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Abstract

Autonomous Surface Vessels (ASVs) are increasingly pro-
posed as tools to automatize environmental data collection,
bathymetric mapping and shoreline monitoring. For many
applications it can be assumed that the boat operates on a
2D plane. However, with the involvement of exteroceptive
sensors like cameras or laser rangefinders, knowing the 3D
pose of the boat becomes critical. In this paper, we for-
mulate three different algorithms based on 3D extended
Kalman filter (EKF) state estimation for ASVs localiza-
tion. We compare them using field testing results with
ground truth measurements, and demonstrate that the best
performance is achieved with a model-based solution in
combination with a complementary filter for attitude esti-
mation. Furthermore, we present a parameter identification
methodology and show that it also yields accurate results
when used with inexpensive sensors. Finally, we present a
long-term series (i.e., over a full year) of shoreline monitor-
ing data sets and discuss the need for map maintenance rou-
tines based on a variant of the Iterative Closest Point (ICP)
algorithm.

1 Introduction

Autonomous Surface Vessels (ASVs) are most often de-
ployed to help with environmental data collection [Grin-
ham et al., 2011, Hitz et al., 2012]. Besides that, more
and more sensors and applications have been considered,
for instance bathymetry [Chen et al., 2008], and shoreline
monitoring or mapping [Scherer et al., 2012]. In many such
applications, the operation space of the vessel is assumed
to be two-dimensional (2D), as it operates in open spaces
where oscillations in attitude do not affect the primary ap-
plication (e.g., way-point and trajectory following [Dhari-

Figure 1: State estimation needs on a lake at different
scales. Top: Overview of Lake Zurich, for which 2D
state estimation fulfills the needs of most application cases.
Bottom: Zoom on the ASV Lizhbeth with low frequency
waves requiring 3D state estimation to observe small scale
features.

wal and Sukhatme, 2007, Bibuli et al., 2009, Feemster and
Esposito, 2011], environmental data collection [Dunbabin
et al., 2009, Grinham et al., 2011, Hitz et al., 2012] or
visual shoreline monitoring [Griffith et al., 2014]). Al-
though the water surface is flat on average (Figure 1-top),
waves can induce a significant three-dimensional (3D) ex-
citation (Figure 1-bottom). Distal measurements relying
on bearing, such as these from cameras or laser sensors,
are particularly sensitive to this problem and prevent two-
dimensional (2D) state estimation to be sufficient.
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Given a relatively long time to generate a point cloud with
a tilting sensor (e.g., approximately 2 s in our case), the
pose of the ASV has usually significantly changed in terms
of both position and attitude. If not taken into account it
yields distortion, or motion blur, in the point cloud. For
example, typical 5° pitch or roll oscillations can introduce
a displacement of up to 0.8 m to a feature at a distance of
10 m.

A deeper investigation of pose computation, relying on
both position and attitude estimates, is required to tackle
the problem of local perturbations impacting on ASV lo-
calization. Several approaches for 3D state estimation are
proposed in the literature. In Section 3 of this article, we
formulate three different extended Kalman filter (EKF) ap-
proaches adapted for our ASV equipped with exteroceptive
sensors affected by motion-blur. We discuss the advan-
tages and disadvantages of using model-based EKFs. Even
though our use-case involves the use of a laser rangefinder,
which could potentially provide useful measurements for
the estimation of the pose of the boat, we aim at provid-
ing a solution based on the very common and basic set of
sensors used on ASVs (GPS, compass and Inertial Mea-
surement Unit (IMU)). This restriction enables us to pro-
vide a generic solution for surface vessels which could be
extended when additional sensors are present.

Some of the parameters of the model-based estimators that
we present can be derived from hardware specifications,
but others still have to be estimated. In order to fit these
estimated parameters, we present a generic methodology
which, while benefiting from ground truth position, is also
deployable using simple GPS measurements (Section 4).
We did extensive field testing using well-defined metrics
and ground truth positioning, and thus were able to com-
pare the three approaches in Section 5. In particular, the
collected ground truth measurements allow us also to high-
light problems which arise from non-Gaussian error com-
ponents on GPS measurements. The developed state es-
timation solution enables the registration of undistorted
point clouds into a 3D map of the shore. This article
presents the analysis and the evolution of this map across a
year. By discriminating between static and dynamic points,
we are able to both maintain a clean representation of the
environment and highlight changes in the vegetation and
mooring position of boats (Section 6).

The core contributions of this work can be summarized as
follows:

1. comparison of three approaches for 3D state estima-
tion for ASVs,

2. parameter identification scheme for the dynamic mod-
els of the filters.

A shorter version of this work was published in the pro-
ceedings of the International Symposium on Experimental
Robotics (ISER) [Hitz et al., 2014b]. Here, we present the

state estimation approaches and their differences in more
detail. We also complete the description of the model-
based estimator with a discussion on the required param-
eters and the methods to identify them for the deployed
ASV. Furthermore, the experimental evaluation is consid-
erably extended with additional data sets, including more
accurate attitude results. Finally, we lengthen the long-
term shoreline monitoring data set to span an entire year
and detail environmental changes.

2 Related Work

As mentioned above, ASVs are increasingly deployed as
autonomous information gathering tools in aquatic envi-
ronments. Besides taking measurements within the water
column below the boat, such as in the work of Brown et al.
[2011] and Dunbabin et al. [2009], or also prior work with
the present ASV [Hitz et al., 2014a], ASVs have been used
to take measurements of features located above the surface.
Hollinger and Sukhatme [2014] have presented an applica-
tion of an ASV on a lake to estimate the scalar field of
wireless signal strength in the context of planning efficient
measuring paths. In contrast to the aim of estimating con-
tinuous scalar fields, Subramanian et al. [2006] have de-
ployed an omni-directional camera and proposed a water-
segmentation approach to extract 2D maps of the shoreline.
The work of Griffith et al. [2014] is also camera-based, but
aims at long-term monitoring of shoreline vegetation at a
high level of integration and autonomy. As cameras have
high shutter speeds, roll and pitch motion can be handled
in post-processing. In a slightly different context, Scherer
et al. [2012] have developed solutions to map river banks
with a rotating 2D laser rangefinder. Their work is similar
to ours, despite the fact that they aimed at using quadrotors
instead of surface vessels. However, their solution depends
on visual odometry, as it is often used in Unmanned Aerial
Vehicle (UAV) applications.

State estimation solutions for ASVs have been investigated
on a variety of platforms, such as the Unmanned Surface
Vessel named Charlie USV [Bibuli et al., 2009], an over-
actuated single-hull ASV [Feemster and Esposito, 2011]
and small airboats [Dhariwal and Sukhatme, 2007]. How-
ever, these works aimed at deploying platforms in open
spaces. Thus, the operation space of the vessels is assumed
to be two-dimensional, neglecting roll and pitch motions.
Fossen [2011] presents a comprehensive point-mass model
for surface vessels, which is adopted both in our approach
and in the aforementioned 2D approaches. Some works
mention the use of commercial state estimation devices
on ASVs [Subramanian et al., 2006, Neal et al., 2012,
Almeida et al., 2010], which produce attitude estimates.
However, it is not clear what the measured quantities are,
and only little information on the performance of such so-
lutions is provided. While many ASV systems have been
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presented throughout the last two decades, there has only
been little focus on wave induced measurement distortions.
To the knowledge of the authors, there has been no detailed
work on roll and pitch estimation for small ASVs.

Other than in works related to ASVs, full 3D state estima-
tion has been widely investigated for UAVs. The use of the
IMU-centric indirect EKF [Trawny and Roumeliotis, 2005]
has become very popular, as it avoids the formulation of
dynamic models. Especially for quadrotors, its combina-
tion with visual-inertial solutions [Weiss et al., 2013] has
been used frequently because models of these systems tend
to be very complex. For large-scale aerial applications with
fixed-wing vehicles, Leutenegger and Siegwart [2012] re-
ported a state estimator that does not use visual odome-
try. Despite the different operation regime, one of the ap-
proaches we compare in the following is very similar to
theirs as they deal with a similar set of sensors. The Com-
plementary filter (CF) presented by Mahony et al. [2008]
aims at estimating only the attitude of an UAV given mea-
surements of known directions. This last work lay down
the basis for the third approach the we used in our current
analysis.

Finally, range measurements can be used to monitor shore-
line vegetation, but can also facilitate an additional local-
ization method for the ASV. The registration of subse-
quent point clouds provides relative position updates and,
when going a step further, the comparison against a known
map links the position information to a global frame. Rec-
tifying laser scan measurements via state prediction dur-
ing the swiping has been done for other types of robots
(e.g., ground robots [Kubelka et al., 2014] and quadrotors
[Michael et al., 2012]). Another approach is to include the
laser information directly in the state estimation [Bosse and
Zlot, 2009]. This solution works well when the surround-
ing environment properly constrains the scan registration,
but sensor maximum range coupled with water reflectivity
can reduce the number of returned points to an unstable
level. However, only few ASVs feature exteroceptive sen-
sors and there is a large variety of sensors, which could
potentially be deployed on ASVs. As it is our goal to pro-
vide a baseline for comparisons that is applicable for many
systems and various applications, we concentrate this work
on using GPS, compass and IMU data only.

3 State Estimation Approaches

The goal of using state estimation procedures is to esti-
mate the state of a system in a consistent and robust man-
ner, given measurements from a set of noisy sensors. In
our application, we want to estimate the position and atti-
tude of the body fixed frame {B} with respect to an inertial
world frame {W}. For this purpose, we use a Kalman fil-
ters (KFs), which uses a prediction model to assess how
probable measurements are when they are fed to the filter.

For the sake of brevity, the KF concept, which can be found
in many good textbooks, will not be explained here. There-
fore, this section only describes the specificities of the filter
variants under investigation.

As for many ASVs in research projects, ours features three
basic sensors (GPS, IMU, compass) that provide data to the
state estimation procedure. The GPS receiver measures the
position of the boat with respect to {W}. A digital compass
provides the north vector in {B}. Our ASV uses a simple
one-dimensional compass commonly found on boats. Fur-
thermore, the IMU measures the accelerations and the an-
gular velocities in {B}. We assume that all the sensor mea-
surements are corrupted by additive white Gaussian noise.
We also assume that the accelerometers and the gyroscopes
of the IMU are additionally distorted by time-varying, ad-
ditive biases, which need to be estimated along with the
states of the system.

This set of sensors is most suited for operation in open
spaces where GPS errors of up to a few meters are neg-
ligible. When operating with distal sensors in the vicinity
of the shoreline it might be beneficial to integrate observa-
tions of features on the shore, as these might provide posi-
tion information with higher accuracy than GPS. However,
we refrain from feeding distal measurements to the state es-
timator for two reasons. First, the aforementioned basic set
of sensors is available on many small ASVs, thus the eval-
uation we present in this paper is useful for a broader com-
munity of researchers. Second, it provides a baseline for
the comparison of more complex and specialized state es-
timators, which take into account measurements from ad-
ditional sensors.

The world frame {W} is defined as a metric North-East-
Down frame (NED). In our specific case, we use the Swiss
grid,1 which is based on a Mercator projection. However,
any other metric coordinates could be used (e.g., UTM).
We directly convert GPS measurements from WGS84 to
Swiss grid coordinates before feeding them to the state esti-
mator. The body frame {B} of the boat is defined similarly
to the world frame {W} with the x axis pointing forwards,
the y axis to the right and z downwards.

We compare three different formulations of EKFs. Figure 2
gives a basic overview of their working principles. The
IMU-centric (IC) implementation makes use of the IMU
measurements in the prediction step and treats only the
GPS and compass measurements as updates. The Model-
Based version (MB3D) implements regular updates with
the IMU measurements and uses a dynamic model for the
state propagation. Thus, the thrust inputs of the motors
are also required as inputs to the filter. The third version,
Model-Based with Complementary Filter (MBCF), is a hy-
brid version, which combines the model-based approach

1Swiss map projections, Federal Office of Topography, http:
//www.swisstopo.admin.ch/internet/swisstopo/en/
home/topics/survey/sys/refsys/projections.html
accessed May 18, 2014
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with a purely sensor-driven estimation of the attitude. In
the following, we will describe all three implementations
in more details.

Prediction

Corrections

Extended Kalman filter

IMU-centric version (IC):

Prediction

Corrections

Extended Kalman filter

Model-based version (MB3D):

Complementary

filter Prediction

Corrections

Extended Kalman filter

Model-based version with Complementary filter (MBCF):

GPS

IMU

Compass
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IMU

Compass
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IMU
Compass

Thrust

Attitude
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Figure 2: The three filtering schemes used for state estima-
tion with their different inputs. From top to bottom: IC,
MB3D and MBCF.

3.1 IMU-centric Extended Kalman Filter

The IMU-centric filter implements the state-of-the-art EKF
formulation that is mostly used in UAV applications. It is
favored for complex systems since it circumvents the use
of dynamical models by directly integrating the IMU mea-
surements in the prediction steps, treating them as a sys-
tem input rather than actual sensor measurements. This
simplifies the prediction model to simple kinematic equa-
tions, which can be formulated generically for rigid bodies
and thus can be applied to various robotic systems. The
measurements from the GPS receiver and the compass are
treated as regular updates in the EKF. Our formulation of
the IMU-centric EKF follows the one of Leutenegger and
Siegwart [2012]. The state vector is defined as:

x = [p,q,v,bg,ba]
ᵀ

where p ∈R3 defines the position in the world frame {W},
q ∈ SO(3) is the attitude represented as a unit quater-
nion, v ∈ R3 is the linear velocity of the boat in the world
frame {W}, bg ∈ R3 and ba ∈ R3 describe the biases of
the gyroscopes and accelerometers respectively. The atti-
tude quaternion q = [q1,ρ

ᵀ]ᵀ defines a rotation of an an-
gle α around an axis a ∈ R3, with q1 = cos(α/2) and
ρ = asin(α). The state dynamics are then described as

follows:

ṗ = v

q̇ =
1
2

Ξ(q)(Bω̃−bg)

v̇ = RWB(q)(Bã−ba)+W g

ḃg = 0

ḃa = −1
τ

ba

where Bω̃ and Bã are the gyroscope and accelerometer
measurements, W g is the gravity vector, RWB(q) is the ro-
tation matrix from the {B} to {W} and

Ξ(q) =
[

ρᵀ

q1I3×3 +[ρ]×

]
∈ R4×3.

Here, [·]× denotes the cross-product operator, which is de-
fined such that [a]×b = a×b for a,b ∈ R3:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (1)

The covariance matrix of the quaternion representing the
attitude is not well defined due to its unit length constraint
[Trawny and Roumeliotis, 2005]. In order to circumvent
this problem, the filter is designed to operate on the error
state ∆x. For the attitude components, the error state is
defined multiplicative: q̂ = δq⊗ q, whereas for the other
states it is additive: x̂\q = x\q +∆x\q. Here, x\q denotes the
components of the state vector x except the attitude quater-
nion q. The resulting error quaternion δq can be reduced
to a 3D representation using small angle approximations
[Trawny and Roumeliotis, 2005], which renders the covari-
ance matrix non-singular again. The full derivation of the
Jacobian matrix is not provided here, as it is provided in
detail by Leutenegger and Siegwart [2012].

3.2 Model-based Extended Kalman Filter

The model-based EKF implementation uses a dynamic
model, which describes the dynamics of the system based
on the commands sent to the motors. It makes use of spe-
cific knowledge about the systems dynamics rather than
only using sensor information. For the derivation of the
model, we follow the work of Fossen [2011]. The model
is defined by a kinematic part (Equation 2) and a dynamic
part (Equation 3):

η̇ = J(η)ν (2)
Mν̇ +C(ν)ν +D(ν)ν +g(η) = τm + τe (3)

where η ∈ R3× SO(3) is the position and attitude of the
boat defined in the world frame {W}, ν ∈ R6 the boat’s
linear and rotational velocities in the body frame {B}, M
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the inertia matrix, C the Coriolis matrix, D the damping
matrix, g a vector of hydrostatic restoring forces, τm the
motor forces as input and τe unknown external perturba-
tions. J(η) defines the transformation matrix from body
fixed velocities to a world frame representation. In this
generic formulation, the model has a large number of pa-
rameters which can be difficult to identify. In general, all
matrices of the system dynamics (Equation 3) have dimen-
sion R6×6. Whereas the inertia matrix and the Coriolis ma-
trix can be derived mathematically (given exact knowledge
of the mass distribution of the system), other parts are more
difficult to identify. In particular, the damping matrix D(ν)
has 36 parameters when formulated linearly (D(ν) = Dlν ,
with Dl ∈ R6×6), but potentially even more when respect-
ing non-linear effects.

This highlights the need for pragmatic simplifications to
the model, as the number of parameters prohibits an ef-
ficient model identification process. We explain the sim-
plifying assumptions that we made for the model of our
ASV along with its derivation. We use a set of Euler an-
gles to represent the attitude of the boat, which simplifies
the modeling of the hydrodynamic restoring forces, as we
will explain in the following. Thus, we define η as follows:

η = [pᵀ,Θᵀ]ᵀ

where p denotes the position of the boat in {W} and Θ =
[φ ,θ ,ψ] is a set of Euler angles. Note that the well-known
singularity at 90◦ pitch is inherently not problematic for a
surface vessel. We define the model (Equation 3) around
the center of gravity of the body. Therefore, the inertia
matrix can be formulated as follows:

M =

[
mI3×3 03×3
03×3 Ig

]
where m is the mass of the boat, I3×3 is the 3× 3 identity
matrix, and Ig ∈ R3×3 is the rotational inertia matrix. As a
further simplification, we assume that Ig = diag(Iφ , Iθ , Iψ).
The Coriolis matrix is defined as follows:

C(ν) =

[
m[νR]× 03×3

03×3 −[IgνR]×

]
where νR ∈ R3 denotes the rotational part of ν and [·]× the
cross-product operator as defined in Equation 1.

Simple linear damping forces have proven to yield satisfac-
tory results, at least in the velocity regimes that our ASV
operates in (i.e., up to 1.5 m/s). The simplest model would
assume fully decoupled dimensions allowing us to use a
diagonal damping matrix D. This assumption has shown
to be adequate, except for one non-negligible coupling be-
tween the surge (x) and the yaw (ψ) components, which
produce the off-diagonal element named Dxψ . The cou-
pling of these two dimensions reflects the fact that the cata-
maran configuration of the boat induces higher yaw damp-
ing forces when moving forwards. Thus the damping ma-

trix takes this non-diagonal form:

D(ν) =


Dx 0 0 0 0 0
0 Dy 0 0 0 0
0 0 Dz 0 0 0
0 0 0 Dφ 0 0
0 0 0 0 Dθ 0

Dxψ 0 0 0 0 Dψ

 .

Note, that the damping matrix is not symmetric in general
[Fossen, 2011], and therefore the simplification of setting
Dψx to 0 is valid.

The hydrostatic restoring forces are the most difficult to
model. The buoyancy of a vessel is defined by the mass
of water that it displaces, which depends on the (unknown)
shape of the local water surface surrounding the boat. The-
oretically, each wave changes the buoyancy force that acts
on the vessel. Even when assuming a flat water surface, the
buoyancy depends on the geometry of the boat. While the
geometry is usually known, it is less straightforward to de-
fine the derivatives thereof, which are necessary to formu-
late the Jacobian matrix of the entire system. Therefore, we
adopt the simplified formulation by Fossen [2011], which
assumes small roll and pitch angles and box-shaped ves-
sels. It decouples roll and pitch motion and results in linear
terms:

g(η) = Gη , where G = diag(0,0,Gz,Gφ ,Gθ ,0). (4)

Using this simplification, the resulting dynamics are de-
scribed by a second order linear system.

The thruster commands tleft and tright to the motors of the
boat are encoded as the rates with respect to full power:
tleft/right ∈ (−1,1). The resulting motor forces Fleft and Fright
have quadratic form:

τm =
[
Fleft +Fright, 0, 0, 0, 0, d(Fleft−Fright)

]ᵀ
Fi(ti) =

{
at2

i +bti if ti >= 0
β [−at2

i +bti] if ti < 0

i ∈ {left, right}

where d is the lateral distance from the center of gravity to
the motors, β ∈ (0,1) is a scaling factor accounting for the
inefficiency of the thrusters in backwards direction,2 and a
and b are the parameters of the quadratic form. Since these
two parameters do not have a clear physical meaning, we
transform them linearly, such that the resulting parameters
are easier to interpret:

f1.0 = Fi(1.0) = a+b

f0.5 = Fi(0.5) = a/4+b/2

where f1.0 and f0.5 are respectively the motor force at full
and half thrust.

2Most water propellers have asymmetric blade shapes optimized for
forward propulsion.
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The resulting model has 17 parameters, which are the mass
of the boat m, three rotational inertia parameters Iφ , Iθ , Iψ ,
seven damping coefficients in D, three parameters for the
restoring forces and finally three parameters for the thruster
forces. We will discuss the identification procedures for the
parameters in the following section.

The state vector for the model-based filter is defined as x =
[ηᵀ,νᵀ,bg]

ᵀ ∈ R3 × SO(3)×R6 ×R3, where bg denotes
the additive biases of the gyroscopes. We discretize the
state at constant time intervals ∆t and use Euler forward
integration to compute state transitions:

xk+1 = xk +∆t ẋk, where xk = x(t0 + k∆t).

The Jacobian matrix H ∈R15×15 can be computed analyti-
cally:

H =
∂xk+1

∂xk
= I +∆t

∂ ẋk

∂xk
.

We omit the full derivation of the Jacobian matrix here, as
it is based on simple analytical derivatives.

While the updates of compass, GPS, and gyroscope mea-
surements are straightforward, the measured accelerations
can not be used directly. In the general case, the IMU is
not situated in the center of gravity and thus the measured
accelerations need to be translated to the center of gravity.
Since this is done in a moving frame {B}, the translation
depends not only on the rotational velocities, but also on
the rotational accelerations. The rotational accelerations
can not be measured directly and thus need to be inferred
from the noisy and drifting gyroscope measurements. As
this is unpractical, the other option would be to shift the
center of the model equations to the IMU. This however,
makes the model itself far more complicated. For these
reasons, we do not use the measured accelerations in the
model-based version.

3.3 Attitude Estimation with the Comple-
mentary Filter

In our third approach, we use a separate estimator for the
attitude of the ASV. For this purpose, we use the Com-
plementary filter (CF) [Mahony et al., 2008], which inte-
grates the gyroscopic measurements ω and corrects them
with measurements of known directions ci. The state of the
filter consists of the attitude represented by a unit quater-
nion q and a vector of additive gyroscope biases bg. The
CF is then defined as follows:

ωc =−vex

(
N

∑
i=1

ki

2
(
ciĉ

ᵀ
i − ĉic

ᵀ
i

))

q̇ =
1
2

q̂⊗ (ω−bg + kPωc)

ḃg =−kIωc

where vex(·) defines the inverse operator of the cross-
product operator: vex([a]×) = a for a ∈ R3. The correc-
tion term ωc depends on the measured directions c, on the
estimates thereof ĉ, and on their respective weights ki. kP

and kI denote filter parameters. In our case, two measured
directions are provided by the compass and the accelerom-
eters. The compass measures the north vector and the ac-
celerometers provide the direction of gravity. However, the
gravity vector is affected by the accelerations, which are
induced by the motors. Such distortions can be avoided
by having the model described above estimate the forces
caused by the motors and correct the measurements. Given
the attitude estimate from the CF, we use a simplified ver-
sion of the model-based state estimator to estimate the re-
maining states (positions p and linear velocities v). This
can be achieved easily, by only using the first three dimen-
sions of the model (Equations 2 and 3). Since the state
vector of the simplified 2D model does not contain the at-
titude, we need to use q instead of η as an input to the
transformation matrix J.

Table 1 provides an overview of the state estimation meth-
ods that were introduced above. The 2D version of the
model based filter (MB2D) is listed along with the three
evaluated 3D filters, as it was used as a baseline in the
evaluation and has often been reported in literature (Bibuli
et al. [2009], Feemster and Esposito [2011], Dhariwal and
Sukhatme [2007]). The IMU-centric (IC) does not require
a model as it directly uses the IMU measurements (a and
ω) in the predictions. Both model-based solutions (MB3D
and MBCF) require the motor inputs tleft/right and a set of
model parameters. The model-based version with the com-
plementary filter (MBCF) has a smaller state vector as it
does not contain the angular velocities ω .

3.4 Point Cloud Registration

Building upon the state estimation procedures presented
above, we can assemble the range measurements of the
laser scanner into undistorted point clouds. The goal is
to be able to reuse the same map through a full year, thus
establishing the foundations of a broader range of appli-
cations (e.g., plan safe paths to access the lake, dock the
ASV in tight locations repetitively, collect geometric infor-
mation about the evolution of the environment, connect a
bathymetric map to a map generated from a ground vehi-
cle). Using an optimized version of the Iterative Closest
Point (ICP) algorithm based on the observations of Pomer-
leau et al. [2013], we register the point clouds to a global
map. To apply this solution, the evaluated state estimation
methods need to respect the following requirements:

• State transitions should be smooth during one 3D
swipe. If not, large discontinuities will result in punc-
tual deformations generating more local minima in the
registration process.
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Table 1: Summary of the proposed state estimation methods. On the last line, the 2D version of the model-based filter
(MB2D) is added for comparison. The measurements p,ψ,a,ω refer to GPS, compass, accelerometer and gyroscope
data, respectively. The initial covariance matrix of the filters are denoted by Pinit and the process noise by Q (both are
assumed to be diagonal).

Method State size State variables Sensor data usage Model parameters Filter parameters

Predictions Updates

IC 15 p,q,v,bg,ba a,ω p,ψ – 15(Pinit) + 15(Q)

MB3D 15 p,Θ,v,ω,bg tleft/right p,ω,ψ 17 15(Pinit) + 15(Q)

MBCF 11 p2D,v2D,q,bg tleft/right p,a,ω,ψ 8 4(Pinit) + 4(Q) + 4(CF)

MB2D 7 p2D,ψ,v2D, ψ̇,bψ tleft/right p,ω,ψ 8 4(Pinit) + 4(Q)

• Noise on the 3D estimation should be unbiased. Oth-
erwise there might be systematic deformations that,
observed from a different point of view, could lead
to a mismatched model and eventually to discarding
parts of the reconstruction.

• State estimation errors should be within the conver-
gence bound of ICP. Scan matching registration based
on ICP is precise but requires a good prior to converge
on a global minimum alignment. The convergence
depends on many factors (e.g., structure of the envi-
ronment, speed of the platform, sensor field of view),
some of which can not be controlled [Pomerleau et al.,
2013].

State-of-the-art map management methods allow us to dis-
tinguish static and dynamic points [Pomerleau et al., 2014].
This brings several benefits. First, shorelines are usually
not entirely static, for instance boats that are moored at
a single buoy have different positions depending on wind
conditions. Second, noisy points, which are introduced by
state estimation errors, can be classified as dynamic points
through time and can be removed. Finally, it allows to de-
tect seasonal changes in the shoreline, which can be of in-
terest for biological or geology studies, one of the scientific
goals of our ASV.

4 Evaluation Methodology

We used an ASV named Lizhbeth for the state estimation
evaluation and shoreline mapping applications as depicted
in Figure 1-Bottom. The boat has a catamaran configura-
tion with two thrusters allowing operation without a rud-
der. It measures 2.5 × 1.8 × 0.9 m and weighs approx-
imately 155 kg. It is fully described in the work of Hitz
et al. [2012]. We conducted multiple series of field tests
with our ASV to evaluate the different state estimation ap-
proaches. The experiments also provided data for both es-
timating model parameters and assessing sensor noise lev-
els.

4.1 Position Ground Truth

To go beyond comparing the results of the state estima-
tion against its sensor input (GPS and compass measure-
ments), we recorded ground truth positioning information
with an external positioning device. We used a theodolite
(Leica Total Station TS15), which is able to track a special-
ized prism up to a distance of 2 km with 2 mm accuracy
and outputs the position of the prism at 7 Hz. Thus, we
mounted the prism on the boat such that it could be tracked
from the shore (see Figure 3). For practical reasons, the
prism could not be mounted at the center of gravity of the
boat. The mounting frame on the boat is shifted to the front
(see Figure 1) and the prism had to be mounted at a cer-
tain minimal height to ensure its visibility at all times. The
resulting offset of the prism from the center of gravity is
[0.54,0.31,1.16]ᵀ m and causes significant horizontal off-
sets due to roll and pitch motions of the boat. These offsets
can either be corrected using attitude estimates, or can be
considered measurements noise. As the first option could
potentially introduce additional errors, we chose the lat-
ter. Typical roll and pitch oscillations of up to 5° result in
horizontal motions of the prism of ∼0.1 m. Despite those
errors, the theodolite provides measurements that are an
order of magnitude more precise than the GPS receiver.

(a) (b)

(a)

Figure 3: Material used for position ground truth. (a) Spe-
cialized prism used as target for automatic tracking. (b)
A theodolite (Leica Total Station TS15) mounted on shore
and tracking the ASV.
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4.2 Attitude Ground Truth

Measuring the attitude of the ASV in a very precise manner
is tedious and not often found in literature in outdoor eval-
uations. One approach, which was used for work on rovers
for lunar missions, would be to track three or more ref-
erence points on the boat simultaneously, creating a setup
similar to indoor tracking systems [Maimone et al., 2007].
Having only one theodolite available rendered the use of
external observation methods infeasible. The use of vi-
sual markers on shore and a camera on the boat could be a
good solution, but the distance between the shore and the
boat would lead to unmanageable marker sizes and reduce
greatly the accuracy of those measurements.

Reflective pole Velodyne sensor

Figure 4: Left: The reflective pole used to assess the dis-
tortion of point clouds. Right: The temporarily mounted
Velodyne sensor on the ASV.

To circumvent those challenges, we set up a specific exper-
iment, referred to as pole experiment henceforth. A pole
covered with a reflective material was mounted vertically
on a pontoon and was then scanned repeatedly with a laser
scanner on the boat. We mounted a Velodyne HDL-32
onto the ASV exclusively for this test (see Figure 4). This
sensor provides full point clouds at 10 Hz and thus pro-
vides snapshot-like views of the pole without any notice-
able motion-induced distortions in the point clouds. As the
measured points on the pole have significantly higher re-
turn intensities, they can be extracted from the point cloud
simply by applying a constant threshold. By fitting a line
to these points, we can use its inclination as a measure to
assess the attitude estimation accuracy. In comparison to
a camera-based approach this method is not affected by
lighting conditions and less sensitive to distance changes.

The Velodyne sensor is very precise, but is also relatively
costly. In robotics, rotating 2D laser rangefinders are of-
ten used to provide similar 3D point clouds at consider-
ably lower price (e.g., [Scherer et al., 2012, Kubelka et al.,
2014]). In fact, for the shoreline mapping application
which we describe below, we also used a nodding 2D laser
rangefinder (see Figure 6). We repeated the pole experi-
ment with this cheaper sensor setup to evaluate if it pro-
vides similar results as the use of the Velodyne sensor. As
our nodding 2D scanner takes approximately 2 s to com-

plete a full scan and thus the distortion of the pole in the
point cloud has to be taken into account. In addition to the
inclination measure, the root mean squared error (RMSE)
of the line fit provides a measure of distortion. To observe
distortions, both induced from roll and pitch motions, the
pole has to be positioned at varying bearing angles with re-
spect to the boat. For example, when positioning the pole
directly in front of the boat, pure pitch motion mainly dis-
torts the pole along its axis. Such a distortion neither af-
fects the inclination nor the RMSE of the fitted line and is
therefore not detectable with these two error metrics. Sim-
ilarly, positioning the pole either left or right of the boat is
unfavorable for detecting errors which are induced by roll
motion. Therefore, observations at various bearing angles
are necessary.

4.3 State Estimation Evaluation

While the pole experiment is most informative about distor-
tions that are induced by roll and pitch motion, the ground
truth data from the theodolite enabled us to define the fol-
lowing error metrics:

epos,k =
∥∥pk− pl,k

∥∥
2 (5)

evel,k =
∥∥vk− vl,k

∥∥
2 (6)

dpos,k =
∥∥pk+1− pk

∥∥
2 (7)

dvel,k =
∥∥vk+1− vk

∥∥
2 (8)

datt,k =
∣∣ln(qk+1⊗q−1

k

)∣∣ . (9)

The ground truth measurements from the theodolite are de-
noted pl and the derived velocity measurements vl . The in-
dex k refers to the value at time step tk. Given the ground
truth measurements the absolute error in position and ve-
locity can be computed according to Equations 5 and 6.
Furthermore, we evaluate the smoothness of an estimated
state trajectory with a measure of discontinuity d which is
defined for position (dpos), velocity (dvel) and attitude (datt)
in Equations 7 to 9. The smoothness measure reveals dras-
tic update steps, which can occur whenever predicted mea-
surements and actual sensor data do not match well in the
update steps of the EKF.
For all the statistical significance tests in our evaluation we
used the Mann-Whitney U test with p < 0.001 as signifi-
cance threshold.

4.4 Model Parameter Identification

The model-based versions of the state estimators (MB3D
and MBCF) make use of predictions, which are based on
the model introduced in Section 3. The model has 17 pa-
rameters, of which especially the damping parameters are
difficult to set. Manually tuned parameters can yield rel-
atively good results when considering that we need the
model to perform well only over short time spans in an
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EKF (as frequent correction measurements are available).
Within the typical field sensor suite that is available on our
ASV (GPS, IMU and compass), the GPS receiver operates
at the lowest update rate (1 Hz in our application). The non-
Gaussian noise on the GPS measurements affects the linear
position and velocity components of the state the most. For
these reasons, we need the model to be most reliable for
these components.

Besides manual tuning, we can apply optimization tech-
niques to find the most suitable set of parameters, with re-
spect to recorded field data. Mišković et al. [2011] pre-
sented a method to estimate model parameters in situ in
an online fashion. Their method relies on exciting the sys-
tem with self-oscillations and adjusting the parameters iter-
atively. In comparison to offline batch optimization meth-
ods, this is beneficial in the sense that the method acquires
as much data as necessary to achieve a stable estimate of
the parameters. On the other hand, these experiments need
to be repeated as soon as the model is altered and can not
be performed with recorded data. Therefore, we chose an
offline method, which is less flexible but can be used for
various models, error metrics and optimization methods.

For this, we can use either the precise measurements from
the theodolite or the GPS and compass readings. Integrat-
ing the attitude ground truth of the pole experiments is fea-
sible, yet restricts the operation space of the boat signifi-
cantly, as the pole has to remain visible and close enough,
such that it is hit by several of the laser beams of the Velo-
dyne sensor. Therefore, we restrict the parameter optimiza-
tion to the 2D sub-part of the model. To optimize the pa-
rameters, we have defined the following fitness function,
which is the sum of the error position after N time steps
normalized by the path length:

e(Θ) =
M

∑
k=0

∥∥∥∥[kT+N
∑

i=kT
ṗi(pi,Θ,τm,i)∆t

]
−gtkT+N

∥∥∥∥
kT+N−1

∑
i=kT

∥∥gti+1−gti
∥∥ (10)

where Θ is a vector of parameters, pi the position compo-
nents of the model state vector xi at time step i, gti denotes
the ground truth measurement at time step i and τm are the
thruster inputs as introduced above. The model is initial-
ized M times at intervals of T time steps using the ground
truth information (pkT = gtkT and vkT = ġtkT ). The model
is then used to “blindly” integrate motor commands over
a time span of N∆t. At this point, the error is defined as
the quotient of the offset of the model predicted position
pkT+N and the total path length over the time span. Figure 5
demonstrates this procedure along with the key variables.

The error metric (Equation 10) does not take heading er-
rors into account. While this might be a shortcoming for
certain applications, it has the advantage that the error has
physical meaning since it is measured in meters. For non-
holonomic systems such as the boat deployed here, errors
in heading always lead to position errors as well and it is

path length

error

ground truth trajectory

model trajectory

pkT+N

gt kT+N

pkT gt kT=

Figure 5: Illustration of the error generated from a wrong
model. After integrating over N time steps only based on
thruster inputs τm, the model trajectory deviates from the
ground truth.

thus reasonable not to account for heading errors explicitly
in the error metric.

For the optimization, we use the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [Hansen, 2006]. This
sampling-based optimization routine does not require gra-
dients and allows us to handle unfeasible parameter sets
easily without explicitly defining constraints in the param-
eter space. Out of the 17 parameters of the model, the
2D sub-model requires nine, namely the mass m, the rota-
tional inertia Iφ , damping coefficients Dx,Dy,Dψ ,Dxψ and
thruster force parameters f0.5, f1.0 and β . We consider the
mass to be fixed, as it can be measured in situ, thus our
optimization space is in R8.

The proposed parameter estimation scheme provides a
generic method, which can be applied for many robotic
systems. As mentioned before, the error metric can be
adapted by adding rotational components if necessary. This
will however lead to an additional weighting factor to bal-
ance the rotational and the translational components. The
optimization routine can be replaced, for instance if ex-
plicit gradients are available.

4.5 ICP-Mapping Evaluation

The main focus of this article is to evaluate the state estima-
tion algorithms. However, we can use this opportunity as
a preliminary study for long-term mapping with an ASV.
The long-term character of the recorded mapping data al-
lows us to observe changes in the environment. However,
the dense vegetation around the boathouse prohibited the
collection of theodolite measurements, as a clear line of
sight to the prism on the boat could not be maintained at
all times. At this stage, qualitative results based on vi-
sual assessment of the representation will be used. To sup-
port our observation, we used a ground survey unit (Le-
ica Nova MS50) to build a precise 3D representation of
the boathouse. For the application of shoreline monitoring,
we have mounted a nodding laser rangefinder (i.e., Hokuyo
UTM-30LX-EW) on the ASV as depicted in Figure 6. This
particular configuration allows us to tilt the laser up to 180
degrees, allowing the field of view to extend up to the rear
of the boat.
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Figure 6: Material used for shore monitoring. (a)
Overview of the ASV. (b) A detailed view of the custom
tilting Hokuyo UTM-30LX-EW installed on the ASV.

5 Results

We have conducted a series of field experiments, during
which we collected data sets consisting of GPS, compass,
and IMU measurements, system specific information (such
as thrust values of the motors) and external position infor-
mation from a theodolite. We collected data in 10 one-
day campaigns, during which the boat traveled an overall
distance of 13.2 km. We encountered varying conditions,
ranging from strong winds and rain to very calm days, re-
sulting in data sets with different environmental influences.

N

Boathouse

shoreline mapping experiments Pole measurements

Figure 7: Overview of the testing area, with both structured
and unstructured segments on the shoreline.

The collected data sets serve two separate purposes. First,
we evaluate the state estimation approaches on dedicated
data sets with ground truth information. These data sets
do not contain any measurements for mapping purposes.
The second type of data sets focused on the shoreline map-
ping application. They consist of measurements to perform
state estimation and the range measurements from the laser
scanner. As outlined in Figure 7, those data sets were taken
in the area around the boathouse, which provides a rich va-
riety of both structured and unstructured components. We
have collected a total of seven shoreline mapping data sets
with the laser rangefinder over the course of a full year
(from October 2013 to September 2014).

5.1 Model Parameters

For the optimization of the model parameters, several dif-
ferent data sets from different days were used. Figure 8
shows one of the used data sets. The ground truth trajec-
tory is shown in black and the model trajectories in blue.
The data set has a total duration of 439 s and the entire path
is 304 m long. It consists of different motion types (i.e.,
straight parts and also sharp turns with low forward speed).
Note that the estimation of β does not rely on explicit back-
wards motion of the boat as turning motions require one of
the motors to operate in backwards direction.

For the integration of the model, time steps of ∆t = 1/20 s
have proven to be small enough. We integrated the model
over 20 s (N = 400) and spawned new model trajectories
every 5 s (T = 100). M is then dependent on the length
of the data set, in the example shown in Figure 8 there
are M = 85 model trajectories. The population size for
CMA-ES was set to 46, as a cluster computer with 46 cores
was available. However, for a parameter space of 8 di-
mensions, a minimal number of 10 particles is sufficient
[Hansen, 2006] and a standard desktop PC can be used.
The optimization runs required approximately 150 itera-
tions to converge, on data sets of comparable size as the
example shown in Figure 8.

The top view graphs in Figure 8 highlight the improve-
ments of the optimization. Especially the rotational com-
ponents have lead to more stable results. While the initial
parameters result in a median error of 33.1%, the optimized
parameter set achieves 7.2% (compare Figure 8-Left). As
highly accurate ground truth data might not by available
for many systems, we also used the noisy GPS data as a
reference. Using the GPS as a reference during the op-
timization, yields comparable results (9.5%), even when
evaluated with respect to the more accurate ground truth
measurements (10.2%).

Table 2: Initial and optimized model parameters, both with
respect to ground truth (Leica) and GPS.

Parameter Unit Initial Leica GPS

f1.0 N 100.00 52.82 41.06
f0.5 N 30.00 20.43 15.85
β - 0.30 0.37 0.43
Dx kg s−1 80.00 38.41 28.22
Dy kg s−1 1000.00 5280.05 5261.33
Dψ kg m2 s−1 200.00 104.25 103.19
Iψ kg s−2 190.00 13.79 10.65
Dxψ kg s−1 10.00 24.18 17.69

Table 2 provides an overview of the parameter values.
When comparing the parameters of the GPS-based opti-
mization to the corresponding Leica-based values, an av-
erage difference of 17.2% can be observed. These differ-
ences are largest on the damping coefficient in x-direction
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Figure 8: Left: Model errors for different sets of parameters. Leica refers to the theodolite ground truth measurements.
Middle: Ground truth trajectory (black) and model trajectories (blue) over 20 s for the initial parameters. Right: trajec-
tories after optimization.

(Dx) and on the thruster model ( f1.0 and f0.5). However,
these differences are counteracting and thus both parame-
ter sets result in similar model performance (cf. Figure 8).

From these results, we can conclude that using accurate
ground truth data is favorable, but also noisy GPS data pro-
vides good results. The difference of using ground truth or
GPS data is not statistically significant.

5.2 State Estimation

Using the optimized parameters, a comparison of the pro-
posed state estimation algorithms can be conducted based
on field data. Figure 9 shows both the theodolite measure-
ments used as ground truth (GT) and the raw GPS data
points along an example of a short round trip path. The
third EKF version (MBCF) is not shown in Figure 9, be-
cause this filter relies on the same motion model as MB3D
and thus the resulting trajectory is almost identical. The
graph highlights constant GPS offsets in a particular direc-
tion, which appears in the first inset (1), where the GPS
measurements start diverging severely from the ground
truth. The direction of that offset changes during the ex-
ecution of the path as shown in inset (2). Inset (1) illus-
trates well the jitter caused by the GPS information not co-
herent with IMU measurements leading to a wrongly slow
adjustment of the bias for the IC trajectory. As a result of
this, the overall performance of all EKF implementations
is globally stable (i.e., does not drift over time). However,
in terms of the absolute position error, the performance is
only slightly better than the raw GPS positioning.

More quantitatively, Figure 10 shows an evaluation of com-
bined data from all five test days according to the metrics
defined in equations 5 to 9. For the absolute errors in posi-
tion (Figure 10a) and velocity (Figure 10b) the raw GPS is
provided as a comparison. In the case of the velocity, this
refers to the differentiation of the GPS points. Since the

discontinuity measures are not absolute, we can not com-
pare them to the raw GPS input.

As already observed in Figure 9, there is only very little
improvement in terms of the absolute position error epos
with respect to the raw GPS measurements. Figure 10a
clearly shows the limitations of the GPS measurements,
with an average error of 1.9 m. The medians of the abso-
lute position error is reduced by 4.1%, 9.1% and 9.4% for
the IC, MB3D and MBCF version respectively compared
with only GPS measurements. While these differences are
statistically significant, the difference between MB3D and
MBCF is not (p = 0.24). This correlates with the fact that
these two versions are based on the same model for lin-
ear motion and thus yield very similar errors. Whereas the
positioning information can not be improved significantly,
the estimates of the velocity clearly improve with respect
to the GPS baseline. The model-based versions (MB3D
and MBCF) show the lowest velocity errors (73.5% and
73.2% better than GPS). The IMU-centric EKF has still
quite some outliers and only improves by 56.3% with re-
spect to the baseline, which is due to wrong estimates of
the accelerometer biases. Since the GPS measurements
drift over time, the corresponding position updates map the
error to the accelerometer biases and velocity estimates.
This effect also leads to less smooth state trajectories in
the position and velocity space. Figures 10c and d show
this in terms of the discontinuity measure (cf. Eq. 7 - 9). A
high discontinuity measure indicates that the correspond-
ing state was frequently corrected, leading to large differ-
ences between two subsequent states. Wrong estimates of
the accelerometer biases distort the velocity estimates dur-
ing the predictions, which then need to be corrected by
sensor updates. Especially the discontinuity of the velocity
estimates shows that the model-based versions (MB3D and
MBCF) result in smoother trajectories than the IC version.

The discontinuity of the attitude estimates suggests that
MB3D has higher inconsistencies, which relates to the fact
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Figure 10: Results of the position evaluation based on theodolite ground truth. The metrics are: position error (epos),
velocity error (evel), position discontinuity (dpos), velocity discontinuity (dvel), attitude discontinuity (datt). For the first
two panels, the raw GPS data is shown as a baseline.

that it relies on a parameter-based model. Even though
we estimated these parameters with respect to field data,
the linear formulation of the hydrostatic restoring forces
(cf. Equation 4) might be too simple to accurately describe
the motion. In relation to the MB3D version, the IC and
MBCF implementations have lower discontinuities (im-
provements by 66.4% and 66.7%). Both versions achieve
relatively smooth attitude trajectories as they directly in-
tegrate the gyroscope measurements. Even though there
are quite some differences in their implementations, the re-
sulting distributions of discontinuity measures do not differ
significantly (p=0.08).

Focusing on the attitude evaluation of each filter, Figure 11
presents the results of both pole experiments, with the Velo-
dyne and the nodding Hokuyo sensor. In order to create a
baseline for the evaluation, we have used the model-based
state estimator in 2D, in order to account for distortions,

which were induced by linear motions, while ignoring roll
and pitch. This 2D state estimator version is denoted with
MB2D. Figure 11d shows an example of a point cloud,
which is distorted by roll and pitch motion. The extracted
points from the pole, used as a vertical and straight refer-
ence, are highlighted in blue and a 1 m long segment of the
fitted line is shown in light blue. The same point cloud is
shown in Figure 11e, however it was assembled with the
use of the MBCF state estimator. The pole is less distorted
and resembles more a straight and vertical cylinder. One
can note that such point cloud distortions only occur with
the nodding laser rangefinder. The Velodyne sensor creates
an almost instantaneous scan of the pole, in which it is then
always straight.

Figure 11a shows the results for a data set of 390 point
clouds, which were collected with the Velodyne sensor.
As expected, all three state estimators perform better than
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in (a). The results of the line fitting for the Hokuyo data is shown in (c) and (b). An example of a point cloud (dark grey)
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the 2D baseline (MB2D). The MBCF version outperforms
the other variants, owing to its good model-based transla-
tional components and the direct integration of the gyro-
scope measurements in the complementary filter. In con-
trast to the discontinuity measure presented above (cf. Fig-
ure 10e), the model-based version MB3D performs rela-
tively well. However, during the pole experiments the boat
was not actuated. This potentially lead to simpler rock-
ing motions, with less cross-couplings to the translational
components of the model, which can be better represented
by the simplistic roll/pitch model. Interestingly, the IMU-
centric version performs worse. A possible explanation is
that the tight coupling of translational and rotational com-
ponents of the IMU-centric estimator maps erroneous ac-
celerometer bias estimates to the estimated attitude.

The results of the pole experiment with the nodding
Hokuyo sensor are shown in Figure 11b. The graph clearly
shows that this sensor setup leads to the same conclusions
as the results of the experiment with the Velodyne sensor.
For the Hokuyo sensor setup we also use the RMS error of
the line fit as a distortion measure (see Figure 11c). It can
be observed that the RMSE and the inclination measure
reveal a consistent performance ordering of the state esti-
mation methods. In the results of the pole experiment with
Velodyne sensor, the RMSE of the line fitting does not con-
tain any comparative information, as the pole it recorded
almost instantaneously and thus the RMSE is independent
of the state estimation procedure.

There are some differences in the absolute values, which
are due to the fact that the two experiments were not per-
formed simultaneously. One could note that the lack of a
ground truth measurement of the poles inclination causes
a few degrees of uncertainty in the inclination measure in
an absolute sense, but the relative performances between
solutions remain the same.

This evaluation reveals that the MBCF implementation per-
forms best at recovering the attitude of the pole. Further-
more, it shows that the cheaper sensor setup provides quali-
tatively similar results to the faster Velodyne sensor. We do
not compare the results of the two tests statistically as they
were not recorded simultaneously and thus have different
inputs for the state estimation methods.

5.3 Point Cloud Mapping

For our application of shoreline monitoring, we have col-
lected seven data sets throughout an entire year. The first
map was realized in October 2013 and then all subsequent
maps were built upon the previous one up to the final data
acquisition in September 2014. Figure 12 shows a top
view of the resulting final map. The mapped area contains
a small harbor with a boathouse on the left and mooring
places on the right. Through the year, different boats were
parked and the foliage of trees changes. The boathouse is
open towards the harbor, such that the laser rangefinder is
able to measure points on the lower side of the roof. We
mapped this area by controlling the robot into the harbor
and around the willow tree manually.

The map was constructed according to the approach pre-
sented by Pomerleau et al. [2014], meaning that the same
global map was reused through time leading to an evolv-
ing representation over the year. This leads to one com-
bined map over all mapping missions, but comes with the
disadvantage that the map does not “forget”. Naively im-
plemented, falsely registered point clouds or environmen-
tal changes such as differences in the configuration of the
moored boats cause inconsistencies in the map. Further-
more, the number of points in the map continuously grows,
which eventually leads to large computational loads for the
registration of new point clouds. While simple subsam-
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Figure 12: Top view of the resulting point cloud map.
Red points have higher probability of being dynamic. The
dashed rectangle corresponds to the position where a large
willow tree sits and for which an expended view is pro-
vided in Figure 14.

pling of the map would be sufficient for the latter issue, the
classification of registered points into dynamic and static
points as it is proposed by Pomerleau et al. [2014], pro-
vides a solution to both problems. Figure 14e shows the
willow tree in the map. Points that are depicted in green
have been classified as dynamic. Considering only the
points which were labeled as static reveals a representation
(see Figure 14b), which is less affected by environmental
changes and has significantly fewer points. This reduced
and more stable version of the map is then used for local
registration using a point-to-plane variant of ICP.

We also provide a map realized from a ground survey laser
rangefinder in Figure 13. The main complexity encoun-
tered during the survey process is that there was very little
place where the Leica MS50 could be positioned to en-
sure similar view points. As for example, the roof of the
boathouse and the brick wall (Figure 13-Right) can only
be observed from the water level, where the installation
of a tripod was impossible. This leads to two representa-
tions, although similar, with very little overlap in horizon-
tal structures. This problem is amplified by the fact that
the water surface was partially reflected in the Leica MS50
scans (Figure 13-Left) due to a high incidence angle with
the water when the survey unit was positioned on the roof
of the boathouse.

An example of stable features learned trough the mapping
process are the brick wall and trunks of trees as opposed to
foliage. This can be observed in Figure 14, which is a de-

Roof seen  
from under

Reflected  
water

Brick wall

Figure 13: Comparison of a professional land survey unit
and a low cost laser rangefinder mounted on a mobile plat-
form. The area used for the experiment is a boathouse
where the ASV is usually stored. Left: An assembly of
5 scans taken with a Leica MS50 on Sept. 3, 2014. Right:
Reconstruction based on all points acquired from the robot
Lizhbeth. Colors represent the elevation, red being high
and blue being low.

tailed view of a large tree over a brick wall, expanded from
the dashed area of Figure 12. At the entrance of the harbor
on the right, there is a large willow tree, which undergoes
substantial seasonal changes in foliage (see Figure 14c and
14f).

Those results, although qualitative and preliminary are
used in the discussion (Section 6) to highlight foreseen
challenges in a more complete deployment for long-term
shore monitoring.

6 Discussion

In the light of the above results, we present a deeper analy-
sis around four main themes: 1) problems related to the use
of GPS, 2) EKF comparison, 3) amelioration of the ASV
model, and 4) challenges related to shore mapping. We
also point out certain limitations of our experimental re-
sults and discuss potential improvements to our methodol-
ogy for a deeper knowledge on state estimation for ASVs.

Relying on GPS The standard EKF formulation relies on
the assumption that the process and observation noise can
be accurately modeled by a zero mean multivariate Gaus-
sian. This assumption is known to be wrong for accelerom-
eters and gyroscopes, for which additive biases are tracked
in the vehicle states in order to recenter their noise to zero.
Those biases tend to mainly follow the internal tempera-
ture of the sensors, which depends on uncontrolled envi-
ronmental conditions and varies with a low frequency. To
be estimated properly, those biases need to be observable
(directly or indirectly) using another sensor. In our case,
this sensor is the GPS.

Looking at the 2D offset of all the proposed EKF tra-
jectories presented in Figure 9-Left, one can observe that
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(a) Static points, top view. (b) Static points, isometric view. (c) The willow tree in winter.

(d) All points, top view. (e) All points, isometric view. (f) The willow tree in summer.

Figure 14: Detailed view of the willow tree in the point cloud map, both in winter (c) and summer (f). Figure (a) and (b)
show the static components of the map. The dynamic points are highlighted in green in Figure (d) and (e).

both IC and MB3D follow the ground truth globally nicely.
The two insets (1) and (2) show in more details the errors
caused by the GPS offsets: as the EKFs assume Gaussian
noise on the GPS signal, they eventually drift to reduce the
relative error to the GPS signal (see Figure 9, inset (1)).
As long as the offset on the GPS signal remains relatively
constant (see Figure 9, inset (2)), the estimates from both
EKFs cannot reduce the error with respect to the ground
truth. This explains the high absolute position errors for all
EKF versions as highlighted in Figure 10a.

To evaluate the noise on our specific GPS antenna, we con-
ducted a small experiment with the ASV on the ground
(fixed position) for 25 minutes with at least seven satellites
in an open area with clear view of the sky (Figure 15-Top).
Naively extracting the mean and evaluating the offset error,
results in a standard deviation of 1.5 m (see histograms in
Figure 15-Top). The temporal evolution of the GPS error
is shown in Figure 15-Bottom and reveals strong correla-
tions over time, which resembles more a bounded random
walk. Occasionally, the signal shows large constant off-
sets for up to 3 minutes in perfect conditions. The fact
that modeling GPS noise as Gaussian noise is insufficient
was also observed in geodetic analysis [Amiri-Simkooei
et al., 2007] but not so much in robotics. The addition of
multi-path problems in cluttered environments even adds a
spatial correlation of the GPS error. ASVs often operate
in slow speed regimes (around 1 m/s), which makes it dif-
ficult to discriminate the GPS error from actual motion of
the vessel. This leads to the conclusion that accelerometers

biases cannot be observed using GPS unless the platform is
fast enough and only operates in clear sky conditions. This
motivates the use of other exteroceptive measurements into
the state estimators, which could observe a GPS bias at a
rate faster than its drift.

Selecting the appropriate filter The experimental com-
parison of the three proposed state estimators shows that
the MBCF method performed best for the system at hand.
MBCF combines the good performance of the linear com-
ponents of the model-based approach, with the simplicity
of the IMU-centric method for the attitude estimation. We
highlight its superior performance with two key figures:
Figure 10c and Figure 11a. The first one shows that the
model-based approaches (MB3D and MBCF) provide the
significantly smoother velocity estimates than the IMU-
centric version. The second figure demonstrates that the
use of the CF recovers the attitude of the pole best. The
simple formulation of the complementary filter directly in-
tegrates the IMU measurements, but is not affected by erro-
neous accelerometer biases as is the IC version. In contrast
to the fully model-based approach (MB3D), it circumvents
the need for formulating an accurate model of the hydro-
static restoring forces that would describe the rocking mo-
tion of the boat.

Our results also show that the IMU-centric version does not
perform as well as one might expect, which is mostly due
to the error on the GPS signal. In comparison with the work
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Figure 15: GPS noise analysis of a stationary point (on the
shore) over 24 minutes. Top: 2D error of the GPS coordi-
nates with respect to the mean. The coloring of the points
corresponds to the temporal evolution. A fitted Gaussian
distribution is overlaid onto the error histograms. Bottom:
Evolution of the northing error through time.

of Leutenegger and Siegwart [2012], which explores state
estimation for a fixed-wing aircraft, the motion of an ASV
is in the same order of magnitude as the error level on the
GPS readings. This fact added to the non-Gaussian char-
acteristics of the noise lead to a lower performance when
applied on an ASV.

In our evaluation we focused on solutions based on EKFs
and therefore rely on linearizations. We believe this to be
a reasonable choice given the slow dynamics of an ASV.
However, it might be interesting to compare our results
with more complex filters, such as the unscented Kalman
filter (UKF) or a particle filter, and analyse the error that
the linearized propagation of the covariance matrix intro-
duces.

Improving ASV models One of the main conclusion is
that all filters using a model perform better. This indi-
cates that simplified models can also contribute significant
information to the state estimation process. Appropriate
parameter identification is one of the bottlenecks of the
modeling process. The use of an external tracking sys-

tem for this identification, like a theodolite installed on the
shore, can be difficult, if not impossible. Some ASV de-
ployments may require to be faraway from the shore. We
compared the use of GPS and theodolite information and
conclude that it is possible to use GPS measurements to
optimize model parameters, while being aware of its limi-
tations. The quality of the parameter identification will de-
pend on environmental conditions, which might influence
the GPS measurements, and on the nature of the data set.
Also, when using GPS, the overall trajectory has to span
a reasonably large area with respect to the GPS noise, to
avoid over-fitting. The same conclusion was obtained from
the attitude estimation using a more expensive sensor, the
Velodyne, for which similar results could be achieved with
a custom-made, slow-tilting laser rangefinder. However,
the relatively slow nodding motion with which our laser
rangefinder is actuated, might introduce unwanted effects.
Due to the low nodding speed, full point clouds are only
available at 0.5 Hz, and at this frequency the inclination
signal might not be captured entirely. Those observations
should motivate better model identification even without
access to expensive equipment.

Monitoring shores through seasons Scanning shore el-
ements from an ASV brings back the generic problem of
reflections in foreground. In our current configuration, the
sensor is placed at approximately 1 m above the waterline.
This brings the advantage that most of the beams hitting
the water are not reflected back to the sensor due to a low
incidence angle. In rare cases, few points will be measured
when a wave will have the appropriate angle and timing to
generate a plane that is almost perpendicular to the laser
beam. The problem gets more apparent at the interface be-
tween the shore and the water, where the beams that were
reflected from the water surface hit the shore. Figure 16
shows this situation where the reflected points have a lower
intensity than their direct counterparts. The reflection is
even more apparent on the right side of the figure, where
the terrain is expected to continue with the same slope in
the water, but abruptly changes direction, due to the reflec-
tion on the water surface.

An easy way to fix this situation is to remove all points
below the water level before sending them to the mapping
module. This plane is defined in global coordinates, which
highlights the utility of an accurate state estimation deal-
ing with 3D attitude. Yet, the global elevation of the plat-
form cannot be estimated only with GPS data and is set
to an initial value relying on external information. We
could observe the water level of the lake varying by up
to 0.8 m during the year, as depicted in Figure 17. The
water level of the lake was measured from a meteorolog-
ical station situated on the east shore, at 3.5 km from the
boathouse. We could estimate the average water level us-
ing ICP corrections when moving close to the boathouse.
Its roof served as a global anchor point and provided hor-
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Figure 16: Front view of the boathouse. The dashed line
represents the approximate position of the water level. The
color of the point represents the laser intensity, red being
high and blue low.

izontal constraints. However, the fact that the boats were
moored on wooden pillars, but floated on the water com-
plexifies the problem. Given that the boats follow the wa-
ter level, they will tend to compete with the surrounding
environment because the registration will bring then back
to the last observed position if not appropriately flagged
as dynamic elements. For more complex deployments of
mobile surveying units, one should keep in mind that the
water level will need to be estimated to achieve a coherent
representation of the scene throughout a year.
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Figure 17: Comparison of the water level from the mete-
orological station (blue) and ICP-based estimation (red).
The whiskers represent the quartiles and the dots the me-
dian values.

The water level could only be estimated close to the
boathouse because this was the only place where there was
enough points on horizontal structures. Indeed, shorelines
close to human activities can be heavily transformed and,
in our case, lead to vertical building facades and brick walls
higher than the laser position. This problem prevents the
use of automatic registration algorithms to compare our
mapping results to a ground survey unit, for which horizon-
tal structures could not be observed by both systems (recall
Figure 13). Given those observations, one should foresee
such challenges before deploying ground and water survey
systems in urban environments. Another reason explain-
ing why the correction based on point clouds was noisier
outside the boathouse entry, is that the number of measured

points in each swipe is considerably reduced when the boat
is facing the open water and could only partially see the
large willow tree (unstructured element).

The Velodyne sensor, which we used for the attitude eval-
uation, might also be an appropriate choice for the appli-
cation of shoreline mapping. However, it comes at a sig-
nificantly higher price compared to conventional 2D laser
rangefinders, and the static arrangement of lasers in ver-
tical direction results in limited vertical resolution. For
these reasons, we believe that the use of externally rotated
2D laser rangefinders is a good choice, and depending on
the application, the fact that it can produce point clouds of
higher density might be beneficial. Independent of cost,
the range of the selected scanner is intrinsically linked to
the capability of the ASV to navigate in shallow water, as
shore can rapidly be out of sensor reach.

General Extensions The identification of the model pa-
rameters depends on data sets from the field. It is important
that the recorded data properly span the state space of the
model, i. e., it is necessary to have a homogeneous distribu-
tion of the primitive motion types in the data set. It might
be beneficial to automate this process by, for instance, us-
ing feedforward-like scripts for the motor commands. Fur-
thermore, the parameters N and T of the optimization rou-
tine have been selected manually. As they relate to phys-
ical quantities, meaningful values can be chosen by hand.
However, finding optimal values might improve the opti-
mization runtime.

Even so, we provided a relatively simple solution to acquire
attitude ground truth, it implies unfavorable spatial restric-
tions. Such spatial restrictions can not be avoided when us-
ing laser rangefinders. An interesting alternative approach
would be the utilization of an omnidirectional camera to
track the motion of the horizon.

7 Conclusion

This article tackled the issue of state estimation for ASVs
with exteroceptive sensors that can be affected by motion
blur. We demonstrated that for such sensors, 2D state es-
timation is not enough because waves constantly rock the
boat. Consequently, we presented three different filters for
3D state estimation based on a widely used set of basic
sensors. The first one is an IMU-centric EKF inspired by
state-of-the-art unmanned aerial vehicles. The second is a
model-based EKF using the dynamics of our ASV. The
final approach decouples the attitude estimation from the
position by using a complementary filter on the attitude,
and a 2D model-based EKF for position and bearing.

To compare these three state estimation algorithms, we
recorded more than 13 km of data over a year. We used
a theodolite to measure accurate positioning and a reflec-
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tive pole coupled with an extra fast 3D scanner to assess the
stability of the attitude estimation. Modeling the boat and
water interaction leads to complex parameters that are hard
to estimate. To cope with this problem, we also proposed
an optimization procedure for the model parameters that
can be applied even when only GPS position is available.

The results show that using a dynamic model of the boat is
important to obtain a good and smooth estimation of linear
velocity. On the other hand, IMU measurements are suffi-
cient for the estimation of the roll and pitch angles. There-
fore the best state estimation scheme combines a comple-
mentary filter for the attitude and a model-based EKF for
the position and linear velocity.

We also presented a long-term series of shoreline moni-
toring data sets. With a classification between static and
dynamic points, we highlighted environmental changes in
the vegetation and the position of moored boats. Further-
more, we discussed the implications of specific challenges,
such as reflections on the water surface and alternating wa-
ter levels.

In conclusion, ASVs offer the opportunity to connect un-
derwater measurements (e.g., bathymetry or temperature)
with sensor data recorded above the water level. We be-
lieve that this opens a broad field of applications in the field
of robotic environmental monitoring.
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