequencies of ∇u. In order to bound the last term of D(t), we shall use the fact that the velocity u satisfies Because the maximal regularity estimates for the Lamé semi-group are the same as for the heat semi-group (see the beginning of Section 3), we deduce from Remark 2.2 that

tAu h L ∞ t ( Ḃ d 2 -1 2,1 ) Au h L 1 t ( Ḃ d 2 -1 2,1 ) + tAF h L ∞ t ( Ḃ d 2 -3 2,1 )
, whence, using the bounds given by Theorem 5.1,

(140) t∇u h L ∞ t ( Ḃ d 2 2,1 ) X(0) + τ F h L ∞ t ( Ḃ d 2 -1 2,1 )
.

In order to bound the last term, we notice that, because α ≥ 1, we have

τ ∇a h L ∞ t ( Ḃ d 2 -1 2,1 ) τ α a h L ∞ t ( Ḃ d 2 2,1 )
.

Next, product and composition estimates adapted to tilde spaces give

τ k(a)∇a h L ∞ t ( Ḃ d 2 -1 2,1 ) τ 1 2 a 2 L ∞ t ( Ḃ d 2 2,1 )
≤ D 2 (t), as well as

τ u • ∇u h L ∞ t ( Ḃ d 2 -1 2,1 ) u L ∞ t ( Ḃ d 2 -1 2,1 )
τ ∇u

L ∞ t ( Ḃ d 2 2,1 )
and

τ I(a)Au h L ∞ t ( Ḃ d 2 -1 2,1 )
a

L ∞ t ( Ḃ d 2 2,1 ) τ ∇ 2 u L ∞ t ( Ḃ d 2 -1 2,1 )
.

Therefore, resuming to (140) and remembering (135), we get

t∇u h L ∞ t ( Ḃ d 2 2,1 ) X(0) + D(t)X(t) + D 2 (t) + τ α a h L ∞ t ( Ḃ d 2 2,1 )
.

Finally, bounding the last term according to (139), and adding up the obtained inequality to (131) and (139) yields D(t) D 0 + (∇a 0 , u 0 ) h

Ḃ d 2 -1 2,1
+ X 2 (t) + D 2 (t).

As Theorem 5.1 ensures that X(t) is small, on can now conclude that (124) is fulfilled for all time if D 0 and (∇a 0 , u 0 ) h

Ḃ d 2 -1 2,1
are small enough.

Appendix

Here we recall various estimates for the flow that have been used repeatedly in the proof of Theorem 3.1. More details may be found in [START_REF] Danchin | A Lagrangian approach for the compressible Navier-Stokes equations[END_REF] or [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF].

Recall that if v : [0, T ) × R d → R d is measurable, such that t → v(t, x) is in L 1 (0, T ) for all x ∈ R d and in addition ∇v ∈ L 1 (0, T ; L ∞ ) then it has, by virtue of the Cauchy-Lipschitz theorem, a unique C 1 flow X v satisfying X v (t, y) = y + t 0 v(τ, X v (τ, y)) dτ for all t ∈ [0, T ).

In addition, for all t ∈ [0, T ), the map X v (t, •) is a C . (144) Proof. As an example, let us prove the last item. We have thanks to the chain rule, (145) J v (t, y) = 1 + t 0 div v(τ, X v (τ, y)) J v (τ, y) dτ = 1 + t 0 (Dv : adj (DX v ))(τ, y) dτ.

Hence, if Condition (60) holds then we have (144) for J v , a consequence of the fact that Ḃ d p p,1 is an algebra, and of (141). In order to get the inequality for J -1 v , it suffices to notice that J -1 v (t, y) -1 = (1 + (J v (t, y) -1)) .

Proof. In order to prove the first inequality, we use the fact that, for i = 1, 2, we have

A v i = (Id + C i ) -1 = k≥0 (-1) k C k i with C i (t) = t 0 Dv i dτ.
Hence

A v 2 -A v 1 = k≥1 C k 2 -C k 1 = t 0 Dδv dτ k≥1 k-1 j=0 C j 1 C k-1-j 2 .
So using the fact that Ḃ d p p,1 is a Banach algebra, it is easy to conclude to (146). Proving the second inequality is similar.

Definition 2 . 1 .j∈Z 2 rjs ∆j u r L p 1 r

 211 For s ∈ R and 1 ≤ p, r ≤ ∞, we set u Ḃs p,r def = if r < ∞ and u Ḃs p,∞ def = sup j∈Z 2 js ∆j u L p .

  ), Theorem 2.2 and Inequality (30) imply that a ∈ L ∞ T ( Ḃ d p p,1 ) and that u ∈ L ∞ T ( Ḃ d p -1 p,1 ), which, combined with the fact that a -a 0 ∈ C([0, T ]; Ḃ d p -1 p,1 ) and u -u 0 ∈ C([0, T ]; Ḃ d p -2 p,1 ) implies that a ∈ C([0, T ]; Ḃ d p p,1 ) and u ∈ C([0, T ]; Ḃ d p -1 p,1 ).

First step:

  Stability of BEp(T ) (u L , R). Let v ∈ BEp(T ) (u L , R)and u be given by (58). Let a 0 def = ̺ 0 -1. Proposition 3.1, product laws in Besov spaces and Proposition 2.4 imply that

1

 1 is continuously embedded in L ∞ , the density remains bounded away from 0 on [0, T ] (taking T smaller if needed).

Proposition 3 . 2 .

 32 Let 1 ≤ p < 2d. Assume that the couple (̺, u) with (̺-1) ∈ C([0, T ]; Ḃ d p p,1 ) and u ∈ E p (T ) is a solution to (26) such that Let X be the flow of u defined in (49). Then the couple (̺, ū) def = (̺ • X, u • X) belongs to the same functional space as (̺, u), and satisfies (50). Conversely, if (̺ -1, ū) belongs to C([0, T ]; Ḃ d p p,1 ) × E p (T ) and (̺, ū) satisfies (50) and, for a small enough constant c, then the map X t def = X(t, •) defined in (51) is a C 1 diffeomorphism on R d and the couple

Proposition 4 . 2 .

 42 Let -d/2 < s ≤ d/2 and (a, u) satisfy (86) with α = ν = 1. Let k 0 ∈ Z.

2 j β>2 j 0 .

 0 ∆j z, for some large enough nonnegative integer j 0 depending only on p, d, and on the functions k, λ/ν, µ/ν with ν def = λ + 2µ. The corresponding "truncated" semi-norms are defined by Keeping in mind the linear analysis we performed for (70) in the case ν = 1 and ε = 1, and combining with the change of variable (113) (a, u)(t, x)

1 p, 1 )

 11 bounded in C b (R + ; compact (see e.g. [1], page 108), we conclude by means of Ascoli theorem that, up to a new extraction, for all φ ∈ S(R d ) and T > 0, (122) φPu εn -→ φPu in C([0, bounds in C b (R + ; Ḃ d p -, we can upgrade the strong convergence in (122) to the space C([0, T ]; Ḃ d p -1-α p,1

∇a and f 4 def=

 4 I(a)Au.

1 )≤ 1 )

 11 D(T ) and if d ≥ 5, taking s = 2 in the first term of D(T ), ≤ D(T ).

1 e 1 e 1 e 1 e2 k( d 2 - 1 )

 111121 c 0 (τ -t) 2 k( d 2 -1) S 1 k (τ ) dτ D 2 (T ).To bound the term with S 2 k , we use the fact thatt c 0 (τ -t) R k (u, a) L 2 dτ ≤ R k (τ u, τ α-1 a) L ∞ t (L 2 ) t c 0 (τ -t) τ -α dτ.Hence, thanks to (125) and to (24) (adapted to tilde spaces),c 0 (τ -t) 2 k( d 2 -1) S 2 k (τ ) dτ k≥k 0 R k (τ u, τ α-1 a) L ∞ T (L 2 )

, 1 ) 1 e 1 esup 2≤t≤T t α t 1 e

 1111 if d ≥ 7. Because α -1 = d 2 -1 2 -ε if d ≤ 6, and α -1 = d 4 + 1 if d ≥ 7, the r.h.s. above are bounded by D(T ). We eventuallyget c 0 (τ -t) 2 k( d 2 -1) S 2 k (τ ) dτ D 2 (T ).The terms S 3 k and S 4 k may be treated along the same lines. Finally, using product laws and (125), we get c 0 (τ -t) τ -α dτ D 2 (T ). Putting all the above inequalities together, we conclude that k≥k 0 c 0 (τ -t) 2 k( d 2 -1) S k (τ ) dτ D(T )X(T ) + D 2 (T ).

∂

  t u -Au = F def = -(1 + k(a))∇a -u • ∇u -I(a)Au, whence ∂ t (tAu) -A(tAu) = Au + tAF.

  It turns out that the limit case d = 2 or p = d tractable even though

	(45)	δa ∈ Ḃ0 d,1 and Au 2 ∈ Ḃ0 d,1	implies δaAu 2 ∈ Ḃ-1 d,∞ only.
	Now, applying Theorem 2.2 and product laws (see Proposition 2.3) gives

  1 ), and the regularity to be transported is Ḃ d p p,1 . Hence we need to have d/p ≤ d/2 + 1 (see Theorem 2.2). The same condition appears when handling k(a)∇a. Remark 4.3. Using space C b (R + ; Ḃs 2,1 ) rather than just C b (R + ; Ḃs 2,1

  The strong convergence of the density to 1 is obvious: we have ̺ εn = 1+ε n a εn , and (a εn ) n∈N

				,
				1
	the data (a ε 0 , u ε 0 ) are uniformly bounded in Ḃ d p -1 p,1 ). Therefore there exists a sequence (ε n ) n∈N decaying Ḃ d p -1 Ḃ d p p,1 . Likewise, (115) ensures that (a ε , u ε ) p,1 × is bounded in the space C b (R + ; to 0 so that (a εn 0 , u εn 0 ) ⇀ (a 0 , u 0 ) in Ḃ d p -1 p,1 (with Pu 0 = v 0 ) and
	(118)	(a εn , u εn ) ⇀ (a, u) in L ∞ (R + ;	Ḃ d p -1 p,1 ) weak * .
	is bounded in L 2 (R + ;	p Ḃ d p,1

  Hence we just have to prove that (121) P(Pu εn • ∇u εn ) ⇀ P(Pu • ∇u) and P(Qu εn • ∇Pu εn ) ⇀ 0. This requires our proving results of strong convergence for Pu εn . To this end, we shall exhibit uniform bounds for ∂ t Pu εn in a suitable space. First, arguing by interpolation, we see that (∇ 2 u εn ) is bounded in L m ( ), we thus get ((1+ε n a εn ) -1 Au εn ) bounded in L m (

	Ḃ d p + 2 m -3 p,1 p , 1) (this is possible as p < 2d) and remembering that (ε n a εn ) is ) for any m ≥ 1. Choosing m > 1 so m -3 > -d min( 2 that 2 bounded in L ∞ ( Ḃ d p p + 2 m -3 p,1 Ḃ d p,1

  ), too. Computing ∂ t Pu εn from (119), it is now clear that (∂ t Pu εn ) is bounded in L m (

			). Similarly,
	combining the facts that (u εn ) and (∇u εn ) are bounded in L ∞ (	Ḃ d p -1 p,1 ) and L m (	Ḃ d p + 2 m -2 p,1	),
	respectively, we see that (u εn • ∇u εn ) is bounded in L m (	Ḃ d p + 2 m -3 p,1 p + 2 m -3 Ḃ d p,1	

  2,1 norm in fact) of the global solutions constructed in Theorem 4.1 decays like t -d

	4

  1) S k dτ.Let us finally consider the [1, t] part of the integral for 2 ≤ t ≤ T. We shall use repeatedly the following inequality

	(135)					τ ∇u	L ∞ t (	Ḃ d 2 2,1 )	D(t),
	which is straightforward as regards the high frequencies of u and stems from
		τ ∇u ℓ L ∞ t (	Ḃ d 2 2,1 )	τ	d 4 + 1 2 ∇u ℓ L ∞ t (	Ḃ d 2 2,1 )
	Hence							
	(134)	k≥k 0	sup 2≤t≤T	t α	0	1	e c 0 (τ -t) 2 k( d 2 -1) S k (τ ) dτ	X 2 (1).

  1 -diffeomorphism over R d . Lemma 6.1. Let p ∈ [1, ∞). Let v(t, y) def = v(t,X(t, y)). Under Assumption (60), we have for all t ∈ [0, T ], Id -adj (DX v (t))

	(141)			Ḃ d p p,1			Dv	L 1 t (	Ḃ d p,1 ) p	,
	(142)	Id -A v (t)	Ḃ d p p,1	Dv	L 1 t (	Ḃ d p,1 ) p	,
	(143)	adj (DX v (t)) T A v (t) -Id	Ḃ d p p,1	Dv	L 1 t (	Ḃ d p,1 ) p	,
		J ±1 v (t) -1	Ḃ d p p,1	Dv	L 1 t (	Ḃ d p p,1 )

  Then we have for allp ∈ [1, ∞) and t ∈ [0, T ]: DX v 2 ) -adj (DX v 1 )

	(146)	A v 2 -A v 1	L ∞ t (	Ḃ d p p,1 )	Dδv	L 1 t (	Ḃ d p,1 ) p	,
	(147)	adj (L ∞ t (	Ḃ d p p,1 )	Dδv	L 1 t (	Ḃ d p,1 ) p	,
	(148)	J v 2 -J v 1	L ∞ t (	Ḃ d p p,1 )	Dδv	L 1 t (	Ḃ d p p,1 )	

-1 -1 = k≥1 (-1) k t 0 Dv : adj (DX v ) dτ.

Lemma 6.2. Let v1 and v2 be two vector-fields satisfying (60), and δv def = v2 -v1 .

With the convention that A B means that A ≤ CB for some 'harmless' positive constant C.