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FOURIER ANALYSIS METHODS FOR THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS

RAPHAËL DANCHIN

Abstract. In the last three decades, Fourier analysis methods have known a growing
importance in the study of linear and nonlinear PDE’s. In particular, techniques based
on Littlewood-Paley decomposition and paradifferential calculus have proved to be very
efficient for investigating evolutionary fluid mechanics equations in the whole space or in
the torus. We here give an overview of results that we can get by Fourier analysis and
paradifferential calculus, for the compressible Navier-Stokes equations. We focus on the
Initial Value Problem in the case where the fluid domain is R

d (or the torus T
d) with

d ≥ 2, and also establish some asymptotic properties of global small solutions. The time
decay estimates in the critical regularity framework that are stated at the end of the
survey are new, to the best of our knowledge.

1. Introduction

In the Eulerian description, a general compressible fluid evolving in some open set Ω
of Rd is characterized at every material point x in Ω and time t ∈ R by its velocity field
u = u(t, x) ∈ R

d, density ̺ = ̺(t, x) ∈ R+, pressure p = p(t, x) ∈ R, internal energy by unit
mass e = e(t, x) ∈ R, entropy by unit mass s = s(t, x) and absolute temperature T = T (t, x).
In the absence of external forces, those quantities are governed by:

• The mass balance:

∂t̺+ div(̺u) = 0.

• The momentum balance1:

∂t(̺u) + div(̺u⊗ u) = divτ −∇p,
where τ stands for the viscous stress tensor.

• The energy balance:

∂t

(
̺
(
e+ |u|2

2

))
+ div

(
̺
(
e+ |u|2

2

)
u
)
= div(τ · u+ pu)− divq,

where q is the heat flux vector.
• The entropy inequality:

(1) ∂t(̺s) + div(̺su) ≥ −div
(
q
T

)
·

In what follows, we concentrate on so-called Newtonian fluids2. Hence (see e.g.[2]) τ is
given by:

τ

def
= λdivu Id + 2µD(u),

1With the convention that
(
div(a⊗ b)

)j def
=

∑
i
∂i(a

i bj).
2That is to say: the viscous stress tensor τ is a linear function of Dxu, invariant under rigid transforms,

there is no internal mass couples (and thus the angular momentum is conserved), and the fluid is isotropic
(viz. the physical quantities depend only on (t, x)).

1
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where the real numbers λ and µ are the viscosity coefficients and D(u)
def
= 1

2(Du+
TDu) is

the deformation tensor.

If we assume in addition that the Fourier law q = −k∇T is satisfied then we get the
following system of equations:

(2)





∂t̺+ div(̺u) = 0,
∂t(̺u) + div(̺u⊗ u)− 2div(µD(u))−∇(λdivu) +∇p = 0,
∂t(̺e) + div(̺eu) + pdivu− div(k∇T ) = 2µD(u) : D(u) + λ(divu)2.

We shall further postulate that the entropy s is interrelated with p, T and e through the
so-called Gibbs relation

Tds = de+ p d
(1
̺

)
,

and thus we get the following evolution equation for s:

(3) T
(
∂t(̺s) + div(̺su)

)
= τ ·D(u)− divq.

For the entropy inequality to be satisfied, a necessary and sufficient condition is thus

τ : D(u) + k
|∇T |2
T

≥ 0,

which yields the following constraints on λ, µ and k:

k ≥ 0, µ ≥ 0 and 2µ + dλ ≥ 0.

In order to close System (2) which is composed of d+2 equations for d+4 unknowns (namely
̺, e, p, T and u1, · · · , ud), we need another two state equations interrelating p, ̺, e, s and T.
In this survey, for simplicity we shall focus on barotropic gases that is p depends only on
the density and λ and µ are independent of T. Therefore the system constituted by the
first two equations in (2), the so-called barotropic compressible Navier-Stokes system :

(4)

{
∂t̺+ div(̺u) = 0,
∂t(̺u) + div(̺u⊗ u)− div

(
2µD(u) + λdivu Id

)
+∇p = 0

where p
def
= P (̺) for some given smooth function P, is closed.

Our main goal is to solve the Initial Value Problem (or Cauchy Problem) for (4) sup-
plemented with initial data (̺0, u0) at time t = 0 in the case where the fluid domain Ω
is the whole space or the torus. We will concentrate on the local well-posedness issue for
large data with no vacuum, on the global well-posedness issue for small perturbations of
a constant stable equilibrium, and will give exhibit some of the qualitative properties of
the constructed solutions. As regards global results, the concept of critical regularity is
fundamental. Indeed, experience shows that whenever the PDE system under considera-
tion possesses some scaling invariance with respect to space and time dilations (which is
in general the case when it comes from mathematical physics) then appropriate so-called
critical norms or quantities essentially control the (possible) finite time blow-up and the
asymptotic properties of the solutions.

If modifying the pressure law accordingly then the barotropic system (4) we are here
considering has the following scaling invariance:

(5) ̺(t, x) ̺(ℓ2t, ℓx), u(t, x) ℓu(ℓ2t, ℓx), ℓ > 0.
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More precisely, (̺, u) is a solution to (4) if and only if so does (̺ℓ, uℓ), with pressure function
ℓ2P. This means that we expect optimal solution spaces (and norms) for (4) to have the
scaling invariance pointed out above.

The rest of these notes unfolds as follows. In the next section, we present the basic
tools and estimates that will be needed to study System (26). Then we concentrate on the
local well-posedness issue for (26) in critical spaces. Section 4 is dedicated to solving (4)
globally for small data. The last section is devoted to asymptotic results for the system.
We concentrate on the low Mach number limit and on the decay rates of global solutions
in the critical regularity framework.

2. The Fourier analysis toolbox

We here shortly introduce the Fourier analysis tools needed in this survey, then state
estimates for the heat and transport equations that will play a fundamental role. For the
sake of conciseness, some proofs are just sketched or omitted. Unless otherwise specified,
the reader will find details in [1], Chap. 2 or 3.

2.1. The Littlewood-Paley decomposition. The Littlewood-Paley decomposition is a
dyadic localization procedure in the frequency space for tempered distributions over R

d.
One of the main motivations for using it when dealing with PDEs is that the derivatives
act almost as dilations on distributions with Fourier transform supported in a ball or an
annulus, as regards Lp norms. This is exactly what is stated in the following proposition:

Proposition 2.1 (Bernstein inequalities). Let 0 < r < R.

• There exists a constant C so that, for any k ∈ N, couple (p, q) in [1,∞]2 with
q ≥ p ≥ 1 and function u of Lp with û supported in the ball B(0, λR) of Rd for
some λ > 0, we have Dku ∈ Lq and

‖Dku‖Lq ≤ Ck+1λ
k+d( 1

p
− 1

q
)‖u‖Lp .

• There exists a constant C so that for any k ∈ N, p ∈ [1,∞] and function u of Lp

with Supp û ⊂ {ξ ∈ R
d / rλ ≤ |ξ| ≤ Rλ} for some λ > 0, we have

λk‖u‖Lp ≤ Ck+1‖Dku‖Lp .

As general solutions to nonlinear PDE’s need not be spectrally localized in annuli, we
want a device for splitting any function or distribution into a sum of spectrally localized
functions. To this end, fix some smooth radial non increasing function χ with Suppχ ⊂
B(0, 43) and χ ≡ 1 on B(0, 34 ), then set ϕ(ξ) = χ(ξ/2)− χ(ξ). We thus have

∑

j∈Z

ϕ(2−j ·) = 1 in R
d \ {0}·

The homogeneous dyadic blocks ∆̇j are defined by

∆̇ju
def
= ϕ(2−jD)u

def
= F−1(ϕ(2−j ·)Fu) = 2jdh(2j ·) ⋆ u with h

def
= F−1ϕ.

We also introduce the low frequency cut-off operator Ṡj:

Ṡju
def
= χ(2−jD)u

def
= F−1(χ(2−j ·)Fu) = 2jdȟ(2j ·) ⋆ u with ȟ

def
= F−1χ.

Let us emphasize that operators ∆̇j and Ṡj are continuous on Lp, with norm independent
of j, a property that would fail if taking a rough cut-off function χ (unless p = 2 of course).
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The price to pay for smooth cut-off is that ∆̇j is not an L
2 orthogonal projector. However

the following important quasi-orthogonality property is fulfilled:

(6) ∆̇j∆̇k = 0 if |j − k| > 1.

The homogeneous Littlewood-Paley decomposition for u reads

(7) u =
∑

j

∆̇ju.

This equality holds modulo polynomials only. In order to have equality in the distributional
sense, one may consider the set S ′

h of tempered distributions u such that

lim
j→−∞

‖Ṡju‖L∞ = 0.

As distributions of S ′
h tend to 0 at infinity, one can easily conclude that (7) holds true in

S ′ whenever u is in S ′
h.

2.2. Besov spaces. It is obvious that for all s ∈ R, we have

(8) C−1‖u‖2
Ḣs ≤

∑

j∈Z

22js‖∆̇ju‖2L2 ≤ C‖u‖2
Ḣs ,

and it is also not very difficult to prove that for s ∈ (0, 1),

(9) C−1‖u‖Ċ0,s ≤ sup
j∈Z

2js‖∆̇ju‖L∞ ≤ C‖u‖Ċ0,s , s ∈ (0, 1).

In (8) and (9), we observe that three parameters come into play: the regularity parameter

s, the Lebesgue exponent that is used for bounding ∆̇ju and the type of summation that
is done over Z. This motivates the following definition:

Definition 2.1. For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Ḃs
p,r

def
=

(∑

j∈Z

2rjs‖∆̇ju‖rLp

) 1
r

if r <∞ and ‖u‖Ḃs
p,∞

def
= sup

j∈Z
2js‖∆̇ju‖Lp .

We then define the homogeneous Besov space Ḃs
p,r to be the subset of distributions u ∈ S ′

h

such that ‖u‖Ḃs
p,r
<∞.

We shall often use the following classical properties:

• Scaling invariance: For any s ∈ R and (p, r) ∈ [1,+∞]2 there exists a constant C

such that for all λ > 0 and u ∈ Ḃs
p,r, we have

(10) C−1λs−
d
p ‖u‖Ḃs

p,r
≤ ‖u(λ·)‖Ḃs

p,r
≤ Cλs−

d
p ‖u‖Ḃs

p,r
.

• Completeness: Ḃs
p,r is a Banach space whenever s < d/p or s ≤ d/p and r = 1.

• Fatou property : if (un)n∈N is a bounded sequence of functions of Ḃs
p,r that converges

in S ′ to some u ∈ S ′
h then u ∈ Ḃs

p,r and ‖u‖Ḃs
p,r

≤ C lim inf ‖un‖Ḃs
p,r
.

• Duality : If u is in S ′
h then we have

‖u‖Ḃs
p,r

≤ C sup
φ

〈u, φ〉

where the supremum is taken over those φ in S ∩ Ḃ−s
p′,r′ such that ‖φ‖Ḃ−s

p′ ,r′
≤ 1.
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• Interpolation: The following inequalities are satisfied for3 all 1 ≤ p, r1, r2, r ≤ ∞,
s1 6= s2 and θ ∈ (0, 1):

‖u‖
Ḃ

θs2+(1−θ)s1
p,r

. ‖u‖1−θ

Ḃ
s1
p,r1

‖u‖θ
Ḃ

s2
p,r2

.

• Action of Fourier multipliers: If F is a smooth homogeneous of degree m function
on R

d \ {0} then

(11) F (D) : Ḃs
p,r → Ḃs−m

p,r .

In particular, the gradient operator maps Ḃs
p,r in Ḃs−1

p,r .

Proposition 2.2 (Embedding for Besov spaces on R
d). (1) For any p ∈ [1,∞] we have

the continuous embedding Ḃ0
p,1 →֒ Lp →֒ Ḃ0

p,∞.

(2) If s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, then Ḃs
p1,r1

→֒ Ḃ
s−d( 1

p1
− 1

p2
)

p2,r2 .

(3) For s′ < s and any 1 ≤ p, r1, r2 ≤ ∞, the embedding of Ḃs
p,r1

in Ḃs′

p,r2
is locally com-

pact, i.e. for any ϕ ∈ S, the map u 7→ ϕu is compact from Ḃs
p1,r1

to Ḃ
s′−d( 1

p1
− 1

p2
)

p2,r2 .

(4) The space Ḃ
d
p

p,1 is continuously embedded in the set of bounded continuous functions

(going to 0 at infinity if, additionally, p <∞).

2.3. Paraproduct and nonlinear estimates. Formally, the product of two tempered
distributions u and v may be decomposed into

(12) uv = Tuv +R(u, v) + Tvu

with

Tuv
def
=
∑

j

Ṡj−1u ∆̇jv and R(u, v)
def
=
∑

j

∑

|j′−j|≤1

∆̇ju ∆̇j′v.

The above operator T is called “paraproduct” whereas R is called “remainder”. The
decomposition (12) has been first introduced by J.-M. Bony in [3]. We observe that in
Fourier variables the sum in Tuv is locally finite, hence Tuv is always defined. We shall see
however that it cannot be smoother than what is given by high frequencies, namely v. As
for the remainder, it may be not defined, but if it is then the regularity exponents add up.
All that is detailed below:

Proposition 2.3. Let (s, r) ∈ R× [1,∞] and 1 ≤ p, p1, p2 ≤ ∞ with 1/p = 1/p1 + 1/p2.

• We have:

‖Tuv‖Ḃs
p,r
. ‖u‖Lp1‖v‖Ḃs

p2,r
and ‖Tuv‖Ḃs+t

p,r
. ‖u‖Ḃt

p1,∞
‖v‖Ḃs

p2,r
, if t < 0.

• If s1 + s2 > 0 and 1/r = 1/r1 + 1/r2 ≤ 1 then

‖R(u, v)‖
Ḃ

s1+s2
p,r

. ‖u‖Ḃs1
p1,r1

‖v‖Ḃs2
p2,r2

.

• If s1 + s2 = 0 and 1/r1 + 1/r2 ≥ 1 then

‖R(u, v)‖
Ḃ0

p,∞
. ‖u‖

Ḃ
s1
p1,r1

‖v‖
Ḃ

s2
p2,r2

.

Putting together decomposition (12) and the above results, one may get the following
product estimate that depends only linearly on the highest norm of u and v:

3With the convention that A . B means that A ≤ CB for some ‘harmless’ positive constant C.
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Corollary 2.1. Let u and v be in L∞ ∩ Ḃs
p,r for some s > 0 and (p, r) ∈ [1,∞]2. Then

there exists a constant C depending only on d, p and s and such that

‖uv‖Ḃs
p,r

≤ C
(
‖u‖L∞‖v‖Ḃs

p,r
+ ‖v‖L∞‖u‖Ḃs

p,r

)
.

Remark 2.1. Because Ḃ
d
p

p,1 is embedded in L∞, we deduce that whenever p < +∞, the

product of two functions in Ḃ
d
p

p,1 is also in Ḃ
d
p

p,1 and that for some constant C = C(p, d):

‖uv‖
Ḃ

d
p
p,1

≤ C‖u‖
Ḃ

d
p
p,1

‖v‖
Ḃ

d
p
p,1

.

Let us finally state a composition result.

Proposition 2.4. Let F : R → R be smooth with F (0) = 0. For all 1 ≤ p, r ≤ ∞ and

s > 0 we have F (u) ∈ Ḃs
p,r ∩ L∞ for u ∈ Ḃs

p,r ∩ L∞, and

(13) ‖F (u)‖Ḃs
p,r

≤ C‖u‖Ḃs
p,r

with C depending only on ‖u‖L∞ , F ′ (and higher derivatives), s, p and d.

2.4. Endpoint maximal regularity for the linear heat equation. This paragraph is
dedicated to maximal regularity issues for the basic heat equation

(14) ∂tu−∆u = f, u|t=0 = u0.

In the case u0 ≡ 0, we say that the functional space X endowed with norm ‖ · ‖X has the
maximal regularity property if

(15) ‖∂tu,D2
xu‖X ≤ C‖f‖X .

Fourier-Plancherel theorem implies that (15) holds true for X = L2(R+ ×R
d). From more

complicated tools based on singular integrals and heat kernel estimates, one may gather
that (15) is true for X = Lr(R+;L

p(Rd)) whenever 1 < p, r < +∞. However, the endpoint
cases where one of the exponents p or r is 1 or +∞ are false.

One of the keys to the approach presented in these notes is that (15) is true for X =

L1(R+; Ḃ
s
p,1(R

d)), a consequence of the following lemma:

Lemma 2.1. There exist two positive constants c and C such that for any j ∈ Z, p ∈ [1,∞]

and λ ∈ R+, we have for all u ∈ S ′ with ∆̇ju in Lp :

‖eλ∆∆̇ju‖Lp ≤ Ce−c0λ22j‖∆̇ju‖Lp .

Proof. A suitable change of variable reduces the proof to the case j = 0. Then consider a
function φ in D(Rd \ {0}) with value 1 on a neighborhood of Suppϕ. We have

eλ∆∆̇0u = F−1
(
φe−λ|·|2 ̂̇∆0u

)

= gλ ⋆ ∆̇0u with gλ(x)
def
= (2π)−d

∫
ei(x|ξ)φ(ξ)e−λ|ξ|2dξ.

Integrating by parts yields

gλ(x) = (1 + |x|2)−d

∫

Rd

ei(x|ξ)(Id −∆ξ)
d
(
φ(ξ)e−λ|ξ|2

)
dξ.

Combining Leibniz and Faá-di-Bruno’s formulae to bound the integrant, we get

|gλ(x))| ≤ C(1 + |x|2)−de−c0λ,
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and thus

(16) ‖gλ‖L1 ≤ Ce−c0λ.

Now the desired inequality (with j = 0) just follows from L1 ⋆ Lp → Lp. �

Theorem 2.1. Let u satisfy (14). Then for any p ∈ [1,∞] and s ∈ R the following
inequality holds true for all t > 0 :

(17) ‖u(t)‖Ḃs
p,1

+

∫ t

0
‖∇2u‖Ḃs

p,1
dτ ≤ C

(
‖u0‖Ḃs

p,1
+

∫ t

0
‖f‖Ḃs

p,1
dτ

)
·

Proof. If u satisfies (14) then we have for any j ∈ Z,

∆̇ju(t) = et∆∆̇ju0 +

∫ t

0
e(t−τ)∆∆̇jf(τ) dτ.

Taking advantage of Lemma 2.1, we thus have

(18) ‖∆̇ju(t)‖Lp . e−c022jt‖∆̇ju0‖Lp +

∫ t

0
e−c022j(t−τ)‖∆̇jf(τ)‖Lp dτ.

Multiplying by 2js and summing up over j yields

∑

j

2js‖∆̇ju(t)‖Lp .
∑

j

e−c022j t2js‖∆̇ju0‖Lp +

∫ t

0
e−c022j(t−τ)

∑

j

‖∆̇jf(τ)‖Lp dτ

whence
‖u‖L∞(0,t;Ḃs

p,1)
. ‖u0‖Ḃs

p,1
+ ‖f‖L1(0,t;Ḃs

p,1)
.

Note that integrating (18) with respect to time also yields

22j‖∆̇ju‖L1(0,t;Lp) .
(
1− e−c022jt

)(
‖∆̇ju0‖Lp + ‖∆̇jf‖L1(0,t;Lp)

)
.

Therefore, multiplying by 2js, using Bernstein inequality and summing up over j yields

(19) ‖∇2u‖L1(0,t;Ḃs
p,1)
.
∑

j

(
1− e−c022j t

)
2js
(
‖∆̇ju0‖Lp + ‖∆̇jf‖L1(0,t;Lp)

)
,

which is even slightly better than what we wanted to prove �

Remark 2.2. Starting from (18) and using general convolution inequalities in R+ gives
a whole family of estimates for the heat equation. However, as time integration has been
performed before summation over j, the norms that naturally appear are

‖ · ‖
L̃a
t (Ḃ

σ
b,c

)

def
=
∥∥∥2jσ‖ · ‖La

t (L
b)

∥∥∥
ℓc

where ‖ · ‖La
t (L

b)
def
= ‖ · ‖La((0,t);Lb(Rd)).

With this notation, (18) implies that

‖u‖
L̃
ρ1
t (Ḃ

s+ 2
ρ1

p,r )
. ‖u0‖Ḃs

p,r
+ ‖f‖

L̃
ρ2
t (Ḃ

s−2+ 2
ρ2

p,r )
for 1 ≤ ρ2 ≤ ρ1 ≤ ∞.

The relevancy of the above norms in the maximal regularity estimates has been first noticed
(in a particular case) in the pioneering work by J.-Y. Chemin and N. Lerner [6], then
extended to general Besov spaces in [5]. They will play a fundamental role in the proof of
decay estimates, at the end of the paper.

Let us point out that results in the spirit of Propositions 2.3 and 2.4 may be easily proved

for L̃ρ
t (Ḃ

σ
p,r) spaces, the general rule being just that the time exponents behave according to

Hölder inequality.
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2.5. The linear transport equation. Here we give estimates in Besov spaces for the
following transport equation:

(20)

{
∂ta+ v · ∇xa+ λa = f in R× R

d

a|t=0 = a0 in R
d,

where the initial data a0 = a0(x), the source term f = f(t, x), the damping coefficient
λ ≥ 0 and the time dependent transport field v = v(t, x) are given.

Assuming that a0 ∈ X and f ∈ L1
loc(R+;X), the relevant assumptions on v for (20) to

be uniquely solvable depend on the nature of the Banach space X. Broadly speaking, in
the classical theory based on Cauchy-Lipschitz theorem, v has to be at least integrable in
time with values in the set of Lipschitz functions, so that it has a flow ψ. This allows to
get the following explicit solution for (20):

(21) a(t, x) = e−λta0(ψ
−1
t (x)) +

∫ t

0
e−λ(t−τ)f(τ, ψτ (ψ

−1
t (x))) dτ.

Theorem 2.2. Let 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞ and s ∈ R satisfy

−min
( d
p1
,
d

p′

)
< s < 1 +

d

p1
·

Then any smooth enough solution to (20) fulfills

‖a‖
L̃∞
t (Ḃs

p,r)
+ λ‖a‖

L̃1
t (Ḃ

s
p,r)

≤ eCV (t)
(
‖a0‖Ḃs

p,r
+ ‖f‖

L̃1
t (Ḃ

s
p,r)

)

with

V (t)
def
=

∫ t

0
‖∇v(τ)‖

Ḃ

d
p1
p1 ,∞∩L∞

dτ.

In the case s = 1 + d
p1

and r = 1, the above inequality is true with V ′(t) = ‖∇v(t)‖
Ḃ

d
p1
p1,1

.

Proof. Applying ∆̇j to (20) gives

(22) ∂t∆̇ja+ v · ∇∆̇ja+ λ∆̇ja = ∆̇jf + Ṙj with Ṙj
def
= [v · ∇, ∆̇j]a.

Therefore, from classical Lp estimates for the transport equation, we get

(23) ‖∆̇ja(t)‖Lp + λ‖∆̇ja‖L1
t (L

p) ≤ ‖∆̇ja0‖Lp

+

∫ t

0

(
‖∆̇jf‖Lp + ‖Ṙj‖Lp +

‖divv‖L∞

p
‖∆̇ja‖Lp

)
dτ.

We claim that the remainder term Ṙj satisfies

(24) ‖Ṙj(t)‖Lp ≤ Ccj(t)2
−js‖∇v(t)‖

Ḃ

d
p1
p1 ,∞∩L∞

‖a(t)‖Ḃs
p,r

with ‖(cj(t))‖ℓr = 1.

Indeed, from Bony’s decomposition, we infer that (with the summation convention over
repeated indices):

(25) Ṙj = [Tvk , ∆̇j ]∂ka+ T∂k∆̇ja
vk − ∆̇jT∂kav

k +R(vk, ∂k∆̇ja)− ∆̇jR(v
k, ∂ka).

The first term is the only one where having a commutator improves the estimate. Indeed,
owing to the properties of spectral localization of the Littlewood-Paley decomposition, we
have

[Tvk , ∆̇j]∂ka =
∑

|j−j′|≤4

[Ṡj′−1v
k, ∆̇j ]∂k∆̇j′a.
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Now, remark that

[Ṡj′−1v
k, ∆̇j ]∂k∆̇j′a(x) = 2jd

∫

Rd

h(2j(x− y))
(
Ṡj′−1v

k(x)− Ṡj′−1v
k(y)

)
∂k∆̇j′a(y) dy.

Hence using the mean value formula and Bernstein inequalities yields

‖[Tvk , ∆̇j ]∂ka‖Lp . 2−j‖Ṡj′−1∇v‖L∞

∑

|j′−j|≤4

‖∂k∆̇j′a‖Lp . ‖∇v‖L∞

∑

|j′−j|≤4

‖∆̇j′a‖Lp .

Bounding the third and last term in (25) follows from Proposition 2.3. Regarding the
second term, we may write

T∂k∆̇ja
vk =

∑

j′≥j−3

Ṡj′−1∂k∆̇ja ∆̇j′v
k,

hence using Bernstein inequality,

‖T∂k∆̇ja
vk‖Lp .

∑

j′≥j−3

2j−j′‖∆̇ja‖Lp ‖∇∆̇j′v‖L∞ ,

and convolution inequality for series thus ensures (24) for that term.

Finally, we have

∆̇jR(v
k, ∂ka) =

∑

|j′−j|≤1

∂k∆̇j′a (∆̇j′−1 + ∆̇j′ + ∆̇j′+1)v
k,

whence, by virtue of Bernstein inequality,

‖R(vk, ∂ka)‖Lp .
∑

|j′−j|≤1

‖∆̇j′a‖Lp‖∇v‖L∞ ,

and that term is thus also bounded by the r.h.s. of (24).

Let us resume to (22). Using (23) and (24), multiplying by 2js then summing up over j
and using the notations of Remark 2.2 yields

‖a‖
L̃∞
t (Ḃs

p,r)
+ λ‖a‖

L̃1
t (Ḃ

s
p,r)

≤ ‖a0‖Ḃs
p,r

+ ‖f‖
L̃1
t (Ḃ

s
p,r)

+ C

∫ t

0
V ′‖a‖Ḃs

p,r
dτ.

Then applying Gronwall’s lemma gives the desired inequality for a. �

3. The local existence in critical spaces

This section is dedicated to solving (4) locally in time, in critical spaces. For simplicity,

we focus on the case where the density goes to 1 at ∞. Setting a
def
= ̺− 1 and looking for

reasonably smooth solutions with positive density, System (4) is equivalent to

(26)





∂ta+ u · ∇a = −(1 + a)divu,

∂tu+ u · ∇u− Au
1 + a

+∇G(a) = 1

1 + a
div
(
2µ̃(a)D(u) + λ̃(a)divu Id

)
,

where4 G′(a)
def
= P ′(1+a)

1+a
, A def

= µ∆+ (λ+ µ)∇div with λ
def
= λ(1) and µ

def
= µ(1),

µ̃(z)
def
= µ(1 + z)− µ(1) and λ̃(z)

def
= λ(1 + z)− λ(1).

4In our approach, the exact value of functions G, λ̃ and µ̃ will not matter. We shall only need enough

smoothness, and vanishing at 0 for λ̃ and µ̃.
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The scaling invariance properties for (a, u) are those pointed out for (4). Critical norms
for the initial data are thus invariant for all ℓ > 0 by

a0(x) a0(ℓx) and u0(x) ℓu0(ℓx).

In all that follows, we shall only consider homogeneous Besov spaces having the above
scaling invariance and last index 1. There are good reasons for that choice, which will be
explained throughout. Remembering (10), we thus take

(27) a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 .

In order to guess what is the relevant solution space, we just use the fact that a is governed
by a transport equation and that u may be seen as the solution to the following Lamé
equation:

(28) ∂tu−Au = f, u|t=0 = u0.

In the whole space case, the solutions to (28) also satisfy the estimates of Theorem 2.1 and
Remark 2.2 whenever the following ellipticity condition is fulfilled:

(29) µ > 0 and ν
def
= λ+ 2µ > 0.

Indeed, if we denote by P and Q the orthogonal projectors over divergence-free and poten-
tial vector fields, then we have

∂tPu− µ∆Pu = Pf and ∂tQu− ν∆Qu = Qf.
In particular, applying Theorem 2.1 yields for all t ≥ 0:

‖Pu(t)‖Ḃs
p,1

+ µ

∫ t

0
‖∇2Pu‖Ḃs

p,1
dτ ≤ C

(
‖Pu0‖Ḃs

p,1
+

∫ t

0
‖Pf‖Ḃs

p,1
dτ

)
,

‖Qu(t)‖Ḃs
p,1

+ ν

∫ t

0
‖∇2Qu‖Ḃs

p,1
dτ ≤ C

(
‖Qu0‖Ḃs

p,1
+

∫ t

0
‖Qf‖Ḃs

p,1
dτ

)
·

As P and Q are continuous on Ḃs
p,1 (being 0 order multipliers) we conclude that

(30) ‖u(t)‖Ḃs
p,1

+min(µ, ν)

∫ t

0
‖∇2u‖Ḃs

p,1
dτ ≤ C

(
‖u0‖Ḃs

p,1
+

∫ t

0
‖f‖Ḃs

p,1
dτ

)
·

So, in short, starting from u0 ∈ Ḃ
d
p
−1

p,1 , we expect u in (26) to be in

Ep(T )
def
=
{
u ∈ C([0, T ]; Ḃ

d
p
−1

p,1 ), ∂tu,∇2u ∈ L1(0, T ; Ḃ
d
p
−1

p,1 )
}
·

In particular ∇u has exactly the regularity needed in Theorem 2.2 to ensure the conserva-

tion of the initial regularity for a, and we thus expect a ∈ C([0, T ]; Ḃ
d
p

p,1).

The rest of this section is devoted to the proof of the following statement:

Theorem 3.1. Let the viscosity coefficients λ and µ depend smoothly on ̺, and satisfy
(29). Assume that (a0, u0) fulfills (27) for some 1 ≤ p < 2d, and that d ≥ 2. If in addition
1+a0 is bounded away from 0 then (26) has a unique local-in-time solution5 and (a, u) with

a in C([0, T ]; Ḃ
d
p

p,1) and u in Ep(T ).

5Owing to Remark 2.2 and to Theorem 2.2 the constructed solution will have the additional property

that u ∈ L̃∞
T (Ḃ

d
p
−1

p,1 ) and that a ∈ L̃∞
T (Ḃ

d
p

p,1).
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We propose two different proofs for Theorem 3.1. The first one uses an iterative scheme
for approximating (26) which consists in solving a linear transport equation and the Lamé
equation with appropriate right-hand sides. Taking advantage of Theorem 2.2 and of (30),
it is easy to bound the sequence in the expected solution space on some fixed time interval
[0, T ] with T > 0. However, because the whole system is not fully parabolic, the strong
convergence of the sequence is shown for a weaker norm corresponding to ‘a loss of one
derivative’. For that reason, that approach works only6 if 1 ≤ p < d and d ≥ 3. The
same restriction occurs as regards the uniqueness issue, although the limit case p = d, or
d = 2 and p ≤ 2 is tractable by taking advantage of a logarithmic interpolation inequality
combined with Osgood lemma (see the end of this section).

The second proof consists in rewriting (26) in Lagrangian coordinates. Then the density
becomes essentially time independent, and one just has to concentrate on the velocity
equation that is of parabolic type for small enough time, and can thus be solved by the
contracting mapping argument.

3.1. The classical proof in Eulerian coordinates. We here present the direct approach
for solving (26). Our proof covers only the case d ≥ 3 and 1 ≤ p < d as regards existence,
and 1 ≤ p ≤ d with d ≥ 2 for uniqueness (variations on the method would allow to get
existence for the full range 1 ≤ p < 2d with d ≥ 2, though). To simplify the presentation,
we assume that λ and µ are density independent so that (26) rewrites

{
∂ta+ u · ∇a = −(1 + a)divu,
∂tu−Au = −u · ∇u− I(a)Au−∇(G(a)),

with I(a)
def
= a

1+a
and G′(a)

def
= P ′(1+a)

1+a
·

Furthermore, we suppose that for a small enough constant c = c(p, d,G),

(31) ‖a0‖
Ḃ

d
p
p,1

≤ c.

Step 1: An iterative scheme. We set an0
def
= Ṡna0 and un0

def
= Ṡnu0, and define the first term

(a0, u0) of the sequence of approximate solutions to be

a0
def
= a00 and u0

def
= etAu00,

where (etA)t≥0 stands for the semi-group of operators associated to (28).

Next, once (an, un) has been constructed, we define an+1 and un+1 to be the solutions
to the following linear transport and Lamé equations:

(32)

{
∂ta

n+1 + un · ∇an+1 = −(1 + an)divun,
∂tu

n+1 −Aun+1 = −un · ∇un − I(an)Aun −∇(G(an)),

supplemented with initial data an+1
0 and un+1

0 .

6Let us emphasize however that one may modify the iterative scheme for constructing solutions, then
resort to compactness arguments to get existence for the full range 1 ≤ p < 2d and d ≥ 2.
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Step 2: Uniform estimates in the case 1 ≤ p < 2d and d ≥ 2. As the data are smooth,
it is not difficult to check (by induction) that an and un are smooth and globally defined.

We claim that there exists some T > 0 such that (an)n∈N is bounded in C([0, T ]; Ḃ
d
p

p,1) and

(un)n∈N is bounded in the space Ep(T ). Indeed, Theorem 2.2 and the fact that Ḃ
d
p

p,1 is
stable by product imply that for some C ≥ 1,

‖an+1(T )‖
Ḃ

d
p
p,1

≤ ‖an+1
0 ‖

Ḃ
d
p
p,1

+ C

∫ T

0
(1 + ‖an‖

Ḃ
d
p
p,1

)‖divun‖
Ḃ

d
p
p,1

dt

+C

∫ T

0
‖∇un‖

Ḃ
d
p
p,1

‖an+1‖
Ḃ

d
p
p,1

dt.

Let Un(T )
def
= ‖∇un‖

L1
T
(Ḃ

d
p
p,1)
. Applying Gronwall’s lemma and using the definition of an+1

0 ,

we thus get

(33) ‖an+1‖
L∞
T
(Ḃ

d
p
p,1)

≤ CeCUn(T )‖a0‖
Ḃ

d
p
p,1

+ (1 + ‖an‖
L∞
T
(Ḃ

d
p
p,1)

)
(
eCUn(T ) − 1

)
·

Therefore, assuming that a0 fulfills (31) with some small enough c, that

(34) ‖an‖
L∞
T
(Ḃ

d
p
p,1)

≤ 4Cc

and that

(35) CUn(T ) ≤ log(1 + c),

we conclude from (33) that an+1 also satisfies (34) for the same T . At this point, let us

observe that as Ḃ
d
p

p,1 is continuously embedded in L∞, one may take c so small as

(36) ‖an‖
L∞
T
(Ḃ

d
p
p,1)

≤ 4Cc implies ‖an‖L∞([0,T ]×Rd) ≤ 1/2.

Let us now prove estimates for the velocity. From (30), we get for some constant C
depending only on λ and µ,

‖un+1‖Ep(T ) ≤ C

(
‖u0‖

Ḃ
d
p−1

p,1

+

∫ T

0
‖un · ∇un + I(an)Aun +∇(G(an))‖

Ḃ
d
p−1

p,1

dt

)
·

The terms in the r.h.s. may be bounded by means of Propositions 2.3 and 2.4 (remembering
(36)) if d ≥ 2 and 1 ≤ p < 2d. We get for some C ′ = C ′(p, d,G):

‖un+1‖Ep(T ) ≤ C ′

(
‖u0‖

Ḃ
d
p−1

p,1

+
(
‖an‖

L∞
T
(Ḃ

d
p
p,1)

+ ‖un‖
L∞
T
(Ḃ

d
p−1

p,1 )

)
‖∇un‖

L1
T
(Ḃ

d
p
p,1)

+T‖an‖
L∞
T
(Ḃ

d
p
p,1)

)
·

Using (34) and the definition of Un, this implies that

‖un+1‖Ep(T ) ≤ C ′
(
‖u0‖

Ḃ
d
p−1

p,1

+ (4Cc+ Un(T ))‖un‖Ep(T ) + 4CcT
)
.

Therefore, assuming that (35) is fulfilled and taking smaller c if needed, we get

‖un+1‖Ep(T ) ≤
1

2
‖un‖Ep(T ) + C ′(‖u0‖

Ḃ
d
p−1

p,1

+ 4CcT ),
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and thus, if

(37) ‖un‖Ep(T ) ≤ 2C ′
(
‖u0‖

Ḃ
d
p−1

p,1

+ 4cCT
)

then un+1 also satisfies (37).

To complete the proof, we still have to justify that (35) is fulfilled at rank n+ 1. From
the definition of ‖ · ‖Ep(T ), embedding and (37) (at rank n+ 1), we know that there exists

some constant C ′′ so that

Un+1(T ) ≤ C ′′
(
‖u0‖

Ḃ
d
p−1

p,1

+ cT
)
.

Hence there exists a constant c′ > 0 such that if T and u0 satisfy

(38) ‖u0‖
Ḃ

d
p−1

p,1

+ cT ≤ c′

then both (35) and (37) are fulfilled at rank n+ 1.

If ‖u0‖
Ḃ

d
p−1

p,1

≥ c′ then we split un into unL+ũ
n with unL(t)

def
= etAun0 . Denoting uL

def
= etAu0

and observing that unL = ṠnuL, we discover that

Un(T ) ≤ ‖∇unL‖
L1
T
(Ḃ

d
p
p,1)

+ ‖∇ũn‖
L1
T
(Ḃ

d
p
p,1)

≤ C‖∇uL‖
L1
T
(Ḃ

d
p
p,1)

+ ‖∇ũn‖
L1
T
(Ḃ

d
p
p,1)
.

The term with uL goes to 0 for T tending to 0 with a speed of convergence that may be
described according to (19). To handle the second term, we observe that ũn+1 satisfies

∂tũ
n+1 −Aũn+1 = −ũn · ∇un − unL · ∇ũn − unL · ∇unL −∇(G(an))− I(an)Aun.

Because ũn+1(0) = 0, combining (30), product laws in Besov spaces and (31), we get

(39) ‖ũn+1‖Ep(T ) ≤ C

(∫ T

0
‖ũn‖

Ḃ
d
p−1

p,1

‖∇un‖
Ḃ

d
p
p,1

dt+

∫ T

0
‖uL‖

Ḃ
d
p
p,1

‖ũn‖
Ḃ

d
p
p,1

dt

+ ‖uL‖
L1
T
(Ḃ

d
p+1

p,1 )
‖uL‖

L∞
T
(Ḃ

d
p−1

p,1 )
+ ‖an‖

L∞
T
(Ḃ

d
p
p,1)

‖un‖
L1
T
(Ḃ

d
p−1

p,1 )
+ T‖an‖

L∞
T
(Ḃ

d
p
p,1)

)
·

Arguing by interpolation yields for any β > 0,
∫ T

0
‖uL‖

Ḃ
d
p
p,1

‖ũn‖
Ḃ

d
p
p,1

dt ≤ β‖uL‖
L∞
T
(Ḃ

d
p−1

p,1 )
‖ũn‖

L1
T
(Ḃ

d
p+1

p,1 )
+ Cβ−1‖uL‖

L1
T
(Ḃ

d
p+1

p,1 )
‖ũn‖

L∞
T
(Ḃ

d
p−1

p,1 )
.

Besides, as ‖uL‖
L∞
T
(Ḃ

d
p−1

p,1 )
≤ C‖u0‖

Ḃ
d
p−1

p,1

, Inequality (39) implies that

‖ũn+1‖Ep(T ) ≤ C

((
Un(T ) + β‖u0‖

Ḃ
d
p−1

p,1

+ β−1‖uL‖
L1
T
(Ḃ

d
p+1

p,1 )
+ ‖an‖

L∞
T
(Ḃ

d
p )

)
‖ũn‖Ep(T )

+‖u0‖
Ḃ

d
p−1

p,1

‖uL‖
L1
T
(Ḃ

d
p+1

p,1 )
+ (T + ‖uL‖

L1
T
(Ḃ

d
p+1

p,1 )
)‖an‖

L∞
T
(Ḃ

d
p
p,1)

)
·

Choosing β = 1/(4C‖u0‖
Ḃ

d
p−1

p,1

), remembering (34) and (35) (taking c smaller if needed),

and that

(40) (1 + ‖u0‖
Ḃ

d
p−1

p,1

)‖uL‖
L1
T
(Ḃ

d
p+1

p,1 )
≤ c,
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we conclude that there exists C ′′′ so that

‖ũn+1‖Ep(T ) ≤
1

2
‖ũn‖Ep(T ) + C ′′′c.

Hence ‖ũn‖Ep(T ) ≤ 2C ′′′c implies that ‖ũn+1‖Ep(T ) ≤ 2C ′′′c, and thus (37) is fulfilled at
rank n+ 1 if c has been chosen small enough.

Finally, let us notice that there exists some T > 0 so that
∑

j

(
1− e−c022jT

)
2
j(d

p
−1)‖∆̇ju0‖Lp ≤ c

1 + ‖u0‖
Ḃ

d
p−1

p,1

·

Hence (19) ensures that (40) is satisfied for this choice of T.

Step 3: Convergence in the case 1 ≤ p < d and d ≥ 3. Let δan
def
= an+1 − an and δun

def
=

un+1 − un. The couple (δan+1, δun+1) satisfies

(41)

{
∂tδa

n+1 + un+1 · ∇δan+1 =
∑3

i=1 δF
n
i ,

∂tδu
n+1 −Aδun+1 =

∑5
i=1 δG

n
i ,

with δFn
1

def
= −δun · ∇an+1, δFn

2
def
= −δan divun+1, δFn

3
def
= −(1 + an)divδun,

δGn
1
def
=
(
I(an)− I(an+1)

)
Aun+1, δGn

2
def
= −I(an)Aδun, δGn

3
def
= ∇(G(an)−G(an+1)),

δGn
4
def
= −un+1 · ∇δun, δGn

5
def
= −δun · ∇un.

Owing to the first equation, one can perform estimates for (δan, δun) only in a space with

one less derivative, namely in C([0, T ]; Ḃ
d
p
−1

p,1 )× Fp(T ) with

Fp(T )
def
= C([0, T ]; Ḃ

d
p
−2

p,1 ) ∩ L1(0, T ; Ḃ
d
p

p,1).

Now, using the same type of computations as in Step 3, we get for all t ∈ [0, T ],

‖δan+1(t)‖
Ḃ

d
p−1

p,1

≤ ‖δan+1(0)‖
Ḃ

d
p−1

p,1

+ C

∫ t

0
‖∇un+1‖

Ḃ
d
p
p,1

(
‖δan‖

Ḃ
d
p−1

p,1

+ ‖δan+1‖
Ḃ

d
p−1

p,1

)
dτ

+

∫ t

0

(
1 + C‖an‖

Ḃ
d
p
p,1

+ C‖an+1‖
Ḃ

d
p
p,1

)
‖δun‖

Ḃ
d
p
p,1

dτ.

Using the bounds provided by the previous step, we thus get, taking c smaller if needed,

(42) ‖δan+1‖
L∞
t (Ḃ

d
p−1

p,1 )
≤ ‖δan+1(0)‖

Ḃ
d
p−1

p,1

+
1

8
‖δan‖

L∞
t (Ḃ

d
p−1

p,1 )
+ 2‖δun‖Fp(t).

As in the previous step, bounding δun+1 in Fp(T ) follows from (30) and product laws.
However, as less regularity is available, one has to make the stronger assumption

(43) d ≥ 3 and 1 ≤ p < d.

Taking c smaller if needed, we eventually get thanks to (34), (35) and (37)

‖δun+1‖Fp(T ) ≤ C‖δun+1(0)‖
Ḃ

d
p−2

p,1

+
1

8

(
‖δan‖

L∞
T
(Ḃ

d
p−1

p,1 )
+ ‖δun‖Fp(T )

)
.
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Combining with (42) yields

‖δan+1‖
L∞
T
(Ḃ

d
p−1

p,1 )
+ 4‖δun+1‖Fp(T ) ≤ C

(
‖δan+1(0)‖

Ḃ
d
p−1

p,1

+ 4‖δun+1(0)‖
Ḃ

d
p−2

p,1

)

+
5

8

(
‖δan‖

L∞
T
(Ḃ

d
p−1

p,1 )
+ 4‖δun‖Fp(T )

)
.

Summing up over n ∈ N, we conclude that (an − a0)n∈N and (un − u0)n∈N converge in

C([0, T ]; Ḃ
d
p
−1

p,1 ) and in Fp(T ), respectively.

Step 4: Checking that the limit is a solution and upgrading regularity. From Step 3, we
know that there exists a and u so that

an − a0 → a− a0 in L∞(0, T ; Ḃ
d
p
−1

p,1 ) and un − u0 → u− u0 in Fp(T ).

The bounds of Step 2 combined with Banach-Alaoglu theorem imply that in addition

an ⇀ a in L∞(0, T ; Ḃ
d
p

p,1) weak ∗ and un ⇀ u in L∞(0, T ; Ḃ
d
p
−1

p,1 ) weak ∗ .
Routine verifications thus allow to pass to the limit in (32).

The previous step tells us that ∇2u is in L1(0, T ; Ḃ
d
p
−2

p,1 ). To upgrade the regularity
exponent by 1, let us write that for all J ∈ N:

∑

|j|≤J

∫ T

0
2j(

d
p
−1)‖∆̇j∇2u‖Lp dt ≤

∑

|j|≤J

∫ T

0
2j(

d
p
−1)‖∆̇j∇2un‖Lp dt

+2J
∑

|j|≤J

∫ T

0
2
j(d

p
−2)‖∆̇j∇2u− ∆̇j∇2un‖Lp dt.

The first term is bounded by the r.h.s. of (37) while, by virtue of Step 3, the second one
tends to 0 when n goes 0. Hence, letting J tend to +∞ ensures that ‖∇2u‖

L1
T
(Ḃ

d
p−1

p,1 )
is finite.

Next, as (a, u) satisfies (26), Theorem 2.2 and Inequality (30) imply that a ∈ L̃∞
T (Ḃ

d
p

p,1)

and that u ∈ L̃∞
T (Ḃ

d
p
−1

p,1 ), which, combined with the fact that a− a0 ∈ C([0, T ]; Ḃ
d
p
−1

p,1 ) and

u− u0 ∈ C([0, T ]; Ḃ
d
p
−2

p,1 ) implies that a ∈ C([0, T ]; Ḃ
d
p

p,1) and u ∈ C([0, T ]; Ḃ
d
p
−1

p,1 ).

Step 5: Uniqueness. Consider two solutions (a1, u1) and (a2, u2) of (26) with the above

regularity. The difference (δa, δu)
def
= (a2−a1, u2−u1) satisfies

(44)

{
∂tδa+ u2 · ∇δa =

∑3
i=1 δFi,

∂tδu−Aδu =
∑5

i=1 δGi,

with δF1
def
= −δu · ∇a1, δF2

def
= −δadivu2, δF3

def
= −(1 + a1)divδu,

δG1
def
=
(
I(a1)− I(a2)

)
Au2, δG2

def
= −I(a1)Aδu, δG3

def
= ∇(G(a1)−G(a2)),

δG4
def
= −u2 · ∇δu, δG5

def
= −δu · ∇u1.

Mimicking the computations of Step 3, it is easy to see that if (43) is fulfilled then (δa, δu) ≡
0 in C([0, T ]; Ḃ

d
p
−1

p,1 )× Fp(T ).
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It turns out that the limit case d = 2 or p = d tractable even though

(45)
(
δa ∈ Ḃ0

d,1 and Au2 ∈ Ḃ0
d,1

)
implies δaAu2 ∈ Ḃ−1

d,∞ only.

Now, applying Theorem 2.2 and product laws (see Proposition 2.3) gives

‖δa‖L∞
T

(Ḃ0
d,∞) ≤

(
‖δa(0)‖Ḃ0

d,∞
+ (1 + ‖a1‖L∞

T
(Ḃ1

d,1)
)‖δu‖L1

T
(Ḃ1

d,1)

)
e
‖u2‖

L1
T
(Ḃ2

d,1
)
.

Regarding δu, owing to (45), one has to apply Remark 2.2 rather than Theorem 2.1, which
enables us to control the following quantity:

‖δu‖
L̃1
T
(Ḃ1

d,∞)

def
= sup

j
2j‖∆̇jδu‖L1

T
(Ld),

which is slightly weaker than ‖δu‖L1
T
(Ḃ1

d,1)
.

Inserting the following logarithmic interpolation inequality (see [15]):

(46) ‖δu‖L1
T
(Ḃ1

d,1)
. ‖δu‖

L̃1
T
(Ḃ1

d,∞) log

(
e+

‖δu‖
L̃1
T
(Ḃ0

d,∞)
+ ‖δu‖

L̃1
T
(Ḃ2

d,∞)

‖δu‖
L̃1
T
(Ḃ1

d,∞)

)

in the estimate for δa and using Osgood lemma (see e.g. [1], Chap. 3), we end up with

‖δa‖L∞
t (Ḃ0

d,∞)+‖δu‖
L∞
t (Ḃ−1

d,∞)∩L̃1
t (Ḃ

1
d,∞).

(
‖δa(0)‖Ḃ0

d,∞
+‖δu(0)‖

Ḃ−1
d,∞

)exp(− ∫ t
0 αdτ)

where α is in L1(0, T ) and depends only on the high norms of the two solutions. This yields
uniqueness on [0, T ].

3.2. The Lagrangian approach. We now propose another proof of the local well-posedness
of (26), which will provide us with the statement of Theorem 3.1 in its full generality. It is
based on the Lagrangian formulation of the system under consideration.

To make it more precise, we need to introduce more notation. First, we agree that for a
C1 function F : Rd → R

d × R
m then divF : Rd → R

m is defined by

(divF )j
def
=

d∑

i=1

∂iFij for 1 ≤ j ≤ m,

and that for A = (Aij)1≤i,j≤d and B = (Bij)1≤i,j≤d two d× d matrices,

A : B = TrAB =
∑

i,j

AijBji.

The notation adj (A) designates the adjugate matrix that is the transposed cofactor matrix
of A. Of course if A is invertible then we have adj (A) = (detA) A−1. Finally, given some
matrix A, we define the “twisted” deformation tensor and divergence operator (acting on
vector fields z) by the formulae

DA(z)
def
=

1

2

(
Dz · A+ TA · ∇z

)
and divA z

def
= TA : ∇z = Dz : A.

We recall the following classical result (see the proof in e.g. [16]).
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Lemma 3.1. Let K be a C1 scalar function over R
d and H, a C1 vector-field. Let X be a

C1 diffeomorphism such that J
def
= det(DyX) > 0. Then we have

∇xK = J−1 divy (adj (DyX)K̄),(47)

divxH = J−1 divy (adj (DyX)H̄).(48)

Let X be the flow associated to the vector-field u, that is the solution to

(49) X(t, y) = y +

∫ t

0
u(τ,X(τ, y)) dτ.

Let ¯̺(t, y)
def
= ̺(t,X(t, y)) and ū(t, y) = u(t,X(t, y)). Formally, we see from the chain rule

and Lemma 3.1 above that (̺, u) satisfies (4) if and only if (¯̺, ū) fulfills

(50)

{
∂t(J ¯̺) = 0

̺0∂tū− div
(
adj (DX)

(
2µ(¯̺)DA(ū) + λ(¯̺) divA ū Id + P (¯̺)Id

))
= 0

with J
def
= detDX, A

def
= (DyX)−1 and

(51) X(t, y) = y +

∫ t

0
ū(τ, y) dτ.

The first equation means that ̺ = J−1̺0, and the velocity equation thus recasts in:

L̺0(ū) = ̺−1
0 div

(
I1(ū, ū) + I2(ū, ū) + I3(ū, ū) + I4(ū)

)

with

(52) L̺0(u)
def
= ∂tu− ̺−1

0 div
(
2µ(̺0)D(u) + λ(̺0)divu Id

)

and

I1(v,w)
def
= (adj (DXv)− Id )

(
µ(J−1

v ̺0)(DwAv +
TAv ∇w) + λ(J−1

v ̺0)(
TAv : ∇w)Id

)

I2(v,w)
def
= (µ(J−1

v ̺0)− µ(̺0))(DwAv +
TAv ∇w) + (λ(J−1

v ̺0)− λ(̺0))(
TAv : ∇w)Id

I3(v,w)
def
= µ(̺0)

(
Dw(Av − Id ) + T(Av − Id )∇w

)
+ λ(̺0)(

T(Av − Id ) : ∇w)Id
I4(v)

def
= −adj (DXv)P (̺0J

−1
v ),

where Xv is given by (49) with v instead of u, Av
def
= (DXv)

−1 and Jv
def
= detDXv.

So finally, in order to solve (50) locally, it suffices to show that the map

(53) Φ : v 7−→ u

with u the solution to{
L̺0(u) = ̺−1

0 div
(
I1(v, v) + I2(v, v) + I3(v, v) + I4(v)

)
,

u|t=0 = u0

has a fixed point in Ep(T ) for small enough T.

In order to treat the case where ̺ is just bounded away from zero, we need to generalize
(30) to the following Lamé system with nonconstant coefficients:

(54) ∂tu− 2adiv(µD(u))− b∇(λdivu) = f,

where a, b, λ and µ satisfy the following uniform ellipticity condition:

(55) α
def
= min

(
inf

(t,x)∈[0,T ]×Rd
(aµ)(t, x), inf

(t,x)∈[0,T ]×Rd
(2aµ + bλ)(t, x)

)
> 0.
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In [16], the following statement has been proved.

Proposition 3.1. Let a, b, λ and µ be bounded functions satisfying (55). Assume that

a∇µ, b∇λ, µ∇a and λ∇b are in L∞(0, T ; Ḃ
d
p
−1

p,1 ) for some 1 < p < ∞. There exist η > 0
and α > 0 such that if for some m ∈ Z we have

min
(

inf
(t,x)∈[0,T ]×Rd

Ṡm(2aµ + bλ)(t, x), inf
(t,x)∈[0,T ]×Rd

Ṡm(aµ)(t, x)
)
≥ α

2
,(56)

‖(Id − Ṡm)(µ∇a, a∇µ, λ∇b, b∇λ)‖
L∞
T
(Ḃ

d
p−1

p,1 )
≤ ηα(57)

then the solutions to (54) satisfy for all t ∈ [0, T ],

‖u‖L∞
t (Ḃs

p,1)
+ α‖u‖L1

t (Ḃ
s+2
p,1 )

≤ C
(
‖u0‖Ḃs

p,1
+ ‖f‖L1

t (Ḃ
s
p,1)

)
exp

(
C

α

∫ t

0
‖Ṡm(µ∇a, a∇µ, λ∇b, b∇λ)‖2

Ḃ
d
p
p,1

dτ

)

whenever −min(d/p, d/p′) < s ≤ d/p − 1.

In order to show that Φ in (53) admits a fixed point in Ep(T ), we introduce, as in the
previous subsection, the solution uL in Ep(T ) to

L1uL = 0, u|t=0 = u0.

We want to apply Banach fixed point theorem to Φ in some suitable closed ball B̄Ep(T )(uL, R).

Let v be in B̄Ep(T )(uL, R) and u
def
= Φ(v). Denoting ũ

def
= u− uL, we see that

(58)

{
L̺0 ũ = ̺−1

0 div
(
I1(v, v) + I2(v, v) + I3(v, v) + I4(v)

)
+ (L1 − L̺0)uL,

ũ|t=0 = 0.

The existence of some m ∈ Z so that

min

(
inf
Rd
Ṡm

(
2
µ(̺0)

̺0
+
λ(̺0)

̺0

)
, inf
Rd
Ṡm

(µ(̺0)
̺0

))
>
α

2

and
∥∥∥(Id − Ṡm)

(µ(̺0)
̺20

∇̺0,
µ′(̺0)

̺0
∇̺0,

λ(̺0)

̺20
∇̺0,

λ′(̺0)

̺0
∇̺0

)∥∥∥
Ḃ

d
p−1

p,1

≤ ηα

is ensured by the fact that all the coefficients (minus some constant) belong to the space

Ḃ
d
p

p,1 which is defined in terms of a convergent series and embeds continuously in the set of

bounded continuous functions. Hence, if one can show that the right-hand side of (58) is

in L1(0, T ; Ḃ
d
p
−1

p,1 ) (which will be carried out in the next step) then we will be allowed to

apply Proposition 3.1 to bound ũ in Ep(T ).

First step: Stability of B̄Ep(T )(uL, R). Let v ∈ B̄Ep(T )(uL, R) and ũ be given by (58). Let

a0
def
= ̺0 − 1. Proposition 3.1, product laws in Besov spaces and Proposition 2.4 imply that

(59) ‖ũ‖Ep(T ) ≤ CeC̺0T
(
‖(L1 − L̺0)uL‖

L1
T
(Ḃ

d
p−1

p,1 )

+
(
1 + ‖a0‖

Ḃ
d
p
p,1

)(
‖I4(v)‖

L1
T
(Ḃ

d
p
p,1)

+
3∑

i=1

‖Ii(v, v)‖
L1
T
(Ḃ

d
p
p,1)

))

for some constant C̺0 depending only on ̺0.
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In what follows, we assume that T and R have been chosen so that, for a small enough
positive constant c,

(60)

∫ T

0
‖∇v‖

Ḃ
d
p
p,1

dt ≤ c.

Now, using the decomposition

(L1 − L̺0)uL = (̺−1
0 − 1)div

(
2µ(̺0)D(uL) + λ(̺0)divuL Id

)

+div
(
2(µ(̺0)− µ(1))D(u) + (λ(̺0)− λ(1))divu Id

)
,

and Proposition 2.4, we see that (L1 − L̺0)uL ∈ L1(0, T ; Ḃ
d
p
−1

p,1 ) and

(61) ‖(L1 − L̺0)uL‖
L1
T
(Ḃ

d
p−1

p,1 )
. ‖a0‖

Ḃ
d
p
p,1

(1 + ‖a0‖
Ḃ

d
p
p,1

)‖DuL‖
L1
T
(Ḃ

d
p
p,1)
.

Likewise, flow and composition estimates (see the appendix) ensure that

‖Ii(v,w)‖
L1
T
(Ḃ

d
p−1

p,1 )
. (1 + ‖a0‖

Ḃ
d
p
p,1

)‖Dv‖
L1
T
(Ḃ

d
p
p,1)

‖Dw‖
L1
T
(Ḃ

d
p
p,1)

for i = 1, 2, 3,(62)

‖I4(v)‖
L1
T
(Ḃ

d
p
p,1)
. T (1 + ‖a0‖

Ḃ
d
p
p,1

)(1 + ‖Dv‖
L1
T
(Ḃ

d
p
p,1)

).(63)

So plugging the above inequalities in (59) and keeping in mind that v satisfies (60), we get
after decomposing v into ṽ + uL:

‖ũ‖Ep(T ) ≤ CeC̺0,mT (1 + ‖a0‖
Ḃ

d
p
p,1

)2
(
(T + ‖a0‖

Ḃ
d
p
p,1

‖DuL‖
L1
T
(Ḃ

d
p
p,1)

)

+‖DuL‖2
L1
T
(Ḃ

d
p
p,1)

+
(
‖DuL‖

L1
T
(Ḃ

d
p
p,1)

+ ‖Dṽ‖
L1
T
(Ḃ

d
p
p,1)

)
‖Dṽ‖

L1
T
(Ḃ

d
p
p,1)

)
.

Now, because ṽ ∈ B̄Ep(T )(0, R),

‖ũ‖Ep(T ) ≤ CeC̺0T (1 + ‖a0‖
Ḃ

d
p
p,1

)2
(
(T + ‖a0‖

Ḃ
d
p
p,1

‖DuL‖
L1
T
(Ḃ

d
p
p,1)

)

+(R+ ‖DuL‖
L1
T
(Ḃ

d
p
p,1)

)‖DuL‖
L1
T
(Ḃ

d
p
p,1)

+R2
)
.

Therefore, if we first choose R so that for a small enough constant η,

(64) (1 + ‖a0‖
Ḃ

d
p
p,1

)2R ≤ η

and then take T so that

(65) C̺0T ≤ log 2, T ≤ R2, ‖a0‖
Ḃ

d
p
p,1

‖DuL‖
L1
T
(Ḃ

d
p
p,1)

≤ R2, ‖DuL‖
L1
T
(Ḃ

d
p
p,1)

≤ R,

then we may conclude that Φ maps B̄Ep(T )(uL, R) into itself.

Second step: contraction estimates. Let us now establish that, under Condition (65), the
map Φ is contractive. We consider two vector-fields v1 and v2 in B̄Ep(T )(uL, R), and set

u1
def
= Φ(v1) and u2

def
= Φ(v2). Let δu

def
= u2 − u1 and δv

def
= v2 − v1. We have

L̺0δu = ̺−1
0 div

(
(I1(v

2, v2)− I1(v
1, v1))

+(I2(v
2, v2)− I2(v

1, v1)) + (I3(v
2, v2)− I3(v

1, v1)) + (I4(v
2)− I4(v

1))
)
·
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So applying Proposition 3.1 (recall that C̺0T ≤ log 2), we get

(66)‖δu‖Ep(T ) ≤ C(1 + ‖a0‖
Ḃ

d
p
p,1

)
( 3∑

i=1

‖Ii(v2, v2)− Ii(v
1, v1)‖

L1
T
(Ḃ

d
p
p,1)

+ ‖I4(v2)− I4(v
1)‖

L1
T
(Ḃ

d
p
p,1)

)
·

In order to deal with the first term of the right-hand side, we use the decomposition

I1(v
2, v2)− I1(v

1, v1) = λ(J−1
v2
̺0)
(
TAv2 : ∇v2

)(
adj (DXv2)− adj (DXv1)

)

+
(
adj (DXv1)− Id

)(
λ(J−1

v2
̺0)− λ(J−1

v1
̺0)
)(

TAv2 : ∇v2
)

+
(
adj (DXv1)− Id

)
λ(J−1

v1
̺0)
(
(TAv2 − TAv1) : ∇v1 + TAv2 : ∇δv

)

+ terms pertaining to µ.

Taking advantage of product laws in Besov spaces, of Proposition 2.4 and of the flow
estimates in the appendix, we deduce that for some constant C̺0 depending only on ̺0:

‖I1(v2, v2)− I1(v
1, v1)‖

L1
T
(Ḃ

d
p
p,1)

≤ C̺0‖(Dv1,Dv2)‖
L1
T
(Ḃ

d
p
p,1)

‖Dδv‖
L1
T
(Ḃ

d
p
p,1)
.

Similar estimates may be proved for the next two terms of the right-hand side of (66).
Concerning the last one, we use the decomposition

I4(v
2)− I4(v1)=

(
adj (DXv1)− adj (DXv2)

)
P (J−1

v2
̺0)− adj (DXv1)

(
P (J−1

v2
̺0)−P (J−1

v1
̺0)
)
.

Hence

‖I4(v2)− I4(v
1)‖

L1
T
(Ḃ

d
p
p,1)

≤ C(1 + ‖a0‖
Ḃ

d
p
p,1

)T‖Dδv‖
L1
T
(Ḃ

d
p
p,1)
.

We end up with

‖δu‖Ep(T ) ≤ C(1 + ‖a0‖
Ḃ

d
p
p,1

)2
(
T + ‖(Dv1,Dv2)‖

L1
T
(Ḃ

d
p
p,1)

)
‖Dδv‖

L1
T
(Ḃ

d
p
p,1)
.

Given that v1 and v2 are in B̄Ep(T )(uL, R), our hypotheses over T and R (with smaller η
in (64) if need be) thus ensure that,

‖δu‖Ep(T ) ≤
1

2
‖δv‖Ep(T ).

Hence Φ admits a unique fixed point in B̄Ep(T )(uL, R).

Third step: Regularity of the density. Set ̺
def
= J−1

u ̺0. By construction (̺, u) satisfies (50)

and a
def
= ̺− 1 is given by

a = (J−1
u − 1)a0 + a0.

From the appendix, as Du ∈ L1(0, T ; Ḃ
d
p

p,1), we have J−1
u − 1 belongs to C([0, T ]; Ḃ

d
p

p,1).

Hence a is in C([0, T ]; Ḃ
d
p

p,1), too. Because Ḃ
d
p

p,1 is continuously embedded in L∞, the density

remains bounded away from 0 on [0, T ] (taking T smaller if needed).
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Last step: Uniqueness and continuity of the flow map. Let the data (̺10, u
1
0) and (̺20, u

2
0)

fulfill the assumptions of Theorem 3.1, and let (̺1, u1) and (̺2, u2) be the corresponding

solutions. Setting δu
def
= u2 − u1, we see that

L̺10
(δu) = (L̺10

− L̺20
)(u2) + (̺10)

−1div
( 3∑

j=1

(
(I2j (u

2, u2)− I2j (u
1, u1)

)
+ (I24 (u

2)− I24 (u
1))
)

+(̺10)
−1div

( 3∑

j=1

((I2j − I1j )(u
1, u1) + (I24 − I14 )(u

1)
)
,

where Ii1, I
i
2, I

i
3 and Ii4 correspond to the quantities that have been defined just above

(53), with density ̺i0. Compared to the second step, the only definitely new terms are
(L̺10

− L̺20
)(u2) and the last line. As regards (L̺10

− L̺20
)(u2), we have for t ≤ T,

‖(L̺10
− L̺20

)(u2)‖
L1
t (Ḃ

d
p−1

p,1 )
≤ C̺10,̺

2
0
‖δρ0‖

Ḃ
d
p
p,1

‖Du2‖
L1
t (Ḃ

d
p
p,1)
.

The other new terms satisfy analogous estimates. Hence, applying Proposition 3.1 yields
if δρ0 is small enough:

‖δu‖Ep(t) ≤ C̺10

(
(t+ ‖Du1‖

L1
t (Ḃ

d
p
p,1)

+ ‖δu‖Ep(t))‖δu‖Ep(t)

+‖δu0‖
Ḃ

d
p
p,1

+ ‖δρ0‖
Ḃ

d
p
p,1

(t+ ‖Du1‖
L1
t (Ḃ

d
p
p,1)

)
)
.

An obvious bootstrap argument thus shows that if t, δu0 and δρ0 are small enough then

‖δu‖Ep(t) ≤ 2C̺0

(
‖δu0‖

Ḃ
d
p
p,1

+ ‖δρ0‖
Ḃ

d
p
p,1

)
.

As regards the density, we have δa = J−1
u1 δa0 + (J−1

u2 − J−1
u1 )a

2
0. Hence for all t ∈ [0, T ],

‖δa(t)‖
Ḃ

d
p
p,1

≤ C(1 + ‖Du1‖
L1
t (Ḃ

d
p
p,1)

)‖δa0‖
Ḃ

d
p
p,1

‖Dδu‖
L1
t (Ḃ

d
p
p,1)
.

So we get uniqueness and continuity of the flow map on a small time interval. Then iterating
the proof yields uniqueness on the initial time interval [0, T ], as well as Lipschitz continuity
of the flow map.

It is now easy to conclude to Theorem 3.1 in its full generality, as a mere corollary
of the following proposition which states the equivalence of Systems (26) and (50) in our
functional setting (see the proof in [16]).

Proposition 3.2. Let 1 ≤ p < 2d. Assume that the couple (̺, u) with (̺−1) ∈ C([0, T ]; Ḃ
d
p

p,1)

and u ∈ Ep(T ) is a solution to (26) such that

(67)

∫ T

0
‖∇u‖

Ḃ
d
p
p,1

dt ≤ c.

Let X be the flow of u defined in (49). Then the couple (¯̺, ū)
def
= (̺ ◦X,u ◦X) belongs to

the same functional space as (̺, u), and satisfies (50).
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Conversely, if (¯̺− 1, ū) belongs to C([0, T ]; Ḃ
d
p

p,1) × Ep(T ) and (¯̺, ū) satisfies (50) and,
for a small enough constant c,

(68)

∫ T

0
‖∇ū‖

Ḃ
d
p
p,1

dt ≤ c

then the map Xt
def
= X(t, ·) defined in (51) is a C1 diffeomorphism on R

d and the couple

(̺, u)(t)
def
= (¯̺(t) ◦X−1

t , ū(t) ◦X−1
t ) satisfies (26) and has the same regularity as (¯̺, ū).

4. The global existence issue

This section is devoted to the proof of global existence of strong solutions for small
perturbations of the constant state (̺, u) = (1, 0), under the stability assumption P ′(1) > 0.
For simplicity, we assume that the viscosity functions λ and µ are constant.

Let us emphasize that the approach we used so far to solve (26) cannot provide us with
global-in-time estimates (even if both a0 and u0 are small) because we completely ignored
the coupling between the mass and momentum equation through the pressure term and
looked at it as a low order source term, just writing

∂tu−Au = −u · ∇u− I(a)Au−∇(G(a)).

Then, applying Inequality (30) and product laws in Besov spaces led to

(69) ‖u‖Ep(t) ≤ C

(
‖u0‖

Ḃ
d
p−1

p,1

+ ‖u‖Ep(t)

(
‖a‖

L∞
t (Ḃ

d
p
p,1)

+ ‖u‖Ep(t)

)
+

∫ t

0
‖a‖

Ḃ
d
p
p,1

dτ

)
·

At the same time, as a is a solution to a transport equation, we can only get bounds on
‖a‖

L∞
t (Ḃ

d
p
p,1)

and the last term of (69) is thus out of control for t→ +∞.

4.1. The linearized compressible Navier-Stokes system, and main result. The key
to proving global results is a refined analysis of the linearized system (26) about (a, u) =
(0, 0) taking the coupling between the mass and momentum equation through the pressure
term into account. The system in question reads:

(70)

{
∂ta+ divu = f,
∂tu− µ∆u− (λ+ µ)∇divu+ P ′(1)∇a = g.

Applying the orthogonal projectors P and Q over divergence-free and potential vector-

fields, respectively, to the second equation, and setting α
def
= P ′(1) and ν

def
= λ+2µ, System

(70) translates into

(71)





∂ta+ divQu = f,
∂tQu− ν∆Qu+ α∇a = Qg,
∂tPu− µ∆Pu = Pg.

We see that Pu satisfies an ordinary heat equation, which is uncoupled from a and Qu.
For studying the coupling between a and Qu, it is convenient to set v

def
= |D|−1divu (with

F(|D|su)(ξ) def
= |ξ|sû(ξ)), keeping in mind that, according to (11), bounding v or Qu is

equivalent, as one can go from v to Qu or from Qu to v by means of a 0 order homogeneous
Fourier multiplier.
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For notational simplicity, we assume from now on that7 α = ν = 1. Hence (a, v) satisfies
the following 2× 2 system:

(73)

{
∂ta+ |D|v = f,

∂tv −∆v − |D|a = h
def
= |D|−1divg.

Taking the Fourier transform with respect to x, and denoting ρ
def
= |ξ| with ξ ∈ R

d the
Fourier variable, System (73) translates into

(74)
d

dt

(
â
v̂

)
=Mρ

(
â
v̂

)
+

(
f̂

ĥ

)
with Mρ

def
=

(
0 −ρ
ρ −ρ2

)
·

• In the low frequency regime ρ < 2, Mρ has two complex conjugated eigenvalues:

λ±(ρ)
def
= −ρ

2

2
(1± iS(ρ)) with S(ρ)

def
=

√
4

ρ2
− 1

which have real part −ρ2/2, exactly as for the heat equation with diffusion 1/2.
• In the high frequency regime ρ > 2, there are two distinct real eigenvalues:

λ±(ρ)
def
= −ρ

2

2
(1±R(ρ)) with R(ρ)

def
=

√
1− 4

ρ2
·

As 1− R(ρ) ∼ 2/ρ2 for ρ → +∞, we have λ+(ρ) ∼ −ρ2 and λ−(ρ) ∼ −1· In other
words, a parabolic and a damped mode coexist.

Optimal a priori estimates may be easily derived by computing the explicit solution of
(73) explicitly in the Fourier space. Below, we present an alternative method which is
generalizable to much more complicated systems where explicit computations are no longer
possible (see e.g. [17]).

Fix some ρ ≥ 0 and consider the corresponding solution (A,V ) of (74) in the case

f̂ = ĥ = 0. We easily get the following three identities:

1

2

d

dt
|A|2 + ρRe (AV̄ ) = 0,(75)

1

2

d

dt
|V |2 + ρ2|V |2 − ρRe (AV̄ ) = 0,(76)

d

dt
Re (AV̄ ) + ρ|V |2 − ρ|A|2 + ρ2 Re (AV̄ ) = 0,(77)

from which we deduce

(78)
1

2

d

dt
L2
ρ + ρ2|(A,V )|2 = 0 with L2

ρ
def
= 2|(A,V )|2 + |ρA|2 − 2ρRe (AV̄ ).

Using Young inequality, we discover that there exists some constant C0 > 0 independent
of ρ so that

(79) C−1
0 L2

ρ ≤ |(A, ρA, V )|2 ≤ C0L2
ρ.

Combining with (78), we conclude that there exists a universal constant c0 > 0 so that

(80) L2
ρ(t) ≤ e−c0 min(1,ρ2)tL2

ρ(0) for all t ≥ 0.

7Which is not restrictive as the rescaling

(72) a(t, x) = ã
(
α
ν
t,

√
α

ν
x
)

and u(t, x) =
√
α ũ

(
α
ν
t,

√
α

ν
x
)

ensures that (ã, ũ) satisfies (71) with α = ν = 1.
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In the case of general source terms f̂ and ĥ in (74), using Duhamel formula and applying
the above inequality to A(t) = â(t, ρ) and V (t) = v̂(t, ρ) thus leads to

(81) |(â, ρâ, v̂)(t)| +min(1, ρ2)

∫ t

0
|(â, ρâ, v̂)| dτ ≤ C

(
|(â0, ρâ0, v̂0)|+

∫ t

0
|(f̂ , ρf̂ , ĥ)| dτ

)
·

Note that as

∂tv̂ + ρ2v̂ = ĥ+ ρâ,

we also have

ρ2
∫ t

0
|v̂(τ)| dτ ≤ |v̂0|+

∫ t

0
|ĥ(τ)| dτ +

∫ t

0
|ρâ(τ)| dτ.

And thus, bounding the last term according to (81), we get the following inequality which
provides the full parabolic smoothing for v:

(82) |(â, ρâ, v̂)(t)|+min(ρ, ρ2)

∫ t

0
|â| dτ + ρ2

∫ t

0
|v̂| dτ

≤ C

(
|(â0, ρâ0, v̂0)|+

∫ t

0
|(f̂ , ρf̂ , ĥ)| dτ

)
·

From Inequality (80) and Fourier-Plancherel theorem, it is easy to obtain estimates of
L2 type for the solutions to (70). Optimal informations will be obtained if splitting the

unknowns into frequency packets of comparable sizes. To this end, one may apply ∆̇k to
(70) and get

(83)





∂t∆̇ka+ div∆̇kQu = ∆̇kf,

∂t∆̇kQu−∆∆̇kQu+∇∆̇ka = ∆̇kQg,
∂t∆̇kPu− µ∆∆̇kPu = ∆̇kPg.

In the case with no source term then using (80) combined with Fourier-Plancherel theorem
readily yields for some universal constant C0, and c0 depending only on µ,

‖(∆̇ka, ∆̇k∇a, ∆̇ku)(t)‖L2 ≤ C0e
−c0 min(1,22k)t‖(∆̇ka, ∆̇k∇a, ∆̇ku)(0)‖L2 .

Then, for general source terms, using Duhamel’s formula and repeating the computations
leading to (82), we end up with

(84) ‖(∆̇ka, ∆̇k∇a, ∆̇ku)(t)‖L2 +min(1, 2k)

∫ t

0
‖∆̇k∇a‖L2 dτ + 22k

∫ t

0
‖∆̇ku‖L2 dτ

≤ C

(
‖(∆̇ka0, ∆̇k∇a0, ∆̇ku0)‖L2 +

∫ t

0
‖(∆̇kf, ∆̇k∇f, ∆̇kg)‖L2 dτ

)
·

Multiplying both sides by 2ks, taking the supremum on [0, t] then summing up on k ≥ k0
or k ≤ k0, we conclude to the following:

Proposition 4.1. Let s ∈ R and (a, u) satisfy (70) with P ′(1) = ν = 1. Let k0 ∈ Z. Then
we have for some constant C depending only on k0 and µ, and all t ≥ 0,

‖(a, u)‖ℓ
L̃∞
t (Ḃs

2,1)
+ ‖(a, u)‖ℓ

L1
t (Ḃ

s+2
2,1 )

≤ C
(
‖(a0, u0)‖ℓḂs

2,1
+ ‖(f, g)‖ℓ

L1
t (Ḃ

s
2,1)

)
,

‖a‖h
L̃∞
t (Ḃs+1

2,1 )
+ ‖a‖h

L1
t (Ḃ

s+1
2,1 )

+ ‖u‖h
L̃∞
t (Ḃs

2,1)
+ ‖u‖h

L1
t (Ḃ

s+2
2,1 )

≤
(
‖a0‖hḂs+1

2,1
+ ‖u0‖hḂs

2,1
+ ‖f‖h

L1
t (Ḃ

s+1
2,1 )

+ ‖g‖h
L1
t (Ḃ

s
2,1)

)
,
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where we used the notation

(85) ‖z‖ℓ
Ḃσ

p,1
=
∑

k≤k0

2kσ‖∆̇kz‖Lp and ‖z‖h
Ḃσ

p,1
=
∑

k≥k0

2kσ‖∆̇kz‖Lp .

The high frequencies inequality means that in order to get optimal estimates, it is suitable
to work with the same regularity for ∇a and u. In contrast, for low frequencies, one has to
work in the same space for a and u, a fact which does not follow from our rough scaling
considerations (5) but is fundamental to keep the pressure term under control in (26).

Granted with the above proposition, it is now natural to look at (26) as System (70)
with right-hand side

f = −div(au) and g = −u · ∇u− I(a)Au− k(a)∇a where k(a)
def
= G′(a)−G′(0).

The problem is that f will cause a loss of one derivative as there is no smoothing effect for
a in high frequency. A second limitation of Proposition 4.1 is that it concerns Besov spaces
related to L2 whereas we know the system to be locally well-posed in more general Besov
spaces (see Theorem 3.1). To overcome the first problem, let us include the convection
terms in our linear analysis, thus considering:

(86)

{
∂ta+ v · ∇a+ divu = f,
∂tu+ v · ∇u− µ∆u− (λ+ µ)∇divu+ α∇a = g,

where v stands for a given time-dependent vector field.

Proposition 4.2. Let −d/2 < s ≤ d/2 and (a, u) satisfy (86) with α = ν = 1. Let k0 ∈ Z.
Then we have for some constant C depending only on k0 and µ, and all t ≥ 0,

‖(a,∇a, u)‖
L̃∞
t (Ḃs

2,1)
+ ‖a‖ℓ

L1
t (Ḃ

s+2
2,1 )

+ ‖∇a‖h
L1
t (Ḃ

s
2,1)

+ ‖u‖L1
t (Ḃ

s+2
2,1 )

≤ C

(
‖(a0,∇a0, u0)‖Ḃs

2,1
+ ‖(f,∇f, g)‖L1

t (Ḃ
s
2,1)

+

∫ t

0
‖∇v‖

Ḃ
d
2
2,1

‖(a,∇a, u)‖Ḃs
2,1
dτ

)
·

Proof. Applying ∆̇k to (86) yields:
{
∂tak + ∆̇k(v · ∇a) + divuk = fk,

∂tuk + ∆̇k(v · ∇u)− µ∆uk − (λ+ µ)∇divuk +∇ak = gk,

with ak
def
= ∆̇ka, uk

def
= ∆̇ku, fk

def
= ∆̇kf and gk

def
= ∆̇kg.

Keeping in mind the proof of Proposition 4.1, we introduce

L2
k
def
= 2‖(ak, uk)‖2L2 + ‖∇ak‖2L2 + (uk | ∇ak)L2 .

Now, remembering that λ+ 2µ = 1, we get

(87)
1

2

d

dt
L2
k + µ‖∇Puk‖2L2 + ‖(∇Quk,∇ak)‖2L2 =

(
gk | (2uk+∇ak)

)
L2 + 2(fk | ak)L2

+
(
∇fk | ∇ak

)
L2 − 2

(
∆̇k(v · ∇a) | ak

)
L2 − 2

(
∆̇k(v · ∇u)|uk

)
L2(

∆̇k∇(v · ∇a) | ∇ak
)
L2 −

(
∆̇k(v · ∇u) | ∇ak

)
L2 −

(
∆̇k∇(v · ∇a) | uk

)
L2 .

Let us explain how to bound the convection terms. To handle the second and third terms
of the second line, we proceed as explained below, taking b ∈ {a, u1, · · · , ud}.
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Integrating by parts and setting

Rk(v, b)
def
= ∆̇k(v · ∇b)− v · ∇∆̇kb,

we discover that
(
∆̇k(v · ∇b) | bk

)
L2 =

∫
(v · ∇bk) · bk dx+

∫
Rk(v, b) bk dx

≤ −1

2

∫
|bk|2divv dx+ ‖Rk(v, b)‖L2‖bk‖L2 .

Bounding the last term according to (24), we thus get
∣∣(∆̇k(v · ∇b) | bk

)
L2

∣∣ ≤ Cck2
−ks‖∇v‖

Ḃ
d
2
2,1

‖b‖Ḃs
2,1
‖bk‖L2

with (ck)k∈Z in the unit sphere of ℓ1(Z).

Next, we use the fact that for i ∈ {1, · · · , d},

∂i∆̇k(v · ∇a) = v · ∇∂iak + R̃i
k(v, a) with R̃i

k(v, a)
def
= [∂i∆̇k, v] · ∇a.

By adapting the proof of (24), it is easy to prove that

‖R̃k(v, a)‖L2 ≤ Cck2
−ks‖∇v‖

Ḃ
d
2
2,1

‖∇a‖Ḃs
2,1
.

Then using an integration by parts, exactly as above, we conclude that
∣∣∣
(
∆̇k∇(v · ∇a)|∇ak

)
L2

∣∣∣ ≤ Cck2
−ks‖∇v‖

Ḃ
d
2
2,1

‖∇a‖Ḃs
2,1
‖∇ak‖L2 .

Finally, to handle the last two convection terms, we use the fact that
(
∆̇k(v · ∇u) | ∇ak

)
L2 +

(
∆̇k∇(v · ∇a) | uk

)
L2

=
(
v · ∇uk|∇ak

)
L2 +

(
(v · ∇)∇ak)|uk

)
L2 +

(
Rk(v, u) | ∇ak

)
L2 +

(
R̃k(v, a) | uk

)
L2 .

Integrating by parts in the first two terms of the second line and using again (24) to bound
the last two terms eventually leads to
∣∣∣
(
∆̇k(v · ∇u) | ∇ak

)
L2 +

(
∆̇k∇(v · ∇a) | uk

)
L2

∣∣∣
≤ Cck2

−ks‖∇v‖
Ḃ

d
2
2,1

(
‖∇a‖Ḃs

2,1
‖uk‖L2 + ‖u‖Ḃs

2,1
‖∇ak‖L2

)
.

Because Lk ≈ ‖(ak,∇ak, uk)‖L2 , we thus conclude that

(88)
1

2

d

dt
L2
k + µ‖∇Puk‖2L2 + ‖(∇Quk,∇ak)‖2L2

≤
(
‖(fk,∇fk, gk)‖L2 + Cck2

−ks‖∇v‖
Ḃ

d
2
2,1

‖(a,∇a, u)‖Ḃs
2,1

)
Lk,

which after time integration and multiplication by 2ks yields

2ksLk(t) + c02
ksmin(1, 22k)

∫ t

0
‖(ak,∇ak, uk)‖L2 dτ ≤ 2ksLk(0) +

∫ t

0
2ks‖gk‖L2 dτ

+

∫ t

0
ck‖∇v‖

Ḃ
d
2
2,1

‖(a,∇a, u)‖Ḃs
2,1
dτ.
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Taking the supremum on [0, t] then summing up over k, we thus get

(89) ‖(a,∇a, u)‖
L̃∞
t (Ḃs

2,1)
+

∫ t

0
‖(a, u)‖ℓ

Ḃs+2
2,1

dτ +

∫ t

0
‖(∇a, u)‖h

Ḃs
2,1
dτ

. ‖(a,∇a, u)(0)‖Ḃs
2,1

+

∫ t

0
‖(f,∇f, g)‖Ḃs

2,1
dτ +

∫ t

0
‖∇v‖

Ḃ
d
2
2,1

‖(a,∇a, u)‖Ḃs
2,1
dτ.

Finally, using the fact that

∂tu+ v · ∇u− µ∆u− (λ+ µ)∇divu = g −∇a,
localizing according to ∆̇k, and arguing as above, we find out that

‖u‖
L̃∞
t (Ḃs

2,1)
+

∫ t

0
‖u‖

Ḃs+2
2,1
. ‖u(0)‖Ḃs

2,1
+

∫ t

0
‖g −∇a‖Ḃs

2,1
dτ +

∫ t

0
‖∇v‖

Ḃ
d
2
2,1

‖u‖Ḃs
2,1
dτ.

Then bounding ∇a according to (89) completes the proof of the proposition. � �

It turns out to be possible to extend the above proposition to more general Besov spaces
related to the Lp spaces with p 6= 2. The proof relies on a paralinearized version of System
(86) combined with a Lagrangian change of variables (see [4, 7]). Here, in order to solve
(26) globally, we shall follow a more elementary approach based on the paper by B. Haspot
[22] : we use Proposition 4.1 only for bounding low frequencies, and perform a suitable
quasi-diagonalization of the system to handle high frequencies. This eventually leads to
the following statement8 that will be proved in the rest of this section:

Theorem 4.1. Let d ≥ 2. Let p ∈ [2,min(4, 2d/(d − 2)] with, additionally, p 6= 4 if d = 2.
Assume with no loss of generality that P ′(1) = 1 and ν = 1. There exists a universal integer

k0 ∈ N and a small constant c = c(p, d, µ,G) such that if a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 with

besides (aℓ0, u
ℓ
0) in Ḃ

d
2
−1

2,1 (with the notation zℓ = Ṡk0+1z and zh = z − zℓ) satisfy

(90) Xp,0
def
= ‖(a0, u0)‖ℓ

Ḃ
d
2−1

2,1

+ ‖a0‖h
Ḃ

d
p
p,1

+ ‖u0‖h
Ḃ

d
p−1

p,1

≤ c

then (26) has a unique global-in-time solution (a, u) in the space Xp defined by

(a, u)ℓ ∈ C̃b(R+; Ḃ
d
2
−1

2,1 ) ∩ L1(R+; Ḃ
d
2
+1

2,1 ), ah ∈ C̃b(R+; Ḃ
d
p

p,1) ∩ L1(R+; Ḃ
d
p

p,1),

uh ∈ C̃b(R+; Ḃ
d
p
−1

p,1 ) ∩ L1(R+; Ḃ
d
p
+1

p,1 )

where we agree that C̃b(R+; Ḃ
s
q,1)

def
= C(R+; Ḃ

s
q,1) ∩ L̃∞(R+; Ḃ

s
q,1), s ∈ R, 1 ≤ q ≤ ∞.

Furthermore, we have for some constant C = C(p, d, µ,G),

(91) ‖(a, u)‖Xp ≤ CXp,0.

Remark 4.1. Condition (90) is satisfied for small a0 and large highly oscillating velocities:
take uε0 : x 7→ φ(x) sin(ε−1x · ω)n with ω and n in S

d−1 and φ ∈ S(Rd). Then

‖uε0‖
Ḃ

d
p−1

p,1

≤ Cε1−
d
p if p > d,

8The reader may refer to [18] for a slightly more general result.
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and ‖uε0‖ℓ
Ḃ

d
2−1

2,1

has fast decay with respect to ε. Hence such data with small enough ε generate

global unique solutions in dimension d = 2, 3.

Remark 4.2. One may extend the above global result to 2d/(d + 2) ≤ p < 2 provided the
following smallness condition is fulfilled:

‖a0‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

≤ η.

Indeed, Theorem 5.1 provides a global small solution in X2. Therefore it is only a matter of
checking that the constructed solution has additional regularity Xp. This may be achieved
by following Steps 3 and 4 of the proof below, knowing already that the solution is in X2.
The condition that 2d/(d + 2) ≤ p comes from the part uℓ · ∇a of the convection term in

the mass equation, as ∇uℓ is only in L1(R+; Ḃ
d
2
2,1), and the regularity to be transported is

Ḃ
d
p

p,1. Hence we need to have d/p ≤ d/2+1 (see Theorem 2.2). The same condition appears

when handling k(a)∇a.

Remark 4.3. Using space C̃b(R+; Ḃ
s
2,1) rather than just Cb(R+; Ḃ

s
2,1) is not essential in

the proof of Theorem 4.1. We chose to present that slightly more accurate result, as it will
be needed when investigating time decay estimates, at the end of the survey.

4.2. Global a priori estimates. Consider a smooth solution (a, u) to (26) satisfying, say,

(92) ‖a‖L∞(R+×Rd) ≤ 1/2.

We want to find conditions under which the following quantity:

Xp(t)
def
= ‖(a, u)‖ℓ

L̃∞
t (Ḃ

d
2−1

2,1 )
+ ‖(a, u)‖ℓ

L1
t (Ḃ

d
2+1

2,1 )

+‖a‖h
L̃∞
t (Ḃ

d
p
p,1)

+ ‖a‖h
L1
t (Ḃ

d
p
p,1)

+ ‖u‖h
L̃∞
t (Ḃ

d
p−1

p,1 )

+ ‖u‖h
L1
t (Ḃ

d
p+1

p,1 )

satisfies (91) for all t ∈ R+.

Rewriting System (26) as follows:
{
∂ta+ divu = f

def
= −div(au),

∂tu−Au+∇a = g
def
= −u · ∇u− I(a)Au− k(a)∇a,

we shall take advantage of Proposition 4.1 with s′ = d/2 − 1 to bound the low frequency
part of (a, u). To handle high frequencies, following [22], we shall use the facts that, up to
low order terms:

• Pu satisfies a heat equation (hence parabolic smoothing in any Besov space);
• The effective velocity

(93) w
def
= ∇(−∆)−1(a− divu)

satisfies a heat equation;
• The high frequencies of a have exponential decay.

First step: Low frequencies. From Proposition 4.1, we readily infer that

(94) ‖(a, u)‖ℓ
L̃∞
t (Ḃ

d
2−1

2,1 )
+ ‖(a, u)‖ℓ

L1
t (Ḃ

d
2+1

2,1 )
. ‖(a0, u0)‖ℓ

Ḃ
d
2−1

2,1

+ ‖(f, g)‖ℓ
L1
t (Ḃ

d
2−1

2,1 )
.
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Second step: high frequencies, the incompressible part of the velocity. To handle Pu, we
just use the fact that

∂tPu− µ∆Pu = Pg.
Hence, according to Remark 2.2 (restricted to high frequencies)

(95) ‖Pu‖h
L̃∞
t (Ḃ

d
p−1

p,1 )

+ µ‖Pu‖h
L1
t (Ḃ

d
p+1

p,1 )

≤ C
(
‖Pu0‖h

Ḃ
d
p−1

p,1

+ ‖Pg‖h
L1
t (Ḃ

d
p−1

p,1 )

)
.

Third step: high frequencies, the effective velocity and the density. On the one hand, the
effective velocity w defined in (93) fulfills

∂tw −∆w = ∇(−∆)−1(f − divg) + w − (−∆)−1∇a.

Therefore, Theorem 2.1 and the fact that ∇(−∆)−1 is an homogeneous Fourier multiplier
of degree −1 imply that

(96) ‖w‖h
Ẽp(t)

def
= ‖w‖h

L̃∞
t (Ḃ

d
p−1

p,1 )

+ ‖w‖h
L1
t (Ḃ

d
p+1

p,1 )

≤ C
(
‖w0‖h

Ḃ
d
p−1

p,1

+ ‖f − divg‖h
L1
t (Ḃ

d
p−2

p,1 )

+ ‖w − (−∆)−1∇a‖h
L1
t (Ḃ

d
p−1

p,1 )

)
.

On the other hand, we have

(97) ∂ta+ div(au) + a = −divw.

We claim that

(98) ‖a‖h
L̃∞
t (Ḃ

d
p
p,1)

+ ‖a‖h
L1
t (Ḃ

d
p
p,1)

≤ C

(
‖a0‖h

Ḃ
d
p
p,1

+ ‖divw‖h
L1
t (Ḃ

d
p
p,1)

+

∫ t

0
‖∇u‖

Ḃ
d
p
p,1

‖a‖
Ḃ

d
p
p,1

dτ

)
·

Indeed, as in the proof of Theorem 2.2, let us apply ∆̇k to (97). We get

∂t∆̇ka+ u · ∇∆̇ka+ ∆̇ka = −∆̇k(adivu)− ∆̇kdivw + Ṙk,

where, according to (24), the remainder term Ṙk satisfies:

∀k ∈ Z, ‖Ṙk‖Lp ≤ Cck2
−k d

p ‖∇u‖
Ḃ

d
p
p,1

‖a‖
Ḃ

d
p
p,1

with
∑

k∈Z

ck = 1

and

‖adivu‖
Ḃ

d
p
p,1

≤ C‖divu‖
Ḃ

d
p
p,1

‖a‖
Ḃ

d
p
p,1

.

Therefore evaluating the Lp norm of ∆̇ka seen as the solution to a transport equation,

multiplying by 2
k d
p and summing up over k ≥ k0 yields (98).

Next, let us observe that, owing to the high frequency cut-off, we have for some universal
constant C,

(99) ‖w‖h
Ḃ

d
p−1

p,1

≤ C2−2k0‖w‖h
Ḃ

d
p+1

p,1

and ‖(−∆)−1∇a‖h
Ḃ

d
p−1

p,1

≤ C2−2k0‖a‖h
Ḃ

d
p
p,1

.
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In consequence, combining (96) and (98), and choosing k0 large enough yields

(100) ‖w‖h
Ẽp(t)

+ ‖a(t)‖h
Ḃ

d
p
p,1

+ ‖a‖h
L1
t (Ḃ

d
p
p,1)

≤
(
‖w0‖h

Ḃ
d
p−1

p,1

+ ‖a0‖h
Ḃ

d
p
p,1

+ ‖f − divg‖h
L1
t (Ḃ

d
p−2

p,1 )

+

∫ t

0
‖∇u‖

Ḃ
d
p
p,1

‖a‖
Ḃ

d
p
p,1

dτ

)
·

Fourth step: end of the proof of the linear estimate. Putting Inequality (100) together with
(94) and (95) and observing that

‖u‖h
Ẽp(t)

≤ ‖Pu‖hEp(t)
+ ‖w‖h

Ẽp(t)
+ C

(
‖a‖h

L̃∞
t (Ḃ

d
p−2

p,1 )

+ ‖a‖h
L1
t (Ḃ

d
p
p,1)

)
,

we come to the conclusion (if k0 has been taken large enough) that

Xp(t) ≤ Ck0

(
Xp(0) +

∫ t

0

(
‖(f, g)‖ℓ

Ḃ
d
2−1

2,1

+ ‖f‖h
Ḃ

d
p−2

p,1

+ ‖g‖h
Ḃ

d
p−1

p,1

+ ‖∇u‖
Ḃ

d
p
p,1

‖a‖
Ḃ

d
p
p,1

)
dτ

)
·

Fifth step : nonlinear estimates. It is only a matter of proving that under hypothesis (92),
we have

(101)

∫ t

0

(
‖(f, g)‖ℓ

Ḃ
d
2−1

2,1

+ ‖f‖h
Ḃ

d
p−2

p,1

+ ‖g‖h
Ḃ

d
p−1

p,1

+ ‖∇u‖
Ḃ

d
p
p,1

‖a‖
Ḃ

d
p
p,1

)
dτ ≤ CX2

p(t).

As p ≥ 2, it is clear that the last term of the r.h.s. of (101) is bounded by CX2
p(t). Next,

arguing exactly as in the proof of the local existence, we easily get for 1 ≤ p < 2d,

‖f‖
L1
t (Ḃ

d
p−1

p,1 )
≤ C‖a‖

L2
t (Ḃ

d
p
p,1)

‖u‖
L2
t (Ḃ

d
p
p,1)
,

‖g‖
L1
t (Ḃ

d
p−1

p,1 )
≤ C

(
‖u‖

L∞
t (Ḃ

d
p−1

p,1 )
‖∇u‖

L1
t (Ḃ

d
p
p,1)

+‖a‖
L∞
t (Ḃ

d
p
p,1)

‖∇2u‖
L1
t (Ḃ

d
p−1

p,1 )
+ ‖a‖

L2
t (Ḃ

d
p
p,1)

‖∇a‖
L2
t (Ḃ

d
p−1

p,1 )

)
·

Therefore, using the definition of Xp(t) and embedding (recall that p ≥ 2), we get

‖(f, g)‖h
L1
t (Ḃ

d
p−1

p,1 )

≤ CX2
p(t).

So we are left with the proof of

(102) ‖(f, g)‖ℓ
L1
t (Ḃ

d
2−1

2,1 )
≤ CX2

p(t).

Let us admit the following two inequalities (the first one being proved in [18] and the second
one being a particular case of Proposition 2.3 followed by suitable embedding, owing to
1 ≤ p/2 ≤ 2) :

(103) ‖Tab‖
Ḃ

s−1+ d
2− d

p
2,1

≤ C‖a‖
Ḃ

d
p−1

p,1

‖b‖Ḃs
p,1

if d ≥ 2 and d
d−1 ≤ p ≤ min

(
4, 2d

d−2

)
,

(104) ‖R(a, b)‖
Ḃ

s−1+ d
2− d

p
2,1

≤ C‖a‖
Ḃ

d
p−1

p,1

‖b‖Ḃs
p,1

if s > 1−min
(
d
p
, d
p′

)
and 1 ≤ p ≤ 4.
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In order to prove (102) for f, it suffices to bound (au)ℓ in L1(0, t; Ḃ
d
2
2,1). Now, using

Bony’s decomposition and the fact that a = aℓ + ah, we see that

(105) (au)ℓ =
(
Tau)

ℓ +
(
R(a, u)

)ℓ
+
(
Tua

ℓ
)ℓ

+
(
Tua

h
)ℓ
.

The first three terms may be bounded thanks to Prop. 2.3 and Inequalities (103), (104)
with s = d

p
− 1. Observing that ‖z‖ℓ

Ḃσ
r,1

≤ C‖z‖Ḃσ
r,1

for any Besov norm, we get

‖(Tau)ℓ‖
L1
t (Ḃ

d
2
2,1)

≤ C‖a‖
L∞
t (Ḃ

d
p−1

p,1 )
‖u‖

L1
t (Ḃ

d
p+1

p,1 )
,

‖(R(a, u))ℓ‖
L1
t (Ḃ

d
2
2,1)

≤ C‖a‖
L∞
t (Ḃ

d
p−1

p,1 )
‖u‖

L1
t (Ḃ

d
p+1

p,1 )
,

‖(Tuaℓ)ℓ‖
L1
t (Ḃ

d
2
2,1)

≤ C‖u‖
L∞
t (Ḃ−1

∞,∞)‖aℓ‖
L1
t (Ḃ

d
2+1

2,1 )
.

Because Ḃ
d
p
−1

p,1 is embedded in Ḃ−1
∞,∞, the above right-hand sides may be bounded by

CX2
p(t). To handle the last term of (105), we just have to observe that owing to the

spectral cut-off, there exists a universal integer N0 so that

(
Tua

h
)ℓ

= Ṡk0+1

( ∑

|k−k0|≤N0

Ṡk−1u ∆̇ka
h
)
·

Hence ‖Tuah‖
Ḃ

d
2
2,1

≈ 2k0
d
2
∑

|k−k0|≤N0
‖Ṡk−1u ∆̇ka

h‖L2 . Now, if 2 ≤ p ≤ min(d, 2d/(d − 2))

then we may use for |k − k0| ≤ N0

2k0
d
2 ‖Ṡk−1u ∆̇ka

h‖L2 ≤ C2k0 ‖Ṡk−1u‖Ld

(
2k

d
p ‖∆̇ka

h‖Lp

)
,

and if d ≤ p ≤ 4 then

2k0
d
2 ‖Ṡk−1u ∆̇ka

h‖L2 ≤ C2k0
(
2k(

d
p
−1)‖Ṡk−1u‖Lp

)(
2k

d
p ‖∆̇ka

h‖Lp

)
.

Hence one may conclude that f satisfies (102). Bounding g is similar (see [18]).

Last step: Global estimate. Putting all the previous estimates together, we get

(106) Xp(t) ≤ C
(
Xp(0) +X2

p (t)).

Now it is clear that as long as

(107) 2CXp(t) ≤ 1,

Inequality (106) ensures that

(108) Xp(t) ≤ 2CXp(0).

Using a bootstrap argument, one may conclude that if Xp(0) is small enough then (92) and
(107) are satisfied as long as the solution exists. Hence (108) holds globally in time.
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4.2.1. The proof of Theorem 4.1. We just give the important steps. We fix some initial
data so that X0 is small enough. First, Theorem 3.1 implies that there exists a unique

maximal solution (a, u) to (26) on some time interval [0, T ∗[, with a ∈ C([0, T ∗); Ḃ
d
p
−1

p,1 ),

‖a‖L∞(0,T ∗×Rd) ≤ 1/2 and u ∈ C([0, T ∗); Ḃ
d
p
−1

p,1 ) ∩ L1
loc(0, T

∗; Ḃ
d
p
+1

p,1 ). From (26) and Propo-
sition 4.1, one may check that the additional low frequency information is preserved on
[0, T ∗): we have

aℓ ∈ C([0, T ∗); Ḃ
d
2
−1

2,1 ) ∩ L1(0, T ∗; Ḃ
d
2
+1

2,1 ) and uℓ ∈ C([0, T ∗); Ḃ
d
2
−1

2,1 ) ∩ L1
loc(0, T

∗; Ḃ
d
2
+1

2,1 ).

Let us assume (by contradiction) that T ∗ <∞. Then applying (108) for all t < T ∗ yields

‖a‖
L̃∞
T∗ (Ḃ

d
p
p,1)

+ ‖u‖
L̃∞
T∗ (Ḃ

d
p−1

p,1 )
≤ CX0.

If X0 is so small as (108) to imply that both (31) and (67) are fulfilled on [0, T ∗) then,
for all t0 ∈ [0, T ∗), one can solve (26) starting with data (a(t0), u(t0)) at time t = t0 and
get a solution according to Theorem 3.1 on the interval [t0, T + t0] with T independent of
t0. Choosing t0 > T ∗ − T thus shows that the solution can be continued beyond T ∗, a
contradiction. �

5. Asymptotic results

In this section, we focus on two types of asymptotic issues for small global solutions to
(4) that received a lot of attention since the eighties: the low Mach number asymptotic,
and the long time behavior. We shall see that essentially optimal results may be obtained
by very simple arguments from the global result we established in the previous section.

5.1. The low Mach number limit. This subsection is devoted to the rigorous justifica-
tion of the convergence of (4) to the incompressible Navier-Stokes equations

(109)

{
∂tu+ u · ∇u− µ∆u+∇Π = 0,
divu = 0,

in the so-called ill-prepared data case, where we only assume that ε−1(ρε0 − 1) and uε0 are

suitably bounded. In particular, if we set aε
def
= ε−1(ρε−1), this means that (∂ta

ε, ∂tu
ε)|t=0

is of order 1/ε, and that one cannot exclude highly oscillating acoustic waves. More con-
cretely, we have to pass to the limit ε→ 0 in:

(110)





∂ta
ε +

divuε

ε
= −div(aεuε),

∂tu
ε + uε · ∇uε − Auε

1 + εaε
+

∇aε
ε

=
k(εaε)

ε
∇aε

+
1

1 + εaε
div
(
2µ̃(εaε)D(uε) + λ̃(εaε)divuεId

)
.

Before stating our main results, let us introduce some notation. In this section, we agree
that for z ∈ S ′(Rd),

(111) zℓ,β
def
=

∑

2jβ≤2j0

∆̇jz and zh,β
def
=

∑

2jβ>2j0

∆̇jz,
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for some large enough nonnegative integer j0 depending only on p, d, and on the functions

k, λ/ν, µ/ν with ν
def
= λ+ 2µ. The corresponding “truncated” semi-norms are defined by

(112) ‖z‖ℓ,β
Ḃσ

p,r

def
= ‖zℓ,β‖Ḃσ

p,r
and ‖z‖h,β

Ḃσ
p,r

def
= ‖zh,β‖Ḃσ

p,r
.

Keeping in mind the linear analysis we performed for (70) in the case ν = 1 and ε = 1, and
combining with the change of variable

(113) (a, u)(t, x)
def
= ε(aε, uε)(ε2νt, ενx),

we expect the threshold between low and high frequencies to be at 1/ε̃ with ε̃
def
= εν, and

it is thus natural to consider families of data (aε0, u
ε
0) such that

‖(aε0, uε0)‖ℓ,ε̃
Ḃ

d
2−1

2,1

+ ‖aε0‖h,ε̃
Ḃ

d
p
p,1

+ ‖uε0‖h,ε̃
Ḃ

d
p−1

p,1

is bounded independently of ε. We expect the corresponding solutions of (110) to be uni-
formly in the space Xp

ε,ν defined by

• (aℓ,ε̃, uℓ,ε̃) ∈ C̃b(R+; Ḃ
d
2
−1

2,1 ) ∩ L1(R+; Ḃ
d
2
+1

2,1 ),

• ah,ε̃ ∈ C̃b(R+; Ḃ
d
p

p,1) ∩ L1(R+; Ḃ
d
p

p,1),

• uh,ε̃ ∈ C̃b(R+; Ḃ
d
p
−1

p,1 ) ∩ L1(R+; Ḃ
d
p
+1

p,1 ),

and endowed with the norm:

‖(a, u)‖Xp
ε,ν

def
= ‖(a, u)‖ℓ,ε̃

L̃∞(Ḃ
d
2−1

2,1 )

+ ‖u‖h,ε̃
L̃∞(Ḃ

d
p−1

p,1 )

+ ε̃‖a‖h,ε̃
L̃∞(Ḃ

d
p
p,1)

+ν‖(a, u)‖ℓ,ε̃
L1(Ḃ

d
2+1

2,1 )
+ ν‖u‖h,ε̃

L1(Ḃ
d
p+1

p,1 )

+ ε−1‖a‖h,ε̃
L1(Ḃ

d
p
p,1)

.

One can now state our main result of convergence in the small data case, the reader being
referred to [13, 14] for the large data case and stronger results of convergence.

Theorem 5.1. Assume that the fluid domain is either Rd or Td, that the initial data (aε0, u
ε
0)

are as above and that p is as in Theorem 4.1. There exists a constant η independent of ε
and of ν such that if

(114) Cε,ν
0

def
= ‖(aε0, uε0)‖ℓ,ε̃

Ḃ
d
2−1

2,1

+ ‖uε0‖h,ε̃
Ḃ

d
p−1

p,1

+ ε̃‖aε0‖h,ε̃
Ḃ

d
p
p,1

≤ ην,

then System (110) with initial data (aε0, u
ε
0) has a unique global solution (aε, uε) in the space

Xp
ε,ν with, for some constant C independent of ε and ν,

(115) ‖(aε, uε)‖Xp
ε,ν

≤ CCε,ν
0 .

In addition, Quε converges weakly to 0 when ε goes to 0, and, if Puε0 ⇀ v0 then Puε
converges in the sense of distributions to the unique solution of (109) supplemented with
initial data v0.

Proof. Performing the change of unknowns given in (113) and the change of data

(116) (a0, u0)(x)
def
= ε(aε0, u

ε
0)(ενx)
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reduces the proof of the global existence to the case ν = 1 and ε = 1, which was done in
Theorem 4.1. Back to the original variables will yield the desired uniform estimate (115)
under Condition (114). Indeed, we notice that we have up to some harmless constant:

‖(aε0, uε0)‖ℓ,ε̃
Ḃ

d
2−1

2,1

+ ‖uε0‖h,ε̃
Ḃ

d
p−1

p,1

+ ε̃‖aε0‖h,ε̃
Ḃ

d
p
p,1

= ν
(
‖(a0, u0)‖ℓ,1

Ḃ
d
2−1

2,1

+ ‖u0‖h,1
Ḃ

d
p−1

p,1

+ ‖a0‖h,1
Ḃ

d
p
p,1

)

and

‖(aε, uε)‖Xp
ε,ν

= ν‖(a, u)‖Xp
1,1
.

Granted with the uniform estimates established in the previous section, it is now easy to
pass to the limit in the system in the sense of distributions, by adapting the compactness
arguments of P.-L. Lions and N. Masmoudi in [24].

More precisely, consider a family (aε0, u
ε
0) of data satisfying (114) and Puε0 ⇀ v0 when

ε goes to 0. Let (aε, uε) be the corresponding solution of (110) given by the first part of
Theorem 5.1. Because

(117) ‖aε0‖h,ε̃
Ḃ

d
p−1

p,1

. ε̃‖aε0‖h,ε̃
Ḃ

d
p
p,1

,

the data (aε0, u
ε
0) are uniformly bounded in Ḃ

d
p
−1

p,1 ×Ḃ
d
p

p,1. Likewise, (115) ensures that (a
ε, uε)

is bounded in the space Cb(R+; Ḃ
d
p
−1

p,1 ). Therefore there exists a sequence (εn)n∈N decaying

to 0 so that (aεn0 , u
εn
0 )⇀ (a0, u0) in Ḃ

d
p
−1

p,1 (with Pu0 = v0) and

(118) (aεn , uεn)⇀ (a, u) in L∞(R+; Ḃ
d
p
−1

p,1 ) weak ∗ .

The strong convergence of the density to 1 is obvious: we have ̺εn = 1+εna
εn , and (aεn)n∈N

is bounded in L2(R+; Ḃ
d
p

p,1). In order to justify that divu = 0, we rewrite the mass equation
as follows:

divuεn = −εndiv(aεnuεn)− εn∂ta
εn .

Given that aεn and uεn are bounded in L2(R+; Ḃ
d
p

p,1) (use the definition of Xp
ε,ν and interpo-

lation), the first term in the right-hand side is O(εn) in L
1(R+; Ḃ

d
p
−1

p,1 ). As for the last term,

it tends to 0 in the sense of distributions, by virtue of (118). We thus have div uεn ⇀ 0,
whence divu = 0.

To establish that u is a solution to (109), let us project the velocity equation onto
divergence-free vector fields:

(119) ∂tPuεn − µ∆Puεn = −P(uεn · ∇uεn)− P
(

1

1 + εnaεn
Auεn

)
·

Because Qu = 0, the left-hand side weakly converges to ∂tu− µ∆u. To prove that the last

term tends to 0, we use the fact that having ε̃(aε)h,ε̃ and (aε)ℓ,ε̃ bounded in L∞(Ḃ
d
p

p,1) and

L∞(Ḃ
d
p
−1

p,1 ), respectively, implies that, for all α ∈ [0, 1],

(120) ε̃αaε is bounded in L∞(Ḃ
d
p
−1+α

p,1 ).
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Now, Auε is bounded in L1(Ḃ
d
p
−1

p,1 ) and p < 2d. Hence, according to product laws in Besov

spaces, composition inequality and (120), we get (1+εaε)−1Auε = O(ε̃1−α) in L1(Ḃ
d
p
−2+α

p,1 ),

whenever 2max(0, 1− d
p
) < α ≤ 1. Hence the last term of (119) goes strongly to 0 for some

appropriate norm.

In order to prove that P(uεn · ∇uεn)⇀ P(u · ∇u), we note that

uεn · ∇uεn =
1

2
∇|Quεn |2 + Puεn · ∇uεn +Quεn · ∇Puεn .

Projecting the first term onto divergence free vector fields gives 0, and we also know that
Pu = u. Hence we just have to prove that

(121) P(Puεn · ∇uεn)⇀ P(Pu · ∇u) and P(Quεn · ∇Puεn)⇀ 0.

This requires our proving results of strong convergence for Puεn . To this end, we shall
exhibit uniform bounds for ∂tPuεn in a suitable space. First, arguing by interpolation,

we see that (∇2uεn) is bounded in Lm(Ḃ
d
p
+ 2

m
−3

p,1 ) for any m ≥ 1. Choosing m > 1 so

that 2
m

− 3 > −dmin(2
p
, 1) (this is possible as p < 2d) and remembering that (εnaεn) is

bounded in L∞(Ḃ
d
p

p,1), we thus get ((1+εna
εn)−1Auεn) bounded in Lm(Ḃ

d
p
+ 2

m
−3

p,1 ). Similarly,

combining the facts that (uεn) and (∇uεn) are bounded in L∞(Ḃ
d
p
−1

p,1 ) and Lm(Ḃ
d
p
+ 2

m
−2

p,1 ),

respectively, we see that (uεn ·∇uεn) is bounded in Lm(Ḃ
d
p
+ 2

m
−3

p,1 ), too. Computing ∂tPuεn

from (119), it is now clear that (∂tPuεn) is bounded in Lm(Ḃ
d
p
+ 2

m
−3

p,1 ). Hence (Puεn −Puεn0 )

is bounded in C1− 1
m (R+; Ḃ

d
p
+ 2

m
−3

p,1 ). As Puεn is also bounded in Cb(R+; Ḃ
d
p
−1

p,1 ), and as the

embedding of Ḃ
d
p
−1

p,1 in Ḃ
d
p
+ 2

m
−3

p,1 is locally compact (see e.g. [1], page 108), we conclude by

means of Ascoli theorem that, up to a new extraction, for all φ ∈ S(Rd) and T > 0,

(122) φPuεn −→ φPu in C([0, T ]; Ḃ
d
p
+ 2

m
−3

p,1 ).

Interpolating with the bounds in Cb(R+; Ḃ
d
p
−1

p,1 ), we can upgrade the strong convergence in

(122) to the space C([0, T ]; Ḃ
d
p
−1−α

p,1 ) for all small enough α > 0, and all T > 0. Combining
with the properties of weak convergence for ∇uεn to ∇u, and Quεn to 0 that may be
deduced from the bounds of uεn , it is now easy to conclude to (121). One can use for
instance the fact that for all m > 1, we have

∇uεn ⇀ ∇u in Lm(Ḃ
d
p
+ 2

m
−2

p,1 ) weak ∗ and Quεn ⇀ 0 in Lm(Ḃ
d
p
+ 2

m
−1

p,1 ) weak ∗ .
�

5.2. Time decay estimates. In the present subsection, we show that under a mild addi-
tional decay assumption that is satisfied if the data are in L1(Rd) for instance, the L2 norm

(the Ḃ0
2,1 norm in fact) of the global solutions constructed in Theorem 4.1 decays like t−

d
4

for t → +∞, exactly as for the linearized equations. This fact has been first observed by
A. Matsumura and T. Nishida in [25] in the case of solutions with high Sobolev regularity.
The adaptation to the L2 type critical regularity framework has been carried out recently
by M. Okita in [27], in dimension d ≥ 3. Below, we give a more accurate description of the
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time decay, emphasizing a better decay for high frequencies. This is the key to handling
any dimension d ≥ 2. For simplicity, we concentrate on the L2 type framework, even though
we expect similar results to be true in the more general Lp framework of Theorem 4.1.

Theorem 5.2. Let the data (a0, u0) satisfy the assumptions of Theorem 4.1 with p = 2 and

assume with no loss of generality that P ′(1) = 1 and that ν = 1. Denote 〈τ〉 def
=

√
1 + τ2

and α
def
= min(d4 +2, d2 +

1
2 −ε) with ε > 0 arbitrarily small. There exists a positive constant

c so that if in addition

(123) D0
def
= sup

k≤k0

(
‖F(∆̇ka0)‖L∞ + ‖F(∆̇ku0)‖L∞

)
≤ c

then the global solution (a, u) given by Theorem 4.1 satisfies for all t ≥ 0,

(124) D(t) ≤ C
(
D0 + ‖(a0,∇a0, u0)‖

Ḃ
d
2−1

2,1

)

with D(t)
def
= sup

s∈(− d
2
,2]

‖〈τ〉 d
4
+ s

2 (a, u)‖ℓ
L∞
t (Ḃs

2,1)
+ ‖〈τ〉α(∇a, u)‖h

L̃∞
t (Ḃ

d
2−1

2,1 )
+ ‖τ∇u‖h

L̃∞
t (Ḃ

d
2
2,1)
.

Proof. Throughout the proof, we shall use repeatedly that for 0 < σ1 ≤ σ2, we have:

(125)

∫ t

0
〈t− τ〉−σ1〈τ〉−σ2 dτ . 〈t〉−σ1 if in addition σ2 > 1.

Step 1: Bounds for the low frequencies. Denoting by E(D) the semi-group associated to
(70), we have for all k ∈ Z,

(126)

(
∆̇ka(t)

∆̇ku(t)

)
= etE(D)

(
∆̇ka0
∆̇ku0

)
−
∫ t

0
e(t−τ)E(D)

(
∆̇kf1(τ)

∆̇k(f2+f3+f4)(τ)

)
dτ

with f1
def
= div(au), f2

def
= u · ∇u, f3 def

= k(a)∇a and f4
def
= I(a)Au.

From an explicit computation of the action of etE(D) in Fourier variables (see e.g. [4]),
we discover that there exist positive constants c and C depending only on k0 and such that

|F(etA(D)U)(ξ)| ≤ Ce−c0t|ξ|2 |FU(ξ)| for all |ξ| ≤ 2k0 .

Therefore, for all k ≤ k0,

‖etE(D)∆̇kU‖2L2 .

∫
e−2c0|ξ|2t|F∆̇kU(ξ)|2 dξ

. ‖F∆̇kU‖2L∞2kd e−c022kt.

We thus get up to a change of c0,

(127) t
d
4
+ s

2

∑

k≤k0

2ks‖etE(D)∆̇kU‖L2 .
(
sup
k≤k0

‖F∆̇kU‖L∞

) ∑

k≤k0

(
√
t 2k)

d
2
+s e−c022kt.

As for any σ > 0 there exists a constant Cσ so that

(128) sup
t≥0

∑

k∈Z

t
σ
2 2kσe−c022kt ≤ Cσ,

we get from (127) that for s > −d/2,
sup
t≥0

t
d
4
+ s

2 ‖etE(D)U‖ℓ
Ḃs

2,1
≤ Cs sup

k≤k0

‖F∆̇kU‖L∞ .
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It is also obvious that for s > −d/2,

‖etE(D)U‖ℓ
Ḃs

2,1
. ‖U‖ℓ

Ḃs
2,1
. sup

k≤k0

‖F∆̇kU‖L∞ .

Hence we conclude that

(129) sup
t≥0

〈t〉 d
4
+ s

2‖etE(D)U‖ℓ
Ḃs

2,1
. sup

k≤k0

‖F∆̇kU‖L∞ .

Next, we claim that for all s ∈ (−d/2, 2] and i ∈ {1, · · · , 4}, we have

(130)

∫ t

0
〈t− τ〉− d

4
− s

2 sup
k≤k0

‖F∆̇kfi(τ)‖L∞ dτ . 〈t〉− d
4
− s

2
(
D2(t) +X2(t)

)

with X(t)
def
= ‖(a,∇a, u)‖

L̃∞
t (Ḃ

d
2−1

2,1 )
+

∫ t

0

(
‖a‖ℓ

Ḃ
d
2+1

2,1

+ ‖a‖h
Ḃ

d
2
2,1

+ ‖u‖
Ḃ

d
2+1

2,1

)
dτ.

Of course, as the Fourier transform maps L1 to L∞, it suffices to prove (130) with ‖fi‖L1

instead of supk≤k0
‖F∆̇kfi‖L∞ .

To bound the term with f1, we use the following decomposition:

f1 = u · ∇a+ adivuℓ + adivuh.

Now, from Cauchy-Schwarz inequality and the definition of D(t), one may write
∫ t

0
〈t− τ〉− d

4
− s

2 ‖(u · ∇a)(τ)‖L1 dτ ≤
(

sup
0≤τ≤t

〈τ〉 d
4 ‖u(τ)‖L2

)(
sup

0≤τ≤t
〈τ〉 d

4
+ 1

2 ‖∇a(τ)‖L2

)

×
∫ t

0
〈t− τ〉− d

4
− s

2 〈τ〉− d
2
− 1

2 dτ

. 〈t〉− d
4
− s

2D2(t),

where we used (125) and the fact that 0 < d
4 +

s
2 ≤ d

2 +
1
2 ·

Bounding the term with adivuℓ is totally similar. Regarding the term with adivuh, we
use that if t ≥ 2,
∫ t

0
〈t− τ〉− d

4
− s

2 ‖(adivuh)(τ)‖L1 dτ .

∫ 1

0
〈t− τ〉− d

4
− s

2‖a(τ)‖L2‖divuh(τ)‖L2 dτ

+

∫ t

1
〈t− τ〉− d

4
− s

2 〈τ〉−1− d
4
(
〈τ〉 d

4 ‖a(τ)‖L2

)(
τ‖divuh(τ)‖L2

)
dτ.

Therefore, as −d/2 < s ≤ 2, we get

〈t〉 s
2
+ d

4

∫ t

0
〈t− τ〉− d

4
− s

2 ‖(adivuh)(τ)‖L1 dτ .
(
sup

τ∈[0,t]
‖a(τ)‖L2

)∫ t

0
‖divuh(τ)‖L2 dτ

+
(
sup

τ∈[0,t]
〈τ〉 d

4 ‖a(τ)‖L2

)(
sup

τ∈[0,t]
τ‖divuh(τ)‖L2

)
,

and (130) is thus satisfied by the term with adivuh if t ≥ 2, the case t ≤ 2 being obvious
as 〈t〉 ≈ 1 and 〈t− τ〉 ≈ 1 for 0 ≤ τ ≤ t ≤ 2 and one may write

∫ t

0
‖adivuh‖L1 dτ ≤ ‖a‖L2

t (L
2)‖divuh‖L2

t (L
2) . X

2(t).
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Handling the terms with f2 and f3 is totally similar: k(a)∇a and u · ∇uℓ may be treated
as u · ∇a, and u · ∇uh, as adivuh. For f4, we write that

f4 = I(a)Auℓ + I(a)Auh.
Now, we have
∫ t

0
〈t− τ〉− d

4
− s

2 ‖I(a)Auℓ‖L1 dτ

.
(
sup

τ∈[0,t]
〈τ〉 d

4 ‖a(τ)‖L2

)(
sup

τ∈[0,t]
〈τ〉 d

4
+1‖∇2uℓ(τ)‖L2

)∫ t

0
〈t− τ〉− d

4
− s

2 〈τ〉−1− d
2 dτ.

Hence, thanks to (125), the term with I(a)Auℓ fulfills (130). Finally, for t ≥ 2,
∫ t

0
〈t− τ〉− d

4
− s

2 ‖I(a)Auh‖L1 dτ . 〈t〉− d
4
− s

2

∫ 1

0
‖a‖L2‖∇2uh‖L2 dτ

+

∫ t

1
〈t− τ〉− d

4
− s

2 〈τ〉−1− d
4

(
〈τ〉 d

4 ‖a(τ)‖L2

)(
τ‖∇2uh(τ)‖L2

)
dτ,

hence, because −d/2 < s ≤ 2 and ‖τ∇2uh‖L∞
t (L2) . ‖τ∇u‖h

L̃∞
t (Ḃ

d
2
2,1)
,

∫ t

0
〈t− τ〉− d

4
− s

2 ‖I(a)Auh‖L1 dτ . 〈t〉− d
4
− s

2
(
D2(t) +X2(t)

)
for t ≥ 2.

Obviously, as 〈t〉 ≈ 1 and 〈t− τ〉 ≈ 1 for 0 ≤ τ ≤ t ≤ 2, we have the following inequality:
∫ t

0
〈t− τ〉− d

4
− s

2‖I(a)Auh‖L1 dτ . 〈t〉− d
4
− s

2X2(t) for t ≤ 2,

which completes the proof of (130). Combining with (129) and using Duhamel’s formula,
we conclude that for all t ≥ 0 and s ∈ (−d/2, 2],

(131) 〈t〉 d
4
+ s

2‖(a, u)‖ℓ
Ḃs

2,1
. D0 +D2(t) +X2(t).

Step 2: Decay estimates for the high frequencies of (∇a, u). We here want to bound the
second term of D(t). Recall that Theorem 4.1 ensures that

‖(∇a, u)‖
L̃∞
T

(Ḃ
d
2−1

2,1 )
≤ CX(0) for all T ≥ 0.

Therefore it suffices to bound ‖tα(∇a, u)‖
L̃∞
T

(Ḃ
d
2−1

2,1 )
for, say, T ≥ 2.

Now, the starting point is Inequality (87) which implies that for k ≥ k0 and for some
c0 = c(k0) > 0, we have

1

2

d

dt
L2
k + c0L2

k ≤
(
‖(∇fk, gk)‖L2

+‖Rk(u, a)‖L2 + ‖Rk(u, u)‖L2 + ‖R̃k(u, a)‖L2 + ‖∇u‖L∞Lk

)
Lk

with f
def
= −adivu, g = −k(a)∇a−I(a)Au, Rk(u, b)

def
= ∆̇k(u ·∇b)−u ·∇∆̇kb for b ∈ {a, u},

and R̃i
k(u, a)

def
= ∂i∆̇k(u · ∇a)− u · ∇∂i∆̇ka.
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After time integration, we discover that

ec0tLk(t) ≤ Lk(0) +

∫ t

0
ec0τ

(
‖(∇fk, gk)‖L2 + ‖Rk(u, a)‖L2

+‖Rk(u, u)‖L2 + ‖R̃k(u, a)‖L2 + ‖∇u‖L∞Lk

)
dτ,

whence, remembering that Lk ≈ ‖(∆̇k∇a, ∆̇ku)‖L2 for k ≥ k0,

tα‖(∆̇k∇a, ∆̇ku)(t)‖L2 . tαe−c0t‖(∆̇k∇a, ∆̇ku)(0)‖L2 + tα
∫ t

0
ec0(τ−t)

(
‖(∇fk, gk)‖L2

+‖Rk(u, a)‖L2 + ‖Rk(u, u)‖L2 + ‖R̃k(u, a)‖L2 + ‖∇u‖L∞‖(∆̇k∇a, ∆̇ku)‖L2

)
dτ

and thus, multiplying both sides by 2k(
d
2
−1), taking the supremum on [0, T ], and summing

up over k ≥ k0,

(132) ‖tα(∇a, u)‖
L̃∞
T

(Ḃ
d
2−1

2,1 )
. ‖(∇a0, u0)‖h

Ḃ
d
2−1

2,1

+
∑

k≥k0

sup
0≤t≤T

(
tα
∫ t

0
ec0(τ−t)2k(

d
2
−1)Sk dτ

)

with Sk
def
=
∑5

i=1 S
i
k and

S1
k
def
= ‖(∇fk, gk)‖L2 , S2

k
def
= ‖Rk(u, a)‖L2 , S3

k
def
= ‖Rk(u, u)‖L2 ,

S4
k
def
= ‖R̃k(u, a)‖L2 , S5

k
def
= ‖∇u‖L∞‖(∆̇k∇a, ∆̇ku)‖L2 .

In order to bound the sum, we first notice that

∑

k≥k0

sup
0≤t≤2

(
tα
∫ t

0
ec0(τ−t)2k(

d
2
−1)Sk(τ) dτ

)
.

∫ 2

0

∑

k≥k0

2k(
d
2
−1)Sk(τ) dτ.

Hence taking advantage of (24) and of a similar inequality for R̃k(u, a), we end up with

∑

k≥k0

sup
0≤t≤2

tα
∫ t

0
ec0(τ−t)2k(

d
2
−1)Sk dτ .

∫ 2

0

(
‖(∇f, g)‖

Ḃ
d
2−1

2,1

+ ‖∇u‖
Ḃ

d
2
2,1

‖(a,∇a, u)‖
Ḃ

d
2−1

2,1

)
dτ.

Bounding ∇f and g as in the proof of Theorem 4.1 leads to

(133)
∑

k≥k0

sup
0≤t≤2

tα
∫ t

0
ec0(τ−t)2k(

d
2
−1)Sk dτ . X

2(2).

To bound the supremum on [2, T ], we split the integral on [0, t] into integrals on [0, 1] and
[1, t], respectively. The [0, 1] part of the integral is easy to handle: we have

∑

k≥k0

sup
2≤t≤T

tα
∫ 1

0
ec0(τ−t)2k(

d
2
−1)Sk(τ) dτ ≤

∑

k≥k0

sup
2≤t≤T

tαe−
c0
2
t

∫ 1

0
2k(

d
2
−1)Sk dτ

.

∫ 1

0

∑

k≥k0

2k(
d
2
−1)Sk dτ.

Hence

(134)
∑

k≥k0

sup
2≤t≤T

(
tα
∫ 1

0
ec0(τ−t)2k(

d
2
−1)Sk(τ) dτ

)
. X2(1).
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Let us finally consider the [1, t] part of the integral for 2 ≤ t ≤ T. We shall use repeatedly
the following inequality

(135) ‖τ∇u‖
L̃∞
t (Ḃ

d
2
2,1)
. D(t),

which is straightforward as regards the high frequencies of u and stems from

‖τ∇u‖ℓ
L̃∞
t (Ḃ

d
2
2,1)
. ‖〈τ〉 d

4
+ 1

2∇u‖ℓ
L̃∞
t (Ḃ

d
2
2,1)
. ‖〈τ〉 d

4
+ 1

2u‖ℓ
L∞
t (Ḃ1

2,1)
≤ D(t)

for the low frequencies of u.

Regarding the contribution of S1
k, we first notice that, by virtue of (125),

(136)
∑

k≥k0

sup
2≤t≤T

tα
∫ t

1
ec0(τ−t)2k(

d
2
−1)S1

k(τ) dτ . ‖τα(∇f, g)‖h
L̃∞
T
(Ḃ

d
2−1

2,1 )
.

Now, product laws in tilde spaces ensures that

‖τα∇f‖h
L̃∞
T
(Ḃ

d
2−1

2,1 )
. ‖τα−1a‖

L̃∞
T
(Ḃ

d
2
2,1)

‖τdivu‖
L̃∞
T
(Ḃ

d
2
2,1)
.

The high frequencies of the first term of the r.h.s. is obviously bounded by D(T ). As for
the low frequencies, we notice that if d ≤ 4 then for all small enough ε > 0,

(137) ‖τ d
2
−εa‖ℓ

L̃∞
T
(Ḃ

d
2
2,1)
. ‖τ d

2
−εa‖ℓ

L∞
T
(Ḃ

d
2−2ε

2,1 )
≤ D(T )

and if d ≥ 5, taking s = 2 in the first term of D(T ),

(138) ‖τ d
4
+1a‖ℓ

L̃∞
T
(Ḃ

d
2
2,1)
. ‖τ d

4
+1a‖ℓ

L∞
T
(Ḃ2

2,1)
≤ D(T ).

Therefore, using (135) and remembering the definition of α, we get

‖τα∇f‖h
L̃∞
T
(Ḃ

d
2−1

2,1 )
. D2(T ).

Next, we have

‖τα(k(a)∇ah)‖
L̃∞
T
(Ḃ

d
2−1

2,1 )
. ‖a‖

L̃∞
T
(Ḃ

d
2
2,1)

‖ταa‖h
L̃∞
T
(Ḃ

d
2
2,1)

≤ X(T )D(T )

and, according to (137) and (138),

‖τα(k(a)∇aℓ)‖
L̃∞
T
(Ḃ

d
2−1

2,1 )
. ‖τ1−εa‖

L̃∞
T
(Ḃ

d
2
2,1)

‖τα−1+εa‖ℓ
L̃∞
T
(Ḃ

d
2
2,1)
. D2(T ).

We also see that

‖ταI(a)Au‖
L̃∞
T
(Ḃ

d
2−1

2,1 )
. ‖τ∇2u‖

L̃∞
T
(Ḃ

d
2−1

2,1 )

(
‖τα−1a‖ℓ

L̃∞
T
(Ḃ

d
2
2,1)

+ ‖τα−1a‖h
L̃∞
T
(Ḃ

d
2
2,1)

)
.

The first term of the r.h.s. may be bounded by virtue of (135), and it is also clear that
the last term is bounded by D(T ). As for the second one, we use again (137) and (138).
Resuming to (136), we end up with

∑

k≥k0

sup
2≤t≤T

tα
∫ t

1
ec0(τ−t)2k(

d
2
−1)S1

k(τ) dτ . D
2(T ).
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To bound the term with S2
k , we use the fact that

∫ t

1
ec0(τ−t)‖Rk(u, a)‖L2 dτ ≤ ‖Rk(τu, τ

α−1a)‖L∞
t (L2)

∫ t

1
ec0(τ−t)τ−α dτ.

Hence, thanks to (125) and to (24) (adapted to tilde spaces),

∑

k≥k0

sup
2≤t≤T

(
tα
∫ t

1
ec0(τ−t)2k(

d
2
−1)S2

k(τ) dτ

)
.
∑

k≥k0

2k(
d
2
−1)‖Rk(τu, τ

α−1a)‖L∞
T
(L2)

. ‖τ∇u‖
L̃∞
T
(Ḃ

d
2
2,1)

‖τα−1a‖
L̃∞
T
(Ḃ

d
2−1

2,1 )
.

The first term of the r.h.s. may be bounded thanks to (135), and the high frequencies
of the last one are obviously bounded by D(T ). To bound ‖τα−1a‖ℓ

L̃∞
T
(Ḃ

d
2−1

2,1 )
, we use the

following two inequalities

‖τα−1a‖ℓ
L̃∞
T
(Ḃ

d
2−1

2,1 )
. ‖τα−1a‖ℓ

L∞
T
(Ḃ

d
2−1−2ε

2,1 )
if d ≤ 6,

‖τα−1a‖ℓ
L̃∞
T
(Ḃ

d
2−1

2,1 )
. ‖τα−1a‖ℓ

L∞
T
(Ḃ2

2,1)
if d ≥ 7.

Because α−1 = d
2 − 1

2 − ε if d ≤ 6, and α−1 = d
4 +1 if d ≥ 7, the r.h.s. above are bounded

by D(T ). We eventually get

∑

k≥k0

sup
2≤t≤T

tα
∫ t

1
ec0(τ−t)2k(

d
2
−1)S2

k(τ) dτ . D
2(T ).

The terms S3
k and S4

k may be treated along the same lines.

Finally, using product laws and (125), we get

∑

k≥k0

sup
2≤t≤T

tα
∫ t

1
ec0(τ−t)2k(

d
2
−1)S5

k(τ) dτ

. ‖τ∇u‖
L̃∞
T
(Ḃ

d
2
2,1)

‖τα−1(∇a, u)‖h
L̃∞
T

(Ḃ
d
2−1

2,1 )
sup

2≤t≤T

tα
∫ t

1
ec0(τ−t)τ−α dτ . D2(T ).

Putting all the above inequalities together, we conclude that

∑

k≥k0

sup
2≤t≤T

(
tα
∫ t

1
ec0(τ−t)2k(

d
2
−1)Sk(τ) dτ

)
. D(T )X(T ) +D2(T ).

Then plugging this latter inequality, (133) and (134) in (132) yields

(139) ‖〈τ〉α(∇a, u)‖
L̃∞
T
(Ḃ

d
2−1

2,1 )
. ‖(∇a0, u0)‖h

Ḃ
d
2−1

2,1

+X2(T ) +D2(T ).

Step 3: Decay estimates with gain of regularity for the high frequencies of ∇u. In order to
bound the last term of D(t), we shall use the fact that the velocity u satisfies

∂tu−Au = F
def
= −(1 + k(a))∇a− u · ∇u− I(a)Au,

whence

∂t(tAu)−A(tAu) = Au+ tAF.
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Because the maximal regularity estimates for the Lamé semi-group are the same as for the
heat semi-group (see the beginning of Section 3), we deduce from Remark 2.2 that

‖tAu‖h
L̃∞
t (Ḃ

d
2−1

2,1 )
. ‖Au‖h

L1
t (Ḃ

d
2−1

2,1 )
+ ‖tAF‖h

L̃∞
t (Ḃ

d
2−3

2,1 )
,

whence, using the bounds given by Theorem 5.1,

(140) ‖t∇u‖h
L̃∞
t (Ḃ

d
2
2,1)
. X(0) + ‖τF‖h

L̃∞
t (Ḃ

d
2−1

2,1 )
.

In order to bound the last term, we notice that, because α ≥ 1, we have

‖τ∇a‖h
L̃∞
t (Ḃ

d
2−1

2,1 )
. ‖〈τ〉αa‖h

L̃∞
t (Ḃ

d
2
2,1)
.

Next, product and composition estimates adapted to tilde spaces give

‖τ k(a)∇a‖h
L̃∞
t (Ḃ

d
2−1

2,1 )
. ‖τ 1

2 a‖2
L̃∞
t (Ḃ

d
2
2,1)

≤ D2(t),

as well as

‖τ u · ∇u‖h
L̃∞
t (Ḃ

d
2−1

2,1 )
. ‖u‖

L̃∞
t (Ḃ

d
2−1

2,1 )
‖τ∇u‖

L̃∞
t (Ḃ

d
2
2,1)

and

‖τI(a)Au‖h
L̃∞
t (Ḃ

d
2−1

2,1 )
. ‖a‖

L̃∞
t (Ḃ

d
2
2,1)

‖τ∇2u‖
L̃∞
t (Ḃ

d
2−1

2,1 )
.

Therefore, resuming to (140) and remembering (135), we get

‖t∇u‖h
L̃∞
t (Ḃ

d
2
2,1)
. X(0) +D(t)X(t) +D2(t) + ‖〈τ〉αa‖h

L̃∞
t (Ḃ

d
2
2,1)
.

Finally, bounding the last term according to (139), and adding up the obtained inequality
to (131) and (139) yields

D(t) . D0 + ‖(∇a0, u0)‖h
Ḃ

d
2−1

2,1

+X2(t) +D2(t).

As Theorem 5.1 ensures that X(t) is small, on can now conclude that (124) is fulfilled for
all time if D0 and ‖(∇a0, u0)‖h

Ḃ
d
2−1

2,1

are small enough. �

6. Appendix

Here we recall various estimates for the flow that have been used repeatedly in the proof
of Theorem 3.1. More details may be found in [16] or [19].

Recall that if v : [0, T )×R
d → R

d is measurable, such that t 7→ v(t, x) is in L1(0, T ) for
all x ∈ R

d and in addition ∇v ∈ L1(0, T ;L∞) then it has, by virtue of the Cauchy-Lipschitz
theorem, a unique C1 flow Xv satisfying

Xv(t, y) = y +

∫ t

0
v(τ,Xv(τ, y)) dτ for all t ∈ [0, T ).

In addition, for all t ∈ [0, T ), the map Xv(t, ·) is a C1-diffeomorphism over Rd.
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Lemma 6.1. Let p ∈ [1,∞). Let v̄(t, y)
def
= v(t,X(t, y)). Under Assumption (60), we have

for all t ∈ [0, T ],

‖Id − adj (DXv(t))‖
Ḃ

d
p
p,1

. ‖Dv̄‖
L1
t (Ḃ

d
p
p,1)
,(141)

‖Id −Av(t)‖
Ḃ

d
p
p,1

. ‖Dv̄‖
L1
t (Ḃ

d
p
p,1)
,(142)

‖adj (DXv(t))
TAv(t)− Id ‖

Ḃ
d
p
p,1

. ‖Dv̄‖
L1
t (Ḃ

d
p
p,1)
,(143)

‖J±1
v (t)− 1‖

Ḃ
d
p
p,1

. ‖Dv̄‖
L1
t (Ḃ

d
p
p,1)
.(144)

Proof. As an example, let us prove the last item. We have thanks to the chain rule,

(145) Jv(t, y) = 1 +

∫ t

0
divv(τ,Xv(τ, y))Jv(τ, y) dτ = 1 +

∫ t

0
(Dv̄ : adj (DXv))(τ, y) dτ.

Hence, if Condition (60) holds then we have (144) for Jv , a consequence of the fact that

Ḃ
d
p

p,1 is an algebra, and of (141). In order to get the inequality for J−1
v , it suffices to notice

that

J−1
v (t, y)− 1 = (1 + (Jv(t, y)− 1))−1 − 1 =

∑

k≥1

(−1)k
∫ t

0
Dv̄ : adj (DXv) dτ.

�

Lemma 6.2. Let v̄1 and v̄2 be two vector-fields satisfying (60), and δv
def
= v̄2− v̄1. Then we

have for all p ∈ [1,∞) and t ∈ [0, T ]:

(146) ‖Av2 −Av1‖
L∞
t (Ḃ

d
p
p,1)
. ‖Dδv‖

L1
t (Ḃ

d
p
p,1)
,

(147) ‖adj (DXv2)− adj (DXv1)‖
L∞
t (Ḃ

d
p
p,1)
. ‖Dδv‖

L1
t (Ḃ

d
p
p,1)
,

(148) ‖Jv2 − Jv1‖
L∞
t (Ḃ

d
p
p,1)
. ‖Dδv‖

L1
t (Ḃ

d
p
p,1)
.

Proof. In order to prove the first inequality, we use the fact that, for i = 1, 2, we have

Avi = (Id + Ci)
−1 =

∑

k≥0

(−1)kCk
i with Ci(t) =

∫ t

0
Dv̄i dτ.

Hence

Av2 −Av1 =
∑

k≥1

(
Ck
2 − Ck

1

)
=

(∫ t

0
Dδv dτ

)∑

k≥1

k−1∑

j=0

Cj
1C

k−1−j
2 .

So using the fact that Ḃ
d
p

p,1 is a Banach algebra, it is easy to conclude to (146). Proving
the second inequality is similar. �
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Université Paris-Est, LAMA UMR 8050, UPEMLV, UPEC, CNRS,, 61 avenue du Général de
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