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Ontology-based Semantic Relatedness for Detecting the Relevance of 

Learning Resources   

Semantic relatedness measures have proved to be useful for a number of applications, such as querying 

personalized web resources, word sense disambiguation or real-word spelling error correction. Most semantic 

relatedness measures between concepts are based on concept hierarchy of the domain ontology. In this paper 

we propose a semantic relevance measure that expresses the semantic relatedness between a learning resource 

and the learning context of a learner. In our case, both the learning resource and the learning context are 

described by graphs using the learning concepts of the domain model. Our semantic relevance measure aims 

to detect the relevance of a learning resource for a particular learning context of a learner. In our work, the 

semantic relevance measure is based on the assignment of relative weights to the learning concepts describing 

the learning resource according to their relationships with the current concept interesting the learner. The 

proposed measure achieves better results than similar measures and yet is much simpler than most of them. It 

is shown to achieve a correlation from 0.627 to 0.945 with expert ratings. This measure is implemented and 

used in a learning organizer, a system which generates adaptive hypermedia courses and reuses learning 

resources from distant web repositories, called « Organisateur de Parcours Adaptatifs de Formation» (OrPAF) 

(Yessad, Faron-Zucker, Dieng-Kuntz, & Laskri, 2008a, 2008b). In OrPAF, learning resources are annotated in 

order to be queried for a particular learning context which is represented by a map of annotated learning 

concepts, called Adaptive Cognitive Map (ACM). The proposed semantic relevance measure is used in order 

to automatically detect the learning resource relevance. 

Keywords: Semantic web; Educational hypermedia; Learning resource; Semantic annotation; Semantic 

relatedness;  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction   

The Web is becoming a de-facto standard platform for providing various kinds of learning resources, to 

support teaching in a university or a technical training company. One of the greatest benefits of the Web is 

that learning resources created to support a specific course no longer remains the only resources that the 

learners can use during the course. Many researches propose personalized learning supports in order to reuse 

and share learning resources from distributed repositories (Nejdl, Wolf, Qu, Decker, Sintek, Naeve, Nilsson, 

Palmer, & Risch, 2002; Miklos, Neumann, Zdun, & Sintek, 2003; Dolog, Henze, Nejdl, & Sintek, 2004). The 

personalization of existing learning resources can be a solution to the problem of developing online courses. 

However, a personalized learning that uses distributed metadata of learning resources is still an unsolved 

problem in the e-Learning research area.  

Considering the increasing re-use of learning resources from the Web it becomes almost impossible for 

learners, experts and formation supervisor to get an overview of all the available information relevant to their 

current needs, tasks, roles and goals. And even if they find some materials which seem suitable, they are not 

able to assess completely whether the found content is entirely appropriate for their goals, their current 

knowledge and cognitive state. For that reason, learning resources searched from web repositories must be 

first subject to a pedagogy engineering work in order to make them reusable in the context of a particular 

formation for particular learners. This engineering work is time and effort consuming in the design step of an 

e-learning system.  

In this area, researches attempt to specify interoperable metadata standards to capture and formalize the 

semantic meaning of learning resources in order to use, adapt and share these resources in different e-learning 

context. The IEEE/IMS LOM specification constitutes the best example of these standards. The IEEE/IMS 

LOM specification describes nine major categories of metadata which are used to describe a learning resource 

and where the implementation of metadata is language independent. XML is the most common language 

binding used presently, but other language bindings are becoming available such as the RDF-LOM binding 

[Nilsson, Palmer, & Brase, 2003]. Despite the positive steps taken with the development of metadata 

standards, they suffer of some complaints. The most important complaint is that value spaces of LOM 

metadata are not necessary shared and common to all the resource repository systems. This approach offers 

very little or no semantic metadata such as the actual metadata standards that are meant to help reuse in fact 

do the opposite [Mohan & Greer, 2003]. There is a growing concern though towards the need of extending the 

IEEE/IMS LOM standard, in the context of the Semantic Web so as to allow improved semantic annotation of 

learning resources. Many researches have been associating ontology with various aspects of learning resource 

in order to improve the quality of metadata and encourage reuse. The Semantic Web for E-Learning (SW-EL) 

field has shown the greatest activity in this trend with several interesting and recurring practices (Aroyo & 

Dicheva, 2004; Yessad & Laskri, 2006). 

We propose a learning organizer which generates adaptive hypermedia courses and reuses learning resources 

from distant web repositories, called « Organisateur de Parcours Adaptatifs de Formation» (OrPAF) (Yessad 

et al., 2008a, 2008b). The learning organizer aims to improve the learning process efficiency (1) by providing 

the learner with adaptive course structure according to his/her level of knowledge, learning goal and time 

constraints; and (2) by reusing learning resources of different web repositories as adaptive course content: 

On the one hand, the adaptive course structure is a map of relevant learning concepts. We call this map 

Adaptive Cognitive Map (ACM) which is a sub-graph of the graph of learning concepts which describes the 

domain model (e.g. Algebra domain, the algorithmic and programming languages domain) and adapted to the 

learner model(e.g. beginner).  

On the other hand, the adaptive content is made of learning resources that are queried from distributed web 

repositories (e.g. ARIADNE) and recommended to the learner. These resources are already annotated with the 

LOM metadata but are still very difficult to be automatically reused because of the semantic lack of the LOM 



 

metadata. In order to improve the automatic reuse of learning web resources, we propose to enrich their LOM 

metadata by conceptual annotations as an additional layer of description. For instance, a conceptual 

annotation concerns resource topics, resource author or resource role related to the learning resource. The 

annotation task is semi-automatic, assisted by domain experts. Once the annotation task is performed, the 

problem is to automatically detect the semantic relevance of a learning resource for the learning context of a 

learner.  In this paper, we propose a novel approach based on the learning context to discover the semantic 

relevance of annotated learning resources. The semantic relevance measure of a learning resource is based on 

relative weights of the learning concepts related to the learning resource. The semantic relevance measure 

expresses the relatedness between the learning resource and the learning context which is represented by the 

ACM and the current concept interesting the learner. Whereas the most relatedness measures are based on the 

matching between terms, the relevance measure is based on the semantic representation of the domain and the 

matching between concepts. The originality of our approach is that the semantic relevance measure considers 

the global learning context and not only the current concept interesting the learner.       

This paper is organized as follows: section 2 presents how we represent the learning knowledge by learning 

ontology and learning models and we show how we annotate a learning resource by using these learning 

ontology and learning models. We explain, in section 3, the proposed approach to detect the semantic 

relevance of a learning resource. Section 4 presents a related work and section 5 presents the evaluation 

approaches and results of the proposed semantic relevance measure. 

Learning Knowledge 

Because of the increasing complexity and heterogeneity of knowledge in e-learning systems (e.g. domain 

knowledge, learner knowledge, pedagogical knowledge), we require an efficient and modular knowledge 

organization. We represent our learning organizer knowledge in two levels: the meta-model level and the 

model level.  

Learning Ontology 

The learning ontology we developed stands for the meta-model and the backbone of the learning process. It 

describes classes and properties that are instantiated in order to specify the domain of interest (e.g. Algebra), 

profiles of the learners (e.g. beginner), pedagogical strategies (e.g. deductive strategy) and annotations of 

learning resources (e.g. learning resource role).   

Classes and properties are seen as general objects. So, the learning ontology (meta-model) is instantiated to 

construct three learning models: a domain model, a learner model and a pedagogical model. Contrary to the 

learning ontology, these models describe specific objects. For instance, in the learning ontology, we describe 

types of learning concepts of a domain (e.g. a medium concept) and relationships between these types (e.g. 

prerequisite 

 relationship) whereas in the domain model we describe concrete learning concepts and their relationships. 

For instance, the concept EquivalenceClass and the concept EquivalenceRelation are instances of the class 

LearningConcept defined in the meta-model (cf. figure 1); and in the domain model, the concept 

EquivalenceClass is related to the concept EquivalenceRelation by the relationship hasPrerequisite  (cf. 

figure 2). The classes of the learning ontology are hierarchically organized with one general and abstract class 

called Class. The class Class has three direct subclasses: LearningConcept, LearningPerson and 

LearningPedagogy which are used to construct respectively the domain model, the learner model and the 

pedagogical model. For example, all learning concepts of the domain model are instances of subclasses of the 

class LearningConcept. Similarly, properties of the learning ontology are hierarchically organized with one 



 

general and abstract class called property. The class property is specialized in three subclasses: 

learningConceptProperty, learnerProperty and pedagogicalProperty. 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. An excerpt of our learning ontology 

Learning Models 

The learning ontology is instantiated into three learning models: the domain model, the learner model and the 

pedagogical model.  

Domain model. The domain model represents the domain of interest where the learner evolves. A specific 

domain of interest (e.g. algebra, algorithmic and programming languages) is described by learning concepts 

and their relationships. In figure 2, we show a fragment of the domain knowledge covering learning concepts 

of « Algebra » domain, including the subClassOf and the hasPrerequisite relationships between learning 

concepts. Learning concepts related with an order relationship (e.g. hasPrerequisite) must be taught following 

a certain order.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. An excerpt of the domain model « algebra » 

Learner model. The learner model captures knowledge and preferences of the learner. It represents what the 

system knows about the learner. In our learning organizer, we represent the knowledge of the learner by the 

lo : Learning ontology prefix 



 

so-called overlay model (Galeev, Tararina, & Kolosov, 2004). For instance, as shown in figure 3, if the 

learning concept EquivalenceRelation is mastered by the learner Maria, the knowledge <Maria, 

masteredLearningConcept, EquivalenceRelation> occurs in the learner model, else the concept 

EquivalenceRelation is unknown by the learner Maria. The learner model changes during the learning process 

when the learner passes tests. In this way, our learning organizer provides mechanisms for self regulated 

learning (Pintrich & Schunk, 2002; Perry, Phillips, & Hutchinson, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 An excerpt of a learner model 

Pedagogical model. The structure of the domain model alone is not sufficient to decide how to present the 

selected learning concept to the learner, i.e. what pedagogical type of learning resources to select, or how to 

sequence several learning resources to teach a given learning concept. For this purpose, we define a 

pedagogical model which describes pedagogical strategies to teach learning concepts. It describes different 

pedagogical activities (e.g. exercise, lecture) and their relationships. For instance, as shown in figure 4, the 

Definition activity (instance of the class PedagogicalActivity in the meta-model) must precede the Exercise 

activity; both activities are related by the sequencingStrategy property which is defined in the meta-model. 

The alternativeStrategy relationship between pedagogical activities means that learning resources related to 

these pedagogical activities can be accessed by a learner in any order whereas the sequencingStrategy 

relationship requires an order in the presentation of learning resources to the learner.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. An excerpt of the pedagogical model 

lo : Learning ontology prefix 

dm : Domain model prefix 

lo : Learning ontology prefix 



 

Adaptive Conceptual Map  

An ACM is a course structure generated and displayed by the learning organizer in order to help the learner to 

construct a «correct» mental representation of the learning domain. It is a sub-graph of the domain model and 

contains learning concepts that the learner must learn to achieve his goal in required time. An ACM enables 

the learner to navigate between the learning concepts of the course. We distinguish between three cognitive 

maps constructed from the goal concept set G of the domain model (DM): simple Ms(G), hierarchical Mh(G) 

and relational  Mr,m(G). Each of these maps results from the application of a specific filter on the domain 

model and only the concepts which pass the filter are displayed to the learner.  

 

- Simple Ms(G) is the smallest map. It is composed of the goal concept and all concepts related to it directly or 

by transitive closure of order relationships. 

- Hierarchical Mh(G) is the cognitive map that extends the simple cognitive map to descendants and 

ascendants of the goal concept.  

- Relational Mr,m(G) is the cognitive map that extends the simple cognitive map to all concepts related to the 

goal concept by a path of relationships, the length of this path being less than m. 

 

OrPAF implements each of these three possible filters. For the same concept goal, the filter depends on 

learner temporal constraints: the simple filter for learners with hard temporal constraints, the hierarchical filter 

for learners with medium temporal constraints and the extended filter for learners with flexible or no temporal 

constraints. These approaches can be compared to the micro, the meso and the macro learning approaches 

(Hug, 2005). 

Before displaying the ACM to a learner, an additional adaptation layer is applied on it. It consists of applying 

rules in order to annotate each learning concept, similarly to the link annotation technique in adaptive 

Hypermedia systems (De Bra, Brusilovsky, & Houben, 1999). Different icons represent different states of a 

learning concept (cf. figure 5). A learning concept is accessible to the learner if all its prerequisites are 

mastered by the learner. Elsewhere, the learning concept is not accessible to the learner and no learning 

resources are attached to it. A concept without prerequisites is always accessible. In our organizer, we 

distinguish also between mastered concepts and not yet mastered concepts. Graphical icons are used to 

represent the difference between these three learning concept states. For instance, figure 5 presents a 

hierarchical ACM to learn the algorithmic and programming languages domain, the goal concept is 

Procedure, the learning concept Operator is mastered, the learning concept Procedure is not mastered and the 

learning concept SemanticLanguage is not accessible. The state of a learning concept changes from 

inaccessible state to accessible state if its prerequisites become mastered. Also, it changes from non mastered 

state to mastered state. These alterations in the ACM result from updating the learner model.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.  A screenshot of a course structure 

 

Conceptual Annotation of Learning Resources 

Once a distant learning resource is downloaded, it is submitted to a semi-automatic annotation process 

assisted by a teacher/expert; and finally the learning resource is stored in a local repository. Conceptual 

annotation of the learning resource are constructed by instantiating some classes and properties from both the 

domain model and the pedagogical model. For instance, as shown in figure 6, Course1 is a learning resource. 

The role of Course1 is FormalDefinition which is defined as PedagogicalActivity in the pedagogical model. 

The topics containing in the learning resource Course1 are reflexivity, Symmetry and Transitivity, which are 

defined as LearningConcept in the domain model.    

Characteristics (e.g. Resource topics, resource role, resource author, resource interactivity type) of the 

learning resource are manually identified by teacher/human expert and related to the learning resource in 

order to construct a conceptual annotation. This conceptual annotation is automatically generated by the 

system according to the learning models. The so-built conceptual annotation is then added to the learning 

resource metadata (in our case, the RDF-LOM binding metadata). This conceptual annotation is used during 

the learning process to detect the matching between the learning resource and the learning context of a 

particular learner. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
Figure 6.  An excerpt of the conceptual annotation of the learning resource http://www-sop.inria.fr/…/ Course1 

Detection of the Semantic Relevance of Learning Resources 

The problem of automatically recommending an adaptive content to a leaner is still not resolved. We propose 

an approach which is based on previous semantic models and consists of searching relevant learning resources 

adapted to a particular learning context in order to recommend them to the learner. In OrPAF, a query 

component is developped in order to query learning resources (Yessad et al., 2008b). The learning ontology is 

described in OWL language and both the learning models and the resource annotation are described in RDF 

language. We extract knowledge from the learning ontology, the learning models and the resource annotation 

by submitting SPARQL query to Corese, an ontology-based search engine for the semantic web (Corby, 

Dieng-Kuntz, Faron-Zucker, & Gandon, 2006). In order to detect the resource relevance for a learner we 

extract the relationships that connect the concepts of the resource annotation, to the current concept in the 

ACM. Based on these relationships,we compute and assign a relative weight to each learning concept of the 

resource annotation. These weights are then used to compute the semantic relevance of the learning resource. 

Our approach consists of two phases: a semantic analysis and a customization analysis. The semantic analysis 

is based on the concepts of the ACM, their states and their relationships. In the semantic analysis, only the 

learning concepts of the resource conceptual annotation are used in the calculus of the semantic relevance. 

The other information related to the learning resource (e.g. learning resource role, learning resource author) 

are used in the customization analysis.  

The result of the semantic analysis is learning resources which are relevant for the learning context but not 

necessarily adaptive for the learner preferences. Thus, we require a customization analysis for recommending 

only the learning resources adapted to the preferences of the learner.  

Semantic Analysis 

The learner can consult resources associated  to one accessible learning concept in his/her ACM by a simple 

click on it. The query component searches for relevant learning resources from the local repository. It 

computes the relevance of a learning resource by matching its conceptual annotation with the learning 

lo: Learning ontology prefix 

dm: Domain model prefix 

pm: Pedagogical model prefix 

 



 

context: a given ACM and the learning concept currently selected in it. The relevant resources are 

recomended  in decreasing order of relevance.   

In order to compute the semantic relevance of a learning resource to the learning context, the learning 

concepts related to the learning resource by the learningResourceTopic property (cf. figure 6) are extracted 

from the resource annotation. For each extracted learning concept a relative weight is calculated. The weight 

of a concept depends on the path of the relationships that connect this concept to the current concept. The 

semantic relevance is then computed by using these relative weights.   

Let P<c1, c2, c3, .. cn > be a learning path of length n and composed of concepts ci . Let Wci/c1 (i>1) be the 

weight of concept ci relative to current concept c1 in the ACM. Let Wc1 be the weight of the current concept 

c1. We define the relative weight by the folowing recursive relation:  

 

                                                          Wc2/c1= 1/a 

                                                          Wci/c1= (1/a) Wci-1/c1  , i>2 

                                                           

 

where a is a variable whose value is as follows: 

a=2 if the relationship between ci-1 and  ci is subClassOf or its inverse relationship 

a=3 if the relationship between ci-1 and  ci is hasPrerequisite or its inverse relationship 

a=5 if the relationship between ci-1 and ci is aggregationOf or its inverse relationship  

The weight Wc1of the current concept c1 is a big number N. 

 

When there are several relative weights for one learning concept (due to graph cycles) we consider the 

smallest value. Once the relative weight of each learning concept related to the learning resource by the 

learningResourceTopic property is computed, the semantic relevance SR of the learning resource can be 

measured as follows: 

Let E be the set of concepts both present in the learning resource annotation and the accessible concepts of the 

ACM, let F be the set of concepts present in the learning resource annotation and not present in the accessible 

concepts of the ACM, and let c be the current concept of the ACM. 
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The definition of SR reflects the fact that the weight of a concept depends on the current concept and the state 

of the ACM and therefore on the learning context. A resource is relevant if the learning concepts related to it 

by the learningResourceTopic property have important relative weights and are largely similar to the 

accessible learning concepts of the ACM. Otherwise, the resource is less or not relevant.   

For instance, as shown in figure 7, the weight of the learning concept BinaryRelation relatively to the current 

concept OrderRelation  is 1/6 because the path between these both concepts is composed of one 

hasPrerequisite relationship (a=3) and one subClassOf relationship (a=2): WBinaryRelation/OrderRelation = 1/2* 

WTransitivity/OrderRelation  and WTransitivity/OrderRelation= 1/3. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.  Assignment of relative weights to the concepts related to the learning concept OrderRelation in algebra domain 

 

Customization Analysis 

Each learning resource is described with a conceptual annotation. This conceptual annotation describes 

learning concepts related to the learning resource by the learningResourceTopic property (cf. figure 6.). In 

addition to the learning concepts, a conceptual annotation describes other LOM metadata which are used to 

decide if the resource matches with the learner preferences (e.g. preferredAuthor, preferredResourceFormat, 

etc.) or not. Once a set of candidate learning resources are selected as a result of the semantic analysis, we 

must verify that these resources match with the learner preferences. For instance, we verify that the learning 

resource has a particular interactivity type (e.g. video) or that the language used in the resource is the english 

language adapted to the learner preferences  

Related Work 

In our work, the proposed semantic relevance measure detects the degree of similarity between a learning 

resource and a learning context represented by an ACM and a current learning concept. It may be considered 

as the inverse of the semantic distance between the learning resource and the learning context. In the semantic 

analysis, the calculus of the semantic relevance concerns only learning concepts related to the learning 

resource. Other characteristics like the resource pedagogical role or the preferred resource format are used in 

the customization analysis. Thus, the computing of the semantic relevance is reduced to the computing of the 

semantic similarity betweens networks of learning concepts. The idea of computing the semantic proximity on 

semantic networks goes back up to researches of [Quillian, 1968; Collins & Loftus, 1975] on semantic human 

memory.  

The structure of concepts supporting semantic similarity in many researchers is the hierarchy. In concept 

hierarchy, the subsomption relationship is used to compute semantic similarity between concepts. We can 

consider that there are two big families of approaches to compute the semantic similarity. On the one hand, 

approaches that use only the subsomption relationship to compute the semantic similarity [Corby, Dieng-

Kuntz, & Faron-Zucker, 2004; Rada, Mili, Bicknell, & Blettner, 1989; Wu & Palmer, 1994]. On the other 

hand, approaches which include besides the subsomption relationship other information. This information can 

be statistics about the use of concepts in corpus [Resnik, 1995; Jiang & Conrath, 1997].  Particularly, the 



 

researches of [Jiang et al., 1997; Lin, 1998] introduce the notion of conditional probability of encountering an 

instance of a child-concept given an instance of a parent-concept. More recently, [Zhong, Zhu, Li, & Yu, 

2002] define a similarity measure between conceptual graphs: a query graph and a resource graph. While most 

previous researches base the calculus of the semantic proximity on the hierarchical structure of concepts, our 

approach takes into account all the semantic relationships between the concepts (e.g. hasPrerequisite 

relationship) in the domain model. In addition, the semantic similarity proposed for our learning organizer 

depends on the learning context by using relative weights whereas the semantic similarity in the above 

researches depends of the depth of the concepts in the hierarchy which is a constant value and learning 

context-independent. 

Evaluation of the Semantic Relevance Measure  

In order to evaluate our semantic relevance measure, we adopt two approaches : 

The first evaluation approach is the comparison between the SR results and the expert ratings. These expert 

annotators had been asked to judge the relevance of resources for different learning contexts in the 

algorithmic and programming languages domain. The average relevance scores of experts are correlated with 

the semantic relevance values generated by our measure. In this experimentation context, we also studied 

results provided by a measure of the semantic similarity between conceptual graphs SoG proposed in (Zhong 

et al., 2002). We aimed to compare results obtained by our semantic relevance measure SR, the semantic 

similarly SoG and expert ratings. The comparison between SR and SoG is possible for two reasons: Similarly 

to the SoG measure, the SR measure computes the matching between two conceptual graphs: an ACM which 

represents a query graph and a learning resource annotation which represents a resource graph. In addition, 

similarly to the entry concept used in the SoG measure, we consider the current concept as the entry of the 

ACM (the query graph) and the most important learning concept related to the learning resource as the entry 

of the learning resource annotation (the resource graph). However, contrary to the SoG measure, the SR 

measure does’t depend on the depth of the learning concepts in the domain model hierarchy but depends on 

the learning context. In addition, the weights used in the SoG are specified by users within the UI or defined 

as default values whereas the weights used in the SR are automatically calculated and depend on the learning 

context. 

The second evaluation approach consists to measure the performance of the semantic relevance measure SR in 

detecting relevant resources and avoiding to recommend irrelevant resources to the learner.  

Comparison with Expert Ratings of Relevance 

Data. We asked three experts to note on a scale from 0 to 10 the relevance of twenty learning resources for six 

different learning contexts in the algorithmic and programming languages domain.  

First, we explained to experts our aim of developing OrPAF and asked them to annotate twenty learning 

resources from Algorithmic and programming languages domain. They annotated resources with learning 

concepts from the domain model. After this annotation task, we presented to the experts six different ACM 

(three simple ACMs and three relational ACMs). In each ACM, the current concept was explicitly showed. 

The experts gave notes on scale from 0 to 10 which represent the relevance of each resource for each learning 

context. Finally, we studied both the correlation between our semantic measure of relevance SR and the 

expert ratings and the correlation between the semantic measure of similarity SoG (Zhong et al., 2002) and the 

expert ratings. 



 

Results and discussion 

 
Table 1. Correlation coefficients between expert ratings of similarity and both SR and SoG measures 

Simple ACM Relational ACM Similarity measures 

ACM1 ACM2 ACM3 ACM4 ACM5 ACM6 

SR measure 0.883 0.945 0.964 0.627 0.690 0.691 

SoG measure -0.124 0.008 -0.678 -0.495 0.003 -0.097 

 

Table 1 shows correlation scores for both the SR measure and the SoG measure with expert ratings of 

relevance. The correlation coefficients of the SR measure vary from 0.627 to 0.964. The semantic relevance 

scores converge to expert ratings in simple ACMs. Given that the SR measure is the same formula for all 

ACMs, these scores may be explained that the increasing of the size of an ACM disorient the expert who must 

make more effort to determine the relevance of a learning resource for a learning context. The more the size 

of the ACM is small, the better the expert estimates the relevance of a learning resource.  

While the correlation coefficients of the SR measure are acceptable and even good for small ACMs, the 

correlation coefficients of the SoG measure are bad and diverge with expert ratings. This can be explained by 

the fact that the SoG is more adapted and gives better results for linguistic ontologies with a large specter of 

semantic relationships between concepts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  An annotated course structure or learning context 
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Data. We took a corpus of thirty six annotated learning resources relative to concepts in Algorithmic and 

programming language domain. Fifteen of these learning resources were judged relevant by experts for a 

learning context (cf. figure 8).  

The detection of the relevance of the learning resources can be viewed as a retrieval task and evaluated in 

terms of precision (P), recall (R), and F-measure (F). In addition, we defined the scope of a query as the 

maximum authorized number of retrieved resources for any query. The scope of a query is a priori defined by 

the domain expert and so defines the size of the learning resource GUI container. We varied the scope of the 

query in order to study how the number of detecting relevant resources evolves with the number of retrieved 

learning resources. We define P, R and F as follows: 

P= |{relevant resources}∩ {retrieved resources}|/ |{retrieved resources}| 

R= |{relevant resources}∩ {retrieved resources}|/ |{relevant resources}| 

F= 2* (P*R) / (P+R) 

Results and discussion. In table 2, learning resources are sorted by decreasing order of SR. The rows in bold 

type represent the relevant learning resources (fiftheen resources) whereas the rows in italic type are the 

irrelevant learning resources for the learning context of figure 8. We observ that most the relevant learning 

resources have the best relevance scores. 

In figure 9, the values of precision range from 66.6% to 84.6% and stay stabilized even when we increase the 

scope of the query. These values express that the relevance of the learning resources retrieved are acceptable 

and the error varies from 15.4% to 33.4%.  Another result is that the recall or the detection of relevant 

learning resources increases with the scope of the query and the ascent of irrelevant learning resources 

decreases with the increasing of the scope. The value thirteen of the scope appeared as a good value in order 

to obtain a good precision and a good recall. Results show that the proposed semantic measure SR is a reliable 

filter permeable to irrelevant resources.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Relevance detection F-measure, Recall and Precision by query scope 

 

 

 



 

 

Table 2. SR measure values of the learning resources for the learning context of figure 8 

 

Learning resource Conceptual annotation 

(learning concept list) 

SR 

Learning resource 7 Operator, arithmetic operator, Alphanumeric 

operator, logic operator 

0.833 

Learning resource 28 Data type, data memory 0.444 

Learning resource 15 Data, date type, data declaration, 0.410 

Learning resource 5 Variable, constant 0.333 

Learning resource 32 Operator  0.333 

Learning resource 34 Data type, set operator 0.277 

Learning resource 23 Record, variable 0.222 

Learning resource 19 File, record, file function 0.205 

Learning resource 16 Logic operator 0.166 

Learning resource 21 Set operator 0.166 

Learning resource 24 Arithmetic operator 0.166 

Learning resource 33 Variable  0.166 

Learning resource 35 Constant  0.166 

Learning resource 11 Choice statement, logic operator 0.148 

Learning resource 27 Control statement, logic operator 0.133 

Learning resource 9 Data type  0.111 

Learning resource 4 Data type, array 0.108 

Learning resource 20 Data type, simple data, structured data, array 0.097 

Learning resource 31 Record  0.055 

Learning resource 36 Record 0.055 

Learning resource 1  Algorithm 0 

Learning resource 2 Machine code 0 

Learning resource 3 Iterative statement 0 

Learning resource 6 IO statement 0 

Learning resource 8 Assignment statement 0 

Learning resource 10 Functional algorithm 0 

Learning resource 12 
procedure, parameter, local parameter, global 

parameter 
0 

Learning resource 13 Algorithm, program, programming language 0 

Learning resource 14 Structured program, non structured program, 

recursive program 

0 

Learning resource 17 Array sorting 0 

Learning resource 18 Function, predefined function 0 

Learning resource 22 Statement  0 

Learning resource 25 Expression  0 

Learning resource 26 Control statement, choice statement 0 

Learning resource 29 Semantic language 0 

Learning resource 30 Syntax language 0 

 

Conclusion 

Reusing and sharing learning resources in adaptive manner is a challenge for reducing the time and the effort 

of E-Learning system development. The semantic web technologies like the ontologies, the semantic 

annotations and the LOM standard are used in an attempt to improve the learning resource metadata and so 

make the learning resource more meaningful for programs. 
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In this paper, we proposed an approach that consists in annotating a learning resource by a conceptual 

annotation which is constructed by instanciating some classes and properties from our models of knowledge. 

These conceptual annotations are an additional layer of description that extends the LOM metadata of a 

learning resource. We propose to detect the relevance of an annotated learning resource for a learner via two 

analyses: the semantic analysis and the customization analysis. In the semantic analysis, a relative weight is 

assigned to each learning concept related to the learning resource. These weights depend on the learning 

context, i.e. the ACM and the current concept interesting the learner and are used to compute a semantic 

relevance of the learning resource. The learning resources selected in the semantic analysis are submitted to 

the customization analysis.  The customization analysis consists of verifying that these learning resources are 

adapted to the learner preferences.   

The proposed semantic relevance measure was evaluated by two approaches. On the one hand, we calculated 

the correlation coefficients between the SR results and the expert ratings on a corpus of twenty learning 

resources. In addition, we compared these results with the correlation coefficient obtained between the SoG 

results and the expert rating on the same corpus. The SR results were significantly closer to the expert ratings 

than the SoG results. 

On the other hand, we used information retrieval measures in order to evaluate the performance of the 

semantic relevance SR in detecting relevant resources. This approach gave very satisfactory results. 
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