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Two-Phase Inertial Flow in Homogeneous Porous Media:
A Theoretical Derivation of a Macroscopic Model

Didier Lasseux · Azita Ahmadi ·
Ali Akbar Abbasian Arani

Abstract The purpose of this article is to derive a macroscopic model for a certain class
of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous
media. Starting from the continuity and Navier–Stokes equations in each phase β and γ , the
method of volume averaging is employed subjected to constraints that are explicitly provided
to obtain the macroscopic mass and momentum balance equations. These constraints are on
the length- and time-scales, as well as, on some quantities involving capillary, Weber and
Reynolds numbers that define the class of two-phase flow under consideration. The resulting
macroscopic momentum equation relates the phase-averaged pressure gradient ∇〈pα〉α to
the filtration or Darcy velocity 〈vα〉 in a coupled nonlinear form explicitly given by

〈vα〉 = −K∗
αα

µα
· (∇〈pα〉α − ραg)− Fαα · 〈vα〉

−K∗
ακ

µκ
· (∇〈pκ 〉κ − ρκg)− Fακ · 〈vκ 〉 α, κ = β, γ α �= κ

or equivalently

〈vα〉 = −Kα

µα
· (∇〈pα〉α − ραg)− Fαα · 〈vα〉

+ Kακ · 〈vκ 〉 − Fακ · 〈vκ 〉 α, κ = β, γ α �= κ

In these equations, Fαα and Fακ are the inertial and coupling inertial correction tensors that
are functions of flow-rates. The dominant and coupling permeability tensors K∗

αα and K∗
ακ

and the permeability and viscous drag tensors Kα and Kακ are intrinsic and are those defined
in the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseux
et al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determined
from closure problems that are to be solved using a spatially periodic model of a porous
medium. The practical procedure to compute these tensors is provided.
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Notations
aακ A vector that maps µα〈vκ 〉κ onto p̃α , m−1

Aακ A tensor that maps 〈vκ 〉κ onto ṽα
Aαe Area of α-phase entrances and exits associated with the macroscopic region, m2

Aακ Area of α–κ interface contained within the averaging volume (=Aκα), m2

Caα Capillary number associated to the α-phase (= µα‖〈vα〉α‖
σ

)
Fα Inertial correction tensor for the α-phase
Fακ Coupling inertial correction tensor that maps 〈vκ 〉 onto 〈vα〉
g Gravitational acceleration, m s−2

H Mean curvature, m−1

〈H〉βγ Area average over Aβγ of the mean curvature, m−1

I Unit tensor
Kα Permeability tensor for the α-phase, m2

Kακ Viscous drag tensor that maps 〈vκ 〉 onto 〈vα〉
K∗
αα Dominant permeability tensor that maps (∇〈pα〉α − ραg)/µα) onto 〈vα〉, m2

K∗
ακ Dominant permeability tensor that maps (∇〈pκ 〉κ − ρκg)/µκ) onto 〈vα〉, m2

lα Characteristic length for the α-phase, m
li i = 1, 2, 3, lattice vectors, m
l p Small length scale representation of the mean pore diameter, m
L Characteristic length associated with volume averaged quantities, m
nακ Unit normal vector pointing from the α-phase towards the κ-phase (= −nκα)
nβ Unit normal vector representing both nβγ and nβσ
nγ Unit normal vector representing both nγβ and nγ σ
pα Pressure in the α−phase, Pa
〈pα〉 Superficial average pressure in the α-phase, Pa
〈pα〉α Intrinsic average pressure in the α-phase, Pa
p̃α Pressure deviation in the α-phase (= pα − 〈pα〉α), Pa
p0
α Reference pressure in the α-phase, Pa

r0 Radius of the averaging volume V , m
r Position vector, m

Reα Reynolds number associated to the α-phase, (= ρα‖〈vα〉‖l p
µα

)
t Time, s
t∗ Characteristic process time, s
vα Velocity in the α-phase, m s−1

〈vα〉 Superficial average velocity in the α-phase, m s−1

〈vα〉α Intrinsic average velocity in the α-phase, m s−1

ṽα Velocity deviation in the α-phase (= vα − 〈vα〉α), m s−1

Vα Volume of the α-phase, contained within the averaging volume, m3

V Averaging volume, m3

W eα Weber number associated to the α-phase (= ρα‖〈vα〉α‖2l p
σ

)
yα Position of a point in the α-phase relative to the centroid of V , m



Greek letters
δακ Kronecker delta function (δακ = 1 if α = κ , 0 otherwise)
εα Volume fraction of the α-phase, (= Vα/V )
µα Viscosity of the α-phase, Pa s
ρα Density of the α-phase, kg/m3

σ Interfacial tension between the β- and γ -phase N/m
Tvα Viscous stress tensor in the α-phase, Pa

1 Introduction

Fluid flow through porous media is of interest in several domains, such as petroleum recov-
ery, chemical and environmental engineering. Although Darcy’s law (Darcy 1856) and its
generalized form for two-phase flow (Muskat 1937; Raats and Klute 1968) remain physically
relevant for a wide range of applications, problems for which these models fail to correctly
represent flow rate to pressure drop relationships are of considerable practical importance.
Pertaining to this class of problems are flows occurring in packed beds of reactors and in
many subsurface systems such as flow near wells of oil or gas production, water pumping
and soil remediation to cite a few. Within this context, flow combining both inertial and
multiphase conditions represent challenging issues that still deserve special attention.

While the initial empirical one- and two-phase versions of Darcy’s law have been sup-
ported experimentally, numerically and theoretically (Whitaker 1986a,b; Auriault 1987), and
while studies of one-phase inertial flow has also received significant efforts, the same strong
support is still lacking for the inertial two-phase flow. In studies of non-Darcy flow through
porous media, the Forchheimer equation involving a quadratic velocity correction is gener-
ally used to describe single phase inertial flow. Originally put forth on an empirical basis
(Forchheimer 1901), this equation has been extensively employed to interpret experimen-
tal data (Ergun 1952; Ward 1964; Beavers and Sparrow 1969; Dullien and Azzam 1973;
MacDonald et al. 1979). It was also used to analyze numerical results (Coulaud et al. 1988;
Ma and Ruth 1993; Ruth and Ma 1993; Thauvin and Mohanty 1998; Papathanasiou et al.
2001). During the same period, this model found some theoretical justifications (Irmay 1958;
Blick 1966; Ahmed and Sunada 1969; Cvetkovic 1986; Giorgi 1997; Chen et al. 2001). More
refinements demonstrating the existence of different regimes (weak and strong inertia) were
however reported from numerical simulation results obtained on very different structures
(Firdaouss and Guermond 1995; Firdaouss et al. 1997; Koch and Ladd 1997; Amaral Souto
and Moyne 1997; Rojas and Koplik 1998; Skjetne et al. 1999). The existence of the weak
and strong inertia regimes was also identified from a theoretical point of view (Wodie and
Levy 1991; Mei and Auriault 1991; Rasoloarijaona and Auriault 1994; Skjetne and Auriault
1999). A more general form of the inertial flow of a single β-phase in a homogeneous porous
medium given by

〈vβ〉 = −K
µβ

· [∇〈pβ〉β − ρβg
]− F · 〈vβ〉 (1)

was recently proposed (Whitaker 1996) where K and F are, respectively, the Darcy’s law
(intrinsic) permeability and non-Darcy (Forchheimer) velocity dependent correction tensors.
These two tensors can be determined from the solution of periodic closure problems that are
solved on a representative periodic unit cell of the porous medium.

Several studies reported in the literature extend the Forchheimer equation to multiphase
flow on an empirical basis and provide relationships for correlating non-Darcy flow coefficients



under multiphasic conditions (Evans et al. 1987; Evans and Evans 1988; Liu et al. 1995). Sim-
ilar models were also considered in nuclear safety applications (Buchlin and Stubos 1987;
Lipinski 1980, 1982). Some attempt was made to extend to porous media the Lockhart–
Martinelli model initially derived for two-phase flow in pipes (Lockhart and Martinelli 1949;
Fourar and Lenormand 2000). A theoretical derivation of a macroscopic model was proposed
by Bennethum and Giorgi (1997) using the hybrid mixture theory, without any means, how-
ever, to estimate the macroscopic coefficients appearing in the macroscopic model for further
comparison to experimental data. Nevertheless, the Forchheimer model and its generalized
form, the degeneration of which at vanishing Reynolds number correctly restores Darcy’s
law, have now become some standard models to describe high-velocity flow in petroleum
engineering (Bear 1972; Scheidegger 1974; Geertsma 1974; Firoozabadi and Katz 1979;
Firoozabadi et al. 1995). In this context, thorough theoretical analysis still leaves much to
be desired in order to fully understand high-rate or inertial flow through porous media and
overcome mathematical difficulties in handling highly nonlinear multiphase flow equations
outside the Darcy regime.

The objective of the present study is to analyze the possibility of deriving a macroscopic
model describing inertial (but laminar) two-phase, incompressible, Newtonian fluid flow
through homogenous porous media using the method of volume averaging. Starting from the
two-phase Navier–Stokes boundary value problem and following lines developed in previous
works (Whitaker 1986b, 1994; Lasseux et al. 1996; Whitaker 1996), the theoretical derivation
of the averaged form of the mass and momentum balance equations is achieved under the
restriction of constraints on the length- and time-scales as well as on dimensionless quanti-
ties involving the capillary, Weber and Reynolds numbers. These constraints are explicitly
provided during the course of the development and specify the class of inertial two-phase
flow under consideration.

2 Microscopic Boundary Value Problem

The process under consideration is the simultaneous flow of two immiscible phases β and
γ both incompressible and Newtonian in a porous medium that is composed of a rigid inert
solid phase σ . The macroscopic region with the characteristic length, L , illustrated in Fig. 1
represents a homogeneous porous medium with respect to the two-phase flow process.

The boundary-value problem describing the flow at the pore-scale in the macroscopic
region is given by the following set of equations

ρα

(

∂vα
∂t

+ vα · ∇vα

)

= −∇ pα + ραg + µα∇2vα in the α-phase, α = β and γ (2)

∇ · vα = 0 in the α-phase, α = β and γ (3)

BC1 and BC2 vα = 0 at Aασ , α = β and γ (4)

BC3 vβ = vγ at Aβγ (5)

BC4 − nβγ pβ + nβγ · Tvβ = −nβγ pγ + nβγ · Tvγ + 2σHnβγ at Aβγ (6)

BC5 and BC6 vα = fα(t) at Aαe, α = β and γ (7)



Fig. 1 Macroscopic region and averaging volume

In these equations Aβγ and Aασ represent the β − γ and α − σ interfaces contained in
the macroscopic region (see Fig. 1) while Aαe (α = β, γ ) represents the α-phase entrances
and exits of that region.

Equation 6, in which the interfacial tension is represented by σ and the mean curvature of
the interface by H , expresses the balance of the stress jump, which is purely normal, by capil-
lary effects. In the presentation of this condition, we have used the assumption which ignores
effects of surface-active agents that are always present in real two-phase systems, (Slattery
1990). The total α-phase stress tensor, Tα (α = β, γ ), has been decomposed according to

Tα = −pαI + Tvα (8)

and, in Eq. 2, according to the Newtonian character of the α-phase, the viscous stress tensor
Tvα (α = β, γ ) is taken as

Tvα = µα(∇vα + ∇vT
α ) (9)

The above system of equations is not complete until the level of the pressure field is specified,
and this is done by specifying pα at some point

BC7 pα = p0
α r = r0 α = β or γ (10)

3 Volume Averaging

Although the method of weighted averages with appropriate weighting functions could appear
as an appealing one (Marle 1967; Quintard and Whitaker 1994a), we chose to use the volume
averaging technique for the sake of simplicity and to avoid adding excessive complexity in
the developments and notations. This choice is further motivated by the fact that our devel-
opment can be significantly shortened since the average of the Stokes part of the momentum
equation (2) and the closure problems used to determine permeability tensors have already
been presented in previous works using this technique (Whitaker 1986b; Lasseux et al. 1996;
Whitaker 1994). When this technique is employed, special attention must however be dedi-
cated to the definition of the averaging volume, in particular for ordered structures, and to the



order of magnitude of terms associated to phase spatial moments (see Quintard and Whitaker
1994c).

Averaging of the above boundary value problem is performed over a volume V repre-
sented in Fig. 1 including the volumes Vα (α = β, γ ) of the two phases of respective volume
fractions εα (α = β, γ ) given by

εα = Vα
V

(11)

In the course of the averaging process, we shall use the superficial and intrinsic averages
which, for any quantity ψα defined in Vα , are, respectively, given by

〈ψα〉 = 1

V

∫

Vα

ψαdV α = β, γ (12)

and

〈ψα〉α = 1

Vα

∫

Vα

ψαdV α = β, γ (13)

with the evident relationship

〈ψα〉 = εα〈ψα〉α α = β, γ (14)

Derivation of the averaged form of the mass and momentum equations requires the use
of the averaging theorem for a three-phase system (Howes and Whitaker 1985). For some
scalar quantity ψα associated with the α-phase, this theorem takes the form

〈∇ψα〉 = ∇〈ψα〉 + 1

V

∫

Aασ

nαψαd A + 1

V

∫

Aβγ

nαψαd A α = β, γ (15)

In this relationship Aασ and Aβγ , respectively, represent the interfacial areas between the
α and σ and β and γ phases contained within the averaging volume V while nα is the unit
normal vector pointing out of the α-phase towards any of the other phases, solid or fluid. It
must be noted that in Eq. 15 and throughout the entire article, we use, for compactness, the
same symbol ∇ to represent derivation with respect either to a macroscopic or to a micro-
scopic space variable. Throughout the article and as in all up-scaling procedures, a constraint
on scale hierarchy is assumed, namely

lα � r0 � L α = β, γ (16)

In this relation, lα represents the characteristic length within the α-phase at the pore-scale
and r0 is the radius of the averaging volume, V .

3.1 Continuity Equation

The volume averaging procedure applied to the mass balance Eq. 3 is identical to the devel-
opment of Whitaker (1986b) and leads to the macroscopic continuity equation given by

∂εα

∂t
+ ∇ · 〈vα〉 = 0 α = β, γ (17)

This equation is closed and does not require any special link with the microscopic scale.
As will be seen below, this is not the case with the momentum balance equations.



3.2 Momentum Balance Equation

The next step is the volume averaging of the momentum balance equations and we begin
with the average of the left-hand side (L.H.S.) of Eq. 2. Making use of the vector form of the
transport theorem leads to (see Appendix A)

〈L.H.S〉 = ρα

⎛

⎜

⎝

∂〈vα〉
∂t

− 1

V

∫

Aβγ

nα·vα vα d A

⎞

⎟

⎠
+ ρα〈∇ · (vαvα)〉 α = β, γ (18)

The averaging theorem can be used in order to express the convective inertial term as

ρα〈∇ · (vαvα)〉 = ρα∇ · 〈vαvα〉 + ρα

V

∫

Aβγ

nα · vα vαd A α = β, γ (19)

in which the no slip boundary condition in Eq. 4 was employed. At this stage, it is necessary
to eliminate the average of the velocity product and to do so, we make use of the velocity
decomposition given by Gray (1975)

vα = 〈vα〉α + ṽα α = β, γ (20)

When the intrinsic average of such a decomposition is considered and when 〈vα〉α experiences
negligible variations within the averaging volume (at the scale r0), we have

〈〈vα〉α
〉α = 〈vα〉α α = β, γ (21)

and accordingly

〈ṽα〉α = 0 α = β, γ (22)

For this to hold, it is necessary that terms like 〈yα〉 · ∇〈vα〉α , 〈yαyα〉 :∇∇〈vα〉α (see Fig. 1)
arising from Taylor developments are negligible and the requirement for this is essentially
expressed by the scale hierarchy in Eq. 16 (Carbonell and Whitaker 1984; Whitaker 1999;
Quintard and Whitaker 1994c). A more difficult problem might arise if phases are distributed
on a regular periodic pattern. In this situation, however, a careful analysis of spatial moments
performed on ordered and disordered structures suggests that a large enough convenient
averaging volume (different from unit cells of the regular pattern) can be used (see Quintard
and Whitaker 1994c). An alternative would be to define weighted averages (Quintard and
Whitaker 1994b) at the cost, however, of a proper definition of the weighting functions which
is beyond the scope of this work. Using the two Eqs. 21 and 22 allows to write

〈vαvα〉 = εα〈vα〉α〈vα〉α + 〈ṽα ṽα〉 α = β, γ (23)

and hence

ρα〈∇ · (vαvα)〉
= ρα

(

∇ · (εα〈vα〉α〈vα〉α)+ ∇ · 〈ṽα ṽα〉 + 1
V

∫

Aβγ

nα · vα vαd A

)

α = β, γ
(24)

When this result is inserted in Eq. 18 and when 〈vα〉α is employed instead of 〈vα〉 we
obtain

〈L.H.S〉 = ραεα
∂〈vα〉α
∂t

+ ρα
∂εα

∂t
〈vα〉α + ρα∇ · (εα〈vα〉α) 〈vα〉α

+ ραεα〈vα〉α · ∇〈vα〉α + ρα∇ · 〈ṽα ṽα〉 α = β, γ (25)
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Making use of the average mass balance equation allows to write the above equation as

〈L.H.S〉 = ραεα
∂〈vα〉α
∂t

+ ραεα〈vα〉α · ∇〈vα〉α + ρα∇ · 〈ṽα ṽα〉 α = β, γ (26)

At this point, we focus our interest on the right-hand side (R.H.S.) of Eq. 2. Since, this
part of the momentum balance equation remains unchanged compared to the Stokes prob-
lem and the corresponding development of the generalized Darcy’s law has been extensively
presented in other works (Whitaker 1986b, 1994; Lasseux et al. 1996), we only provide the
averaged form of this expression. Making use of the hierarchy of scales (Eq. 16) and the
spatial decomposition of the velocity given in Eq. 20 and of the pressure given by

pα = 〈pα〉α + p̃α α = β, γ (27)

the average of the (R.H.S.) of Eq. 2 takes the following form

〈R.H.S〉 = −∇〈pα〉 + εαραg + µα∇2〈vα〉 + 1

V

∫

Aασ∪Aβγ

nα · (− p̃αI + µα∇ṽα)d A

−∇εα · (−〈pα〉α I + µα∇ 〈vα〉α
)

α = β, γ (28)

Reassembling Eqs. 26 and 28, replacing the superficial average pressure by its correspond-
ing intrinsic form and dividing the result by εα allows us to express the average momentum
balance equation in the α-phase under the form

ρα
∂〈vα〉α
∂t

+ ρα〈vα〉α · ∇〈vα〉α + ραε
−1
α ∇ · 〈ṽα ṽα〉

= −∇〈pα〉α + ραg+ε−1
α µα∇2〈vα〉 − µαε

−1
α ∇εα · ∇〈vα〉α

︸ ︷︷ ︸

Brinkman correction

+ 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (29)

In this last form, the three terms in the left-hand side correspond to the macroscopic accel-
eration and convective inertia while we can identify the two terms involving gradients of
the average velocity in the right-hand side as the Brinkman correction terms. A simple order
of magnitude analysis will indicate that these two terms are negligible. In fact, the order of
magnitude of these Brinkman terms can be estimated to be

ε−1
α µα∇2〈vα〉 = O

(

µα〈vα〉α
L2

)

α = β, γ (30)

µαε
−1
α ∇εα · ∇〈vα〉α = O

(

µα〈vα〉α
L2

)

α = β, γ (31)

In the latter of these two estimates, we have used the fact that εβ does not exhibit significant
variations on length-scales shorter than L . Turning our attention to the interfacial viscous
stress term appearing in the right-hand side of Eq. 29 indicates that

µα

Vα

∫

Aασ∪Aβγ

nα · ∇ṽαdA = O
(

µα〈vα〉α
lα

aα

)

α = β, γ (32)



Due to the no slip boundary condition at the fluid–solid interface Aασ in conjunction with
the decomposition in Eq. 20, we have used

ṽα = O
(〈vα〉α

)

α = β, γ (33)

and in Eq. 32 we have used aα to designate the interfacial area per unit volume
Aασ∪Aβγ

Vα
.

Providing a precise estimation of this last quantity is a difficult task. However, a lower bound
of aα , given by

Aβγ
Vα

, can be reasonably estimated to be on the order of 1/ lα leading to

µα

Vα

∫

Aασ∪Aβγ

nα · ∇ṽαd A = O
(

µα〈vα〉α
l2
α

)

α = β, γ (34)

i.e.

ε−1
α µα∇2〈vα〉 � µα

Vα

∫

Aασ∪Aβγ

nα · ∇ṽαd A α = β, γ (35)

and

µαε
−1
α ∇εα · ∇〈vα〉α � µα

Vα

∫

Aασ∪Aβγ

nα · ∇ṽαdA α = β, γ (36)

This indicates that Brinkman correction terms are unimportant in the macroscopic momentum
equation and can be disregarded in the averaged form that can be written as

ρα
∂〈vα〉α
∂t

+ ρα〈vα〉α · ∇〈vα〉α + ραε
−1
α ∇ · 〈ṽα ṽα〉 = −∇〈pα〉α + ραg

+ 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (37)

At this stage of the development, the averaged momentum equations does not represent a
closed form since velocity and pressure deviations having microscopic length-scale of vari-
ation are still present. Using this averaged form, we now need to derive the closure problem
and this is detailed in the following section.

4 Closure

The objective of this section is to develop the relationships between spatial deviations and
average quantities in order to close the macroscopic model.

4.1 Continuity Equation

Again, the development leading to the closure equation for mass balance has been presented
in the literature (Whitaker 1986b, 1994; Lasseux et al. 1996) and we simply list the result as

∇ · ṽα = 0 α = β, γ (38)

This result is subject to two constraints, the first one being the length-scale constraint
expressed by Eq. 16 along with the order of magnitude given by Eq. 33 while the second one
is a time-scale constraint that can be expressed as

123



t∗ 	 max
α=β,γ

(

lα
‖〈vα〉α‖

)

(39)

This last relationship indicates that the flow process must be observed at times t∗ much larger
than the characteristic time-scale of phase displacement at the pore-scale.

4.2 Momentum Equation

In order to develop the closure momentum equation, the averaged form in Eq. 37 is subtracted
from the point momentum Eq. 2 providing the spatial deviations momentum equation that
takes the form

ρα
∂ ṽα
∂t

+ ραvα · ∇vα − ρα〈vα〉α · ∇〈vα〉α − ραε
−1
α ∇ · 〈ṽα ṽα〉 = −∇ p̃α + µα∇2ṽα

+µα∇2 〈vα〉α − 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (40)

Given the orders of magnitude

µα∇2ṽα = O
(

µα〈vα〉α
l2
α

)

α = β, γ (41)

and

µα∇2〈vα〉α = O
(

µα〈vα〉α
L2

)

α = β, γ (42)

it is clear that this latter term can be discarded from Eq. 40. Moreover, by introducing the
velocity spatial decomposition, the microscopic and the first of the two macroscopic inertial
convective terms can be rearranged in the following way

ραvα · ∇vα − ρα〈vα〉α · ∇〈vα〉α
= ρα

(

vα · ∇ṽα + vα · ∇〈vα〉α − 〈vα〉α · ∇〈vα〉α
)

= ρα
(

vα · ∇ṽα + ṽα · ∇〈vα〉α
)

α = β, γ (43)

leading to the following momentum equation

ρα
∂ ṽα
∂t

+ ραvα · ∇ṽα + ρα ṽα · ∇〈vα〉α − ραε
−1
α ∇ · 〈ṽα ṽα〉

= −∇ p̃α + µα∇2ṽα − 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)d A α = β, γ (44)

This form can be significantly simplified when the following order of magnitude estimates,
based on Eq. 33, are taken into account

vα · ∇ṽα = O

(

‖〈vα〉α‖2

lα

)

α = β, γ (45)

ṽα · ∇〈vα〉α = O

(

‖〈vα〉α‖2

L

)

α = β, γ (46)

ε−1
α ∇ · 〈ṽα ṽα〉 = O

(

‖〈vα〉α‖2

L

)

α = β, γ (47)



Here, we have used the fact that vα and ṽα are of the same order of magnitude, namely
O (〈vα〉α), and this can be immediately inferred from Eqs. 20 and 33. On the basis of the
length-scale constraint, this yields

ραvα · ∇ṽα 	 ρα ṽα · ∇〈vα〉α α = β, γ (48)

ραvα · ∇ṽα 	 ραε
−1
α ∇ · 〈ṽα ṽα〉 α = β, γ (49)

As a consequence, the spatial deviations momentum equation takes the form

ρα
∂ ṽα
∂t

+ ραvα · ∇ṽα = −∇ p̃α + µα∇2ṽα

− 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (50)

At this point, the closure problem remains non-steady and our interest is to provide a
constraint for the explicit time dependent term to be negligible. This constraint can be easily
formulated if we require the flow process to be observed at times t∗ much larger than the
characteristic time of viscous relaxation at the pore scale,1 i.e.

t∗ 	 max
α=β,γ

(

ραl2
α

µα

)

(51)

Under these circumstances, since

ρα
∂ ṽα
∂t

= O
(

ρα〈vα〉α
t∗

)

α = β, γ (52)

it can be easily seen from Eq. 41 that

ρα
∂ ṽα
∂t

� µα∇2ṽα α = β, γ (53)

This leads to a closure equation for the momentum that takes the form

ραvα · ∇ṽα = −∇ p̃α + µα∇2ṽα

− 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (54)

Bearing in mind Eq. 39, it must be noticed that the closure equation for each phase remains
valid under the associated time-scale constraint that can be recalled in the form

t∗ 	 max

(

max
α=β,γ

(

ραl2
α

µα

)

, max
α=β,γ

(

lα
‖〈vα〉α‖

))

(55)

Since

0 ≤ lα ≤ l p (56)

1 The consequence of this time-scale constraint is that (i) the acceleration term could have been neglected in
comparison to the viscous term in the point momentum balance equations, and (ii) the non-stationary term in
the macroscopic momentum balance equations will be negligible as will be seen later.



where l p designates the mean pore size of the medium, a safe but more useful version of the
constraint given by Eq. 55 can be expressed as2

t∗ 	 l p max

(

l p max
α=β, γ

(

ρα

µα

)

, max
α=β,γ

(

εα

‖〈vα〉‖
))

(57)

To complete the closure problem, we now need to construct boundary conditions in order
to state the boundary value problem for the pressure and velocity spatial deviations and this
is the object of the next paragraph.

4.3 Boundary Conditions

By making use of the velocity and pressure decompositions given by Eqs. 20 and 27, we can
express Eqs. 4–6 as

BC1 and BC2 ṽα = −〈vα〉α at Aασ , α = β and γ (58a)

BC3 ṽβ = ṽγ − (〈vβ〉β − 〈vγ 〉γ ) at Aβγ (58b)

BC4 − nβγ p̃β = −nβγ p̃γ + nβγ (〈pβ〉β − 〈pγ 〉γ )
−nβγ ·

[

µβ(∇ṽβ + ∇ṽT
β )− µγ (∇ṽγ + ∇ṽT

γ )
]

+ 2σHnβγ at Aβγ
(58c)

In deriving Eq. 58c we have used the representation of the viscous stress tensors, Tvα
(α = β, γ ), according to Eq. 9. Moreover, we have discarded the macroscopic viscous part
of these two tensors. This is a straightforward consequence of the scale hierarchy described
by Eq. 16 considering the fact that the characteristic length-scale of the gradient is lβ or lγ
when operating on the velocity deviation and L when operating on the average part of the
velocity.

Under this form, many source terms appear in the set of boundary conditions, namely
〈vβ〉β , 〈vγ 〉γ , 〈pβ〉β − 〈pγ 〉γ and 2σH leading to an excessively complex closure. A sim-
ilar issue was discussed thoroughly in the derivation of macroscopic models for two-phase
creeping flow in porous media (Whitaker 1986b; Torres 1987; Whitaker 1994) involving the
same boundary conditions. To achieve necessary simplifications, it is convenient to begin
with the surface average over Aβγ of the projection of Eq. 58c onto the normal nβγ . The
result can be listed as (Whitaker 1994)

− (〈pβ〉β − 〈pγ 〉γ ) = 2σ 〈H〉βγ + 〈 p̃β − p̃γ
〉

βγ

−
〈

nβγ ·
[

µβ(∇ṽβ + ∇ṽT
β )− µγ (∇ṽγ + ∇ṽT

γ )
]

· nβγ
〉

βγ
(59)

where the area average is denoted by 〈〉βγ and where we have considered 〈pβ〉β −〈pγ 〉γ as a
constant with respect to that averaging process following arguments similar to those leading
to Eq. 21. If the pressure, viscous and inertial forces are of comparable magnitude it can be
deduced from Eq. 54 that

p̃α = O
(

µαlα
∥

∥∇2ṽα
∥

∥

)+ O (ραlα ‖vα · ∇ṽα‖)
= O (µα ‖∇ṽα‖)+ O (ραlα ‖vα · ∇ṽα‖), α = β, γ (60)

2 A particular situation where this constraint is satisfied is that of an entirely time independent two-phase flow
process. It can be envisaged for many problems of practical importance such as the co-injection (co-current
or counter-current flow) of two-phases over sufficiently large periods of time, as encountered for instance in
packed bed columns of reactors. Note also that, in this particular case, the average mass balance equations
simplify to stationary versions ∇ · 〈vβ 〉 = 0 and ∇ · 〈vγ 〉 = 0. Again, this situation is only a limit case of
processes envisaged here.



Using this allows us to write

− (〈pβ〉β − 〈pγ 〉γ ) = 2σ 〈H〉βγ + max
α=β,γ

(

O 〈µα∇ṽα〉βγ + O 〈ραlαvα · ∇ṽα〉βγ
)

(61)

or

−(〈pβ〉β − 〈pγ 〉γ ) = 2σ 〈H〉βγ

×
(

1+max
α=β,γ

(

O

( 〈‖∇ṽα‖〉βγ
〈H〉βγ ‖〈vα〉α‖

)

Caα+O

(〈‖vα · ∇ṽα‖〉βγ
〈H〉βγ ‖〈vα〉α‖2

)

W eα

))

(62)

In this last equation, Caα and W eα are the capillary number and Weber number in theα-phase,
respectively, defined as

Caα = µα ‖〈vα〉α‖
σ

(63)

and

W eα = ρα ‖〈vα〉α‖2 l p

σ
(64)

where we have used l p to represent the mean pore size. We now impose the restrictions
( 〈‖∇ṽα‖〉βγ

〈H〉βγ ‖〈vα〉α‖

)

Caα � 1, α = β, γ (65)

and
( 〈‖vα · ∇ṽα‖〉βγ

〈H〉βγ ‖〈vα〉α‖2

)

W eα � 1, α = β, γ (66)

so that we can write Eq. 62 as

− (〈pβ〉β − 〈pγ 〉γ ) = 2σ 〈H〉βγ (67)

which is nothing else than the usual capillary pressure. If we impose that 〈H〉βγ is at most

O
(

l−1
p

)

which is a reasonable approximation if the solid phase is wetted by one of the two

fluid phases, and neither the β- nor the the γ -phase is under the form of ganglia of radius
significantly smaller than the mean pore size, then one can reasonably expect

〈‖∇ṽα‖〉βγ
〈H〉βγ ‖〈vα〉α‖ � 1, α = β, γ (68)

and

〈‖vα · ∇ṽα‖〉βγ
〈H〉βγ ‖〈vα〉α‖2 � 1, α = β, γ (69)

This can be readily inferred from the fact that 〈‖∇ṽα‖〉βγ and 〈‖vα · ∇ṽα‖〉βγ are expected

to be much smaller in magnitude than ‖〈vα〉α‖
l p

and ‖〈vα〉α‖2

l p
, respectively. Under these cir-

cumstances, one would only require Caα and W eα to be at most of order 1 for the above
development to hold. Nevertheless, one must keep in mind that the requirements are those



given by Eqs. 65 and 66 and when these constraints are satisfied, the stress jump at Aβγ can
be written as (Torres 1987)

BC3 − nβγ p̃β = −nβγ p̃γ − nβγ ·
[

µβ(∇ṽβ + ∇ṽT
β )− µγ (∇ṽγ + ∇ṽT

γ )
]

+2σ
(

H − 〈H〉βγ
)

nβγ at Aβγ
(70)

At this point, the closure still involves the term of curvature deviation H −〈H〉βγ in the above
boundary condition. Conditions under which this term can exhibit significant variations over
the averaging volume are not easy to identify due the diversity of geometrical, wetting and
hydrodynamic situations that can be encountered. Clearly, comprehensive numerical exper-
iments of two-phase flow in complex configurations would greatly highlight this issue and
provide some explicit criteria on the importance of this term. In the absence of more detailed
information on that matter, we shall follow an assumption suggested in previous studies on
two-phase creeping flow (Auriault 1987; Whitaker 1994; Lasseux et al. 1996) which consists
of neglecting the term involving the curvature deviation in comparison to the pressure and
viscous deviation terms in Eq. 70. Physically, this means that, at the closure level only, cap-
illary effects are negligible. One of the necessary conditions to put forth such an hypothesis
certainly lies in negligible gravity effects over V in comparison to capillary effects, leading
to a small pore-scale Bond number compared to unity. It is however highly probable that this
is not a sufficient requirement. In the rest of this work, we keep the hypothesis of negligible
capillary effects in the closure.

Since the objective is not to solve the boundary value problem for the closure over the
entire macroscopic structure, we assume that a representative elementary volume can be
exhibited on that structure. This allows one to replace the deviation form of the boundary
condition expressed in Eq. 7 by a periodic one leading to a local form of the closure problem
that is written as

ραvα · ∇ṽα = −∇ p̃α+µα∇2ṽα

− 1

Vα

∫

Aασ∪Aβγ

nα · (− p̃αI + µα∇ṽα)dA in Vα, α = β and γ (71a)

∇ · ṽα = 0 in Vα, α = β and γ (71b)

BC1 and BC2 ṽα = −〈vα〉α at Aασ , α = β and γ (71c)

BC3 ṽβ = ṽγ − (〈vβ〉β − 〈vγ 〉γ ) at Aβγ (71d)

BC4 − nβγ p̃β = −nβγ p̃γ

−nβγ ·
[

µβ(∇ṽβ + ∇ṽT
β )− µγ (∇ṽγ + ∇ṽT

γ )
]

at Aβγ (71e)

Periodicity

ṽα(r + li ) = ṽα(r) α = β and γ i = 1, 2, 3 (71f)

p̃α(r + li ) = p̃α(r) α = β and γ i = 1, 2, 3 (71g)

Average

〈ṽα〉α = 0 α = β and γ (71h)

This last condition, as expressed in Eq. 22, is part of the development in addition to the
time-scale constraint of Eq. 55 and the hypothesis of negligible capillary effects at the closure
level.



An equivalent condition to that given in Eq. 10 would be required to avoid the solution on
p̃β and p̃γ to within an arbitrary additive constant. This could be obtained by a condition on
one of the pressure deviations. However, this condition is of no practical importance since
any additive constant in the pressure deviation fields does not affect the macroscopic closed
form of the governing equations. For this reason, no such condition will be considered in our
development.

Even if no explicit dependence of the curvature appears in the closure problem, one must
keep in mind that the interface Aβγ must be located before the solution of the set of equations
71.

4.4 Closure Variables

The local closure problem given by Eq. 71 is non-homogeneous because of the presence of
the two source terms 〈vβ〉β and 〈vγ 〉γ . For this reason, we want to find a solution of the clo-
sure in terms of these sources leading to a representation for the spatial deviation velocities
and pressures given by3

ṽα = Aαβ · 〈vβ〉β + Aαγ · 〈vγ 〉γ α = β, γ (72)

p̃α = µα
[

aαβ · 〈vβ〉β + aαγ · 〈vγ 〉γ ] α = β, γ (73)

In this representation, Aακ and aακ are tensors and vectors referred to as closure variables
with the nomenclature arranged so that α represents the phase in which the closure variable
is defined and κ indicates which velocity is mapped onto the spatial deviation. This represen-
tation can now be inserted in the closure problem provided above and we choose to specify
the closure variables according to two boundary value problems each one being associated
to one of the source terms. For the coefficients associated to 〈vβ〉β , we obtain

Problem I:

(ραvα/µα) · ∇Aαβ = −∇aαβ + ∇2Aαβ

− 1

Vα

∫

Aασ∪Aβγ

nα · (−Iaαβ + ∇Aαβ)dA in Vα, α = β and γ (74a)

∇ · Aαβ = 0 in Vα, α = β and γ (74b)

BC1 and BC2 Aαβ = −δαβI at Aασ , α = β and γ (74c)

BC3 Aββ = Aγβ − I at Aβγ (74d)

BC4 µβnβγ ·
[

−Iaββ + (∇Aββ + ∇AT
ββ)
]

= µγ nβγ ·
[

−Iaγβ + (∇Aγβ + ∇AT
γβ)
]

at Aβγ (74e)

Periodicity

aαβ(r + li ) = aαβ(r) α = β and γ i = 1, 2, 3 (74f)

Aαβ(r + li ) = Aαβ(r) α = β and γ i = 1, 2, 3 (74g)

Average

〈Aαβ〉α = 0 α = β and γ (74h)

3 In this mapping, we have omitted additive scalar and vector fields since it can be proven, following the same
development as the one provided for creeping two-phase flow (Whitaker 1986b), that these fields are either
zero or constants of no importance in the macroscopic governing equations.



Here, we have used the conventional notation δαβ for the Kronecker delta function.
The second boundary value problem associated with the coefficients of 〈vγ 〉γ takes the

analogous form given by
Problem II:

(ραvα/µα) · ∇Aαγ = −∇aαγ + ∇2Aαγ

− 1

Vα

∫

Aασ∪Aβγ

nα · (−Iaαγ + ∇Aαγ )dA in Vα, α = β and γ (75a)

∇ · Aαγ = 0 in Vα, α = β and γ (75b)

BC1 and BC2 Aαγ = −δαγ I at Aασ , α = β and γ (75c)

BC3 Aβγ = Aγ γ + I at Aβγ (75d)

BC4 µβnβγ ·
[

−Iaβγ + (∇Aβγ + ∇AT
βγ )
]

= µγ nβγ ·
[

−Iaγ γ + (∇Aγ γ + ∇AT
γ γ )
]

at Aβγ (75e)

Periodicity

aαγ (r + li ) = aαγ (r) α = β and γ i = 1, 2, 3 (75f)

Aαγ (r + li ) = Aαγ (r) α = β and γ i = 1, 2, 3 (75g)

Average

〈Aαγ 〉α = 0 α = β and γ (75h)

4.5 Decomposition of the Closure Problems

We shall progress towards some more tractable versions of the above two boundary value
problems by using a convenient decomposition with the idea that this decomposition will
lead to a macroscopic model containing the classical Darcy part and a remaining part contain-
ing the inertial effects. To accomplish this, we decompose the four tensors and four vectors
defined in Eqs. 72 and 73 according to

Aακ = Aακ1 + Aακ2 α, κ = β, γ (76)

aακ = aακ1 + aακ2 α, κ = β, γ (77)

and we choose to specify the tensors and vectors Aββ1, aββ1, Aγβ1 and aγβ1 by the
following problem

Problem I1

−∇aαβ1 + ∇2Aαβ1

= −εβK−1
α · [δαβI + (δαβ − 1

)

Kγβ

]

in Vα, α = β and γ (78a)

∇ · Aαβ1 = 0 in Vα, α = β and γ (78b)

BC1 and BC2 Aαβ1 = −δαβI at Aασ , α = β and γ (78c)

BC3 Aββ1 = Aγβ1 − I at Aβγ (78d)

BC4 µβnβγ ·
[

−Iaββ1 + (∇Aββ1 + ∇AT
ββ1)

]

= µγ nβγ ·
[

−Iaγβ1 + (∇Aγβ1 + ∇AT
γβ1)

]

at Aβγ (78e)



Periodicity

aαβ1(r + li ) = aαβ1(r) α = β and γ i = 1, 2, 3 (78f)

Aαβ1(r + li ) = Aαβ1(r) α = β and γ i = 1, 2, 3 (78g)

Average

〈Aαβ1〉α = 0 α = β and γ (78h)

Similarly, we specify the tensors and vectors Aβγ 1, aβγ 1, Aγ γ 1 and aγ γ 1 by the following
problem

Problem II1

−∇aαγ 1 + ∇2Aαγ 1

= −εγK−1
α · [δαγ I + (δαγ − 1

)

Kβγ

]

in Vα, α = β and γ (79a)

∇ · Aαγ 1 = 0 in Vα, α = β and γ (79b)

BC1 and BC2 Aαγ 1 = −δαγ I at Aασ , α = β and γ (79c)

BC3 Aβγ 1 = Aγ γ 1 + I at Aβγ (79d)

BC4 µβnβγ ·
[

−Iaβγ1 + (∇Aβγ 1 + ∇AT
βγ 1)

]

= µγ nβγ ·
[

−Iaγ γ1 + (∇Aγ γ 1 + ∇AT
γ γ 1)

]

at Aβγ (79e)

Periodicity

aαγ 1(r + li ) = aαγ 1(r) α = β and γ i = 1, 2, 3 (79f)

Aαγ 1(r + li ) = Aαγ 1(r) α = β and γ i = 1, 2, 3 (79g)

Average

〈Aαγ 1〉α = 0 α = β and γ (79h)

While writing Eqs. 78a and 79a we have used the following definitions

1

Vα

∫

Aασ∪Aβγ

nα · (−Iaαα1 + ∇Aαα1)dA = −εαK−1
α α = β, γ (80)

1

Vα

∫

Aασ∪Aβγ

nα · (−Iaακ1 + ∇Aακ1)dA=εκK−1
α · Kακ α, κ = β, γ, α �= κ (81)

where Kα and Kακ are the permeability and viscous drag tensors as used in the derivation
of the macroscopic two-phase flow model in the creeping regime (Whitaker 1986b, 1994;
Lasseux et al. 1996). The closure problem must now be completed with the two following
boundary value problems defining the four tensors Aββ2, Aγβ2, Aβγ 2 and Aγ γ 2 and the four
vectors aββ2, aγβ2, aβγ 2 and aγ γ 2



Problem I2

(ραvα/µα) · ∇Aαβ1 + (ραvα/µα) · ∇Aαβ2

= −∇aαβ2 + ∇2Aαβ2 + εβK−1
α · Fαβ in Vα, α = β and γ (82a)

∇ · Aαβ2 = 0 in Vα, α = β and γ (82b)

BC1 and BC2 Aαβ2 = 0 at Aασ , α = β and γ (82c)

BC3 Aββ2 = Aγβ2 at Aβγ (82d)

BC4 µβnβγ · [−Iaββ2 + (∇Aββ2 + ∇AT
ββ2)]

= µγ nβγ · [−Iaγβ2 + (∇Aγβ2 + ∇AT
γβ2)] at Aβγ (82e)

Periodicity

Aαβ2(r + li ) = Aαβ2(r) α = β and γ i = 1, 2, 3 (82f)

aαβ2(r + li ) = aαβ2(r) α = β and γ i = 1, 2, 3 (82g)

Average

〈Aαβ2〉α = 0 α = β and γ (82h)

Problem II2

(ραvα/µα) · ∇Aαγ 1 + (ραvα/µα) · ∇Aαγ 2

= −∇aαγ 2 + ∇2Aαγ 2 + εγK−1
α · Fαγ in Vα, α = β and γ (83a)

∇ · Aαγ 2 = 0 in Vα, α = β and γ (83b)

BC1 and BC2 Aαγ 2 = 0 at Aασ , α = β and γ (83c)

BC3 Aβγ 2 = Aγ γ 2 at Aβγ (83d)

BC4 µβnβγ · [−Iaβγ 2 + (∇Aβγ 2 + ∇AT
βγ 2)]

= µγ nβγ · [−Iaγ γ 2 + (∇Aγ γ 2 + ∇AT
γ γ 2)] at Aβγ (83e)

Periodicity

Aαγ 2(r + li ) = Aαγ 2(r) α = β and γ i = 1, 2, 3 (83f)

aαγ 2(r + li ) = aαγ 2(r) α = β and γ i = 1, 2, 3 (83g)

Average

〈Aαγ 2〉α = 0 α = β and γ (83h)

In writing the momentum equations (82a) and (83a), we have used the definitions of the
inertial correction tensor for each phase Fαα (α = β, γ ) and the coupling inertial correction
tensors Fγβ and Fβγ given by

1

Vα

∫

Aασ∪Aβγ

nα · (−Iaακ2 + ∇Aακ2) dA = −εκK−1
α · Fακ α, κ = β, γ (84)

It shall be noted that the solution of the microscopic flow problem is required prior to
that of the four boundary value problems described above, allowing the determination of
the eight permeability and inertial correction tensors. Since these tensors are computed from
boundary value problems with periodic boundary conditions over a periodic unit cell, the
microscopic flow must also be computed on the same unit cell using the steady version of



Eqs. 2–7 where boundary conditions BC5 and BC6 in Eq. 7 are replaced by periodic ones.
Moreover, the solution of this microscopic flow provides the location of the Aβγ interface
necessary to solve the four problems I1, II1, I2 and II2, noting that problems I1 and II1 are
purely geometrical ones. On the other hand, it provides the microscopic velocity fields vβ
and vγ necessary to solve problems I2 and II2.

At this point, we are in position to move on to the macroscopic closed form of the inertial
two-phase flow process under consideration.

5 Macroscopic Equations

Before introducing the representations of the deviations as functions of the average velocities
in the average momentum equations, macroscopic acceleration and convective inertial terms
in these last equations need to be reinspected. This is motivated by the time-scale constraint
introduced in Eq. 55 as a requirement to simplify the closure problem. In addition, our interest
is to examine the conditions under which macroscopic inertial terms are significant. To do
so, we recall the average momentum equation in its last version of Eq. 37 as

ρα
∂〈vα〉α
∂t

+ ρα〈vα〉α · ∇〈vα〉α + ραε
−1
α ∇ · 〈ṽα ṽα〉 = −∇〈pα〉α + ραg

+ 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (85)

The order of magnitude of the two macroscopic inertial terms is the same and, on the basis
of Eq. 33, is given by

ρα〈vα〉α · ∇〈vα〉α = O

(

ρα ‖〈vα〉α‖2

L

)

α = β, γ (86)

ραε
−1
α ∇ · 〈ṽα ṽα〉 = O

(

ρα ‖〈vα〉α‖2

L

)

α = β, γ (87)

Recalling Eq. 34, the order of magnitude of the interfacial viscous stress term is

µα

Vα

∫

Aασ∪Aβγ

nα · ∇ṽαdA = O
(

µα〈vα〉α
l2
α

)

α = β, γ (88)

Clearly, the two macroscopic inertial terms are negligible in comparison to this last integral
term in the averaged momentum equations when the following constraint is satisfied

max
α=β,γ

(

ρα ‖〈vα〉α‖ lα
µα

lα
L

)

� 1 (89)

From a practical point of view, a safe constraint would be

l p

L
max
α=β,γ

(

Reα
εα

)

� 1 (90)



where Reα is a Reynolds number based on the mean pore-size l p , associated to the α-phase
and defined by

Reα = ρα ‖〈vα〉‖ l p

µα
α = β, γ (91)

Under this constraint, the macroscopic momentum balance equation can be written as

ρα
∂〈vα〉α
∂t

= −∇〈pα〉α + ραg

+ 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (92)

We now turn our attention to the acceleration term and consider its order of magnitude
which is given by

ρα
∂〈vα〉α
∂t

= O
(

ρα〈vα〉α
t∗

)

α = β, γ (93)

Under the constraint already indicated by Eq. 51, i.e.

t∗ 	 max
α=β,γ

(

ραl2
α

µα

)

(94)

it can be clearly seen that

ρα
∂〈vα〉α
∂t

� µα

Vα

∫

Aασ∪Aβγ

nα · ∇ṽαdA α = β, γ (95)

so that the average momentum equation is finally

0 = −∇〈pα〉α + ραg + 1

Vα

∫

Aασ∪Aβγ

nα · (−I p̃α + µα∇ṽα)dA α = β, γ (96)

Here, it must be emphasized that this form of the macroscopic equation results from two
important constraints: the time-scale constraint expressed by Eq. 51 on the one hand and the
constraint given by (89) on the other hand. The former was discussed earlier in the devel-
opment and indicates that the non-stationary (or time acceleration) term in the momentum
balance is negligible both at the micro- and macroscopic scales. From the latter, we can
notice that macroscopic inertial forces are negligible and are not the source of inertia at this
scale. In fact, as will be seen later, macroscopic nonlinearity originates from microscopic
inertia which is entirely contained in the convective term ραvα · ∇ṽα of the closure problem
in Eq. 71. This is a situation similar to that encountered for one-phase flow where exactly
the same observation was made by Hassanizadeh and Gray (1987) and Whitaker (1996).



We are now ready to obtain the closed form by introducing the representations of the
deviations detailed above in this last equation. This yields (for the α-phase)

0 = −∇〈pα〉α + ραg

+µα

⎧

⎪

⎨

⎪

⎩

1

Vα

∫

Aασ∪Aβγ

nα · (−Iaαα1 + ∇Aαα1)dA

⎫

⎪

⎬

⎪

⎭

· 〈vα〉α

+µα

⎧

⎪

⎨

⎪

⎩

1

Vα

∫

Aασ∪Aβγ

nα · (−Iaαα2 + ∇Aαα2) dA

⎫

⎪

⎬

⎪

⎭

· 〈vα〉α

+µα

⎧

⎪

⎨

⎪

⎩

1

Vα

∫

Aασ∪Aβγ

nα · (−Iaακ1 + ∇Aακ1)dA

⎫

⎪

⎬

⎪

⎭

· 〈vκ 〉κ

+µα

⎧

⎪

⎨

⎪

⎩

1

Vα

∫

Aασ∪Aβγ

nα · (−Iaακ2 + ∇Aακ2) dA

⎫

⎪

⎬

⎪

⎭

· 〈vκ 〉κ α, κ=β, γ, α �=κ (97)

where all the area integrals can be identified from the definitions of the permeability, viscous
drag and inertial correction tensors. Using the relationships (80), (81) and (84), we can write

0 = −∇〈pα〉α + ραg − µαK−1
α · 〈vα〉 − µαK−1

α · Fαα · 〈vα〉
+µαK−1

α · Kακ · 〈vκ 〉 − µαK−1
α · Fακ · 〈vκ 〉 α, κ = β, γ, α �= κ (98)

Rearranging, this gives

〈vα〉 = −Kα

µα
· (∇〈pα〉α − ραg)− Fαα · 〈vα〉

+ Kακ · 〈vκ 〉 − Fακ · 〈vκ 〉 α, κ = β, γ, α �= κ (99)

which represents our final macroscopic momentum balance equation for two-phase inertial
flow in homogeneous porous media under all the constraints detailed in the course of the
development. As will be shown later, it must be emphasized that Kα and Kακ are intrinsic
tensors while Fαα and Fακ are velocity dependent. If inertial effects are absent, these equa-
tions have the same form as those obtained for two-phase creeping flow in homogeneous
porous media, i.e. (Whitaker 1994)

〈vα〉 = −Kα

µα
· (∇〈pα〉α − ραg)+ Kακ · 〈vκ 〉 α, κ = β, γ, α �= κ (100)

The importance of the viscous coupling present in such a model has been the subject of active
work (Kalaydjian 1990; Rose 1989; Zarcone 1994) and an order of magnitude was developed
by Whitaker (1994) leading to Kβγ · Kγβ = O(I). Later, Lasseux et al. (1996) derived an
exact relationship between these two tensors given by

µαKακ · Kκ = µκKα · KT
κα α, κ = β, γ, α �= κ (101)

In the same reference, it was shown that a more convenient form than that of Eq. 100 is

〈vα〉=−K∗
αα

µα
· (∇〈pα〉α−ραg)−K∗

ακ · (∇〈pκ 〉κ−ρκg) α, κ = β, γ, α �= κ (102)



in accordance with a result obtained by the homogenization technique (Auriault 1987). The
dominant and coupling permeability tensors K∗

αα and K∗
ακ (α, κ = β, γ ; α �= κ) appearing

in this last equation are related to the tensors of Eq. 100 by

K∗
αα = (I − Kακ · Kκα)

−1 · Kα α, κ = β, γ α �= κ (103)

K∗
ακ = (I − Kακ · Kκα)

−1 · (Kακ · Kκ ) α, κ = β, γ α �= κ (104)

and are given by closure problems that are recalled in Appendix 2 of this article. These
closure problems are rearranged versions of problems I1 and II1 given by Eqs. 78 and 79.
Following the same lines, we shall prefer the following macroscopic momentum equation in
the case under study in the present work

〈vα〉 = −K∗
αα

µα
· (∇〈pα〉α − ραg)− Fαα · 〈vα〉

−K∗
ακ

µκ
· (∇〈pκ 〉κ − ρκg)− Fακ · 〈vκ 〉 α, κ = β, γ, α �= κ (105)

In the next section, we provide alternate versions of the closure problems the solutions of
which are required to find the inertial correction tensors.

6 Procedure for Obtaining the F Tensors

In this section, we present a more tractable form of the boundary value problems that are to
be solved to determine the four inertial tensors Fββ , Fγ γ , Fβγ and Fγβ . Rather than starting
from the closure problems I2 and II2 given by Eqs. 82 and 83, it is more convenient to start
from the forms I and II of Eqs. 74 and 75 and we recall them as

Problem I

(ραvα/µα) · ∇Aαβ = −∇aαβ + ∇2Aαβ

+ εβ
[

δαβH−1
β + (δαβ − 1

)

K−1
γ · Hγβ

]

in Vα, α = β and γ (106a)

∇ · Aαβ = 0 in Vα, α = β and γ (106b)

BC1 and BC2 Aαβ = −δαβI at Aασ , α = β and γ (106c)

BC3 Aββ = Aγβ − I at Aβγ (106d)

BC4 µβnβγ ·
[

−Iaββ + (∇Aββ + ∇AT
ββ)
]

= µγ nβγ ·
[

−Iaγβ + (∇Aγβ + ∇AT
γβ)
]

at Aβγ (106e)

Periodicity

aαβ(r + li ) = aαβ(r) α = β and γ i = 1, 2, 3 (106f)

Aαβ(r + li ) = Aαβ(r) α = β and γ i = 1, 2, 3 (106g)

Average

〈Aαβ〉α = 0 α = β and γ (106h)



Problem II

(ραvα/µα) · ∇Aαγ = −∇aαγ + ∇2Aαγ

+ εγ

[

δαγH−1
γ + (δαγ − 1

)

K−1
β · Hβγ

]

in Vα, α = β and γ (107a)

∇ · Aαγ = 0 in Vα, α = β and γ (107b)

BC1 and BC2 Aαγ = −δαγ I at Aασ , α = β and γ (107c)

BC3 Aβγ = Aγ γ + I at Aβγ (107d)

BC4 µβnβγ ·
[

−Iaβγ + (∇Aβγ + ∇AT
βγ )
]

= µγ nβγ ·
[

−Iaγ γ + (∇Aγ γ + ∇AT
γ γ )
]

at Aβγ (107e)

Periodicity

aαγ (r + li ) = aαγ (r) α = β and γ i = 1, 2, 3 (107f)

Aαγ (r + li ) = Aαγ (r) α = β and γ i = 1, 2, 3 (107g)

Average

〈Aαγ 〉α = 0 α = β and γ (107h)

Here, we have used the tensors Hβ , Hγβ , Hγ , and Hβγ defined by

εαH−1
α = − 1

Vα

∫

Aασ∪Aβγ

nα · (−Iaαα + ∇Aαα)dA α = β, γ (108)

εκK−1
α · Hακ = 1

Vα

∫

Aασ∪Aβγ

nα · (−Iaακ + ∇Aακ)dA α, κ = β, γ, α �= κ (109)

and it shall be noted that

H−1
α = K−1

α · (I + Fαα) α = β, γ (110)

Hακ = Kακ − Fακ α, κ = β, γ, α �= κ (111)

Under their initial forms, these two problems are integro-differential ones and simpler
versions are desirable for tractable resolution. This can be performed by setting

Aακ = −δακI

−εκ
[

A0
ακ · H−1

κ − A0
αξ ·

(

K−1
ξ · Hξκ

)]

α, κ, ξ = β, γ, ξ �= κ (112)

and

aακ = −εκ
[

a0
ακ · H−1

κ − a0
αξ ·

(

K−1
ξ · Hξκ

)]

α, κ, ξ = β, γ, ξ �= κ (113)

When these decompositions are replaced in the above problems I and II, and because of the
absence of the curvature in the stress jump boundary condition at Aβγ , the two following
forms of the closure problems can be used to compute the inertial correction tensors



Problem I(a)

(ραvα/µα) · ∇A0
αβ = −∇a0

αβ + ∇2A0
αβ − δαβI in Vα, α = β and γ (114a)

∇ · A0
αβ = 0 in Vα, α = β and γ (114b)

BC1 and BC2 A0
αβ = 0 at Aασ , α = β and γ (114c)

BC3 A0
ββ = A0

γβ at Aβγ (114d)

BC4 µβnβγ ·
[

−Ia0
ββ + (∇A0

ββ + ∇A0T
ββ )
]

= µγ nβγ ·
[

−Ia0
γβ + (∇A0

γβ + ∇A0T
γβ)
]

at Aβγ (114e)

Periodicity

a0
αβ(r + li ) = a0

αβ(r) α = β and γ i = 1, 2, 3 (114f)

A0
αβ(r + li ) = A0

αβ(r) α = β and γ i = 1, 2, 3 (114g)

Problem II(a)

(ραvα/µα) · ∇A0
αγ = −∇a0

αγ + ∇2A0
αγ − δαγ I in Vα, α = β and γ (115a)

∇ · A0
αγ = 0 in Vα, α = β and γ (115b)

BC1 and BC2 A0
αγ = 0 at Aασ , α = β and γ (115c)

BC3 A0
βγ = A0

γ γ at Aβγ (115d)

BC4 µβnβγ ·
[

−Ia0
βγ + (∇A0

βγ + ∇A0T
βγ )
]

= µγ nβγ ·
[

−Ia0
γ γ + (∇A0

γ γ + ∇A0T
γ γ )
]

at Aβγ (115e)

Periodicity

a0
αγ (r + li ) = a0

αγ (r) α = β and γ i = 1, 2, 3 (115f)

A0
αγ (r + li ) = A0

αγ (r) α = β and γ i = 1, 2, 3 (115g)

Averages

Hα = εα

(

〈

A0
ακ

〉α · 〈A0
κκ

〉κ−1 · 〈A0
κα

〉κ − 〈A0
αα

〉α
)

α, κ = β, γ, α �= κ (116)

Hακ = Kα · 〈A0
αα

〉α−1 · 〈A0
ακ

〉α · H−1
κ α, κ = β, γ, α �= κ (117)

Each of these two problems has basically a structure equivalent to that of an incompressible
Navier–Stokes two-phase flow without any dependence on the curvature of the fluid–fluid
interface. When a solver is available to compute the initial microscopic physical flow prob-
lem, the solution of which includes the location of the interface as well as the determination
of vβ and vγ , the same solver can be used to solve problems I(a) and II(a) of Eqs. 114 and 115
and determine the four tensors Hβ , Hγβ , Hγ and Hβγ . Note that the computation of these
four tensors requires Kβ and Kγ that can be obtained according to the procedure provided
in Appendix 2 of this article. Finally, the inertial correction tensors are obtained by making
use of the relations (110) and (111), i.e.

Fαα = Kα · H−1
α − I α = β, γ (118)

Fακ = Kακ − Hακ α, κ = β, γ, α �= κ (119)



In these last relationships, Kγβ and Kβγ are the two viscous drag tensors obtained from
the solution of the boundary value problems also given in Appendix B.

7 Conclusions

In this work, we have derived the macroscopic model for some inertial two-phase, incom-
pressible, Newtonian fluid flow through homogenous porous media. The validity of this
model is subject to constraints on the length-scales and time-scales as well as on quanti-
ties involving the capillary, Reynolds and Weber numbers and assumes that fluctuations of
the curvature of the fluid–fluid interface are unimportant over the unit cell representing the
porous medium. The averaged continuity equation takes the same form as that obtained when
inertia is negligible. The averaged momentum balance equations include generalized Darcy
terms with viscous coupling as well as inertial and coupling inertial terms, each of these
two last terms involving an inertial correction tensor. The two pairs of boundary value prob-
lems yielding the permeability and inertial correction tensors have been provided in simple
enough versions for their solutions to be tractable using a two-phase Navier–Stokes solver.
Numerical results are necessary to (i) identify the domain of validity of the macroscopic
model through verification of the constraints for any special configuration in particular that
corresponding to negligible capillary effects in the closure problem, (ii) estimate each of the
inertial correction terms and in particular the contribution of the coupling inertial correction
term.

Acknowledgements We wish to warmly thank Prof. Stephen Whitaker for fruitful discussions as well as
Christian Moyne for his careful reading of the original manuscript.

Appendix A

The objective of this appendix is to derive a special form of the general transport theorem
(Truesdell and Toupin 1960)

d

dt

∫

V(t)
ψα dV =

∫

V(t)

∂ψα

∂t
dV +

∫

A(t)

ψαn.w dA (A1)

that can be used in the case of immiscible two-phase flow (α = β and γ ) in a rigid porous
medium. Even though this form is widely used in the literature, no detailed proof has been
provided for this particular case.

In Eq. A1, A(t) is the surface enclosing V(t), w the velocity of a material point attached
to A(t) and n the unit vector normal to A(t) pointing outside V(t). Without introducing any
particularity, our result is derived for the β-phase by considering a quantity ψβ defined in
Vβ(t) included at time t in the arbitrary averaging volume V .

As depicted in Fig. 2, the volume Vβ(t) is enclosed at t by the material surfaces Aβσ (t) and
Aβγ (t) and by AβV (t), the latter representing the portion of the surface enclosing the averag-
ing volume V included in Vβ(t). Applying the theorem of Eq. A1 on ψβ with V(t) = Vβ(t)
yields

d

dt

∫

Vβ (t)
ψβ dV =

∫

Vβ (t)

∂ψβ

∂t
dV +

∫

Aβσ (t)∪Aβγ (t)∪AβV (t)

ψβ nβ · w dA (A2)



Fig. 2 The averaging volume V containing the evolving volume Vβ(t) enclosed at t by the surfaces Aβσ (t),
Aβγ (t) and AβV (t)

where nβ represents either nβσ , nβγ or nβV. As Aβσ (t) and Aβγ (t) are material surfaces and
since no phase-change occurs on these surfaces, w = vβ on Aβσ (t) and Aβγ (t). Moreover,
due to the no-slip boundary condition on Aβσ (t), the theorem takes the form

d

dt

∫

Vβ (t)
ψβ dV =

∫

Vβ (t)

∂ψβ

∂t
dV +

∫

Aβγ (t)

ψβ nβ ·vβ dA +
∫

AβV (t)

ψβ nβ ·w dA (A3)

In addition, since AβV is part of the boundary of V which is fixed in time, the velocity w is
zero on this surface (see Fig. 2) leading to

d

dt

∫

Vβ (t)
ψβ dV =

∫

Vβ (t)

∂ψβ

∂t
dV +

∫

Aβγ (t)

ψβ nβ ·vβ dA (A4)

When this last form is divided by V , a fixed volume in time, one finally gets the special form
of the transport theorem in the case of two-phase immiscible flow in a rigid porous medium,
which for the β-phase is given by

d
〈

ψβ
〉

dt
=
〈

∂ψβ

∂t

〉

+ 1

V

∫

Aβγ (t)

ψβ nβ ·vβ dA (A5)

Since the average
〈

ψβ
〉

is associated with the centroid of the averaging volume which is

fixed in time, we can replace d〈ψβ〉
dt

by
∂〈ψβ〉
∂t . Generalizing to the α-phase (α = β or γ ) and

using vα , one has
〈

∂vα
∂t

〉

= ∂ 〈vα〉
∂t

− 1

V

∫

Aβγ (t)

nα·vα vα dA (A6)

which can be used to average the acceleration term in the left-hand side of the original
momentum Eq. 2 of the article to arrive at Eq. 18.

Appendix B

In this appendix, we simply list the result on the boundary value problems that must be solved
in order to determine the four dominant and coupling permeability tensors K∗

αα and K∗
ακ (α,



κ = β, γ , α �= κ) and we refer the reader to Lasseux et al. (1996) for the details. When the
same nomenclature as that employed in this last reference is used, these problems are given
by

Problem A-I

−∇d0
αβ + ∇2D0

αβ = δαβI in Vα, α = β and γ (B1a)

∇ · D0
αβ = 0 in Vα, α = β and γ (B1b)

BC1 and BC2 D0
αβ = 0 at Aασ , α = β and γ (B1c)

BC3 D0
ββ = D0

γβ at Aβγ (B1d)

BC4 µβnβγ ·
[

−Id0
ββ + (∇D0

ββ + ∇D0T
ββ )
]

= µγ nβγ ·
[

−Id0
γβ + (∇D0

γβ + ∇D0T
γβ)
]

at Aβγ (B1e)

Periodicity:

d0
αβ(r + li ) = d0

αβ(r) α = β and γ i = 1, 2, 3 (B1f)

D0
αβ(r + li ) = D0

αβ(r) α = β and γ i = 1, 2, 3 (B1g)

Average:

〈D0
αβ〉α = −ε−1

α K∗
αβ α = β and γ (B1h)

Problem A-II

−∇d0
αγ + ∇2D0

αγ = δαγ I in Vα, α = β and γ (B2a)

∇ · D0
αγ = 0 in Vα, α = β and γ (B2b)

BC1 and BC2 D0
αγ = 0 at Aασ , α = β and γ (B2c)

BC3 D0
βγ = D0

γ γ at Aβγ (B2d)

BC4 µβnβγ ·
[

−Id0
βγ + (∇D0

βγ + ∇D0T
βγ )
]

(B2e)

= µγ nβγ ·
[

−Id0
γ γ + (∇D0

γ γ + ∇D0T
γ γ )
]

at Aβγ (B2f)

Periodicity:

d0
αγ (r + li ) = d0

αγ (r) α = β and γ i = 1, 2, 3
D0
αγ (r + li ) = D0

αγ (r) α = β and γ i = 1, 2, 3
(B2g)

Average:

〈D0
αγ 〉α = −ε−1

α K∗
αγ α = β and γ (B2h)

Each of these two problems has basically a structure identical to that of a Stokes two-phase
flow without any dependence on the curvature of the fluid–fluid interface. When a solver is
available to compute the initial microscopic physical flow problem and locate the interface,
the same solver in which inertial terms are removed can be used to solve problems A-I and
A-II and determine the four tensors K∗

αα and K∗
ακ (α, κ = β, γ , α �= κ). When these four

tensors are computed, the permeability and viscous drag tensors Kα and Kακ (α, κ = β, γ ,
α �= κ) can be determined according to

Kα = K∗
αα − K∗

ακ · K∗−1

κκ · K∗
κα α, κ = β, γ α �= κ (B3)



Kακ = K∗
ακ ·

(

I − K∗−1

κκ · K∗
κα · K∗−1

αα · K∗
ακ

)

·
(

K∗
κκ − K∗

κα · K∗−1

αα · K∗
ακ

)−1
α, κ = β, γ α �= κ (B4)
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