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COMBINATORIAL THEORY OF PERMUTATION-INVARIANT

RANDOM MATRICES II:

CUMULANTS, FREENESS AND LEVY PROCESSES.

by

Franck Gabriel

E-mail: franck.gabriel@normalesup.org

Abstract. — In this article, we study random matrices in a framework based on the
geometric study of partitions and some dualities as the Schur-Weyl’s duality. This gives
a unified and simple framework in order to understand families of random matrices which
are invariant by conjugation in law by any group whose associated tensor category is
spanned by partitions. This includes the unitary groups, the unitary reflection groups, the
orthogonal groups, the bistochastic groups, the hyperoctahedral groups and the symmetric
groups. For each choice of symmetry one can associate a subset of partitions A which
allows us to define a notion of A-free cumulants. Besides, we introduce some observables
on random matrices, namely the P-moments, which generalize the normalized moments.
One of the various by-products we get is that for any family of random matrices which is
invariant by the unitary group, if it converges in non-commutative distribution then the
P-moments of this family converge in expectation. This implies a simple formula which
allows us to compute the asymptotic of any product of the entries of a family of random
matrices which is invariant in law by conjugation by the unitary group and which converges
in non-commutative distribution. We prove similar results when the family is invariant in
law by conjugation by the orthogonal group.

This setting leads to a unified way in order to define and study new notions of asymptotic
freeness associated to each symmetry. As a by-product, we prove that independence and
invariance in law by conjugation by the bistochastic group implies asymptotic Voiculescu’s
freeness. We show that there exist two formulations for each notion of asymptotic freeness:
one uses some modified moments, and the other uses cumulants.

In this setting, a non-commutative central limit theorem is proved and the notion of
asymptotic factorization is also studied. We also show how to inject the theory of classical
probabilities in this new framework: as a consequence, the classical cumulants can be seen
as a special case of the new free cumulants we defined.

At last, we give general theorems about convergence of matrix-valued additive and
multiplicative Levy processes which are invariant in law by conjugation by the symmetric
group. Using these results, we give a unified point of view on the study of matricial Levy
processes on some Lie algebras and some Lie groups.
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1. Introduction

This article is the second one of a set of three, namely [15], [16] and [17]. Here we
will not restate the results of [15], we will only refer to them. Thus we encourage the
reader to read the first article before this one. Besides, the reader must not be surprised
by the absence of introduction in this article since the introduction of [15] was a general
introduction for the three articles, [15], [16] and [17], which are actually a unique article
cut into three. In this article we apply the combinatorial framework developed in [15]
to the study of random matrices. It has to be noticed that some results about the
convergence of generalized observables for unitarily invariant random matrices were also
proved independently in the paper [13]. They used the theory of traffics developped by
C. Male [26], which is a generalization of the theory of free probability, and proved an
equivalent result in this setting. We will explain the links between this article and the
theory of traffics of C. Male in the forthcoming article [14].

1.1. Layout of the article. — The core of this article is the existence of dualities for
some groups of matrices. This idea was first used in order to study random matrices in
[2]. Let G be a group whose associated tensor category is spanned by partitions: to G
is associated a subset of the partitions P =

⋃

k∈N
Pk that we will denote in the layout by

A. An introduction to the dualities for subgroups of O(N) can be found in [3]. For the
unitary reflection group, the duality was proved by Tanabe in [31].

In Section 2, we recall some basic notions in random matrices theory such as the notion
of empirical eigenvalues distribution. In order to prove convergence of this distribution,
one can study observables. We generalize these observables to a family wich is called
the A-moments. Then we begin our study of convergence of families of random matrices
using these observables. A family of matrices is said to converge in expectation in A-
moments if the expectation of any A-moments converges.

The link with the article [15] is explained in Section 3, where dualities like the Schur-
Weyl’s duality are explained. In the article [3], T. Banica and R. Speicher caracterized
the easy orthogonal groups, which are roughly the groups G such that S(N) ⊂ G ⊂
O(N) and which satisfy a duality with some sub-algebra of the partition algebra. These
groups are interesting for our setting based on partitions. We focus in this article mainly
on the unitary, orthogonal and symmetric groups.

We define, in Section 4, the notions of A-non-commutative (or free) cumulants for
any family of random matrices which converges in expectation in A-moments. Using
the results of Section 3, we also define non-commutative cumulants for any family of
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random matrices with a given size: these cumulants are shown to converge to the first
free cumulants we defined when the family of matrices converges in expectation in A-
moments. This allows to prove in a simple way that for any family or random matrices
which is invariant by conjugation by G, if it converges in expectation in A-moments
then it converges in P-moments (Theorem 4.5). For example this shows that a uni-
tarily invariant family of random matrices converges in expectation in P-moments if
it converges in non-commutative distribution and satisfies an asymptotic factorization
of its moments: for example Hadamard products between matrices of this family also
converge in non-commutative distribution. We also study the development in 1

N of the
observables, which is sometimes called the topological expansion.

We introduce the exclusive moments in Section 5: the study of the exclusive moments
allows us to compute the asymptotic of any product of the entries of a family of ran-
dom matrices which converges in non-commutative distribution and which is unitarily
invariant (Theorem 5.4).

We generalize the notion of non-commutative law and R-transform in Section 6. Then
we define and study the notion of A-freeness in Section 7. We study the links between the
different notions of A-freeness and the Voiculescu’s notion of freeness: some of the links
are summarized in Section 7.1.3. We prove for example, in Theorem 7.3, that asymp-
totic P-freeness and a condition of asymptotic G-invariance imply A-freeness. Besides
asymptotic B-freeness implies asymptotic S-freeness which rhougly implies asymptotic
Voiculescu’s freeness. We prove Theorem 7.10 which is a generalization of a well-known
result: independence and G-invariance implies asymptotic A-freeness. This is also gener-
alized in Section 7.1.9, with Theorem 7.11, which allows us to suppose a weaker condition
than the G-invariance. We recover in this setting a result from [28]: a unitarily invari-
ant family of random matrices which converges in distribution is free from its transpose
family. We also compute the R-transform of the sum and the multiplication of two
asymptotically A-free families of random matrices. This result extends the well-known
formulas which use the Kreweras complement for non-crossing partitions. At the end,
we define a notion of A-freeness of higher order in order to deal with the expansion in
1
N of the observables, and prove similar theorems for A-freeness of higher order.
Using the notion of asymptotically A-freeness, in Section 8 is proved a A-non-

commutative central limit theorem, generalization of the non-commutative central
limit theorem, which is shown in Section 9 to generalize also the classical central limit
theorem.

In Section 9, we gather some simple and known facts about approximation of prob-
ability measures using the empirical eigenvalues distribution of random matrices. This
gives two ways to inject the classical probabilities in the setting developed in the article:
one of them allows us to express classical cumulants as non-commutative cumulants.
This shows that probabilistic fluctuations of random matrices invariant by conjugation
by the easy orthogonal groups could also be handled in this new setting.

In the last section, Section 10, we study Levy processes on MN (C) and their asymp-
totic properties when the size N goes to infinity. We prove a new general result on the
convergence in probability of the observables and the existence of expansion in series
in 1

N in Section 10.2. In order to illustrate these theorems, we apply them to additive
and multiplicative Brownian motions: for example we recover well-known results about
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GUE and brownian motion on U(N). A matricial Wick theorem is explained in order
to illustrate the notion of N -finite dimension A-non-commutative cumulants we defined
earlier. Then we apply the results of Section 10.2 to Levy processes with an applica-
tion to free infinitely divisible measures: we extend known results ([5], [10]) to the real
setting where one considers MN (R)-valued Levy processes.

1.2. Acknowledgements. — This work has been realized during my PhD at the
LPMA which offered me the necessary liberty to complete this article. Many thanks
to the researchers and administrative staff of the LPMA. I am grateful to my PhD
advisor Thierry Levy for supporting this research, for his helpful comments and correc-
tions which led to improvements in this manuscript and for the useful discussions about
mathematics and other subjects. I would like to express my special gratitude to Terence
Tao, particularly for his blog which, during a period of doubts, made me enjoy maths
again. This project began when I wanted to understand the link between the work of T.
Levy and the formulation given at the Pims summer school by David Brydges of Wick’s
theorem, I am really thankful to him for this. Also many thanks are due to Antoine
Dahlqvist who explained me the duality between permutations and partitions and to
Camille Male with whom I had great discussions about the partition and traffic point of
views on random matrices. He brought to my knowledge the Proposition 7.1 which gives
even more interest to the following article [17]. I would like to thank Tom Halverson and
Arun Ram for answering my questions about partitions. I am also grateful to Guillaume
Cébron for introducing me to Tanabe’s result. I would like to thank T. Banica and J.
Mingo for several useful discussions and R. Speicher for inviting me to Saarbrücken and
Oberwolfach, invitations which allowed me to improve the papers. Thanks to Patrick
Gabriel for his interest in my work and the discussions related to this work that we had
together, Marie-Françoise Gabriel and Catherine Lam for trying to correct the English
in this manuscript. At last, a thought to all the people which are supporting researchers
and whose names never appear in the acknowledgements.

2. Random matrices and observables

2.1. Introduction to random matrices. — Random matrices are random variables
which take values in a set of matrices Mn,m(C). In this article we will only consider
square random matrices, we will say that M is of size N if M is a square matrix of size
N ×N and we will write M ∈ MN (C).

Actually any random matrix M of size N that we will consider in this article is

automatically supposed to be in L∞−
(Ω) ⊗ MN (C). This means that for any i, j in

{1, ..., N} and for any positive integer k, E[| Mi,j |k] < ∞. Besides, all the random
matrices we consider are defined on the same probability space. In fact, one can only
suppose that for each integer N , all the random matrices of size N that we consider are
defined on the same probability space.

In this article, we are interested in the convergence of some observables when the size
of the random matrices goes to infinity. For example, let (MN )N∈N be a sequence of
random matrices such that MN ∈ MN (C). In the usual method of moments, one is
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interested in the convergence of:

1

N
Tr
(

(MN )k
)

,(1)

or the convergence of the mean moments:

E

[

1

N
Tr
(

(MN )k
)

]

,(2)

when k ∈ N.
The method of moments is justified by the fact that a N ×N random matrix MN has

N random eigenvalues: λ1(MN ), ..., λN (MN ) and for any integer k ∈ N:

1

N
Tr
(

(MN )k
)

=
1

N

N
∑

i=1

λi(MN )k.

Thus, if we define the empirical eigenvalues distribution of MN by:

ηMN
=

1

N

N
∑

i=1

δλi(MN ),

we get that:

1

N
Tr
(

(MN )k
)

=

∫

C

zkηMN
(dz).

Let us suppose that MN is symmetric or Hermitian for any integer N : ηMN
is a

measure supported by the real line. Using the Carleman’s continuity theorem, Theorem
2.2.9 in [32], one can use the convergence of (1) or (2) to prove that almost surely or in
expectation the random measures (ηMN

)N∈N converge when N goes to infinity. Likewise,
we can do the same for unitary or orthogonal matrices.

Theorem 2.1. — Let (MN )N∈N be a sequence of random matrices such that for any
integer N , MN is of size N . We suppose that for any positive integer k,

E

[

1

N
Tr
(

(MN )k
)

]

converges when N goes to infinity.

1. If for any integer N , MN is a unitary or orthogonal matrix then there exists µ a
probability measure on the circle such that the mean empirical eigenvalues distri-
bution E[ηMN

] of MN converges to µ as N tends to infinity.
2. If for any integer N , MN is symmetric or Hermitian (resp. skew-symmetric or

skew-hermitian), under a condition of uniform subgaussianity on (E[ηMN
])N∈N,

the measure E[ηMN
] converges to a probability measure, named µ, supported by the

real line (resp. the imaginary line) as N goes to infinity.

Besides, for any integer k:
∫

C

zkµ(dz) = lim
N→∞

E

[

1

N
Tr
(

(MN )k
)

]

.
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Proof. — We will only remind the reader the proof for the unitary case, the symmetric
case being deduced from a tightness argument and Theorem 2.2.9 of [32]. Let (MN )N∈N
be a sequence of random matrices such that for any integer N , MN is of size N . For any
integer N , the measure E[ηMN

] is supported by the unit circle since the eigenvalues of
a unitary matrix are on the unit circle U. Thus the sequence (E[ηMN

])N∈N is tight: we
only have to show that any limit of a subsequence is determined by its positive moments.
Let µ and µ′ be two probability measures on the circle such that for any integer k:

∫

U

zkµ(dz) =

∫

U

zkµ′(dz).(3)

Let us show that µ = µ′.
The unital algebra generated by the functions z 7→ z and z 7→ z is dense in the set

of continuous complex functions on U. Indeed, it is stable by complex conjugation, and
it separates points, thus dense by the complex Stone-Weierstrass’s theorem. Yet, on U,
it is also the algebra of functions which are linear combination of the functions z 7→ zk

and z 7→ zk where k ∈ N.
Yet, because of (3), for any integer k,

∫

U
zkµ(dz) =

∫

U
zkµ(dz) =

∫

U
zkµ′(dz) =

∫

U
zkµ′(dz). By linearity and density, we see that the two measures µ and µ′ are equal.

Actually, the author’s motivation in order to study the convergence of (2) does not
come from the convergence of the empirical eigenvalues distributions. Indeed, the moti-
vation comes from Yang-Mills theory and random holonomy fields ([18]) where one of the
main problem is to prove convergence of the expectation of generalizations of observables
of the form (2). Thus, in this article, we will mainly focus on the observables.

2.2. Observables. —

2.2.1. Definitions: the zero order case. — Let N and k be two positive integers. Let
M1, ...,Mk be k random matrices of size N defined on the same probability space. We

would like to measure the system (M1, ...,Mk). Let Tr
k be the trace on

(

CN
)⊗k

defined

according to the canonical basis {ei1 ⊗ ...⊗ eik , (i1, ..., ik) ∈ Nk} such that Trk(Id⊗k) =
Nk. Recall the definition of the set of partitions Pk and Definition 2.15 in [15] where

we defined the representation ρPk

N of C[Pk(N)]. Let p be in Pk.

Definition 2.1. — The mean p-normalized moment of (M1, ...,Mk) is:

Emp(M1, ...,Mk) =
1

Trk(ρPk

N (p))
E

[

Trk
(

(M1 ⊗ ...⊗Mk)ρ
Pk

N (tp)
)]

.

We will denote TrN (p) = Trk(ρPk

N (p)) and from now on, we will forget about the ρPk

N :

any partition in Pk will be seen as an endomorphism of
(

CN
)⊗k

, where the parameter
N has to be deduced from the formulas.

For any k-tuple (M1, ...,Mk) of matrices of size N :

Trk
[

(M1 ⊗ ...⊗Mk)
tp
]

=
∑

i1,...,ik,i1′ ,...,ik′∈{1,...,N}/pi1,...,iki
1′

,...,i
k′
=1

(M1)
i1
i1′
...(Mk)

ik
ik′
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where for any l ∈ {1, ..., k}, and any (i, j) ∈ {1, ..., N}2, Ml(ej) = (Ml)
j
i ei and the

notation pi1,...,iki1′ ,...,ik′
was defined in Definition 2.14 of [15]. This implies the following lemma

which shows that the notion of mean p-normalized moments generalizes the observables
(2), as explained in [23].

Lemma 2.1. — Let σ ∈ Sk, let M be a random of size N . Then:

Emσ(M, ...,M) = E





∏

c cycle of σ

1

N
Tr
(

M#c
)



 ,

where #c stands for the length of the cycle c.

When p is an element of the Brauer algebra, then Emp(M, ...,M) is the expectation
of a product of normalized traces of products in M and tM . In general, when p ∈ Pk,
the calculation of Emp(M, ...,M) has to do with the computation of the graph-test
observables of [26], where one also considers non-connected graph-tests. This link will
be developed in the forthcoming article [14].

Let I be a set of indexation. We will study the convergence of observables of some
family (MN

i )i∈I of random matrices of size N when N goes to infinity. In this setting,
we consider each sequence of random matrices

(

MN
)

N∈N, such that for any integer N

the matrix MN is of size N , as an element of the algebra

∞
∏

N=1

(

L∞−
(Ω)⊗MN (C)

)

which we will denote by L∞− ⊗M(C).

For any family of elements (ai)i∈I in L∞− ⊗M(C), the algebra generated by (ai)i∈I
is simply:

A (ai)i∈I =
{

P (ai1 , ..., aik ) | (i1, ..., ik) ∈ Ik, P ∈ C{X1, ...,Xk}, k ∈ N

}

,(4)

where C{X1, ...,Xk} is the algebra of non-commutative polynomials. Recall the notation
that we set in [15]: the letter A stands either for P, B or S and thus for any integer
k, Ak stands either for Pk, Bk or Sk. For any i ∈ I, let (MN

i )N∈N be an element of

L∞− ⊗M(C).

Definition 2.2. — Let k be a positive integer, let (i1, ..., ik) ∈ Ik. The sequence
(

MN
i1

⊗ ...⊗MN
ik

)

N∈N converges in expectation in Ak-moments if for any p ∈ Ak,

Emp

(

MN
i1 , ...,M

N
ik

)

converges when N goes to infinity.
The family

(

(MN
i )N∈N

)

i∈I converges in expectation in A-moments if for any positive

integer k, for any element (BN
1 )N∈N,..., (BN

k )N∈N in A
(

(

(MN
i )N∈N

)

i∈I

)

, the sequence
(

BN
1 ⊗ ...⊗BN

k

)

N∈N converges in expectation in Ak-moments.
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Notation 2.1. — Let us suppose that the family
(

(MN
i )N∈N

)

i∈I converges in expecta-

tion in A-moments. For any positive integer k, for any (i1, ..., ik) ∈ Ik, for any p ∈ Ak,
we set:

Emp(Mi1 , ...,Mik ) = lim
N→∞

Emp(M
N
i1 , ...,M

N
ik
).

In fact, it is an easy exercise to prove the following lemma.

Lemma 2.2. — The family
(

(MN
i )N∈N

)

i∈I converges in expectation in A-moments if

and only if for any integer k, for any (i1, ..., ik) ∈ Ik, the sequence
(

MN
i1

⊗ ...⊗MN
ik

)

N∈N
converges in expectation in Ak-moments.

Remark 2.1. — If the family
(

(MN
i )N∈N

)

i∈I converges in:

– expectation in S-moments then it converges in non-commutative distribution,
– expectation in B-moments if and only if

(

(MN
i )N∈N

)

i∈I ∪
(

(tMN
i )N∈N

)

i∈I , the fam-
ily and the transpose of the family, converges in S-moments,

– expectation in B-moments then
(

(MN
i )N∈N

)

i∈I ∪
(

(tMN
i )N∈N

)

i∈I converges in non-
commutative distribution,

– expectation in P-moments then
(

(MN
i )N∈N

)

i∈I converges in distribution of traffics

(see [26] and the correspondence explained in [14]).

Remark 2.2. — Let us remark also that the convergence in expectation in P-moments
implies the convergence in non-commutative distribution of the algebra of traffics gener-
ated by

(

MN
i

)

i∈I . This is the point of view developed in the paper in preparation [13] ;
in this paper, we do not take this point of view. Yet let us make a similar remark than
C. Male in [26], if

(

(MN
i )N∈N

)

i∈I converges in expectation in P-moments, then for any

i and j in I, the Hadamard product (MN
i ◦ MN

j )N∈N converges in S-moments, and in
fact also in P-moments.

Let (MN )N∈N be in L∞− ⊗M(C). Using Lemma 2.1, we see that (MN )N∈N converges
in expectation in S-moments if for any positive integer k, any k-tuple (n1, ..., nk) of
integers,

E

[

k
∏

i=1

1

N
Tr(Mni

N )

]

,

converges when N goes to infinity. This is slightly more demanding than the usual con-
vergence of moments, where one only considers the convergence of the mean moments
(2). This is due to the fact that usually one works with sequences of random matri-
ces such that some concentration of measure happens and implies that the following
asymptotic factorization property holds.

2.2.2. The A-factorization property. — Recall the operation ⊗ on partitions defined in

Definition 2.1 of [15]. Let (Mi)i∈I be a family of elements of L∞− ⊗M(C).

Definition 2.3. — Let us suppose that the family
(

(MN
i )N∈N

)

i∈I converges in expecta-

tion in A-moments. We say that
(

(MN
i )N∈N

)

i∈I satisfies the asymptotic A-factorization
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property if for any integer k1 and k2, for any p1 ∈ Ak1 and p2 ∈ Ak2 , for any element
(BN

1 )N∈N,..., (BN
k1+k2

)N∈N in A
((

(MN
i )N∈N

)

i∈I
)

,

Emp1⊗p2 (B1, ..., Bk1+k2) = Emp1(B1, ..., Bk1)Emp2(Bk1+1, ..., Bk2).

Let us explain the importance of the factorization property.

Theorem 2.2. — Let us suppose that (Mi)i∈I is in L∞− ⊗ M(R), converges in ex-
pectation in A-moments and satisfies the asymptotic A-factorization property, then the
A-moments of (Mi)i∈I converge in probability. This means that for any integer k, any
p ∈ Ak, any i1, ..., ik in I:

mp(M
N
i1 ⊗ ...⊗MN

ik
) =

1

Nnc(p∨id)Tr
k
(

(MN
i1 ⊗ ...⊗MN

ik
)tp
)

converges in probability as N goes to infinity to Emp (Mi1 , ...,Mik ).

If (Mi)i∈I is a family of elements of L∞−⊗M(C), the same results holds if we suppose
that either (Mi,M i)i∈I or (Mi, (Mi)

∗)i∈I satisfy the asymptotic A-factorization.

Proof. — Let (Mi)i∈I be a family of elements of L∞− ⊗M(R) which converge in expec-
tation in A-moments and which satisfies the asymptotic A-factorization property. We
use an argument from T. Levy [24]. Let k be an integer, let p ∈ Ak, and let i1, ..., ik be
in I. The variance Var

[

mp

(

MN
i1

⊗ ...⊗MN
ik

)]

is equal to:

E
[

mp⊗p

(

MN
i1 ⊗ ...⊗MN

ik
⊗MN

i1 ⊗ ...⊗MN
ik

)]

−E
[

mp

(

MN
i1 ⊗ ...⊗MN

ik

)]2
,

which, by definition, is equal to:

Emp⊗p

(

MN
i1 ⊗ ...⊗MN

ik
⊗MN

i1 ⊗ ...⊗MN
ik

)

−
[

Emp

(

MN
i1 ⊗ ...⊗MN

ik

)]2
.

Thus the variance has a limit which is given by:

Emp⊗p(Mi1 ⊗ ...⊗Mik ⊗Mi1 ⊗ ...⊗Mik)−[Emp(Mi1 ⊗ ...⊗Mik)]
2 ,

which is equal to zero since (Mi)i∈I satisfies the asymptotic A-factorization property.

The same argument can be applied for a family of elements of L∞− ⊗ M(C), by
computing Var

[

mp

(

MN
i1

⊗ ...⊗MN
ik

)]

, which is equal to:

E

[

mp⊗p

(

MN
i1 ⊗ ...⊗MN

ik
⊗MN

i1
⊗ ...⊗MN

ik

)]

−E
[

mp

(

MN
i1 ⊗ ...⊗MN

ik

)]

E

[

mp

(

MN
i1

⊗ ...⊗MN
ik

)]

,

or:

E

[

mp⊗ tp

(

MN
i1 ⊗ ...⊗MN

ik
⊗
(

MN
i1

)∗ ⊗ ...⊗
(

MN
ik

)∗)]

−E
[

mp

(

MN
i1 ⊗ ...⊗MN

ik

)]

E

[

m tp

(

(

MN
i1

)∗ ⊗ ...⊗
(

MN
ik

)∗)]
,

and by using the same arguments than before.

As a consequence, for example, when one considers orthogonal (resp. unitary) matri-
ces, the factorization property of (Mi)i∈I (resp. (Mi,Mi)i∈I or (Mi, (Mi)

∗)i∈I ) implies
the convergence of probability of the empirical eigenvalues distributions. Actually, one
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can go further than the convergence in probability using combinatorial arguments: in-
deed, in [15] and [16] we developed the tools in order to compute algebraic fluctuations:
let us suppose that the algebraic fluctuations are in fact in powers of 1

N2 , then the vari-

ance of the moments would be in 1
N2 , and it would imply that the moments converge

almost surely.

2.2.3. Definitions: the higher order case. — We can also define the notion of conver-
gence in expectation in A-moments up to any order of fluctuations for

(

(MN
i )N∈N

)

i∈I .
Let m be a non-negative integer.

Definition 2.4. — Let k be a positive integer and let (i1, ..., ik) ∈ Ik. The sequence
(

MN
i1

⊗ ...⊗MN
ik

)

N∈N converges in expectation in Ak-moments up to order m of fluctu-

ations if there exists a family of complex numbers
(

Emi
p

(

MN
1 , ...,MN

k

))

p∈Ak,i∈{0,...,m},N∈N ,

such that:

– ∀p ∈ Ak,∀N ∈ N∗,Emp(M
N
1 , ...,MN

k ) =
∑m

i=0
Emi

p(M
N
1 ,...,MN

k
)

N i ,

– ∀p ∈ Ak,∀i ∈ {0, ...,m − 1},Emi
p(M

N
1 , ...,MN

k ) does not depend on N ,

– ∀p ∈ Ak,Em
m
p (MN

1 , ...,MN
k ) converges as N goes to infinity.

The family
(

Emi
p(M

N
1 , ...,MN

k )
)

p∈Ak,i∈{0,...,m},N∈N is uniquely defined and for any i ∈
{0, ...,m}, any p ∈ Ak and any N ∈ N, Emi

p(M
N
1 , ...,MN

k ) is called the ith-order fluctu-
ations of the mean p-normalized moment.

The family
(

(MN
i )N∈N

)

i∈I converges in expectation in A-moments up to order m of

fluctuations if for any positive integer k, for any element (BN
1 )N∈N,..., (BN

k )N∈N in

A
(

(

(MN
i )N∈N

)

i∈I

)

, the sequence (BN
1 ⊗ ... ⊗ BN

k )N∈N converges in expectation in Ak-

moments up to order m of fluctuations.

Notation 2.2. — Let us suppose that the family
(

(

MN
i

)

N∈N

)

i∈I
converges in expecta-

tion in A-moments up to order m of fluctuations. For any positive integer k, for any
k-tuple (i1, ..., ik) ∈ Ik, for any j ∈ {0, ...,m} and any p ∈ Ak, we set:

Emj
p(Mi1 , ...,Mik ) = lim

N→∞
Emj

p(M
N
i1 , ...,M

N
ik
).

2.2.4. Convergence and transposition. — In fact the convergence in expectation in B
(resp. P)-moments implies the convergence, of the family and its transpose family,
in expectation in B (resp. P)-moments. In order to prove so, we need the following
definition. Let k be a positive integer.

Definition 2.5. — Let p be a partition in Pk, let k1 < k. The partition Sk1(p) is the
partition obtained by permuting i with i′ for any i ∈ {k1 +1, ..., k} in the definition of p.

Let us give an example. Let k = 4, k1 = 2 and let p = {{1, 3, 2′}, {2, 4′, 1′}, {4, 3′}},
then Sk1(p) = {{1, 3′, 2′}, {2, 4, 1′}, {4′, 3}}.
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Lemma 2.3. — Let k1 and k2 be non-negative integers such that k1 + k2 = k. Let
E ∈ End

(

(CN )⊗k1
)

and F ∈ End
(

(CN )⊗k2
)

, for any p ∈ Pk:

mp(E ⊗ tF ) = mSk1
(p)(E ⊗ F ).

For any non-negative integer k1 such that k1 < k, the two sets Bk and Pk are stable
by the operation Sk1 . This remark and Lemma 2.3 imply the following proposition.

Proposition 2.1. — Let us suppose that A stands either for B or P. Let m be a non-
negative integer. Let us suppose that the family

(

(MN
i )N∈N

)

i∈I converges in expectation

in A-moments up to order m of fluctuations then
(

(MN
i )N∈N

)

i∈I ∪
(

( tMN
i )N∈N

)

i∈I con-
verges in expectation in A-moments up to order m of fluctuations.

For example, this implies that for a family of random orthogonal matrices
(

(ON
i )N∈N

)

i∈I , in order to prove that the family
(

(ON
i )N∈N

)

i∈I ∪
(

((ON
i )−1)N∈N

)

i∈I
converges in expectation in S-moments, we only have to prove that

(

(ON
i )N∈N

)

i∈I
converges in expectation in B-moments.

2.2.5. Some special cases. — We will see along this paper, that in some special cases,
the theory becomes even easier. Let m be a non-negative integer. Using the fact that
for any symmetric of skew-symmetric matrix M , the matrix tM is equal either to M or
−M , one has the following result.

Proposition 2.2. — Let
(

(MN
i )N∈N

)

i∈I be a family of elements of L∞−⊗M(R). If for
any positive integer N and any i ∈ I, MN is symmetric or skew-symmetric, the family
(

(MN
i )N∈N

)

i∈I converges in expectation in B-moments up to order m of fluctuations as
N goes to infinity if and only if it converges in expectation in S-moments up to order
m of fluctuations as N goes to infinity.

For orthogonal matrices, one has a similar result when considering only one element

(MN )N∈N in L∞− ⊗M(R). From now on, we denote by S(N) the set of permutation
matrices of size N .

Proposition 2.3. — Let (MN )N∈N be an element of L∞− ⊗M(R). If for any positive
integer N , MN is orthogonal, the matrix MN converges in expectation in B-moments up
to order m of fluctuations as N goes to infinity if and only if it converges in expectation
in S-moments up to order m of fluctuations as N goes to infinity.

Besides if for any positive integer N , MN is almost surely in S(N), the matrix MN

converges in expectation in P-moments up to order m of fluctuations as N goes to infinity
if and only if it converges in expectation in S-moments up to order m of fluctuations as
N goes to infinity.

The first part of this proposition comes from the fact that for any orthogonal matrix
M , M tM = Id. The second part is a consequence of the following general proposition.
Recall the notion of convergence in moments that we defined in Definition 4.4 of [15].

Proposition 2.4. — Let k be a positive integer. For each integer N , let EN be in the

algebra generated by the elements S⊗k with S ∈ S(N) and denoted by C

[

ρk
S(N)

]

. Then

(EN )N∈N converges in Pk-moments if and only if it converges in Sk-moments.
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Again, this is a simple consequence of the following lemma.

Lemma 2.4. — Let k and N be two positive integers. Let p be in Pk, there exist an
integer l ≤ k and σ ∈ Sl such that for any S ∈ S(N):

mp

(

S⊗k
)

= mσ

(

S⊗l
)

,

with the convention that m∅
(

S⊗0
)

= 1.

Proof. — The proof uses a recurence argument. Let k and N be two positive integers,
let p be in Pk and let S be a permutation in S(N). If k = 1, then m{{1},{1′}}(S) is equal
to one and thus equal to m∅(S

⊗0). Let us suppose that k 6= 1, then, with a slight abuse
of notation:

mp(S
⊗k) =

1

Tr(p)
Tr(S⊗k tp) =

1

Nnc(p∨id)
∑

i1,...,ik,i1′ ,...,ik′∈{1,...,N},pi1,...,iki
1′

,...,i
k′
=1

Si1
i1′
...Sik

ik′
.

Let us suppose that p /∈ Sk, one of the three assertions is true:

– there exist r, s in {1, ..., k} such that r and s are in the same block of p,
– there exist r′, s′ in {1′, ..., k′} such that r′ and s′ are in the same block of p,
– there exist r in {1, ..., k} ∪ {1′, ..., k′} such that {r} is a block of p.

Let us remark that for any i, j, l ∈ {1, ..., N},
Sj
i S

l
i = Sj

i δl=j and Si
jS

i
l = Si

jδl=j .

Besides, for any i1, ..., ik and i1′ , ..., ik′ in {1, ..., N}, we have:

N
∑

i=1

Si
i′1
Si2
i′2
...Sik

i′
k

= Si2
i′2
...Sik

i′
k

and
N
∑

i=1

Si1
i Si2

i′2
...Sik

i′
k

= Si2
i′2
...Sik

i′
k

.

The first two equations assert that, when there exists an horizontal line in p, which
means that there exist r, s (or r′, s′) in {1, ..., k} (resp. {1′, ..., k′}) such that r and s are
in the same block of p, then we can glue the two blocks r′ and s′ (resp. r and s) belong
to and then remove the column of r or s (resp. r′ or s′) without changing the value of
the sum we need to compute. We get a new partition p′ ∈ Pk−1 with the same number
of cycles than p: we get then the equality mp(S

⊗k) = mp′(S
⊗k−1).

The last two equations assert that, each time there exists a block of p which is com-
posed of one unique element, let say r in {1, ..., k}, one can delete the column of this
element and the sum over ir without changing the value of the sum we need to compute.
Let us denote by p′ the new partition. If {r′} is not a block of p then the new partition
has as many cycles as p. If {r′} is a block of p, we lose one block by doing so, but, one
must not forget that we still have to sum over ir′ even if it does not appear any more.
Thus, at the end we still get the equality mp(S

⊗k) = mp′(S
⊗k−1).

3. Schur-Weyl’s duality

In the last section, we introduced observables proportional to:

E

[

Trk
(

(M1 ⊗ ...⊗Mk)
tp
)

]

.
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It is not difficult to see that for any S ∈ S(N) and any p ∈ Pk, S
⊗kp(S−1)⊗k = p. Thus,

using the tracial property, E
[

Trk
(

(M1 ⊗ ...⊗Mk)
tp
)]

is equal to:

Trk









1

N !

∑

S∈S(N)

(S−1)⊗k
E[M1 ⊗ ...⊗Mk]S

⊗k





tp



.

Let us remark that 1
N !

∑

S∈S(N)(S
−1)⊗kE[M1⊗ ...⊗Mk]S

⊗k commutes with S⊗k for any

S ∈ S(N). The same discussion could have been made by replacing Pk by Bk (resp.
Sk), S(N) by O(N) (resp. U(N)) and the sum 1

N !

∑

S∈S(N) by an integration against

the Haar measure of O(N) (resp. of U(N)).

This motivates the study of endomorphisms of
(

CN
)⊗k

which commute with M⊗k,
where M is either in S(N), O(N) or U(N). We introduce for this the Schur-Weyl’s
duality and some similar statements. We will focus on the duality between:

– the unitary group U(N) and the symmetric group Sk,
– the orthonormal group O(N) and the Brauer algebra C[Bk(N)],
– the symmetric group S(N) and the partition algebra C[Pk(N)].

One can find more informations about these dualities in [19], and for the last duality
one can look at [22], [27] and [20].

Remark 3.1. — Actually, all the paper can be applied not only to the three groups we
considered but also to the unitary reflection groups and to the easy orthogonal groups.
We will not explain the duality for the imprimitive unitary reflection group G(m, p, n),
defined in Section 2.1 of [31] since the partition subalgebra that one get is not simple to
define, and we will never use it in the article. For a definition of easy orthogonal groups,
one can have a look to [3] and there exists a duality between:

– the group S(N)× Z/2Z (group of permutation matrices multiplied by ±1) and the
partition algebra C[Pk(N)],

– the hyperoctahedral group H(N), which consists of matrices which have exactly one
nonzero enty in each row and each column which is equal to ±1, and the algebra
C [Hk(N)], where Hk is the subset of Pk of partitions which have blocks of even
size,

– the bistochastic group B(N), which consists of orthogonal matrices having sum 1
in each row and each column and the algebra C[Bsk(N)], where Bsk is the subset
of Pk of partitions which have blocks of size less of equal to two.

– the group B(N)× Z/2Z (group of bistochastic matrices multiplied by ±1) and the
algebra C[Bsk(N)].

Thus, in the following Notation 3.1, one could also consider (G,A) being one of the five
couples:

(S,P), (O,B), (U,S), (H(N),H), (B(N),Bs).
We ommited in the list the two groups S(N)×Z/2Z and B(N)×Z/2Z since the invari-
ance in law by conjugation by S(N) × Z/2Z (resp. B(N) × Z/2Z) is equivalent to the
invariance in law by S(N) (resp. B(N)). We decided to focus on the three first couples
since (U,S) is the usual setting for asymptotic freeness, (O,B) is interesting as soon as
we consider matrices and their transpose and (S,P) is the most general setting. Yet, it
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has to be noticed that in Section 7.1.4, we prove a new assertion using the hyperoctahe-
dral group stating that in fact, in order to get asymptotic freeness, it is enought to have
independence and invariance by conjugation by the hyperoctahedral group.

We have made a distinction between Sk and S(N). Indeed, Sk will stand for the
symmetric group, seen as a group of permutations, andS(N) will be seen as the subgroup
of GL(N) of permutation matrices.

3.1. Tensor action of a subgroup of GL(N). — Let k and N be two positive
integers. Let G be any subgroup of GL(N), for example U(N), O(N) or S(N). We can

define a natural action of G on the vector space
(

CN
)⊗k

.

Definition 3.1. — The tensor action of G on
(

CN
)⊗k

is the application:

ρkG : G → End
(

(

C
N
)⊗k
)

U 7→ ρkG(U),

defined such that for any U ∈ G, any x1, ..., xk ∈ CN ,

ρkG(U)(x1 ⊗ ...⊗ xn) = Ux1 ⊗ ...⊗ Uxn.

In representation theory, it is common to study the set of endomorphisms which
commute with the action of the group. Let us define the commutant and some algebras
associated with the representations we have just defined.

Definition 3.2. — Let C be a subalgebra of End
(

(CN )⊗k
)

. We denote by C ′ the com-
mutant of C defined by:

C ′ =
{

E ∈ End
(

(CN )⊗k
)

,∀F ∈ C,EF = FE
}

.

Definition 3.3. — For any subgroup G(N) of GL(N), we define:

C

[

ρkG(N)

]

= C

[{

ρkG(g), g ∈ G
}]

⊂ End
(

(CN )⊗k
)

.

For Ak being either Pk, Bk or Sk, we define:

C

[

ρAk

N

]

= C

[{

ρAk

N (p), p ∈ Ak

}]

⊂ End
(

(CN )⊗k
)

.

The Schur-Weyl’s duality and some similar dualities (as the partition-symmetric group
duality proved in [22] and [27]) assert that the algebras we have just defined are mutual
commutants.

Theorem 3.1. — We have the set of equalities:

1. U(N)−Sk-duality:
(

C

[

ρkU(N)

])′
= C

[

ρSk

N

]

and
(

C

[

ρSk

N

])′
= C

[

ρkU(N)

]

.

2. O(N)− Bk-duality:
(

C

[

ρkO(N)

])′
= C

[

ρBk

N

]

and
(

C

[

ρBk

N

])′
= C

[

ρkO(N)

]

.
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3. S(N)− Pk-duality:
(

C

[

ρkS(N)

])′
= C

[

ρPk

N

]

and
(

C

[

ρPk

N

])′
= C

[

ρkS(N)

]

.

The last duality is the simplest to show, one can look at the proof in [20], and it uses
the exclusive basis defined in Definition 2.16 of [15].

The main implication of this theorem for this article is that we can extend the def-

inition of coordinate numbers for any endomorphism of
(

CN
)⊗k

which commutes with

the action of S(N). As we have seen in [15], the representation ρPk

N is injective as soon

as N ≥ 2k, and the representations ρBk

N and ρSk

N are injective as soon as N ≥ k. Let us

suppose that N ≥ 2k, let E be an endomorphism of
(

CN
)⊗k

which commutes with the

action of S(N) on
(

CN
)⊗k

. There exists a unique family of reals (κp(E))p∈Pk
such that:

E =
∑

p∈Pk

κp(E)

Nnc(p)−nc(p∨id) ρ
Pk

N (p).

This family is the coordinate numbers of E.
The U(N)−Sk (resp. O(N)−Bk) duality asserts that if E commutes with the action

of U(N) on
(

CN
)⊗k

, then we can define the coordinate numbers as soon as N ≥ k and
in this case:

∀p /∈ Sk(resp. ∀p /∈ Bk), κ
p(E) = 0.

Using this discussion, we can extend all the results of the article [15] to endomorphisms
of (CN )⊗k which commute with the action of either S(N), O(N) or U(N) on (CN )⊗k.
Let us define a notation which will be used all along the article.

Notation 3.1. — The letter G will denote either S, O or U . Thus for any integer N ,
G(N) stands either for S(N), O(N) or U(N). Besides, by (G,A) we denote one of the
three couples (S,P), (O,B) or (U,S).

Let us finish with some definitions about endomorphisms of
(

CN
)⊗k

which will be
useful in Section 10. We remind the reader that the permutation σI was defined in
Definition 2.6 of [15]. Let l and k be two integers, such that l ≤ k.

Definition 3.4. — Let A ∈ End
(

(

CN
)⊗l
)

, let B ∈ End
(

(

CN
)⊗k−l

)

and let I ⊂
{0, ..., k} such that #I = l. The endomorphism II (A,B) is the endomorphism in

End
(

(

CN
)⊗k
)

defined by:

II (A,B) = ρSk

N

(

σ−1
I

)

(A⊗B) ρSk

N (σI) .

Let us state a simple lemma that will be often used without referring to it.

Lemma 3.1. — The application:

II : End
(

(

C
N
)⊗l
)

× End
(

(

C
N
)⊗k−l

)

→ End
(

(

C
N
)⊗k
)

(A,B) 7→ II(A,B),
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is bi-linear and for any (p, p′) ∈ Pl × Pk−l,

II(ρPl

N (p)⊗ ρ
Pk−l

N (p′)) = ρPk

N

(

σ−1
I (p ⊗ p′)σI

)

.

Proof. — Let (p, p′) ∈ Pl ×Pk−l. Then:

II(ρPl

N (p)⊗ ρ
Pk−l

N (p′)) = ρSk

N

(

σ−1
I

)

(

ρPl

N (p)⊗ ρ
Pk−l

N (p′)
)

ρSk

N (σI) .

Using Lemma 2.2 of [15] which asserts that the representations are compatible with the
operation ⊗:

II(ρPl

N (p)⊗ ρ
Pk−l

N (p′)) = ρPk

N

(

σ−1
I

)

(

ρPl

N (p⊗ p′)
)

ρPk

N (σI) = ρPk

N

(

σ−1
I (p⊗ p′)σI

)

,

hence the lemma.

4. Random Matrices and cumulants

4.1. Cumulants. — Let k be a positive integer, let
(

(MN
i )N∈N

)k

i=1
be a k-tuple

of elements of L∞− ⊗ M(C) which converges in expectation in A-moments. We will
define three notions of cumulants up to any order of fluctuations associated with
(

(MN
i )N∈N

)k

i=1
: the S, the B and the P-cumulants. Recall the results about the

distance on Pk, the geodesic order denoted by ≤ and the set-geodesic [id, p]Ak
which

were the core of the article [15].

4.1.1. Zero order. —

Definition 4.1. — The family of A-cumulants
(

EκpA

[

(

MN
1

)

N∈N , ...,
(

MN
k

)

N∈N

])

p∈Ak

is the unique family of complex numbers such that for any p ∈ Ak:

Emp (M1, ...,Mk) =
∑

p′∈Ak,p′≤p

Eκp
′

A

[

(

MN
1

)

N∈N , ...,
(

MN
k

)

N∈N

]

.

We will denote them by
(

EκpA [M1, ...,Mk]
)

p∈Ak
.

These numbers are well defined since ≤ is a partial order. Besides, since we computed
the Mobius function for the geodesic order in Theorem 3.5 of [15], one can invert the
moment-cumulant formula.

Let us also remark that if the family
(

(MN
i )N∈N

)k

i=1
converges in expectation in

P-moments, the restriction of the P-cumulants to Sk is not in general equal to the
S-cumulants. This is due to the fact that a geodesic in Pk between two permutations

can go through Pk \Sk. Yet, if we suppose that the family
(

(MN
i )N∈N

)k

i=1
converges in

expectation in B-moments the following assertion is true.

Lemma 4.1. — For any σ ∈ Sk, Eκ
σ
B [M1, ...,Mk] = EκσS [M1, ...,Mk] .

This lemma is a simple consequence of Lemma 3.9 in [15] which asserts that for any
σ ∈ Sk, [idk, σ]Bk

= [idk, σ]Sk
.
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Remark 4.1. — Let us recall the definitions in Section 4.4 of [15]. The cumulants that
we defined are linked by the fact that, if A stands either for S or B:

EAk

[

(

EκpA[M1, ...,Mk]
)

p∈Ak

]

= CA
κ

[

(

EκpP [M1, ...,Mk ]
)

p∈Pk

]

,

and

ESk

[

(

EκpA[M1, ...,Mk]
)

p∈Sk

]

= CS
κ ◦ EBk

[

(

EκpB[M1, ...,Mk]
)

p∈Bk

]

.

We can also give a new characterization of the asymptotic A-factorization property
whose proof is similar to the proof of the fact that the RA-transform defined in [15] is
a bijection between multiplicative elements. Thus, we will not provide a proof for it.

Proposition 4.1. — The family
(

(MN
i )N∈N

)k

i=1
satisfies the asymptotic A-factorization

property if and only if for any integer k1 and k2, for any p1 ∈ Ak1 and p2 ∈ Ak2, for

any element (BN
1 )N∈N,..., (BN

k1+k2
)N∈N in A

( (

(MN
i )N∈N

)k

i=1

)

,

Eκp1⊗p2
A (B1, ..., Bk1+k2) = Eκp1A (B1, ..., Bk1)Eκ

p1
A (Bk1+1, ..., Bk2).

We stated the result for a finite family, yet it implies a similar statement for infinite
families. For any integer k, let (1, ..., k) be the permutation in Sk which, for any i ∈
{1, ..., k}, sends i on i+ 1 modulo k.

Proposition 4.2. — Using the bijection between the poset of non-crossing partitions
and elements of ([idk, (1, ..., k)]Sk

,≤), we see that this definition of cumulants is a gen-

eralization of the usual free cumulants. Indeed, if the family
(

(MN
i )N∈N

)k

i=1
converges

in expectation in S-moments and satisfies the asymptotic S-factorization, then for any
σ ∈ Sk:

EκσS[M1, ...,Mk] =
∏

c∈C(σ)
κ#c [(Mi)i∈c] ,

where C(σ) is the set of cycles of σ and for any positive integer n, κn stands for the
usual free cumulant.

For a definition of the usual free cumulants, one can read Chapter 2.5 of [21].

Proposition 4.3. — Let us suppose that the S-factorization property asymptotically

holds for
(

(MN
i )N∈N

)k

i=1
then Eκ

(1,...,k)
S (M1, ...,Mk) is the usual non-commutative cu-

mulant κk(M1, ...,Mk).

4.1.2. Higher order. — Let m be an integer. Let us suppose that
(

(MN
i )N∈N

)k

i=1
con-

verges in expectation in A-moments up to order m of fluctuations. Recall the definition
of the defect df(p′, p) defined in Definition 3.5 in [15].

Definition 4.2. — The family of A-cumulants up to order m of fluctuations
(

Eκpi,A

[

(

MN
1

)

N∈N , ...,
(

MN
k

)

N∈N

])

p∈Ak,i∈{0,...,m}



18 FRANCK GABRIEL

is the unique family of complex numbers such that for any i ∈ {0, ...,m} and any p ∈ Ak:

Emi
p (M1, ...,Mk) =

∑

p′∈Ak,df(p′,p)≤i

Eκp
′

i−df(p′,p),A

[

(

MN
1

)

N∈N , ...,
(

MN
k

)

N∈N

]

.

We will denote them by
(

Eκpi,A [M1, ...,Mk ]
)

p∈Ak,i∈{0,...,m}
.

We recall that for any p and p′ in Ak, df(p
′, p) = 0 if and only if p′ ∈ [idk, p]Ak

. Thus
we get the following lemma.

Lemma 4.2. — For any p ∈ Ak, Eκ
p
A [M1, ...,Mk ] = Eκp0,A [M1, ...,Mk] .

Again, the restriction to Sk or Bk of the P-cumulants of higher order is not equal to
the Sk or Bk-cumulants of higher order. Besides, the Lemma 4.1 does not hold anymore
for m > 0.

The Definitions 4.1 and 4.2 only allow us to define cumulants at the limit N = ∞:

we can define cumulants only for k-tuple of elements in L∞− ⊗M(C) which converges
in expectation in A-moments. In the following, we define a notion of N -dimensional

cumulants, defined for any element of L∞−
(Ω) ⊗ MN (C) and we show that these N -

dimensional cumulants converge to the cumulants we have just defined.

4.2. N-dimensional cumulants. —

4.2.1. Zero order. — Let N and k be two positive integers. Let M1, ...,Mk be k random

matrices in L∞−
(Ω)⊗MN (C).

Let us choose a possibility for (G,A) as explained in Notation 3.1. Let dg be the Haar
measure on G(N). As explained in the beginning of Section 3, we are interested in the
element:

∫

G(N)
g⊗k

E[M1 ⊗ ...⊗Mk](g
−1)⊗kdg,(5)

which is an element of
(

C

[

ρkG(N)

])′
. Using Theorem 3.1, this endomorphism is an

element of C
[

ρAk

N

]

. Let us remind that if A is equal to B or S, then ρAk

N is injective as

soon as N ≥ k, and if A = P, then ρAk

N is injective as soon as N ≥ 2k. This allows us
to define the N -dimensional cumulants as the coordinate numbers of (5).

Definition 4.3. — Let us suppose that N ≥ k if A ∈ {B,S} or that N ≥ 2k if
A = P. The family of N -dimensional A-cumulants of (M1, ...,Mk) is the family
(

EκpA(M1, ...,Mk)
)

p∈Ak
such that, for any p ∈ Ak,

EκpA(M1, ...,Mk) = κp

(

∫

G(N)
g⊗k

E[M1 ⊗ ...⊗Mk](g
−1)⊗kdg

)

.

We warn the reader that the three notions of cumulants are really distinct: for any
σ ∈ Sk in general EκσP(M1, ...,Mk), Eκ

σ
B(M1, ...,Mk) and EκσS(M1, ...,Mk) are distinct.

Thus there is no similar result to Lemma 4.1 for the N -dimensional A-cumulants.
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In the following we define the convergence in expectation in A-cumulants. For any

i ∈ I, let (MN
i )N∈N be an element of L∞− ⊗M(C).

Definition 4.4. — The family
(

(MN
i )N∈N

)

i∈I converges in expectation in A-

cumulants if for any positive integer k, for any element (BN
1 )N∈N,..., (BN

k )N∈N in

A
( (

(MN
i )N∈N

)

i∈I
)

, for any p ∈ Ak, the sequence of cumulants:

(

EκpA(B
N
1 , ..., BN

k )
)

N≥2k

converges when N goes to infinity.

The first main and direct consequence of Theorem 4.1 of [15] is the following result
which links the two notions of convergence.

Theorem 4.1. — The family
(

(MN
i )N∈N

)

i∈I converges in expectation in A-moments if

and only if it converges in expectation in A-cumulants. If so, we say that
(

(MN
i )N∈N

)

i∈I
converges in A-expectation.

Let us suppose that
(

(MN
i )N∈N

)

i∈I converges in A-expectation. For any positive inte-

ger k, for any (i1, ..., ik) ∈ Ik, for any p ∈ Ak:

Emp(Mi1 , ...,Mik ) =
∑

p′∈[id,p]Ak

lim
N→∞

Eκp
′

A

(

MN
i1 , ...,M

N
ik

)

.(6)

Remark 4.2. — Let us remark that the convergence in P-expectation implies the con-
vergence in B-expectation which implies the convergence in S-expectation. The easiest
way to see this, is to consider the convergence in expectation in moments.

Looking at Theorem 4.1 and Definition 4.1, we see that the N -dimensional A-
cumulants of (MN

i )i∈I converge to the A-cumulants of
(

(MN
i )N∈N

)

i∈I

Theorem 4.2. — Let us suppose that the family
(

(MN
i )N∈N

)

i∈I converges in A-

expectation. For any integer k, for any (i1, ..., ik) ∈ Ik, for any p ∈ Ak,

lim
N→∞

EκpA(M
N
i1 , ...,M

N
ik
) = EκpA

[

(

MN
i1

)

N∈N , ...,
(

MN
ik

)

N∈N

]

.

Let us remark that this theorem allows us to define in a more natural way the A-

cumulants
(

EκpA

[

(

MN
i1

)

N∈N , ...,
(

MN
ik

)

N∈N

])

p∈Ak

.

4.2.2. Higher order. — One can define also the N -dimensional A-cumulants of higher
order. Actually, one can not define them just for a family of random matrices of size N
as we did for the zero order: the higher order N -dimensional A-cumulants are defined

for families of elements of L∞− ⊗ M(C). For each i ∈ I, let (MN
i )N∈N be an element

of L∞− ⊗M(C). The definition of higher order N -dimensional A-cumulants can not be
disjoint from the definition of convergence in expectation in A-cumulants up to a given
order of fluctuations. Let m be a non-negative integer.
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Definition 4.5. — Let k be a positive integer and let (i1, ..., ik) ∈ Ik. The sequence
(

MN
i1

⊗ ...⊗MN
ik

)

N∈N converges in expectation in Ak-cumulants up to order m of fluc-

tuations if there exists a family of complex numbers
(

Eκpi,A(M
N
i1 , ...,M

N
ik
)
)

p∈Ak,i∈{0,...,m},N≥2k
,

such that:

– ∀p ∈ Ak,Eκ
p
A(M

N
i1
, ...,MN

ik
) =

∑m
i=0

Eκp
i,A

(MN
i1
,...,MN

ik
)

N i ,

– ∀p ∈ Ak,∀i ∈ {0, ...,m − 1},Eκpi,A(MN
i1
, ...,MN

ik
) does not depend on N ,

– ∀p ∈ Ak,Eκ
p
m,A(M

N
i1
, ...,MN

ik
) converges as N goes to infinity.

The family
(

Eκpi,A(M
N
i1
, ...,MN

ik
)
)

p∈Ak,i∈{0,...,m},N≥2k
is uniquely defined.

The family
(

(MN
i )N∈N

)

i∈I converges in expectation in A-cumulants up to order m

of fluctuations if for any positive integer k, for any element (BN
1 )N∈N,..., (BN

k )N∈N
in A

(

(

(MN
i )N∈N

)

i∈I

)

, the sequence (BN
1 ⊗ ... ⊗ BN

k )N∈N converges in expectation in

Ak-cumulants up to order m of fluctuations.

Actually, there is a slight abuse of notation as for any p ∈ Ak, for any i ∈ {0, ...,m}
and any N ∈ N, Eκpi,A(M

N
1 , ...,MN

k ) does not depend only on (MN
1 , ...,MN

k ), it depends

on all the sequences (MN
1 )N∈N,..., (MN

k )N∈N. In particular, we warn the reader that

Eκp0,A(M
N
1 , ...,MN

k ) is not equal to EκpA(M
N
1 , ...,MN

k ).
Let us focus on a generalization of Theorem 4.1, which is a consequence of Theorem

9.1 of the article [15].

Theorem 4.3. — The family
(

(MN
i )N∈N

)

i∈I converges in expectation in A-moments up
to order m of fluctuations if and only if it converges in expectation in A-cumulants up
to order m of fluctuations. If so, we say that

(

(MN
i )N∈N

)

i∈I converges in A-expectation
up to order m of fluctuations.

Let us suppose that
(

(MN
i )N∈N

)

i∈I converges in A-expectation up to order m of fluc-

tuations. For any positive integer k, for any (i1, ..., ik) ∈ Ik, for any i ∈ {0, ...,m} and
any p ∈ Ak :

lim
N→∞

Emi
p

(

MN
i1 , ...,M

N
ik

)

=
∑

p′∈Ak,df(p′,p)≤i

lim
N→∞

Eκp
′

i−df(p′,p),A

(

MN
i1 , ...,M

N
ik

)

.(7)

Remark 4.3. — Let us remark that again the convergence in P-expectation up to order
m of fluctuations implies the convergence in B-expectation up to order m of fluctuations
which implies the convergence in S-expectation up to order m of fluctuations.

Looking at Theorem 4.3 and Definition 4.2, we get the following theorem.

Theorem 4.4. — Let us suppose that the family
(

(MN
i )N∈N

)

i∈I converges in A-
expectation up to order m of fluctuations. For any positive integer k, for any
(i1, ..., ik) ∈ Ik, for any i ∈ {0, ...,m} and any p ∈ Ak,

lim
N→∞

Eκpi,A
[

MN
i1 , ...,M

N
ik

]

= Eκpi,A
[

(MN
i1 )N∈N, ..., (MN

ik
)N∈N

]

.



PARTITIONS AND GEOMETRY 21

4.3. Special case: G-invariant families. — Let N and k be two positive integers.

Definition 4.6. — Let M1, ...,Mk be k random matrices in L∞−
(Ω) ⊗ MN (C). The

k-tuple (M1, ...,Mk) is G(N)-invariant if for any g ∈ G(N), we have the equality in law:
(

gM1g
−1, ..., gMkg

−1
)

= (M1, ...,Mk).

In general, if (Mi)i∈I is a family of random matrices of size N , then (Mi)i∈I is G(N)-
invariant if for any integer k, for any (i1, ..., ik) ∈ Ik, (Mi1 , ...,Mik ) is G(N)-invariant.

Let ((MN
i )N∈N)i∈I be a family of elements of L∞−⊗M(C).We say that ((MN

i )N∈N)i∈I
is G-invariant if for any integer N , (MN

i )i∈I is G(N)-invariant.

Let us remark that the invariance in law by conjugation by U(N) implies the invariance
in law by conjugation by O(N) which implies the invariance in law by conjugation by

S(N). Recall the notation p
i1′ ,...,ik′
i1,...,ik

defined in Section 2.3 of [15]. In order to define
some micro-observables, we need to define the kernel of a partition.

Definition 4.7. — Let (i1, ..., ik , i1′ , ..., ik′) be a 2k-tuple of {1, ..., N}. We denote by

Ker ((i1, ..., ik, i1′ , ..., ik′)) the unique partition p ∈ Pk such that (pi1,...,iki1′ ,...,ik′
)ex = 1: for any

r and s in {1, ..., k, 1′, ..., k′}, r and s are in the same block if and only if ir = is.

This definition allows to define some observables (δp)p∈Pk
for family of random ma-

trices which is invariant in law by conjugation by the symmetric group.

Definition 4.8. — Let (M1, ...,Mk) be a k-tuple of random matrices of size N . Let
us suppose that (M1, ...,Mk) is invariant in law by conjugation by the symmetric group
S(N). Let p be a partition in Pk, we define:

δp (M1, ...,Mk) = E
[

(M1)
i1
i1′

...(Mk)
ik
ik′

]

,

where (i1, ..., ik, i1′ , ..., ik′) is any 2k-tuple of {1, ..., N} such that Ker ((i1, ..., ik, i1′ , ..., ik′)) =
p.

We will study the asymptotics of these observables in Section 5 when (Mi)
k
i=1 is a

family which converges in A-expectation.

4.3.1. Zero order. — Let us choose a possibility for (G,A) as explained in Notation
3.1. Let k and N be two positive integers such that N ≥ k if A ∈ {B,S} or such that

N ≥ 2k if A = P. Let M1, ...,Mk be k random matrices in L∞−
(Ω) ⊗MN (C). Let us

suppose that (M1, ...,Mk) is G(N)-invariant. The notion of N -dimensional A-cumulants
is simpler as one can remove the integration

∫

G(N) dg in (5). Indeed, by definition, we

have the following lemma.

Lemma 4.3. — Let us suppose that (M1, ...,Mk) is G(N)-invariant. Then:

E[M1 ⊗ ...⊗Mk] =
∑

p∈Ak

EκpA(M1, ...,Mk)
p

Nnc(p)−nc(p∨id) .

This lemma shows that the three notions of N -dimensional cumulants are linked for
such k-tuple.

Proposition 4.4. — If G = U , then:
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1. for any p /∈ Sk, Eκ
p
P(M1, ...,Mk) = EκpB(M1, ...,Mk) = 0,

2. for any p ∈ Sk, Eκ
p
S(M1, ...,Mk) = EκpB(M1, ...,Mk) = EκpP(M1, ...,Mk).

If G = O, then:

1. for any p /∈ Bk, Eκ
p
P(M1, ...,Mk) = 0,

2. for any p ∈ Bk, Eκ
p
B(M1, ...,Mk) = EκpP(M1, ...,Mk).

Let ((MN
i )N∈N)ki∈1 be a G-invariant family of elements of L∞− ⊗M(C). Using Theo-

rem 4.2, the Proposition 4.4 implies the following result on the S, B and P-cumulants of
((MN

i )N∈N)ki∈1. Let us remark that we will use Lemma 4.1 for the third assertion when
G is equal to O. Recall the notation that we explained at the end of Definition 4.1.

Theorem 4.5. — Let us suppose that the family ((MN
i )N∈N)ki∈1 converges in A-

expectation, then it converges in P-expectation. Besides, for any p ∈ Pk:

lim
N→∞

Emp(M
N
1 , ...,MN

k ) =
∑

p′∈Ak,p′≤p

Eκp
′

A (M1, ...,Mk) .(8)

Moreover, if G = U , then:

1. for any p /∈ Sk:
– if p ∈ Pk, Eκ

p
P [M1, ...,Mk] = 0,

– if p ∈ Bk, Eκ
p
B [M1, ...,Mk] = 0,

2. for any p ∈ Sk,

EκpS [M1, ...,Mk] = EκpB [M1, ...,Mk]

= EκpP [M1, ...,Mk] .

If G = O, then:

1. for any p ∈ Pk \ Bk, Eκ
p
P
[

(MN
1 )N∈N, ..., (MN

k )N∈N
]

= 0,
2. for any p ∈ Bk,

EκpB [M1, ...,Mk ] = EκpP [M1, ...,Mk ] ,

3. for any p ∈ Sk,

EκpS
[

(MN
1 )N∈N, ..., (MN

k )N∈N
]

= EκpB
[

(MN
1 )N∈N, ..., (MN

k )N∈N
]

.

Proof. — If A = P, there is nothing to prove. Let us suppose that A is equal to B or S.

Let us suppose that the family
(

(MN
i )N∈N

)k

i=1
converges in A-expectation. Using the

Theorem 4.1, it converges in expectation in A-cumulants. Yet Proposition 4.4 implies
that it converges in expectation in P-cumulants. Indeed, for any positive integer l, for

any element B1,..., Bl of A
(

(

(MN
i )N∈N

)

i∈I

)

, for any positive integer N , and for any

p ∈ Pl:

– If p ∈ Ak, Eκ
p
P [B

N
1 , ..., BN

l ] = EκpA[B
N
1 , ..., BN

l ].

– If p /∈ Ak, Eκ
p
P [B

N
1 , ..., BN

l ] = 0.

Thus using Theorem 4.1, the family
(

(MN
i )N∈N

)k

i=1
converges in P-expectation.

We have already noticed that the convergence in P-expectation implies the con-
vergence in B-expectation: thus we can consider, for any p ∈ Bk, the free cumulant
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EκpB [M1, ...,Mk ]. Taking the limit, when N goes to infinity, of the equalities in Propo-
sition 4.4 implies the second part of the assertions. The Equality (8) is a consequence
of our discussions and Theorem 4.1 of [15].

Let us suppose that the family
(

(MN
i )N∈N

)k

i=1
converges in expectation in A-moments.

If it satisfies the asymptotic A-factorization property, then due to Proposition 4.1, for
any integer k1 and k2, for any p1 ∈ Ak1 and p2 ∈ Ak2 , for any element (BN

1 )N∈N,...,

(BN
k1+k2

)N∈N in A
( (

(MN
i )N∈N

)k

i=1

)

Eκp1⊗p2
A (B1, ..., Bk1+k2) = Eκp1A (B1, ..., Bk1)Eκ

p2
A (Bk1+1, ..., Bk2).

Using Theorem 4.5, we see that this last equality holds for p1 and p2 in respectively

Pk1 and Pk2 . Using again Proposition 4.1, we deduce that the family
(

(MN
i )N∈N

)k

i=1
satisfies the asymptotic P-factorization property.

Proposition 4.5. — The family
(

(MN
i )N∈N

)k

i=1
satisfies the asymptotic A-factorization

property if and only if it satisfies the asymptotic P-factorization property.

This proposition can be extended to any family
(

(MN
i )N∈N

)

i∈I , with I being
any indexation set. Using the Theorem 4.5 and our discussion on the asymptotic
A-factorization property, one has for example the following corollary.

Corollary 4.1. — For any positive integer N , let (MN
i )i∈I be a family of random ma-

trices of size N which is invariant by conjugation by U(N). If (MN
i )i∈I converges in

non-commutative distribution as N goes to infinity and satisfies the asymptotically S-
factorization property, then (MN

i )i∈I ∪
(

tMN
i

)

i∈I converges in non-commutative distri-

bution. Besides, for any positive integer k, for any p ∈ Pk, for any (i1, ..., ik) ∈ Ik,
Emp(M

N
i1
, ...,MN

ik
) converges as N goes to infinity to:

∑

σ∈Sk |σ≤p

∏

c=(j1,...,jr) cycle of σ

κ
((

MN
ij1

)

N∈N
, ...,

(

MN
ijr

)

N∈N

)

where the κ stand for the usual non-commutative cumulants in free probability.

A similar corollary can be written for families of random matrices which are invariant
in law by conjugation by the orthogonal group. Recall the notion of cycles in Definition
2.9 of [15] and the notion of extraction in Definition 2.12 of the same article.

Corollary 4.2. — Let (Mi)i∈I be a family of elements of L∞− ⊗ M(C) which is O-
invariant. If (Mi)i∈I ∪ (tMi)i∈I converges in non-commutative distribution and if the
S-factorization property holds for this family, then for any positive integer k, for any
p ∈ Pk, for any (i1, ..., ik) ∈ Ik, Emp

(

MN
i1
, ...,MN

ik

)

converges as N goes to infinity to:

∑

b∈Bk |b≤p

∏

c={j1,...,jr}∪{(j1)′,...,(jr)′} cycle of b,j1<...<jr

EκbcB

(

(MN
ij1

)N∈N, ..., (MN
ijr

)N∈N
)

.
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4.3.2. Higher order. — Let m be a non negative integer, let us choose a possibility

for (G,A) as explained in Notation 3.1. Let k be a positive integer, let
(

(MN
i )N∈N

)k

i∈1
be a G-invariant family of elements of L∞− ⊗ M(C). The following proposition is a
consequence of Proposition 4.4 and Theorem 4.3. The proof which is similar to the one
of Theorem 4.5 will be omitted. Recall the notation that we explained in Definition 4.2.

Proposition 4.6. — Let us suppose that the family
(

(MN
i )N∈N

)k

i=1
converges in ex-

pectation in A-moments up to order m of fluctuations, then it converges in expectation
in P-moments up to order m of fluctuations. Besides, for any i ∈ {0, ...,m} and any
p ∈ Pk:

lim
N→∞

Emi
p(M

N
1 , ...,MN

k ) =
∑

p′∈Ak,df(p′,p)≤i

Eκp
′

i−df(p′,p),A (M1, ...,Mk) .

Moreover, if G = U , then:

1. For any p /∈ Sk, for any i ∈ {0, ...,m}:
Eκpi,P [M1, ...,Mk ] = Eκpi,B [M1, ...,Mk] = 0.

2. For any p ∈ Sk, for any i ∈ {0, ...,m}:
Eκpi,S [M1, ...,Mk] = Eκpi,B [M1, ...,Mk ]

= Eκpi,P [M1, ...,Mk ] .

If G = O, then:

1. For any p /∈ Bk, for any i ∈ {0, ...,m}:
Eκpi,P [M1, ...,Mk] = 0.

2. For any p ∈ Bk, for any i ∈ {0, ...,m}:
Eκpi,B [M1, ...,Mk ] = E

p
i,P [M1, ...,Mk] .

3. For any p ∈ Sk:

Eκp0,S [M1, ...,Mk ] = Eκp0,B [M1, ...,Mk ] .

5. Exclusive moments and cumulants

5.1. Exclusive moments. — Let N and k be positive integers. Let M1, ...,Mk be k
random matrices of size N defined on the same probability space, we are going to define
the mean exclusive normalized moments. Let p in Pk.

Definition 5.1. — The mean exclusive p-normalized moment of the k-tuple (M1, ...,Mk)
is:

Empc(M1, ...,Mk) =
1

Trk(ρPk

N (p))
E

[

Trk
(

(M1 ⊗ ...⊗Mk)ρ
Pk

N (tpc)
)]

.

We will define a second notion of mean exclusive normalized moments. Let us consider
a choice of (G,A) as explained in Notation 3.1.
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Definition 5.2. — Let p in Pk, the mean exclusive p-normalized A-moment of the k-
tuple (M1, ...,Mk), denoted by EmA

pc(M1, ...,Mk), is:

1

Trk(ρPk

N (p))
E

[

Trk

((

∫

G(N)
g⊗k(M1 ⊗ ...⊗Mk)(g

−1)⊗kdg

)

ρPk

N (tpc)

)]

.

Let us remark that for any p ∈ Pk, the mean exclusive p-normalized moment is equal
to the mean exclusive p-normalized P-moment.

Lemma 5.1. — For any p ∈ Pk:

Empc(M1, ...,Mk) = EmP
pc(M1, ...,Mk).

One can define the convergence in expectation in exclusive A-moments, almost as we
did in Definition 2.2, except that we ask for the convergence of the observables for any

p ∈ Pk. Let (Mi)i∈I be a family of elements of L∞− ⊗M(C).

Definition 5.3. — Let k be a positive integer, let (i1, ..., ik) ∈ Ik. The sequence
(

MN
i1

⊗ ...⊗MN
ik

)

N∈N converges in expectation in exclusive A-moments if for any p ∈
Pk,

EmA
pc(M

N
i1 , ...,M

N
ik
)

converges when N goes to infinity.
The family

(

(MN
i )N∈N

)

i∈I converges in expectation in exclusive A-moments if for any

positive integer k, for any element (BN
1 )N∈N,..., (BN

k )N∈N in A
( (

(MN
i )N∈N

)

i∈I
)

, the

sequence (BN
1 ⊗ ...⊗BN

k )N∈N converges in expectation in exclusive Ak-moments.

Again, if (MN
1 , ...,MN

k ) converges in expectation in exclusive A-moments, we denote

by EmA
pc(M1, ...,Mk) the limit of EmA

pc(M
N
1 , ...,MN

k ).
Let us recall the notations and definitions in the Sections 3.2 and 3.3 of [15]. In these

sections, we defined the set of admissible splittings of a partition p, denoted by Sp(p),
the set of admissible gluings of p, denoted by Glc(p), and two partial orders = and ⊣.
Then Proposition 4.2 of [15] implies the following proposition.

Proposition 5.1. — The family (Mi)i∈I converges in expectation in A-moments if and
only if it converges in expectation in A-exclusive moments. Besides if one condition
holds then for any positive integer k, for any p ∈ Ak, for any i1, ..., ik in I:

Emp(Mi1 , ...,Mik ) =
∑

p′∈Pk, p′⊣p
EmA

p′c(Mi1 , ...,Mik ).

Proof. — This is due to the fact that, using Theorem 3.1, if p is in Ak, then:

Emp(Mi1 , ...,Mik ) = mp

(

∫

G(N)
g⊗E[Mi1 ⊗ ...⊗Mik ](g

−1)⊗kdg

)

,

and with a slight abuse of notation:
∫

G(N)
g⊗E[Mi1 ⊗ ...⊗Mik ](g

−1)⊗kdg ∈ C[Ak(N)].

The proposition now is a consequence of Proposition 4.2 of [15].
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By looking at the proof, one can understand why the equality in Proposition 5.1 does
not hold for any p ∈ Pk. If p ∈ Pk \ Ak, the same equality would hold if one changes
the left hand side by Emp(HMi1H

−1, ...,HMikH
−1) with H being a sequence of Haar

random variable on the groups of symmetry, namely (G(N))N∈N, associated with A with
the condition that for every positive integer N , HN is independent of (MN

i )i∈I . This
discussion implies that if the family (Mi)i∈I is G-invariant, then Proposition 5.1 does
hold for any p ∈ Pk.

Let (Mi)i∈I be a family of elements of L∞− ⊗M(C) and let us suppose until the end
of this section that (Mi)i∈I converges in expectation in A-moments. Using the Theorem
4.6 of [15], we get the following statement.

Theorem 5.1. — For any positive integer k, any i1, ..., ik in I and any p ∈ Pk,

EmA
pc(Mi1 , ...,Mik ) =

∑

p′∈Ak,p′=p

Eκp
′

A(Mi1 , ...,Mik ).

Besides, as a consequence of Corollary 4.1 of [15], we get that the limits of exclusive
moments and finite-dimensional cumulants are equal for some special partitions.

Theorem 5.2. — Let k be a positive integer, let p be a partition in Pk which does not
have any pivotal block. For any i1, ..., ik in I,

EmA
pc(Mi1 , ...,Mik ) = δp∈Ak

EκpA(Mi1 , ...,Mik )(9)

In particular, for any p ∈ Bk, the Equality (9) is valid.

This last corollary is very crucial in order to study the asymptotic of the random
walk on the symmetric group. The Corollary 4.2 of [15] allows us to assert the following
proposition. Recall the definition of Mb(p) in Definition 3.9 of [15].

Theorem 5.3. — Let us suppose that A is equal either to S or B. For any positive
integer k, for any i1, ..., ik in I, for any partition p in Pk:

EmA
pc(Mi1 , ...,Mik ) = δp∈Ak

Eκ
Mb(p)
A (Mi1 , ...,Mik ).

5.1.1. The G-invariant case. — As always, when one imposes some invariance, the
theory becomes simpler. Let us choose a possibility for (G,A) as explained in Notation

3.1. Let (Mi)i∈I be a family of elements of L∞− ⊗M(C) which is G-invariant.
The Lemma 5.1 does not hold for general random matrices if one substitutes P in the

r.h.s. by any other choice of A. Yet, in the setting where (Mi)i∈I is G-invariant we get
the following lemma.

Lemma 5.2. — For any positive integer k and N , for any k-tuple (i1, ..., ik) of elements
of I, for any p ∈ Pk:

Empc(Mi1 , ...,Mik ) = EmA
pc(Mi1 , ...,Mik ).

Using this lemma, and using the discussion after Proposition 5.1, one can see that
(Mi)i∈I converges in expectation in A-moments if and only if for any positive integer
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k, for any (i1, ..., ik) ∈ Ik, for any p ∈ Pk, Empc(M
N
i1
, ...,MN

ik
) converges as N goes to

infinity. If so, then for any p ∈ Pk:

Emp(Mi1 , ...,Mik ) =
∑

p′∈Pk, p′⊣p
Emp′c(Mi1 , ...,Mik ),

Empc(Mi1 , ...,Mik ) =
∑

p′∈Ak,p′=p

Eκp
′

A(Mi1 , ...,Mik ).

If G is equal either to O of U , this last equality becomes much simpler, since it asserts
that:

Empc(Mi1 , ...,Mik ) = δp∈Ak
Eκ

Mb(p)
A (Mi1 , ...,Mik ),

moreover, if G equal to U , and if the asymptotic S-factorization holds for (Mi)i∈I , this
last equality asserts that:

Empc(Mi1 , ...,Mik ) = δp∈Sk

∏

c=(j1,...,jr) cycle of Mb(p)

κ(Mij1
, ...,Mijr ),(10)

where κ is the usual non commutative cumulant in free probability theory.
We will see in the following that the symmetry by conjugation by G allows also to

link the exclusive moments with the moments of the entries of the matrices. This will
allow to see the Equation (10) as a kind of generalization of Theorem 2.6 of [12].

As noticed by C. Male in [26] we have the following fact.

Lemma 5.3. — For any positive integer k and N , for any k-tuple (i1, ..., ik) of elements
of I, for any p ∈ Pk, one has:

δp(M
N
i1 , ...,M

N
ik
) =

(N − nc(p))!

N !
Nnc(p∨id)

Empc(M
N
i1 , ...,M

N
ik
).

Proof. — Let N and k be two positive integers, let us consider (i1, ..., ik) a k-tuple of
elements of I, and let p be a partition in Pk. Since (MN

i1
, ...,MN

ik
) is invariant in law

by conjugation by G(N), it is invariant in law by conjugation by the symmetric group

S(N). We have already seen that E
[ (

MN
i1

)j1
j1′

...(MN
ik
)jkjk′
]

does not depend on the value

of (j1, ..., jk, j1′ , ...jk′) as long as Ker ((j1, ..., jk , j1′ , ...jk′)) = p. Since there exist exactly
N !

(N−nc(p))! of 2k-tuples (j1, ..., jk, j1′ , ...jk′) such that Ker ((j1, ..., jk , j1′ , ...jk′)) = p, we get

the following equalities:

(N − nc(p))!

N !
Nnc(p∨id)

Empc(M
N
i1 , ...,M

N
ik
)

=
(N − nc(p))!

N !

∑

(j1,...,jk,j1′ ,...jk′)∈{1,...,N}2k|Ker((j1,...,jk,j1′ ,...jk′))=p

E
[ (

MN
i1

)j1

j1′
...(MN

ik
)jkjk′
]

= δp(M
N
i1 , ...,M

N
ik
).

We can state now a corollary of Theorem 5.3 and the discussion we had.
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Theorem 5.4. — Let k be a positive integer, let (M1, ...Mk) be a k-tuple of elements

of L∞− ⊗ M(C) which is U -invariant, converges in S-expectation and satisfies the
asymptotic S-factorization property. Then for any 2k-tuple, I = (i1, ..., ik , i1′ , ..., ik′) ∈
{1, ..., N}2k , one has that for any positive integer N :

E

[

(

MN
1

)i1
i1′

...(MN
k )ikik′

]

=δKer(I)∈Sk
Nnc(Ker(I)∨id)−nc(Ker(I))

(

κMb(Ker(I))(M1, ...,Mk)+o(1)
)

.

where, as usual, for any σ ∈ Sk, κσ
(

M1, ...,Mk

)

is equal to

∏

c cycle of σ,c=(i1,...,ir)

κ(Mi1 , ...,Mir ),

and κ stands for the free cumulants.

One can state also a similar theorem when G is equal to O or S but it would not use
the usual free cumulants but the B and P-cumulants that we defined. Yet, it would show
that one can compute cumulants as limits of some normalized moments of the entries of
the matrices or one can compute the asymptotics of any moments of the entries of the
matrices by using the cumulants.

5.2. Exclusive cumulants. — Recall the notion of exclusive coordinate numbers
defined in Definition 4.5 of [15]. We can define the N -dimensional mean A-exclusive
cumulants.

Definition 5.4. — Let k and N be two positive integers such that N ≥ 2k. Let

M1, ...,Mk be k random matrices in L∞−
(Ω) ⊗MN (C). The family of N -dimensional

mean A-exclusive cumulants of (M1, ...,Mk) is the family
(

Eκp
c

A (M1, ...,Mk)
)

p∈Pk

such

that, for any p ∈ Pk,

Eκp
c

A (M1, ...,Mk) = κpc

(

∫

G(N)
g⊗k

E[M1 ⊗ ...⊗Mk](g
−1)⊗kdg

)

.

Let us remark that the A-exclusive cumulants are defined for any p ∈ Pk. A conse-
quence of Theorem 4.5 of [15] is the following theorem.

Theorem 5.5. — Let (Mi)i∈I be a family of elements of L∞− ⊗M(C) which converges
in A-moments. Then, for any positive integer k, any p ∈ Pk, any i1, ..., ik in I:

EmA
pc(Mi1 , ...,Mik ) = Eκp

c

A (Mi1 , ...,Mik ).

6. The R-transform and the non-commutative law

6.1. The R-transform. —
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6.1.1. Zero order. — Let (MN )N∈N be an element of L∞− ⊗M(C) which converges in
A-expectation. We define the A-law and the RA-functional of (MN )N∈N as following.
Recall the notation E[A] defined in Definition 10.1 of [15].

Definition 6.1. — The A-law of (MN )N∈N, denoted by MA ((MN )N∈N) or MA(M),
is the element of E[A] such that for any k ≥ 1, for any p ∈ Ak:

(MA(M))p = Emp[M, ...,M ].

The RA-functional of (MN )N∈N, denoted by RA ((MN )N∈N) or RA(M), is the element
of E[A] such that for any k ≥ 1, for any p ∈ Ak:

(RA(M))p = Eκp[M, ...,M ].

Recall the definition of the MA and RA-transforms, transformations defined on E[A],
given in Definitions 10.9 and 10.10 of [15]. Using all the definitions we have just made
and Theorem 4.1, we get the following theorem. By definition, the following equalities
hold:

RA(M) = RA[MA(M)], MA(M) = MA[RA(M)].

With these definitions, one can reformulate the definition of the asymptotic A-
factorization property for (MN )N∈N. Recall the definition of ME[A] given in Definition
10.4 in [15].

Proposition 6.1. — The asymptotic A-factorization property holds for (MN )N∈N if
and only if MA(M) or RA(M) is in ME[A].

6.1.2. Higher order. — Let m be a non-negative integer, let us suppose that the se-
quence (MN )N∈N converges in A-expectation up to order m of fluctuations. We can

define the A-law and the R(m)
A -functional of (MN )N∈N up to order m of fluctuations.

Recall Definition 10.14 of [15] where we defined the algebra E(m)[A].

Definition 6.2. — We define the A-law of (MN )N∈N up to order m of fluctuations,

denoted by M(m)
A ((MN )N∈N) or M(m)

A (M), as the element of E(m)[A] such that for any
positive integer k, any p ∈ Ak, any i ∈ {0, ...,m}:

(

M(m)
A (M)

)

p,i
= Emi

p[M, ...,M ].

We define the R(m)
A -functional of (MN )N∈N up to order m of fluctuations, denoted by

R(m)
A ((MN )N∈N) or R(m)

A (M) as the element of E(m)[A] such that for any integer k, any
p ∈ Ak, any i ∈ {0, ...,m}:

(

R(m)
A (M)

)

p,i
= Eκpi,A[M, ...,M ].

Using these new definitions, Definitions 10.16 and 10.17 of [15], the following equalities
hold:

R(m)
A (M) = R(m)

A

[

M(m)(M)
]

, M(m)
A (M) = M(m)

A

[

R(m)(M)
]

.

6.2. The non-commutative law. —
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6.2.1. Zero order. — We have defined in the last section the law of an element (MN )N∈N
in L∞− ⊗ M(C) which converges in A-expectation. We generalize this for a family of

elements in L∞− ⊗M(C) which converges in A-expectation. Let (Mi)i∈I be a family of

elements in L∞− ⊗M(C) which converges in A-expectation.

Definition 6.3. — The A-law of (Mi)i∈I is the application:

⋃

l∈N





( ∞
⋃

k=1

(

C{X1, ...,Xk} × Ik
)

)l

×Al



→ C,

(

(

Pn, {in1 , ..., inkn}
)l

n=1
, p
)

7→ lim
N→∞

Emp

[

(

Pn

[

MN
i1 , ...,M

N
ikn

])l

n=1

]

.

One can also define the RA-functional of
(

(MN
i )N∈N

)

i∈I .

Definition 6.4. — The RA-functional of
(

(MN
i )N∈N

)

i∈I is the application:

⋃

l∈N





( ∞
⋃

k=1

(

C{X1, ...,Xk} × Ik
)

)l

×Al



→ C,

(

(

Pn, {in1 , ..., inkn}
)l

n=1
, p
)

7→ EκpA

[

((

Pn

[

MN
i1 , ...,M

N
ikn

])

N∈N

)l

n=1

]

.

6.2.2. Higher order. — One can also define the A-law and the RA-functional of the
fluctuations up to order m. Let m be an integer, let us suppose that (Mi)i∈I converges
in A-expectation up to order m of fluctuations.

Definition 6.5. — The A-law up to order m of fluctuations of
(

(MN
i )N∈N

)

i∈I is the
application:

⋃

l∈N





( ∞
⋃

k=1

(

C{X1, ...,Xk} × Ik
)

)l

×Al



× ({0, ...,m}) → C

which sends
(

(

Pn, {in1 , ..., inkn}
)l

n=1
, p, i0

)

on Emi0
p

[

(

Pn

[

Mi1 , ...,Mikn

])l

n=1

]

.

Definition 6.6. — The RA-functional up to order m of fluctuations of
(

(MN
i )N∈N

)

i∈I
is the application:

⋃

l∈N





( ∞
⋃

k=1

(

C{X1, ...,Xk} × Ik
)

)l

×Al



× ({0, ...,m}) → C

which sends
(

(

Pn, {in1 , ..., inkn}
)l

n=1
, p, i0

)

on Eκpi0,A

[

((

Pn

[

MN
i1
, ...,MN

ikn

])

N∈N

)l

n=1

]

.
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7. A-Freeness

Let
(

MN
1

)

N∈N and
(

MN
2

)

N∈N be two elements of L∞− ⊗M(C) which converge in A-

expectation. Can we recover the A-law of the couple
(

(

MN
1

)

N∈N ,
(

MN
2

)

)

N∈N
knowing

the A-law of
(

MN
1

)

N∈N and
(

MN
2

)

N∈N ? Actually, there is no general formula to do so,

except in some particular cases. For example, this is possible if
(

MN
1

)

N∈N and
(

MN
2

)

N∈N
are asymptotically A-free. In this section, we define the notion of asymptotic A-freeness.

7.1. Zero order. —

7.1.1. Definitions and general results. — Let I and J be two indexation sets. Recall
Definition 2.9 in [15] where the notion of irreducible partitions is defined. Let (Li)i∈I
and (Mj)j∈J be two families of elements of L∞− ⊗M(C). Let us suppose that the two

families (Li)i∈I and (Mj)j∈J converge in A-expectation. We will need some notations in
order to define the notion of asymptotic A-freeness.

Notation 7.1. — Let k be a positive integer, let (Bi)
k
i=1 be a k-tuple of elements of

A ((Li)i∈I) ∪ A ((Mj)j∈J) .

We denote by L(Bi)ki=1
the set of i ∈ {1, ..., k} such that

(

BN
i

)

N∈N ∈ A ((Li)i∈I) . We

denote by M(Bi)ki=1
the set of i ∈ {1, ..., k} such that

(

BN
i

)

N∈N ∈ A ((Mj)j∈J) . We say

that (Bi)
k
i=1 is mixed if L(Bi)ki=1

and M(Bi)ki=1
are not empty.

Let p be in Ak. The decomposition of {1, ..., k} ∪ {1′, ..., k′} by the cycles of p induces
a partition π of {1, ..., k}. The partition p is compatible with (Bi)

k
i=1 if any block of π is

included in L(Bi)ki=1
or in M(Bi)ki=1

.

Recall the definition of the extraction of a partition, defined in Definition 2.12 of [15].
Let us define the notion of A-freeness.

Definition 7.1. — The families (Li)i∈I and (Mj)j∈J are asymptotically A-free if and

only if for any positive integer k, for any partition p ∈ Ak, for any mixed k-tuple (Bi)
k
i=1

of elements of A ((Li)i∈I) ∪ A ((Mj)j∈J) , the sequence
(

EκpA(B
N
1 , ..., BN

k )
)

N
converges

as N goes to infinity and the two following conditions hold:

1-Compatibility condition : If p is not compatible with (Bi)
k
i=1:

lim
N→∞

EκpA(B
N
1 , ..., BN

k ) = 0.

2-Compatible factorization property : If p is compatible with (Bi)
k
i=1:

lim
N→∞

EκpA
(

BN
1 , ..., BN

k

)

= Eκ
pL

(Bi)
k
i=1

A

(

(Bi)i∈L
(Bi)

k
i=1

)

Eκ
pM

(Bi)
k
i=1

A

(

(Bi)i∈M
(Bi)

k
i=1

)

.

In particular, if the families (Li)i∈I and (Mj)j∈J are asymptotically A-free, for any

integers k and l, any (i1, ..., ik) ∈ Ik, any (j1, ..., jl) ∈ I l and any p ∈ Ak+l,

EκpA(M
N
i1 , ...,M

N
ik
, LN

j1 , ..., L
N
jl
)

converges when N goes to infinity. By Theorem 4.1 of [15], for any positive integers k
and l, any (i1, ..., ik) ∈ Ik, any (j1, ..., jl) ∈ I l, MN

i1
⊗ ...⊗MN

ik
⊗LN

j1
⊗ ...⊗LN

jl
converges
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in expectation in Ak+l-moments as N goes to infinity. Using Lemma 2.2, the family
(Li)i∈I ∪ (Mj)j∈J converges in expectation in A-moments. We just proved the first part
of the following theorem.

Theorem 7.1. — Let us suppose that the families (Li)i∈I and (Mj)j∈J are asymptoti-
cally A-free. The family (Li)i∈I∪(Mj)j∈J converges in A-expectation. Besides, the A-law
of (Li)i∈I ∪ (Mj)j∈J only depends on the A-law of (Li)i∈I and the A-law of (Mj)j∈J .

The key idea in order to prove the second part of this theorem is the following lemma.
In this article, by monomial, we understand a product of powers of the formal variables
with nonnegative integer exponents: the coefficient is equal to one.

Lemma 7.1. — Let k be a positive integer, let p ∈ Ak and let
(

P1, (i
1
1, ..., i

1
n1
)
)

,...,
(

Pk, (i
k
1 , ..., i

k
nk
)
)

be elements of
⋃

m∈N
(C{X1, ...,Xm}×Im) such that for any j ∈ {1, ..., k},

Pj is a monomial.

There exist a positive integer l, a partition p′ ∈ Al and a l-tuple (j1, ..., jl) ∈ I l such
that for any positive integer N , any family of random matrices (Mi)i∈I of size N :

Emp[P1(Mi1 , ...,Min1
), ..., Pk(Mi1 , ...,Mink

)] = Emp′[Mj1 , ...,Mjl ].

In order to illustrate the last lemma, let us give a simple example: for any positive
integer N , for any matrices B and C of size N :

Emid2 [BCBB,BB] = Em(1,2,3,4)(5,6)[B,C,B,B,B,B].

Proof of Theorem 7.1. — It remains to prove that the A-law of (Li)i∈I ∪ (Mj)j∈J only
depends on the A-laws of (Li)i∈I and (Mj)j∈J . Let us denote by (Ni)i∈I⊔J the family
such that for any i ∈ I, Ni = Li and for any j ∈ J , Nj = Mj. Let k be a positive integer,

and let
(

P1, (i
1
1, ..., i

1
n1
)
)

,...,
(

Pk, (i
k
1 , ..., i

k
nk
)
)

be elements of ∪m∈NC{X1, ...,Xm} × (I ⊔
J)m, let p ∈ Ak. By multi-linearity, we can suppose that each polynomial is a monomial.
Let us use Lemma 7.1, let l be an integer and let (j1, ..., jl) ∈ (I ⊔ J)l be a l-tuple such
that for any integer N , any family of random matrices (Ci)i∈I⊔J of size N :

Emp[P1(Ci1 , ..., Cin1
), ..., Pk(Ci1 , ..., Cink

)] = Emp′ [Cj1 , ..., Cjl ].

Using Theorem 4.1:

Emp[P1(Ni1 , ..., Nin1
), ..., Pk(Ni1 , ..., Nink

)]=
∑

p′′∈[idl,p′]Ak

Eκp
′′

A [Nj1 , ..., Njl ].

By definition of A-freeness, for any p′′ ∈ Ak, Eκ
p′′

A [Nj1 , ..., Njl ] only depends on the RA-
functionals of (Li)i∈I and (Mj)j∈J , and thus it only depends on the A-law of (Li)i∈I and
the A-law of (Mj)j∈J .

The dependance is actually polynomial.
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7.1.2. The special case of G-invariant random matrices. — As seen already, the case
where one considers G-invariant random matrices is quite special, and often easier. Let
us choose a possibility for (G,A) as explained in Notation 3.1. Let us consider two

families (Li)i∈I and (Mj)j∈J of elements of L∞− ⊗ M(C). Let us suppose that both

families (Li)i∈I and (Mj)j∈J converge in A-expectation. Using Theorem 4.5, we already
know that if (Li)i∈I and (Mj)j∈J are G-invariant then the two families converge in P-
expectation. The following theorem is a straightforward consequence of our discussions
in Section 4.3.

Theorem 7.2. — Let us suppose that the family (Li)i∈I ∪ (Mj)j∈J is G-invariant. The
two families (Li)i∈I and (Mj)j∈J are asymptotically A-free if and only if they are asymp-
totically P-free.

We can prove an other version of this theorem which use the notion of asymptotically
G-invariance.

Definition 7.2. — Let us suppose that (Mj)j∈J converges in P-expectation. We say
that (Mj)j∈J is asymptotically G-invariant if for any integer k, for any p ∈ Pk, for any

(j1, ..., jk) ∈ Jk,

Emp (Mj1 , ...,Mjk ) = lim
N→∞

Emp

(

UNMN
j1 (U

N )−1, ..., UNMN
jk
(UN )−1

)

,

where, for any integer N , UN is a Haar random variable on G(N) which is independent
from (MN

j )j∈J .

We could have also written this definition as a condition on the P-law of (Mi)i∈I ,
since we have the following lemma which is a consequence of Proposition 4.3, Lemma
4.3 and 4.4 of [15]. Recall the Definition 3.9 of [15] where we defined the notation Mb.

Lemma 7.2. — Let us suppose that G is equal to O or U . The family (Mj)j∈J is
asymptotically G-invariant if and only if for any positive integer k, for any (j1, ..., jk) ∈
Jk one the following equivalent condition holds:

– for any p ∈ Pk \Ak, Eκ
p
P (Mj1 , ...,Mjk ) = 0,

– (Emp (Mj1 , ...,Mjk))p∈Pk
is G-invariant (see Definition 4.10 of [15]),

– for any p ∈ Pk, Empc (Mj1 , ...,Mjk) = δp∈Ak
Em(Mb(p))c (Mj1 , ...,Mjk).

If (Mj)j∈J is asymptotically G-invariant then for any p ∈ Ak:

EκpP(Mj1 , ...,Mjk ) = EκpA(Mj1 , ...,Mjk ).

As noticed by C. Male, the following theorem is a generalization of the ”rigidity of
freeness” theorem of [26]. A consequence of the Theorem 7.3 is that if two families
are P-free, satisfy the asymptotic S-factorization property and and that one of the two
families is U , O or B-asymptotically invariant, then the two families are free in the
meaning of Voiculescu.

Theorem 7.3. — Let us suppose that the family (Mj)j∈J is asymptotically G-invariant,
if the families (Li)i∈I and (Mj)j∈J are asymptotically P-free then they are asymptotically
A-free.
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Proof. — Let us suppose that (Li)i∈I and (Mj)j∈J satisfy the conditions of the theorem.
It is enough to prove that for any positive integers k1 and k2, for any b ∈ Ak1+k2 , any
(i1, ..., ik2) ∈ Ik1 and (j1, ..., jk1) ∈ Jk2 , EκbA(Li1 ⊗ ...⊗ Lik1

⊗Mj1 ⊗ ...⊗Mjk2
) is equal

to:

δ∃(b1,b2)∈Ak1
×Ak2

,b=b1⊗b2Eκ
b1
A (Li1 ⊗ ...⊗ Lik1

)Eκb2A (Mj1 ⊗ ...⊗Mjk2
).

Let us denote by k the integer k1+k2. In order to compute EκbA(Li1⊗...⊗Lik1
⊗Mj1⊗...⊗

Mjk2
), we need to compute

∫

G(N) g
⊗kE

[

LN
i1
⊗ ...⊗ LN

ik1
⊗MN

j1
⊗ ...⊗MN

jk2

]

(g−1)⊗kdg

with N greater than 2k. This is equal to:

∫

G(N)
g⊗k





1

N !

∑

S∈S(N)

S⊗k
E

[

LN
i1 ⊗ ...⊗ LN

ik1
⊗MN

j1 ⊗ ...⊗MN
jk2

]

(S−1)⊗k



 (g−1)⊗kdg,

and thus this is equal to:
∑

p∈Pk

EκpP(L
N
i1 , ..., L

N
ik1

,MN
j1 , ...,M

N
jk2

)
1

Nnc(p)−nc(p∨id)

∫

G(N)
g⊗kp(g−1)⊗kdg.(11)

Using Proposition 4.3 of [15], for any p ∈ Pk, the sequence:
(

Ep
N =

1

Nnc(p)−nc(p∨id)

∫

G(N)
g⊗kp(g−1)⊗kdg

)

N∈N
∈
∏

N∈N
C[Ak(N)]

converges: we can neglect in the sum 11 any element of the form o(1) p
Nnc(p)−nc(p∨id) . Using

the asymptotic P-freeness of (Li)i∈I and (Mj)j∈J , this implies that we can study the
following expression instead of the expression (11):

∑

(p1,p2)∈Pk1
×Pk2

Eκp1P

(

LN
i1 , ..., L

N
ik1

)

Eκp2P

(

MN
j1 , ...,M

N
jk2

)

1

Nnc(p1⊗p2)−nc((p1⊗p2)∨id)

∫

G(N)
g⊗k(p1 ⊗ p2)(g

−1)⊗kdg,

and using the fact that the family (Mj)j∈J is asymptotically G-invariant, which implies
that for any p ∈ P \ A, EκpP(Mi1 , ...,Mik ) = 0 and for any p ∈ A, EκpA(Mi1 , ...,Mik ) =
EκpP(Mi1 , ...,Mik ), we can study in fact:

∑

(p1,p2)∈Pk1
×Ak2

Eκp1P

(

LN
i1 , ..., L

N
ik1

)

Eκp2A

(

MN
j1 , ...,M

N
jk2

)

1

Nnc(p1⊗p2)−nc((p1⊗p2)∨id)

∫

G(N)
g⊗k(p1 ⊗ p2)(g

−1)⊗kdg.

Yet, we remind that for any (p1, p2) ∈ Pk1 ×Ak2 ,
∫

G(N)
g⊗k(p1 ⊗ p2)(g

−1)⊗kdg =

∫

G(N)

(

g⊗k1p1(g
−1)⊗k1

)

⊗
(

g⊗k2p2(g
−1)⊗k2

)

dg

=

(

∫

G(N)
g⊗k1p1(g

−1)⊗k1dg

)

⊗ p2.
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Thus we have to study:

∑

p1∈Pk1

Eκp1P

(

LN
i1 , ..., L

N
ik1

)

∫

G(N) g
⊗k1p1(g

−1)⊗k1dg

Nnc(p1)−nc(p1∨id)

⊗
∑

p2∈Ak2

Eκp2A

(

MN
j1 , ...,M

N
jk2

) p2

Nnc(p2)−nc(p2∨id) .

At last, let us remark that
∑

p1∈Pk1
Eκp1P

(

LN
i1
, ..., LN

ik1

)

∫
G(N)

g⊗k1+k2p1(g−1)⊗k1dg

Nnc(p1)−nc(p1∨id) is in fact

equal to:
∑

p1∈Ak

Eκp1A

(

LN
i1 , ..., L

N
ik1

) p1

Nnc(p1)−nc(p1∨id) ,

and thus we get that the limit, as N goes to infinity, of the coordinate numbers of
∫

G(N) g
⊗kE

[

LN
i1
⊗ ...⊗ LN

ik1
⊗MN

j1
⊗ ...⊗MN

jk2

]

(g−1)⊗kdg is equal to the limit, as N

goes to infinity, of the coordinate numbers of:
∑

(p1,p2)∈Ak1
×Ak2

Eκp1A

(

LN
i1 , ..., L

N
ik1

)

Eκp2A

(

MN
j1 , ...,M

N
jk2

) p1 ⊗ p2

Nnc(p1⊗p2)−nc((p1⊗p2)∨id) .

This implies that for any b ∈ Ak1+k2 ,

EκbA(Li1 ⊗ ...⊗ Lik1
⊗Mj1 ⊗ ...⊗Mjk2

)

= δ∃(b1,b2)∈Ak1
×Ak2

,b=b1⊗b2Eκ
b1
A (Li1 ⊗ ...⊗ Lik1

)Eκb2A (Mj1 ⊗ ...⊗Mjk2
),

and thus (Li)i∈I and (Mj)j∈J are asymptotically A-free.

Using the Theorem 4.5 and the Definition 7.1 of asymptotic freeness, we can already
see that a unitarily invariant family of random matrices which converges in expectation
in S-moments is asymptotically S-free from its transpose family: this gives us the first
example of families of random matrices which are S-free. This result was proved in
[28] as a consequence of a more general result on second-order freeness ; this result is
equivalent to the following theorem.

Theorem 7.4. — Let us suppose that the family (Li)i∈I ∪ (Mj)j∈J is U -invariant, con-
verges in expectation in S-moments and satisfies the asymptotic S-factorization prop-
erty. Then the families (Li)i∈I and (tMj)j∈J are asymptotically S-free.

Proof. — Since (Li)i∈I ∪ (Mj)j∈J is U -invariant, by Corollary 4.1, (Li)i∈I ∪ (tMj)j∈J
converges in expectation in P-moments. Let us prove that for any positive in-
teger k and l, any σ ∈ Sk+l and any (i1, ..., ik) ∈ Ik and any (j1, ..., jl) ∈ J l,
EκσS(Li1 , ..., Lik ,

tMj1 , ...,
tMjl) is equal to:

δ∃(σ1,σ2)∈Sk×Sl|σ=σ1⊗σ2
Eκσ1

S (Li1 , ..., Lik )Eκ
σ2
S (tMj1 , ...,

tMjl).

It has to be noticed that the family (Li)i∈I ∪ (tMj)j∈J is O-invariant: using the point 3.
of Theorem 4.5 in the case where G = O, we know that:

EκσS(Li1 , ..., Lik ,
tMj1 , ...,

tMjl) = EκσB(Li1 , ..., Lik ,
tMj1 , ...,

tMjl)
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Besides, using the definition of Sk given in Definition 2.5, the fact that the family
(Li1 , ..., Lik ,

tMj1 ,
tMjl) is O-invariant, and using Lemma 4.3, we get:

EκσB(Li1 , ..., Lik ,
tMj1 , ...,

tMjl) = Eκ
Sk(σ)
B (Li1 , ..., Lik ,Mj1 , ...,Mjl).

Since (Li1 , ..., Lik ,Mj1 , ...,Mjl) is U -invariant, because of Theorem 4.5, we know that
the right-hand-side is equal to zero if Sk(σ) is not in Sk+l. Let us remark that Sk(σ)
is in Sk+l if and only if there exists (σ1, σ2) ∈ Sk × Sl such that σ = σ1 ⊗ σ2.
This proves that if σ can not be decomposed as σ1 ⊗ σ2 with (σ1, σ2) ∈ Sk × Sl,
EκσS(Li1 , ..., Lik ,

tMj1 , ...,
tMjl) = 0.

It remains to consider the case when σ can be decomposed as σ1 ⊗ σ2 with (σ1, σ2) ∈
Sk ×Sl. In this case, using the asymptotic S-factorization property, we get:

Eκσ1⊗σ2
S (Li1 , ..., Lik ,

tMj1 , ...,
tMjl) = Eκσ1⊗tσ2

S (Li1 , ..., Lik ,Mj1 , ...,Mjl)

= Eκσ1
S (Li1 , ..., Lik )Eκ

tσ2
S (Mj1 , ...,Mjl)

= Eκσ1
S (Li1 , ..., Lik )Eκ

σ2
S (tMj1 , ...,

tMjl).

This ends the proof.

Let us remark that the proof has nothing special to do with random matrices and
would work in an abstract setting. Also, we could have use a weaker condition on
(Mi)i∈I , namely the fact that (Mi)i∈I is asymptotically U -invariant.

7.1.3. Links between the different notion of asymptotic freeness. — We defined three
notions of asymptotic freeness, namely the S, B and P-asymptotic freeness. Besides,
since the work of Voiculescu, a notion of asymptotic freeness was defined. In this section,
we will explain the links between these notions using results that one can find in this
paper, and we will explain the following diagram. In order to shorten the notations, we
will ommit to specify that the notions of freeness that we consider in this section are
“asymptotic” notions.

Voiculescu’s freeness
))

S− freeness

(a) under asymptotic S−factorization

uu

(b) under U−asymptotic invariance

��
B − freeness

(d)

BB

(c) under O−asymptotic invariance

��

\\

P − freeness

\\

Diagram 1. The different notions of freeness.
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Let us focus on the implications which are true. The equivalence denoted by (a) in
Table 1 is a consequence of Proposition 4.3, and the fact that the freeness in free prob-
ability theory can be stated as a property of vanishing cumulants (Speicher’s condition,
Theorem 11.16 in [29]). The equivalences denoted by (b) and (c) in Diagram 1 are
consequences of Theorems 7.3. The implication denoted by (d) is a direct consequence
of Lemma 4.1.

Now, let us focus on the implications which are in general not true:

1. the P-freeness does not imply the S-freeness. Let us considers two diagonal ma-
trices which are independent and which have i.i.d. diagonal entries, then they are
P-free, but they are not S-free. Indeed, if they were, the limit of the eigenvalues
distribution of their sum would be the free convolution of the limiting eigenvalues
distributions of the two matrices, yet it is clear that it is the usual convolution of
the limiting eigenvalues distributions of the two matrices. Since free convolution
and usual convolution are not equivalent, one can conclude. More generaly, one
can see the fact that P-freeness does not imply the S-freeness as a consequence of
Proposition 7.1.

2. The P-freeness does not imply the B-freeness: if it was the case, since B-freeness
implies S-freeness the first point would be true.

3. the S-freness does not implies the B-freeness. By Theorem 7.4, if one considers

M ∈ L∞− ⊗M(C) which is U invariant and which converges in S-moments, then
M and M t are asymptotically S-free. It M and M t were B-free, this would imply
that M is asymptotically S-free with itself: this is usually not true.

For the moment, we do not have a good argument which would explain why the
asymptotic B-freeness does not imply the P-freeness. Besides, as explained in Remark
3.1, one can define other notions of asymptotic freeness, for exemple the Bs and H
notions of asymptotic freeness. It would be interesting to know the links between all of
them.

Let us finish with a proposition which is totally inspired by a result of C. Male, namely
the first point of Corollary 3.5 of [26]. The proof that we give here differs from the one
of C. Male as it is based on the cumulants we introduced in this article and the new
Theorem 7.8.

Proposition 7.1. — Let 02 be the partition {{1, 2, 1′, 2′}}. Let M = (MN
1 ,MN

2 )N∈N
and L = (LN

1 , LN
2 )N∈N be two families of elements of L∞− ⊗M(C) which converges in

P-expectation. Let us suppose that M and L are asymptotically P-free. If

Eκ02P (M1 ⊗M2)Eκ
02
P (L1 ⊗ L2) 6= 0,

then M and L are not asymptotically S-free.

Proof. — Let M = (MN
1 ,MN

2 )N∈N and L = (LN
1 , LN

2 )N∈N be two families of elements

of L∞− ⊗M(C) which converge in P-expectation and which are asymptotically P-free.
We will apply a theorem that we will prove in a more general setting, namely Theorem
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7.8. It shows that:

Em(1,2,3,4) [M1, L1,M2, L2] = Em(1,2) [M1L1,M2L2]

=
∑

p∈Pk,p∈[id,(1,2)]P2

EκpP [M1,M2]Emtp◦(1,2)[L1, L2].

Yet, [id, (1, 2)]P2 = {id, 02, (1, 2)}, thus Em(1,2,3,4) [M1, L1,M2, L2] is equal to:

EκidP [M1,M2]Em(1,2)[L1, L2]+Eκ02P [M1,M2]Em02 [L1, L2]+Eκ
(1,2)
P [M1,M2]Emid[L1, L2].

Using the links between cumulants and moments, we can write again this expression as:

Emid[M1,M2]Em(1,2)[L1, L2]+Em(1,2)[M1,M2]Emid[L1, L2]−Emid[M1,M2]Emid[L1, L2]

+Eκ02P [M1,M2]Eκ
02
P [L1, L2].

If M and L were asymptotically S-free, using the same arguments but using the set-
geodesic in Sk would lead to the following expression for Em(1,2,3,4) [M1, L1,M2, L2]:

Emid[M1,M2]Em(1,2)[L1, L2]+Em(1,2)[M1,M2]Emid[L1, L2]−Emid[M1,M2]Emid[L1, L2].

Thus, we see that if Eκ02P (M1,M2)Eκ
02
P (L1, L2) 6= 0, then M and L are not asymptoti-

cally S-free.

Remark 7.1. — Recall that in Remark 3.1, we defined for any positive integer k, Hk

as the subset of Pk of partitions which have blocks of even size. Let us remark that in
Proposition 7.1 one can replace the condition of P-free by H-free since 02 ∈ [id, (1, 2)]H2

.

Using this result, we will show in the article [17] that the P-free Levy process which
is the limit of random walks on the symmetric group is not a S-free Levy process: its
increments are not S-free, and thus since the S-asymptotic factorization will hold, this
is not a free Levy process.

7.1.4. The Bs-asymptotic freeness implies S-asymptotic. — In Section 3.1, in Remak
3.1, we explained that the paper could be generalized to any of the easy orthogonal
groups and the category of partitions associated to them. We also explained by we
decided to focus on the three groups U(N), O(N), S(N). Yet, we would like to give
an example of the use of the other groups in order to explain that a deeper study of
the other notions of asymptotic freeness, namely the Bs and the H-asymptotic freeness,
could be interesting.

Lemma 7.3. — Let k be a positive integer. Let σ ∈ Sk, then we have the equality:

[id, σ]Sk
= [id, σ]Bsk

Proof. — The proof is similar to the proof of Lemma 3.9 of [15]. One has just to check
that for any permutation σ ∈ Sk and any p ∈ Bsk such that d(id, p) = 1, p is not in the
set-geodesic [id, σ]Pk

.

A consequence of this is that for any family (Mi)i∈I of elements of L∞− ⊗ M(C)
which converges in Bs-expectation, for any positive integer k, for any σ ∈ Sk and any
(i1, ..., ik) ∈ Ik:

EκσBs [Mi1 , ...,Mik ] = EκσS [Mi1 , ...,Mik ] .
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This fact implies the following theorem.

Theorem 7.5. — Let (Li)i∈I and (Mj)j∈J be two families of elements of L∞− ⊗M(C)
which converge in Bs-expectation. Let us suppose that (Li)i∈I and (Mj)j∈J are asymp-
totically Bs-free, then they are S-free. In particular, if each family satisfy the asymptotic
S-factorization property, then (Li)i∈I and (Mj)j∈J are free in the meaning of Voiculescu.

Using this theorem and Theorem 7.10, one gets the following theorem.

Theorem 7.6. — Let (Li)i∈I and (Mj)j∈J be two families of elements of L∞− ⊗M(C)
which converge in Bs-expectation and which satisfy the asymptotic S-factorization. Let
us suppose that Li is B-invariant and let us suppose that for every positive integer N ,
the two families

(

LN
i

)

i∈I and (MN
j )j∈J are independent. Then the two families (Li)i∈I

and (Mj)j∈J are asymptotically free in the meaning of Voiculescu.

7.1.5. Definition of freeness using exclusive moments. — Let us give an other definition
of asymptotically A-freeness. Recall Definition 3.13 of [15], where we defined for any
positive integer l ≤ k and p ∈ Pk, the left and right parts pgl and pdl .

Theorem 7.7. — The families (Li)i∈I and (Mj)j∈J are asymptotically A-free if and
only if for any positive integer k, for any partition p ∈ Pk, for any integer l∈]0, ..., k[, for
any k-tuple (Bi)

k
i=1 such that (Bi)

l
i=1 is in A ((Li)i∈I) and (Bi)

k
i=l+1 is in A ((Mj)j∈J),

EmA
pc
(

(BN
i )ki=1

)

converges as N goes to infinity, and:

lim
N→∞

EmA
pc

(

(BN
i )ki=1

)

= δpg
l
⊗pd

l
=pEm

A
(pg

l
)c

[

(Bi)
l
i=1

]

EmA
(pd

l
)c

[

(Bi)
k
i=l+1

]

.

For sake of clarity, we will say that the families (Li)i∈I and (Mj)j∈J are asymptotically
A-free in exclusive moments if the conditions on the exclusive moments hold. In the up-
coming paper [14], the author and his coauthors explain the link between this definition
of asymptotic A-freeness in exclusive moments and the definition of C. Male based on
traffics and free-product of traffic defined in [26].

Proof of Theorem 7.7. — Let k be a positive integer, let l be an integer in ]0, ..., k[ and

let p ∈ Pk. Let (Bi)
l
i=1 be a l-tuple of elements of A ((Li)i∈I)) and let (Bi)

k
i=l+1 be a

(k − l)-tuple of elements of A ((Mj)j∈J). Let us prove that:
∑

p′1∈Al,p
′
2∈Ak−l,p

′
1⊗p′2=p

Eκ
p′1
A

(

(Bi)
l
i=1

)

Eκ
p′2
A

(

(Bi)
k
i=l+1

)

(12)

= δpg
l
⊗pd

l
=pEm

A
(pg

l
)c

[

(Bi)
l
i=1

]

EmA
(pd

l
)c

[

(Bi)
k
i=l+1

]

.(13)

Let us consider the left hand side: the Proposition 3.4 of [15] shows that this is also
equal to:

δpg
l
⊗pd

l
=p

∑

p1∈Al,p1=pg
l

Eκp1A

(

(Bi)
l
i=1

)

∑

p2∈Ak−l,p2=pd
l

Eκp2A

(

(Bi)
k
i=l+1

)

,

and using Theorem 5.1, it is thus equal to:

EmA
pc

(

(Bi)
k
i=1

)

= δpg
l
⊗pd

l
=pEm

A
(pg

l
)c

[

(Bi)
l
i=1

]

EmA
(pd

l
)c

[

(Bi)
k
i=l+1

]

.
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Let us suppose that the families (Li)i∈I and (Mj)j∈J are asymptotically A-free. Then
the left hand side (12) is equal to:

∑

p′∈Ak,p′=p

Eκp
′

A

(

(Bi)
k
i=1

)

.

which, by Theorem 5.1 is equal to EmA
pc
(

(Bi)
k
i=1

)

. This implies that

EmA
pc

(

(Bi)
k
i=1

)

= δpg
l
⊗pd

l
=pEm

A
(pg

l
)c

[

(Bi)
l
i=1

]

EmA
(pd

l
)c

[

(Bi)
k
i=l+1

]

,

and thus (Li)i∈I and (Mj)j∈J are asymptotically A-free in exclusive moments.
Now, let us suppose that (Li)i∈I and (Mj)j∈J are asymptotically A-free in exclusive

moments. Then the right hand side (13) is equal to EmA
pc
(

(Bi)
k
i=1

)

. Thus:

∑

p′1∈Al,p
′
2∈Ak−l,p

′
1⊗p′2=p

Eκ
p′1
A

(

(Bi)
l
i=1

)

Eκ
p′2
A

(

(Bi)
k
i=l+1

)

= EmA
pc

(

(Bi)
k
i=1

)

.

This equality is valid for any partition p ∈ Pk, yet for any p ∈ Pk, we know that:
∑

p′∈Ak,p′=p

Eκp
′

A

(

(Bi)
k
i=1

)

= EmA
pc

(

(Bi)
k
i=1

)

.

By inversion of the matrix order or =, we get that for any p ∈ Ak:

EκpA

(

(Bi)
k
i=1

)

= δ∃(p1,p2)∈Al×Ak−l,p=p1⊗p2Eκ
p1
A

(

(Bi)
l
i=1

)

Eκp2A

(

(Bi)
k
i=l+1

)

.

This shows that the families (Li)i∈I and (Mj)j∈J are asymptotically A-free.

Remark 7.2. — We proved Theorem 7.7 under the assumption that we were working
with sequences of random matrices. Yet, it has to be noticed that we did use only a
combinatorial argument: this implies that the proof would work exactly the same for
general A-free non-commutative random variables.

7.1.6. Factorization and freeness. — Let (Li)i∈I and (Mj)j∈J be two families of ele-

ments of L∞− ⊗M(C). Let us suppose that both families (Li)i∈I and (Mj)j∈J converge
in A-expectation and satisfy the asymptotic A-factorization property.

Proposition 7.2. — Let us suppose that (Li)i∈I and (Mj)j∈J are asymptotically A-free,
then the asymptotic A-factorization property holds for (Li)i∈I ∪ (Mj)j∈J .

Proof. — This is a direct consequence of Proposition 4.1 and the definition of asymptotic
A-freeness.

7.1.7. Sum and product of families of A-free elements. — In this new setting, we can
generalize some well-known theorems about the sum and the multiplication of asymptotic
free elements. Recall the Definitions 6.1 and 6.2 of [15] about the notion ≺ and the
generalized Kreweras complement. Recall the notation F2(p) defined in Definition 2.11
in [15]. We need an other notation.
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Notation 7.2. — Let k be a positive integer. Let (Ci)
k
i=1 be a k-tuple of elements of

L∞− ⊗M(C) which converges in expectation in A-moments. Let K be a subset of Pk,
we set:

EκKA

[

(Ci)
k
i=1

]

=
∑

p∈K∩Ak

EκpA

[

(Ci)
k
i=1

]

.

Let (Li)i∈I and (Mj)j∈J be two families of elements of L∞− ⊗M(C).

Theorem 7.8. — Let us suppose that (Li)i∈I and (Mj)j∈J are asymptotically A-free.

Let k be a positive integer. Let us consider
(

(BN
i )N∈N

)k

i=1
and

(

(CN
i )N∈N

)k

i=1
such that

for any i ∈ {1, ..., k},
(

BN
i

)

N∈N ∈ A
(

(Li)i∈I
)

and
(

CN
i

)

N∈N ∈ A
(

(Mj)j∈J
)

.
Then, for any p ∈ Ak:

EκpA [B1 + C1, ..., Bk + Ck] =
∑

(p1,p2,I)∈F2(p)

Eκp1A ((Bi)i∈I)Eκ
p2
A

(

(Cj)j∈{1,...,k}\I
)

,

EκpA [B1C1, ..., BkCk] =
∑

p1∈Ak,p1≺p

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp(p1)
A

(

(Ci)
k
i=1

)

,

Emp [B1C1, ..., BkCk] =
∑

p1∈Ak,p1∈[id,p]Ak

Eκp1A

(

(Bi)
k
i=1

)

Emtp1◦p
(

(Ci)
k
i=1

)

.

Proof. — Let k be a positive integer, let us consider
(

(BN
i )N∈N

)k

i=1
and

(

(CN
i )N∈N

)k

i=1

such that for any i ∈ {1, ..., k},
(

BN
i

)

N∈N ∈ A
(

(Li)i∈I
)

, and
(

CN
i

)

N∈N ∈ A
(

(Mj)j∈J
)

.
Let p be in Ak. Let us prove first that:

EκpA [B1 + C1, ..., Bk + Ck] =
∑

(p1,p2,I)∈F2(p)

Eκp1A ((Bi)i∈I)Eκ
p2
A

(

(Cj)j∈{1,...,k}\I
)

.

By multilinearity, we have:

EκpA [B1 + C1, ..., Bk + Ck] =
∑

(U (1),...,U (k))∈{B,C}k
EκpA

[

U
(1)
1 , ..., U

(k)
k

]

.

Using the asymptotic A-freeness of (Li)i∈I and (Mj)j∈J , we see that every term is equal

to zero except for the choices of
(

U (1), ..., U (k)
)

∈ {B,C}k such that for any cycle of p

and for any i and j in this cycle, U (i) = U (j). Such a choice gives a decomposition of p
in two partitions. Recall the notation F2(p) defined in Definition 2.11 in [15]. We get:

EκpA [B1 + C1, ..., Bk + Ck] =
∑

(p1,p2,I)∈F2(p)

Eκp1A ((Bi)i∈I)Eκ
p2
A

(

(Cj)j∈{1,...,k}\I
)

.

Let us prove now that:

EκpA [B1C1, ..., BkCk] =
∑

p1∈Ak,p1≺p

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp(p1)
A

(

(Ci)
k
i=1

)

.

For this, we only have to prove that for any p ∈ Ak,
∑

p′∈[id,p]Ak

∑

p1∈Ak,p1≺p′

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp′(p1)

A

(

(Ci)
k
i=1

)

= Emp [B1C1, ..., BkCk] .
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Let p be in Ak, we have:
∑

p′∈[id,p]Ak

∑

p1∈Ak,p1≺p′

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp′(p1)

A

(

(Ci)
k
i=1

)

=
∑

p′∈[id,p]Ak

∑

p1,p2∈Ak,p1≺p1◦p2=p′

Eκp1A

(

(Bi)
k
i=1

)

Eκp2A

(

(Ci)
k
i=1

)

=
∑

p1,p2∈Ak,p1≺p1◦p2,p1◦p2∈[id,p]Ak

Eκp1A

(

(Bi)
k
i=1

)

Eκp2A

(

(Ci)
k
i=1

)

.

We recall that we proved in Proposition 8.1 of [15], that for any p, p1, p2 in Ak:

δp1⊗p2∈[id,(p⊗idk)τ ]A2k
= δp1◦p2∈[id,p]Ak

δp1≺p1◦p2 .

where τ = (1, k + 1)(2, k + 2)...(k, 2k). Thus,

∑

p′∈[id,p]Ak

∑

p1∈Ak,p1≺p′

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp′(p1)

A

(

(Ci)
k
i=1

)

=
∑

p1,p2∈Ak,p1⊗p2∈[id,(p⊗idk)τ ]A2k

Eκp1A

(

(Bi)
k
i=1

)

Eκp2A

(

(Ci)
k
i=1

)

.

Using the asymptotic A-freeness of (Li)i∈I and (Mj)j∈J , we know that for any p1 and
p2 in Ak,

Eκp1A

(

(Bi)
k
i=1

)

Eκp2A

(

(Ci)
k
i=1

)

= Eκp1⊗p2
A (B1, ..., Bk, C1, ..., Ck) .

Besides, if p′ ∈ A2k is not compatible with (B1, ..., Bk, C1, ..., Ck), which means that
there exist no partitions p1 and p2 in Ak such that p1 ⊗ p2 = p′ then:

Eκp
′

A (B1, ..., Bk, C1, ..., Ck) = 0.

This implies that:
∑

p′∈[id,p]Ak

∑

p1∈Ak,p1≺p′

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp′(p1)

A

(

(Ci)
k
i=1

)

=
∑

p1,p2∈Ak,p1⊗p2∈[id,(p⊗idk)τ ]A2k

Eκp1⊗p2
A (B1, ..., Bk, C1, ..., Ck)

=
∑

p′∈Ak,p′∈[id,(p⊗idk)τ ]A2k

Eκp
′

A (B1, ..., Bk, C1, ..., Ck)

= Em(p⊗idk)τ (B1, ..., Bk, C1, ..., Ck)

= Emp(B1C1, ..., BkCk).

Let us prove now that:

Emp [B1C1, ..., BkCk] =
∑

p1∈Ak,p1∈[id,p]Ak

Eκp1A

(

(Bi)
k
i=1

)

Emtp1◦p
(

(Ci)
k
i=1

)

.
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For this, we use the equality we just proved, the Definition 4.1 and the Proposition 8.3
of [15]. Indeed,

Emp [B1C1, ..., BkCk] =
∑

p′∈Ak,p′∈[id,p]Ak

EκpA [B1C1, ..., BkCk]

=
∑

p′∈Ak,p′∈[id,p]Ak

∑

p1∈Ak,p1≺p′

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp′(p1)

A

(

(Ci)
k
i=1

)

=
∑

p1∈Ak

Eκp1A

(

(Bi)
k
i=1

)

∑

p′∈Ak,p′∈[id,p]Ak

δp1≺p′Eκ
Kp′(p1)

A

(

(Ci)
k
i=1

)

=
∑

p1∈Ak

Eκp1A

(

(Bi)
k
i=1

)

δp1∈[id,p]Ak
Emtp1◦p

(

(Ci)
k
i=1

)

=
∑

p1∈Ak,p1∈[id,p]Ak

Eκp1A

(

(Bi)
k
i=1

)

Emtp1◦p
(

(Ci)
k
i=1

)

.

This finishes the proof.

Let us remark that if p is the cycle (1, ..., k), using the fact that the set-geodesic
([id, (1, ..., k)]Sk

,≤) is isomorphic to the poset of non-crossing partitions of {1, ..., k}, we
recover the classical formula, given in the Appendix of [23], which asserts that

lim
N→∞

E

[

1

N
Tr
(

BN
1 CN

1 ...BN
k CN

k

)

]

=
∑

π∈NCk

τπ(B1, ..., Bk)κπ∨(C1, ..., Ck),

where we used the notation NCk for the non-crossing partitions of k elements, the
notation τπ for the non-commutative moments and π∨ for the Kreweras complement of
a non-crossing partition π.

Recall the definition of the operations ⊞ and ⊠ defined in Section 10.1 of [15]. As a
consequence of Theorem 7.8, we get the following theorem.

Theorem 7.9. — Let us suppose that (Li)i∈I and (Mj)j∈J are asymptotically A-free.
Let us consider two sequences (BN )N∈N and (CN )N∈N such that (BN )N∈N ∈ A

(

(Li)i∈I
)

,

(CN )N∈N ∈ A
(

(Mj)j∈J
)

.
The RA-transform of (BN + CN )N∈N and (BNCN )N∈N are given by:

RA [(BN + CN )N∈N] = RA [(BN )N∈N]⊞RA [(CN )N∈N] ,

RA [(BNCN )N∈N] = RA [(BN )N∈N]⊠RA [(CN )N∈N] .

Actually, by using the up-coming Theorem 7.10, one could apply directly the results
from the article [15], instead of the proof given in this section. We will explain more
after Therorem 7.10. Yet the resulting proof could not be applied abstractly to two

families which are A-free: both families should be families in L∞− ⊗ M(C). Instead,
the proof that we gave for Theorem 7.8 is general enough to be applied in an abstract
setting.



44 FRANCK GABRIEL

7.1.8. G-invariance and independence imply A-asymptotic freeness. — The following
theorem generalizes the well-known fact that U and O invariance and independence
implies freeness in the meaning of Voiculescu. Let us choose a possibility for (G,A)
as explained in Notation 3.1. Let (Li)i∈I and (Mj)j∈J be two families of elements of

L∞− ⊗ M(C). Let us suppose that the two families (Li)i∈I and (Mj)j∈J converge in
A-expectation.

Theorem 7.10. — Let us suppose that (Li)i∈I is G-invariant and let us suppose that
for every positive integer N , the two families (LN

i )i∈I and (MN
j )j∈I are independent.

Then the two families (Li)i∈I and (Mj)j∈J are asymptotically A-free.
Actually, the compatibility condition and the compatible factorization property hold for

any integer N big enough so that the N -dimensional A-cumulants are defined: for any
positive integer k, for any partition p ∈ Ak, for any positive integer N ≥ 2k, for any

mixed k-tuple
(

BN
i

)k

i=1
of elements of A

(

(LN
i )i∈I

)

∪ A
(

(MN
j )j∈J

)

,

1-Compatibility condition : If p is not compatible with (BN
i )ki=1:

EκpA
(

BN
1 , ..., BN

k

)

= 0.

2-Compatible factorization property : If p is compatible with (BN
i )ki=1:

EκpA
(

BN
1 , ..., BN

k

)

= Eκ
pL

(Bi)
k
i=1

A

(

(

BN
i

)

i∈L
(Bi)

k
i=1

)

Eκ
pM

(Bi)
k
i=1

A

(

(

BN
i

)

i∈M
(Bi)

k
i=1

)

.

Proof. — Let (Li)i∈I and (Mj)j∈J be two families of L∞− ⊗ M(C) which satisfy the

hypotheses stated in Theorem 7.10. Let k be a positive integer, let p be in Ak, let (Bi)
k
i=1

be any mixed k-tuple of elements of A ((Li)i∈I) ∪A ((Mj)j∈J).
We have to show that Eκp

[

BN
1 , ..., BN

k

]

converges as N goes to infinity, and we
have to compute its limit. For this, we need to compute, for every positive integer
N ,
∫

G(N) g
⊗kE

[

BN
1 ⊗ ...⊗BN

k

]

(g−1)⊗kdg. Using the independence for each positive in-

teger N of the families
{

(

BN
i

)

/i ∈ L(Bi)ki=1

}

and
{

(

BN
i

)

/i ∈ M(Bi)ki=1

}

, one can cut

the expectation E
[

BN
1 ⊗ ...⊗BN

k

]

in two. Thus, E
[

BN
1 ⊗ ...⊗BN

k

]

is equal to:

E

[

IL
(Bi)

k
i=1

[

(BN
i )i∈L

(Bi)
k
i=1

⊗ Id
⊗k−#L

(Bi)
k
i=1

]]

E

[

IM
(Bi)

k
i=1

[

(BN
i )i∈M

(Bi)
k
i=1

⊗ Id
⊗k−#M

(Bi)
k
i=1

]]

.

For example, if X and Y are two independent random matrices:

E[X ⊗ Y ⊗X] = E[X ⊗ Id⊗X]E[Id⊗ Y ⊗ Id].

Since for any positive integer N , (LN
i )i∈I is invariant by conjugation by G(N), the family

(BN
i )i∈L

(Bi)
k
i=1

is invariant by conjugation by G(N). Thus

E

[

IL
(Bi)

k
i=1

[

(BN
i )i∈L

(Bi)
k
i=1

⊗ Id
⊗k−#L

(Bi)
k
i=1

]]

commutes with the action of G on
(

CN
)⊗k

.
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This implies that
∫

G(N) g
⊗kE

[

BN
1 ⊗ ...⊗BN

k

]

(g−1)⊗kdg is equal to:

∫

G(N)
(g′)⊗k

E

[

IL
(Bi)

k
i=1

[

(BN
i )i∈L

(Bi)
k
i=1

⊗ Id
⊗k−#L

(Bi)
k
i=1

]]

(g′−1)⊗kdg′

∫

G(N)
g⊗k

E

[

IM
(Bi)

k
i=1

[

(BN
i )i∈M

(Bi)
k
i=1

⊗ Id
⊗k−#M

(Bi)
k
i=1

]]

(g−1)⊗kdg.

It is now obvious that when one writes everything in terms of N -dimensional cumulants
and partitions, the only partitions which will appear will be compatible with (Bi)

k
i=1,

and if p is compatible, the compatible factorization property will hold for any N ≥ 2k if
A = P and for any N ≥ k if A = S or A = B.

Remark 7.3. — Let (Li)i∈I and (Mj)j∈J be two families which satisfy the hypotheses of

Theorem 7.10. Then for any integer N , the family (LN
i )i∈I ∪((LN

i )∗)i∈I is also invariant
by conjugation by G(N), and the two families (LN

i )i∈I ∪ ((LN
i )∗)i∈I and (MN

j )j∈J are

independent. Thus, if (Li)i∈I∪(L∗
i )i∈I converges in A-expectation, then (LN

i )i∈I∪(L∗
i )i∈I

and (Mj)j∈J are also asymptotically A-free.

Now we can recover the Theorem 7.8 as a simple consequence of the results in
[15]. Indeed, let (Li)i∈I and (Mj)j∈J be two families which are A-free. We have
seen that the A-law of (Li)i∈I ∪ (Mj)j∈J only depends on the A-law of (Li)i∈I and
(Mj)j∈J . Thus it remains unchanged if we suppose that (Li)i∈I and (Mj)j∈J are G-
invariant. Besides because of Theorem 7.10, we can always suppose that, for any-
positive integer N , (LN

i )i∈I and (MN
j )j∈J are independent. Let k be a positive inte-

ger. Let us consider
(

(BN
i )N∈N

)k

i=1
and

(

(CN
i )N∈N

)k

i=1
such that for any i ∈ {1, ..., k},

(BN
i )N∈N ∈ A

(

(Li)i∈I
)

, (CN
i )N∈N ∈ A

(

(Mj)j∈J
)

. Then, for any p ∈ Ak, for any positive
integer N ,

E
[

BN
1 CN

1 ⊗ ...⊗BN
k CN

k

]

= E
[

(BN
1 ⊗ ...⊗BN

k )(CN
1 ⊗ ...⊗CN

k )
]

= E
[

BN
1 ⊗ ...⊗BN

k

]

E
[

CN
1 ⊗ ...⊗ CN

k

]

.

Recall Lemma 4.3 and Theorem 4.2: an application of the Equation (15) of Theorem
7.1 in [15] gives:

EκpA [B1C1, ..., BkCk] =
∑

p1∈Ak,p1≺p

Eκp1A

(

(Bi)
k
i=1

)

Eκ
Kp(p1)
A

(

(Ci)
k
i=1

)

.

Besides, for any positive integer N ,

Emp

[

BN
1 CN

1 , ..., BN
k CN

k

]

= mp

[

E
[

BN
1 ⊗ ...⊗BN

k

]

E
[

CN
1 ⊗ ...⊗CN

k

]]

.

The Equation (16) of Theorem 7.1 in [15] gives:

Emp

[

BN
1 CN

1 , ..., BN
k CN

k

]

∑

p1∈Ak,p1≤p

Eκp1A

(

(Bi)
k
i=1

)

Emtp1◦p
(

(Ci)
k
i=1

)

.



46 FRANCK GABRIEL

7.1.9. Strong asymptotically G-invariance. — Let (Li)i∈I ∪ (Mj)j∈J be a family of el-

ements in L∞− ⊗ M(C). Let us suppose that (Li)i∈I and (Mj)j∈J converge in P-
expectation. Seeing that in Theorem 7.3 we only need the asymptotic G-invariance of
one of the two families, one can wonder if it is possible to state a version of Theorem
7.10 where one could replace the condition of G-invariance imposed for (Li)i∈I by the
condition that (Li)i∈I is asymptotically G-invariant.

One can not hope that such generalization is true, at least with the definition of
asymptotically G-invariant that we gave. Indeed, let us suppose that (A,G) = (P,S):
(Li)i∈I is asymptotically S-invariant. Thus, if the generalization of Theorem 7.3 was
true, this would imply that (Li)i∈I and (Mj)j∈J are asymptotically P-free. Let us
consider the special case where for any positive integer N , MN is the diagonal matrix
with ⌊N2 ⌋ zeros followed by ⌈N2 ⌉ ones and LN is the diagonal matrix with ⌊N2 ⌋ ones follows
by ⌈N2 ⌉ zeros. The sequences of random matrices (MN )N∈N and (LN )N∈N converges in
P-expectation, have the same P-law, and it is easy to see that:

mid1(M) = mid1(L) =
1

2
.

Let us suppose that (MN )N∈N and (LN )N∈N are asymptotically P-free. Let us denote
by 112 the partition in P2 equal to {{1, 2, 1′ , 2′}}: one can see that id1 ⊗ id1 = 112. Thus,
we should have the following equality:

m112(M,L) = mid1(M)mid1(L),

yet the left hand-side is equal to zero, and the right hand side is equal to 1
4 . Thus

(MN )N∈N and (LN )N∈N are not P-free.
Actually, one can state a generalization of Theorem 7.10 but one has to give a stronger

definition of the asymptotic G-invariance.

Notation 7.3. — Let N and k be two positive integers, let I = (i1, ...ik) be a k-tuple
of elements of I. Let J = (j1, j1′ , ..., jk , jk′) be a 2k-tuple of {1, ..., N}2k . We denote by
LN
I,J the product:

(LN
i1 )

j1
j1′
...(LN

ik
)jkjk′

.

Definition 7.3. — The family (Li)i∈I is asymptotically strongly G-invariant if it is
asymptotically G-invariant and for any positive integer k, for any k-tuple I = (i1, ...ik)
of elements of I:

sup
J,J′∈{1,...,N}2k|Ker(J)=Ker(J′)

Nnc(p)−nc(p∨id) | E
[

MN
I,J −MN

I,J′
]

| −→
N→∞

0.

Let us choose a possibility for (G,A) as explained in Notation 3.1. We recall that we
supposed that the two families (Li)i∈I and (Mj)j∈J converge in P-expectation. We can
state a generalization of Theorem 7.10 which proof is similar to the proofs in [26].

Theorem 7.11. — Let us suppose that (Li)i∈I is asymptotically strongly G-invariant
and that for every positive integer N , the two families (LN

i )i∈I and (MN
j )j∈I are inde-

pendent. Then the two families (Li)i∈I and (Mj)j∈J are asymptotically A-free.
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Proof. — Let us suppose that the two families (Li)i∈I and (Mj)j∈J satisfy the hypothe-
ses stated in the theorem. Let us suppose that we proved that the two families are
asymptotically P-free then, by definition, (Li)i∈I is asymptotically G-invariant, and
thus, by Theorem 7.3, we get that the two families (Li)i∈I and (Mj)j∈J are asymptot-
ically A-free. It remains to prove that the two families are asymptotically P-free. Let

k be a positive integer, let l be an integer in ]0, ..., k[ and let p ∈ Pk. Let (Bi)
l
i=1 be a

l-tuple of elements of (Li)i∈I and let (Bi)
k
i=l+1 be a (k− l)-tuple of elements of (Mj)j∈J .

It is enough to prove that:

lim
N→∞

Empc

(

(BN
i )ki=1

)

= δpg
l
⊗pd

l
=pEm(pg

l
)c

[

(Bi)
l
i=1

]

Em(pd
l
)c

[

(Bi)
k
i=l+1

]

.

Let N be a positive integer, we have:

Empc

(

(BN
i )ki=1

)

=
1

Nnc(p∨id)
∑

J∈{1,...,N}2k|Ker(J)=p

E

[

BN
(1,...,k),J

]

.

Any J ∈ {1, ..., N}2k can be writen as the concatenation of J1 ∈ {1, ..., N}2l and J2 ∈
{1, ..., N}2(k−l) , that we denote by J1J2.The right hand side can be written as:

1

Nnc(p∨id)
∑

J1∈{1,...,N}2l,J2∈{1,...,N}2(k−l)|Ker(J1J2)=p

E

[

BN
(1,...,l),J1

]

E

[

BN
(l+1,...,k),J2

]

.

Let J1 be in {1, ..., N}2l . Since (Li)i∈I is asymptotically G-invariant, using the same
arguments as for Lemma 5.3, one gets:

E

[

BN
(1,...,l),J1

]

= Nnc(Ker(J1)∨id)−nc(Ker(J1))
[

EmKer(J1)c
[

BN
1 , ..., BN

l

]

+ o(1)
]

where the o(1) is uniform in J1. Let us remark also that if J1 ∈ {1, ..., N}2l and J2 ∈
{1, ..., N}2(k−l) satisfy that Ker(J1J2) = p, then Ker(J1) = pgl and Ker(J2) = pdl . This

implies that Empc
(

(BN
i )ki=1

)

is equal to:

1

Nnc(p∨id)
∑

J1,J2|Ker(J1J2)=p

Nnc(pg
l
∨id)−nc(pg

l
)
[

Em(pg
l
)c
[

BN
1 , ..., BN

l

]

+ o(1)
]

E

[

BN
(l+1,...,k),J2

]

or to:

N−nc(p∨id)+nc(pg
l
∨id)−nc(pg

l
)

∑

J2|Ker(J2)=pd
l

E

[

BN
(l+1,...,k),J2

]

∑

J1|Ker(J1)=pg
l
,Ker(J1J2)=p

[

Em(pg
l
)c
[

BN
1 , ..., BN

l

]

+ o(1)
]

.

When J2 ∈ {1, ..., N}2(k−l) is fixed then there exists exactly Nnc(p)−nc(pd
l
) elements J1 in

{1, ..., N}2l such that Ker(J1) = pgl and Ker(J1J2) = p, thus we can go on our calculations,

and Empc
(

(BN
i )ki=1

)

is equal to:

N−nc(p∨id)+nc(pg
l
∨id)−nc(pg

l
)+nc(p)−nc(pd

l
)

[

Em(pg
l
)c
[

BN
1 , ..., BN

l

]

+ o(1)
]

∑

J2|Ker(J2)=pg
l

E

[

BN
(l+1,...,k),J2

]
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or:

N (nc(p)−nc(p∨id))−(nc(pgl ⊗pd
l
)−nc((pg

l
⊗pd

l
)∨id))

[

Em(pg
l
)c
[

BN
1 , ..., BN

l

]

+ o(1)
]

Em(pd
l
)c
[

BN
l+1, ..., B

N
k

]

.

Since pgl ⊗ pdl is finer than p, using Lemma 3.4 of [15], one gets that:

N (nc(p)−nc(p∨id))−(nc(pgl ⊗pd
l
)−nc((pg

l
⊗pd

l
)∨id)) −→

N→∞
δpg

l
⊗pd

l
=p,

this allows to conclude the proof of the theorem.

Remark 7.4. — As a corollary of the Theorem 7.11, we see that if one can prove that
(Mi)i∈I and (Li)i∈I converges in P-moments, that the asymptotic S-factorization holds
for both family and that one of the family is asymptotically strongly U or O-invariant,
then (Mi)i∈I and (Li)i∈I are asymptotically free in the meaning of Voiculescu.

In particular, this is general enough to be used for the general Wigner real and compex
matrices, where the matrices are symmetric or Hermitian, with the variance’s entries
equal to 1/N and with a condition of bounded moments on the entries of the matrix, but
where one does not ask for an identically distribution property.

7.1.10. Matricial A-free Levy processes. — Let (Mt)t≥0 be a family of elements of L∞−⊗
M(C). We suppose that for any positive integer N , MN

0 = Id. Let us suppose that the
family (Mt)t≥0 converges in A-expectation.

Definition 7.4. — The family (Mt)t≥0 is a matricial A-free additive Levy process if
both following assertions hold:

A-freeness of the additive increments : for any 0 ≤ t < s, the two families
(

MN
s −MN

t

)

N∈N and
(

(MN
u )u≤t

)

N∈N are asymptotically A-free,

Translation invariance : for any 0 ≤ t < s,
(

MN
s −MN

t

)

N∈N has the same A-law

as
(

MN
s−t

)

N∈N.

We also give a multiplicative version.

Definition 7.5. — The family (Mt)t≥0 is a matricial A-free multiplicative Levy process
if both following assertions hold:

A-freeness of the multiplicative increments : for any 0 ≤ t < s, the two fami-
lies

(

MN
s (MN

t )−1
)

N∈N and
(

(MN
u )u≤t

)

N∈N are asymptotically A-free,

Translation invariance : for any 0 ≤ t < s,
(

MN
s (MN

t )−1
)

N∈N has the same A-law

as
(

MN
t−s

)

N∈N

7.2. Higher order. — We can define a notion of freeness up to higher order of fluctu-

ations for some families of L∞− ⊗M(C). Let m be a non-negative integer. Let (Li)i∈I
and (Mj)j∈J be two families of elements of L∞− ⊗M(C). Let us suppose that the two
families (Li)i∈I and (Mj)j∈J converge in A-expectation up to order m of fluctuations.

Definition 7.6. — The families (Li)i∈I and (Mj)j∈J are asymptotically A-free up to
order m of fluctuations if and only if for any positive integer k, for any partition p ∈ Pk,

for any mixed k-tuple (Bi)
k
i=1 of elements of A ((Li)i∈I) ∪ A ((Mj)j∈J) , the sequence
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(

BN
1 , ..., BN

k

)

N
converges in expectation in Ak-cumulants up to order m of fluctuations

as N goes to infinity and for any i0 ∈ {0, ...,m}, the two conditions hold:

Compatibility condition : If p is not compatible with (Bi)
k
i=1:

lim
N→∞

Eκpi0,A
(

BN
1 , ..., BN

k

)

= 0.

Compatible factorization property : If p is compatible with (Bi)
k
i=1:

lim
N→∞

Eκpi0,A

(

BN
1 , ..., BN

k

)

=

i0
∑

i1=0

Eκ

p|L
(Bj )

k
j=1

i1,A

(

(Bi)i∈L
(Bj )

k
j=1

)

Eκ

p|M
(Bj)

k
j=1

i0−i1,A

(

(Bi)i∈M
(Bj)

k
j=1

)

.

Two families (Li)i∈I and (Mj)j∈J are asymptotically A-free if and only if they are
asymptotically A-free up to order 0 of fluctuations. All the theorems we proved in the
zero order case can be easily generalized for the notion of A-freeness up to order m of
fluctuations.

Theorem 7.12. — Let us suppose that the families (Li)i∈I and (Mj)j∈J are asymptot-
ically A-free up to order m of fluctuations. The family (Li)i∈I ∪ (Mj)j∈J converges in
A-expectation up to order m of fluctuations. Besides, the A-law of (Li)i∈I ∪ (Mj)j∈J up
to order m of fluctuations only depends on the A-law of (Li)i∈I and (Mj)j∈J up to order
m of fluctuations.

The dependence is again polynomial. As for the zero order of fluctuations, we can
state a theorem for higher order of fluctuations which is similar to Theorem 7.8.

Theorem 7.13. — Let us suppose that (Li)i∈I and (Mj)j∈J are asymptotically A-free

up to order m of fluctuations. Let k be a positive integer. Let us consider
(

(BN
i )N∈N

)k

i=1

and
(

(CN
i )N∈N

)k

i=1
such that for any i ∈ {1, ..., k},

(

BN
i

)

N∈N ∈ A
(

(Li)i∈I
)

,
(

CN
i

)

N∈N ∈
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A
(

(Mj)j∈J
)

. Then, for any p ∈ Ak and any i0 ∈ {0, ...,m}, one has:

Eκpi0,A[B1 + C1, ..., Bk + Ck] =

∑

(p1,p2,I)∈F2(p)

i0
∑

i=0

Eκp1i,A(B1, ..., Bk)Eκ
p2
i0−i,A(C1, ..., Ck),

Eκpi0,A[B1C1, ..., BkCk] =

∑

p′,p′′∈Ak,η(p′,p′′)≤i0,p′◦p′′=p

i0−η(p′,p′′)
∑

i=0

Eκp
′

i,A(B1, ..., Bk)Eκ
p′′

i0−η(p′,p′′)−i,A(C1, ..., Ck),

Emi0
p [B1C1, ..., BkCk] =

∑

p′∈Ak

∑

i,j,i+j+df(p′,p)=i0

Eκp
′

i,A(B1, ..., Bk)Em
j
tp′◦p(C1, ..., Ck).

Proof. — One could do a combinatorial proof as we did for Theorem 7.8, using results
such that Proposition 8.2 in [15]. In order to give a shorter proof, one can use the
same arguments as explained after Remark 7.3. Using Theorem 7.12 and the up-coming
Theorem 7.15, one can suppose that the families we consider satisfy the hypotheses of
Theorem 7.15. In this case the theorem is only a consequence of a simple calculation for
the first equality and a consequence of Theorem 9.2 of [15] for the others equalities.

Recall the definition of the operations ⊞ and ⊠ defined in Section 10.1 of [15]. As a
consequence of this theorem, we have the following theorem.

Theorem 7.14. — Let us suppose that (Li)i∈I and (Mj)j∈J are asymptotically A-free
up to order m of fluctuations. Let us consider two sequences (BN )N∈N and (CN )N∈N
such that (BN )N∈N ∈ A

(

(Li)i∈I
)

, (CN )N∈N ∈ A
(

(Mj)j∈J
)

.

The R(m)
A -transform of (BN + CN )N∈N and (BNCN )N∈N are given by:

R(m)
A [(BN + CN )N∈N] = R(m)

A [(BN )N∈N]⊞R(m)
A [(CN )N∈N] ,

R(m)
A [(BNCN )N∈N] = R(m)

A [(BN )N∈N]⊠R(m)
A [(CN )N∈N] .

Besides, the following theorem allows us to construct examples of families of sequences
of matrices which are asymptotically A-free up to order m of fluctuations.

Theorem 7.15. — Let us choose a possibility for (G,A) as explained in Notation 3.1.
Let us suppose that the two families (Li)i∈I and (Mj)j∈J converge in A-expectation up
to order m of fluctuations.

Let us suppose that (Li)i∈I is G-invariant. Besides let us suppose that for every integer
N , the two families (LN

i )i∈I and (MN
j )j∈I are independent. Then the two families (Li)i∈I

and (Mj)j∈J are asymptotically A-free up to order m of fluctuations.
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Actually, the compatibility condition and the compatible factorization property hold
again for any integer N big enough so that the N -dimensional A-cumulants are defined.
The Theorem 7.15 is general enough so that one can apply it to families of random
matrices of the form (Li, (Li)

∗)i∈I and (Mj , (Mj)
∗)j∈J as long as one can prove that

(Li, (Li)
∗)i∈I and (Mj , (Mj)

∗)j∈J converge in expectation in A-expectation.

Moreover, we can also define the notion of matricial A-free Levy process up to order
m of fluctuations by changing, in Definitions 7.4 and 7.5, the notion of asymptotic A-
freeness, by the notion of asymptotic A-freeness up to order m of fluctuations, and using
the A-law up to order m of fluctuations in order to define the translation invariance
property.

8. The A-non-commutative central limit theorem

In this section, we prove a A-non-commutative central limit theorem. Recall the
definition of eE

⊞
defined in Definition 10.7 of [15]. Recall also the notation Ek, for

E ∈ E[A] and k ∈ N, set in Section 10 of the same article.

Theorem 8.1. — Let (LN )N∈N be an element of L∞− ⊗ M(C) which converges in

A-expectation and such that (RA [L])1 = 0. For any integer i ∈ N, let (Li
N )N∈N ∈

L∞− ⊗M(C). Let us suppose that:

– for any i ∈ N, (Li
N )N∈N has the same A-law as (LN )N∈N,

– for any i ∈ N, (Li
N )N∈N is asymptotically A-free from

(

(Lj
N )N∈N

)

j 6=i
.

Then, as n goes to infinity, the RA-transform of 1√
n

∑n
i=1 L

i converges to:

e
(RA[L])2
⊞

.(14)

Proof. — Let us consider Li = (Li
N )N∈N as in the theorem. By multi-linearity, for any

integer n, k ∈ N, and any p ∈ Ak:
(

RA

[

1√
n

n
∑

i=1

Li

])

p

=
1

n
2
k

(

RA

[

n
∑

i=1

Li

])

p

.

Recall the notion of cycle defined in Definition 2.9 of [15] and the notation C(p) for the
set of cycles of p. Using the asymptotic A-freeness property of the sequences (Li

N )N∈N
and using the fact that for any positive integer i,

(

Li
N

)

has the same A-law as (LN )N∈N,
one has:

(

RA

[

1√
n

n
∑

i=1

Li

])

p

=
1

n
k
2

∑

f :C(p)→{1,...,n}

n
∏

i=1

(RA[L])p


⋃

c∈f−1(i)

c





where we recall that for any subset J , pJ is the extraction of p to J . We recall the
convention (RA[L])∅ = 1. Let us consider a function f : C(p) → {1, ..., n}. This defines

a partition of the cycles of p by considering {f−1(i), i ∈ {1, ..., n}}. We say that f ∼ f ′
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if the underlying partitions of C(p) are equal. It is obvious that, if f ∼ f ′, then:
n
∏

i=1

(RA[L])p


⋃

c∈f−1(i)

c





=
n
∏

i=1

(RA[L])p


⋃

c∈f ′−1(i)

c





.

Let π be a partition of C(p), we denote by nc(π) the number of blocks of π. By a counting

argument, there exist approximatively nnc(π) functions f : C(p) → {1, ..., n} such that
the underlying partition of f is π. Thus we can write:

(

RA

[

1√
n

n
∑

i=1

Li

])

p

≃ 1

n
k
2

∑

π partition of C(p)

nnc(π)
∏

t block of π

(RA[L])p ⋃

c∈t
c
.(15)

The condition (R[A])1 = 0 allows us to show that for any partition π of C(p), if
nc(π) > k

2 then
∏

t block of π

(RA[L])p ⋃

c∈t
c
= 0 . Indeed let us suppose that nc(π) > k

2 , then

one block of π must be a cycle of size 1 of p. Thus in the considered product, one would
have an element of the form RA[L]p′ with p′ ∈ P1: the product is then equal to zero.

Thus, in the r.h.s., in the sum, one can impose the condition nc(π) ≤ k
2 . This shows

that
(

RA

[

1√
n

∑n
i=1 L

i
])

p
converges when n goes to infinity.

Let us understand what the limit is: if nc(π) < k
2 , then the term associated with

π disappears when n goes to infinity. Only remain the partitions π of C(p) such that
nc(π) = k

2 and such that none of the block of π is a cycle of length 1 of p. Thus, in order
that the limit is not equal to zero, p must consist in some cycles of size 2 and an even
number of cycles of length 1 ; the blocks of π are either two cycles of size 1 of p or a
cycle of size 2 of p. This implies, by sending n to infinity in (15), that:

lim
n→∞

RA

[

1√
n

n
∑

i=1

Li

]

= e
(RA[L])2
⊞

,

which is the equality we wanted to prove.

Using the intuition we will develop in Section 10.3, one can show easily the following
theorem which proof will be given in a later version of the article.

Theorem 8.2. — Let E ∈ (C[A2])
S be an element of C[A2] which is invariant by con-

jugation by S2. This means that for any permutation σ ∈ S2, for any positive integer
N , σEσ−1 = E in C[Ak(N)].

There exists a sequence of random matrices (MN )N∈N, such that for any positive
integer N , MN ∈ MN (C) and such that:

RA [M ] = eE⊞ .

Using Theorem 8.2, the Theorem 8.1 asserts now that the A-law of 1√
n

∑n
i=1 L

i con-

verges to the A-law of a sequence of random matrices which RA-transform is given by
(14). The Theorem 8.1 is a generalization of the usual non-commutative central limit
theorem that one recovers when A = S and when the S-factorization is assumed: this
is due to the link between the usual Ru-transform and the RS-transform explained in
Theorem 10.3 of [15]. We will see that it also gives the usual central limit theorem given
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in Theorem 9.1. Yet, we warn the reader that Theorem 8.1 is not just an interpolation
between the usual and the non-commutative central limit theorem since the space of
possible limits is, in some sense, of dimension dim

(

CS[A2]
)

equal to eleven if A = P.

One could easily extend Theorem 8.1 to families of elements of L∞− ⊗M(C).

9. Classical probabilities

The goal of this section is to show that the classical probabilities are in some sense
included in the theory we developed: for example, one can recover in a new way the
usual cumulants as a particular case of P-cumulants. This is partly based on easy and
common knowledge, shared by researchers, that we found interesting to gather here.

9.1. Approximation of a measure by random matrices. — We consider the set
P∞(C) of probability measures such that for any integer k ∈ N,

∫

C

|z |k dµ(z) < ∞.

Let µ be in P∞(C). Let us see how to construct a sequence of random matrices

(MN )N∈N in L∞− ⊗M(C) such that for any positive integer n,

Em(1,...,n)

[

M⊗n
N

]

−→
N→∞

∫

C

zndµ(z).

If (MN )N∈N is such a sequence of random matrices, we say that (MN )N∈N is a weak
approximation of µ. If, besides, the factorization property holds for (MN )N∈N, we say
that (MN )N∈N is a strong approximation of µ. In this last case, for any non-negative
integer n and any σ ∈ Sn,

Emσ

[

M⊗n
N

]

−→
N→∞

∏

c∈C(σ)

∫

C

z#cdµ(z),

where, here, C(σ) is the set of cycles of σ as defined in the usual way. Let us give two
simple approximations of µ.

Lemma 9.1. — Let X be a random variable which law is µ. The sequence (XIdN )N∈N
is a weak approximation of µ. It will be called the natural weak approximation of µ.

Proof. — Indeed, for any non negative integer n, Em(1,...,n)[(XIdN )⊗n] = E[Xn] =
∫

C
zndµ(z). Thus, the equality holds for any integer N and not only at the limit N =

∞.

The last example does not provide a strong approximation of µ: for any non-negative
integer n, for any σ ∈ Sn:

Emσ

[

(XIdN )⊗n
]

= E[Xn] =

∫

C

zkdµ(z) 6=
∏

c∈C(σ)

∫

C

z#cdµ(z).

Thus RS(XId) is not multiplicative. Yet, this is the simplest way to inject the classical
probabilities in the theory we developed. For example, if µ and ν are two probability
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measures in P∞(C), let us consider (XIdN )N∈N and (Y IdN )N∈N two independent nat-
ural weak approximations associated respectively with µ and ν. Then (XIdN )N∈N and
(Y IdN )N∈N are asymptotically S-free, besides the sum ((X + Y )IdN )N∈N is a natural
weak approximation of the classical convolution µ∗ν: this implies the usual central limit
theorem for random variables with moments of any order.

Theorem 9.1. — Let (Xi)
∞
i=1 be a sequence of i.i.d. real random variables such that, for

any integer k, E
[

|X1 |k
]

< ∞, and such that E[X1] = 0. The moments of 1√
n

∑n
i=1 Xi

converge to the moments of a Gaussian of law N (0,E
[

X2
1

]

).

Proof. — Let (Xi)
∞
i=1 be a sequence of i.i.d. random variables whose law admits mo-

ments up to any order and such that E[X1] = 0. Let us consider for any integer i, the
sequences of matrices (XiIdN )∞N=0. Using Theorem 7.10, these sequences of matrices
are asymptotically S-free, as they are independent and each of them is invariant by con-
jugation by the unitary group. Applying the central limit theorem proved in Theorem
8.1, one has that the R-transform of:

((

1√
n

n
∑

i=1

Xi

)

IdN

)

N∈N
converges when n goes to infinity. Yet, using the N -dimensional cumulants, we see that
its R-transform is equal to:



E





(

1√
n

n
∑

i=1

Xi

)k


 idk





k∈N

.

Thus for any positive integer k, when n goes to infinity, E

[

(

1√
n

∑n
i=1 Xi

)k
]

converges

to:
(

e
E[X2

1 ]id2
⊞

)

idk

=
∑

pairings of {1,...,k}
E[X2

1 ] = E[X2
1 ].#{pairings of {1, ..., k}}.

Hence, for any positive integer k, E

[

(

1√
n

∑n
i=1 Xi

)k
]

converges to the moments of a

random variable of law N (0,E
[

X2
1

]

).

It would be interesting to have also a strong approximation of µ. For this, we need
the following notation.

Notation 9.1. — Let N be a positive integer, let (αi)
N
i=1 be N complex numbers. We

denote by Diag
[

(αi)
N
i=1

]

the matrix
∑

i αiE
i
i , where for any i ∈ {1, ..., N}, Ei

i is the
elementary matrix whose elements are equal to zero except in position (i, i) where it is
equal to one.

Proposition 9.1. — Let (Xi)i∈N be a sequence of random variables which are indepen-

dent with same law µ. The sequence
(

Diag
[

(Xi)
N
i=1

])

N∈N
is a strong approximation of

µ. It will be called the natural strong approximation of µ.
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Proof. — Let (Xi)i∈N be a sequence of random variables which are independent with

same law µ. Let us denote by (MN )N∈N the sequence
(

Diag
[

(Xi)
N
i=1

])

N∈N
. For any

positive integer k, for any permutation σ ∈ Sk:

mσ [MN ⊗ ...⊗MN ] =
∏

c∈C(σ)

1

N
Tr
(

M#c
N

)

=
∏

c∈C(σ)

[

1

N

N
∑

i=1

X#c
i

]

.

By the law of large numbers Emσ

[

M⊗n
N

]

−→
N→∞

∏

c∈C(σ)
∫

C
z#cdµ(z). This concludes the

proof.

9.2. A Schur-Weyl interpretation of classical cumulants. —

9.2.1. A simple duality. — Let N and k be positive integers. Let DN (C) be the set of

matrices M ∈ MN (C) which are diagonal. We will study elements of (DN (C))⊗k which

commute with the action of S(N) on
(

CN
)⊗k

.

Definition 9.1. — Let J be a finite subset, we denote by PJ the set of partitions of J .
For any positive integer k, we simply denote by Pk the set of partitions of {1, ..., k}.

Definition 9.2. — Let π = {π1, ..., πr} be in Pk. Let π′i = {j′ ∈ {1′, ..., k′}, j ∈ πi}.
We define fπ in Pk equal to {{πi ∪ π′

i}, i ∈ {1, ..., n}}. We set:

Dk = {fπ, π ∈ Pk} .
One example is given in Figure 1.

Figure 1. Partition fπ with π = {{1, 3}, {2, 4, 5}}.

One of the main feature of this new set is that for any f in Dk, any f ′ which is coarser
than f is in Dk ; besides fπ is coarser than fπ′ if and only if π is coarser than π′. Let us
recall the notion of exclusive basis defined in Definition 2.16 of [15]. From the discussion
we just had, we obtain the following lemma.

Lemma 9.2. — For any partition π of {1, ..., k},

fπ =
∑

π′ coarser than π

(fπ′)c .

A consequence is that for any π ∈ Pk, (fπ′)c ∈ C[Dk].

In the following, we denote by f c
π′ the element (fπ′)c. Using this lemma, it is easy to

prove the following result.



56 FRANCK GABRIEL

Lemma 9.3. — Let E be an element of DN (C)⊗k seen as an endomorphism of
(

CN
)⊗k

.

Let us suppose that E commutes with the action ρk
S(N) of S(N) on

(

CN
)⊗k

. Then:

E ∈ ρPk

N [C [Dk]] .

Besides, if N ≥ k, the restriction of ρPk

N to C [Dk] is a bijection.

Proof. — Using the Lemma 9.2, it is enough to show that E can be written as a linear

combination of elements of the form ρPk

N (f c
π) with π being any partition of {1, ..., k}.

Any element of DN (C)⊗k is a linear combination of elements of the form Ei1
i1
⊗ ...⊗Eik

ik
.

Let E ∈ DN (C)⊗k:

E =
∑

(i1,...,ik)∈{1,...,N}k
ci1,...,ikE

i1
i1
⊗ ...⊗ Eik

ik
.

Any choice (i1, ..., ik) ∈ {1, ..., N}k defines a partition of {1, ..., k} denoted also by
Ker((i1, ..., ik)) which is the unique partition of {1, ..., k} such that two elements u and
v of {1, ..., k} are in the same block if and only if iu = iv.

If E commutes with the action ρk
S(N) of S(N) on

(

CN
)⊗k

, then ci1,...,ik only depends

on the partition of k which is induced by (i1, ..., ik). Thus:

E =
∑

π∈Pk

cπ
∑

(i1,...,ik)|Ker((i1,...,ik))=π

Ei1
i1
⊗ ...⊗ Eik

ik

=
∑

π∈Pk

cπρ
Pk

N [f c
π] .

Let us suppose that N ≥ k, let (cπ)π∈Pk
∈ CPk such that

∑

π∈Pk
cπρ

Pk

N [f c
π] = 0. Let

π0 ∈ Pk, and let us consider (i1, ..., ik) ∈ {1, ..., N}k such that Ker((i1, ..., ik)) = π0. Such
k-tuple exists because N ≥ k. Then:

0 =





∑

π∈Pk

cπρ
Pk

N [f c
π]



 (ei1 ⊗ ...⊗ eik) = cπ0 (ei1 ⊗ ...⊗ eik) ,

and thus cπ = 0 for any π ∈ Pk.

On the set Dk, the geodesic order becomes much simpler than on Pk.

Proposition 9.2. — Let π and π′ be in Pk. The following assertions are equivalent:

– fπ′ ∈ [id, fπ]Pk
,

– fπ is coarser than fπ′,
– π is coarser than π′.

As a consequence, the ordered set (Dk,≤) is isomorphic to the set Pk endowed with the
order that we will also denote by ≤ which is defined by the fact that for any π and π′ in
Pk, π

′ ≤ π if and only if π′ is finer than π

Proof. — Let π and π′ be in Pk. We have already noticed that fπ is coarser than fπ′

if and only if π is coarser than π′. Besides it is easy to see that Glc (fπ) = fπ and fπ′
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is always in Sp(fπ ∨ fπ′). Using Theorem 3.2 of [15], we see that fπ′ ∈ [id, fπ]Pk
if and

only if fπ ∨ fπ′ = fπ, thus if and only if fπ is coarser than fπ′ .

We will give a kind of Schur-Weyl duality interpretation of classical cumulants. For
any π ∈ Pk, let us denote by C(π) the blocks of π. Let us recall the classical notion of
cumulants.

Definition 9.3. — Let m = (mI)I⊂{1,...,k} be a family of complex numbers. The se-
quence of cumulants of (κI)I⊂{1,...,k} associated with m is the only sequence of complex
numbers such that for any J ⊂ {1, ..., k}:

mJ =
∑

π∈PJ

∏

c∈C(π)
κc.

In classical probabilities, for any I ⊂ {1, ..., k}, we consider mI equal to E
[
∏

i∈I Xi

]

where (Xi)
k
1 is a family of random variables which has mixed moments of any or-

der. In this case, we will denote by κJ
(

(Xi)
k
i=1

)

the cumulant κJ associated with
(

E
[
∏

i∈I Xi

])

I⊂{1,...,k}. If J = {1, ..., k}, we also denote the cumulant κJ
(

(Xi)
k
i=1

)

by

κk
(

(Xi)
k
i=1

)

. In our framework, we prefer to work with partitions and not with sets:
this leads us to the following lemma.

Lemma 9.4. — Let m = (mI)I⊂{1,...,k} be a family of complex numbers. For any π ∈ Pk

we define mπ =
∏

c∈C(π)mc. Let (ηπ)π∈Pk
be a family of complex numbers such that

mπ =
∑

π′≤π ηπ′ . Then for any π ∈ Pk,

ηπ =
∏

c∈C(π)
κc,

where (κI)I⊂{1,...,k} is the family of cumulants associated with m.

Proof. — The proof relies on the fact that there exists a unique family (ηπ)π∈Pk
such that

for any π ∈ Pk, mπ =
∑

π′≤π ηπ′ . If (κI)I⊂{1,...,k} is the family of cumulants associated

with m, then

(

∏

c∈C(π)
κc

)

π∈Pk

satisfies these equalities.

The Schur-Weyl duality interpretation of classical cumulants is given by the following
theorem.

Theorem 9.2. — Let (X1, ...,Xk) be a k-tuple of random variables. Let l ≥ k, and let
us consider (Xn

1 , ...,X
n
k )n∈{1,...,l} a family of l i.i.d. k-tuple of random variables which

have the same law as (X1, ...,Xk). Let us consider, for any i ∈ {1, ..., k}:

Mi = Diag

[

(Xn
i )

l
n=1

]

.

We have the following formula:

κk(X1, ...,Xk) = Eκf{{1,...,k}} [M1, ...,Mk] .
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Proof. — The endomorphism E

[

⊗k
i=1 Mi

]

is in (DN )⊗k and commutes with the action

ρk
S(N) of S(N) on

(

CN
)⊗k

: by Lemma 9.3, it belongs to ρPk

N [C [Dk]] and, since l ≥ k,

the numbers Eκf{{1,...,k}} [M1, ...,Mk] are well defined.
Following the calculation in the proof of Lemma 9.3, and using the independence of

the (Xn
1 , ...,X

n
k )n∈{1,...,k}, one gets:

E

[

k
⊗

i=1

Mi

]

=
∑

π∈Pk





∏

c∈C(π)
E

[

∏

i∈c
Xi

]



 f c
π.

Using the definition of finite-dimensional cumulants, Lemma 9.3, Lemma 9.2 and Propo-
sition 9.2, one gets:

E

[

k
⊗

i=1

Mi

]

=
∑

π∈Pk

Eκfπ [M1, ...,Mk] fπ

=
∑

π∈Pk

Eκfπ [M1, ...,Mk]





∑

π≤π′

f c
π′





=
∑

π∈Pk





∑

π′≤π

Eκfπ′ [M1, ...,Mk]



 f c
π.

Using the second part of Lemma 9.3, we obtain the fact that for any π ∈ Pk,

∑

π′≤π

Eκfπ′ [M1, ...,Mk] =
∏

c∈C(π)
E

[

∏

i∈π
Xi

]

.

An application of Lemma 9.4 and considering the partition π = {{1, ..., k}} allow us to
conclude.

In fact from the last proof, using the same notations, one has the more general formula:

Eκfπ [M1, ...,Mk ] =
∏

c∈c(π)
κ#c ((Xi)i∈c) .

The theorem 9.2 shows that one could be able to study the probabilities fluctuations
of random matrices in the framework we developed. Let us remark that one can recover
the classical central limit theorem using Theorem 9.2.

An other proof of Theorem 9.1. — Let (Xi)
∞
i=1 be a sequence of i.i.d. random variables

whose law admits moments up to any order and such that E[X1] = 0. Let k be a

positive integer. We have to understand κk

(

1√
n

∑n
i=1Xi, ...,

1√
n

∑n
i=1 Xi

)

when n goes

to infinity. Let us consider
(

Y l
i

)

i,l∈N a family of independent identically distributed

random variables which have the same law as X1. Let us consider for any positive
integers i and N :

MN
i = Diag

[

(

Y l
i

)N

l=1

]

.
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Using the S-invariance, the independence property and Theorem 7.10, for any i ≥ 1,
(

MN
i

)

N∈N is asymptotically P-free from
(

(MN
j )j 6=i

)

N∈N
and for any positive in-

teger n,
(

1√
n

∑n
i=1 M

N
i

)

N∈N
is a strong approximation of the law of 1√

n

∑n
i=1 Xi.

Let us apply the Theorem 8.1: using the fact that E[X1] = 0, the R-transform of
(

1√
n

∑n
i=1 M

N
i

)

N∈N
converges, when n goes to infinity, to e

E[X2
1 ]f{{1,2}}

⊞
. Yet, using

Theorem 9.2, κk

(

1√
n

∑n
i=1 Xi, ...,

1√
n

∑n
i=1 Xi

)

is equal to:

lim
N→∞

Eκf{{1,...,k}}





(

1√
n

n
∑

i=1

MN
i

)⊗k


 =

[

RP

((

1√
n

n
∑

i=1

MN
i

)

N∈N

)]

f{{1,...,k}}

.

Thus κk

(

1√
n

∑n
i=1Xi, ...,

1√
n

∑n
i=1Xi

)

converges, as n goes to infinity, to:
(

e
E[X2

1 ]f{{1,2}}
⊞

)

f{{1,...,k}}

which is equal to 0 if k = 1, E[X2
1 ] if k = 2 and 0 if k ≥ 3.

10. Levy processes

10.1. Generalities about Levy processes. — Let us recall the notion of Levy
processes.

Definition 10.1. — Let E be a topological group. Let (Xt)t≥0 be a cadlàg process in E
which is stochastically continuous such that X0 is the neutral element of E. The process
(Xt)t≥0 is a Levy process if for any 0 < t < s, XsX

−1
t is independent of (Xu)u≤t and

XsX
−1
t has the same law as Xs−t.

Let us remark that we consider actually right Levy processes as defined by M. Liao
in [25]. From now on, we will only consider groups of matrices. If E is a subgroup of
(MN (C),+), the Levy processes are called additive Levy processes. If E is a subgroup
of GL(N), the Levy processes are called multiplicative Levy processes.

Recall that the notation G stands either for O, U , or S. Following Definition 4.6, we
define the notion of G-invariant Levy processes. Let N be a positive integer.

Definition 10.2. — Let (Xt)t≥0 be an additive or multiplicative Levy process in
MN (C), (Xt)t≥0 is a G-invariant Levy process if for any g ∈ G(N), we have the
following equality in law:

(

gXtg
−1
)

t≥0
= (Xt)t≥0 .

In the following, we only consider Levy processes such that for any t ≥ 0, Xt is in

L∞− ⊗MN (C). In this case, for any k ∈ N,

Gk =
d

dt |t=0
E

[

X⊗k
t

]

is defined. In the next lemma, we show that this is the only data one needs in order to
compute E[X⊗k

t ] for any t ∈ R+. Recall the Definition 3.4.
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Lemma 10.1. — Let (Xt)t≥0 be a matrix-valued Levy process such that for any positive

real t, Xt ∈ L∞− ⊗MN (C). Let us define for any positive integer k:

Gk =
d

dt |t=0
E

[

X⊗k
t

]

.

For any positive integer k, for any positive real t0,

– if (Xt)t≥0 is an additive Levy process:

d

dt |t=t0
E

[

X⊗k
t

]

=

k−1
∑

l=0

∑

I⊂{1,...,k},#I=l

II
[

E

[

X⊗l
t0

]

, Gk−l

]

,

– if (Xt)t≥0 is a multiplicative Levy process:

d

dt |t=t0
E

[

X⊗k
t

]

= GkE

[

X⊗k
t0

]

.

Proof. — Let (Ht)t≥0 and (Ut)t≥0 be two matrix-valued Levy processes which are re-
spectively additive and multiplicative. Let us define for any integer k:

GH
k =

d

dt |t=0
E

[

H⊗k
t

]

, GU
k =

d

dt |t=0
E

[

U⊗k
t

]

.

Let t0 be a non negative real. Using the independence and the stationarity properties
of the processes (Ht)t≥0 and (Ut)t≥0 we have the two following sets of equalities.

For the additive Levy process (Ht)t≥0:

d

dt |t=t0
E

[

H⊗k
t

]

= lim
s→0

E

[

H⊗k
t0+s

]

− E

[

H⊗k
t0

]

s

= lim
s→0

E
[

(Ht0 + (Ht0+s −Ht0))
⊗k
]

− E

[

H⊗k
t0

]

s

= lim
s→0

∑k−1
l=0

∑

I⊂{1,...,k},#I=l II
[

E

[

H⊗l
t0

]

,E
[

H⊗k−l
s

]

]

s

=
k−1
∑

l=0

∑

I⊂{1,...,k},#I=l

II
[

E

[

H⊗l
t0

]

, lim
s→0

E
[

H⊗k−l
s

]

s

]

=
k−1
∑

l=0

∑

I⊂{1,...,k},#I=l

II
[

E

[

H⊗l
t0

]

, GH
k−l

]

.
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For the multiplicative Levy process (Ut)t≥0, let us consider (U
′
t)t≥0 a process which has

the same law as (Ut)t≥0 and which is independent of (Ut)t≥0. Then we have:

d

dt |t=t0
E

[

U⊗k
t

]

= lim
s→0

E

[

U⊗k
t0+s

]

− E

[

U⊗k
t0

]

s
= lim

s→0

E

[

(U ′
sUt0)

⊗k
]

− E

[(

U⊗k
t0

)]

s

= lim
s→0

E

[

(U ′
s)

⊗kU⊗k
t0

]

− E

[(

U⊗k
t0

)]

s

= lim
s→0

E
[

(U ′
s)

⊗k
]

− Id⊗k

s
E

[

U⊗k
t0

]

= GU
k E

[

U⊗k
t0

]

.

This allows us to conclude the proof.

We will also use the more general fact that for any multiplicative matrix-valued Levy

process (Ut)t≥0, for any integers k and l, the family
(

E

[

U⊗k ⊗ U
⊗l
])

t≥0
is a semi-group.

Indeed, using the same arguments, one can see that for any t0 ≥ 0,

d

dt |t=t0
E

[

U⊗k
t ⊗ Ut

⊗l
]

=

(

d

dt |t=0
E

[

U⊗k
t ⊗ Ut

⊗l
]

)

E

[

U⊗k
t0 ⊗ Ut0

⊗l
]

.(16)

10.2. Convergence of Levy processes. —

10.2.1. Zero order. — In this section, we state and prove the main theorems for the
convergence of Levy processes. Actually, we have decided to cut it in four parts for the
sake of clarity. Yet, these theorems have to be read one after the other as if it was only
one theorem.

Let us choose a possibility for (G,A) as explained in Notation 3.1. Let
(

(XN
t )t≥0

)

N≥0
be a sequence of G-invariant Levy processes which are either all additive or multiplica-

tive. Let us suppose that for any positive integer N , and any t ≥ 0, XN
t ∈ L∞−⊗MN (C).

We define, for any positive integer k and N :

GN
k =

d

dt |t=0
E

[

(

XN
t

)⊗k
]

.

Let k and N be two positive integers. The endomorphism GN
k commutes with the tensor

action of G on
(

CN
)⊗k

. We can apply Section 3 to GN
k : with a slight abuse of notation

GN
k belongs to C[Ak(N)]. Thus, we can define the coordinate numbers

(

κp
(

GN
k

))

p∈Ak

of GN
k . Recall the notion of convergence for elements of

∏

N∈N C[Ak(N)] defined in [15].

Every time we will consider the sequence
(

GN
k

)

N≥0
, we will consider it as an element of

∏

N∈N C[Ak(N)].

Theorem 10.1. — If for any positive integer k, the sequence
(

GN
k

)

N≥0
converges,

then the process (XN
t )t≥0 converges in P-expectation as N goes to infinity. Besides,

(

(XN
t )N∈N

)

t≥0
is a matricial A- and P-non-commutative Levy process.
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Proof. — Let us prove that for any real t ≥ 0,
(

XN
t

)

N∈N converges in A-expectation.

Using Lemma 2.2, it is enough to show that for anypositive integer k,
(

XN
t

)⊗k
converges

in expectation in Ak-moments as N tends to infinity. Let k be a positive integer. Recall
that, since

(

XN
t

)

t≥0
is G-invariant, using the dualities in Theorem 3.1, E

[

(XN
t )⊗k

]

and

GN
k are in C

[

ρAk

N

]

.

In the additive case, by Lemma 10.1, for any t0 ≥ 0:

d

dt |t=t0
E

[

(XN
t )⊗k

]

=

k−1
∑

l=0

∑

I⊂{0,...,k},#I=l

II
[

E

[

(XN
t0 )

⊗l
]

, GN
k−l

]

.(17)

Thus, for any p ∈ Pk and any t0 ≥ 0:

d

dt |t=t0
κp
[

E

[

(XN
t )⊗k

]]

=
∑

(p1,p2,I)∈F2(p)/p1 6=p

κp1
[

E

[

(XN
t )⊗l(p1)

]]

κp2
[

GN
l(p2)

]

,

where for any partition p, l(p) is the lenght of p defined as the unique integer such that
p ∈ Pl(p). Since for any positive integer k, GN

k converges when N goes to infinity, for

any partition p2 ∈ ∪k∈NAk, the sequence
(

κp2
[

GN
l(p2)

])

N∈N
converges when N goes to

infinity. By recurrence on the length of p, we see that for any positive integer k, any

p ∈ Pk and any t ≥ 0, κp
[

E

[

X⊗k
t

]]

converges as N goes to infinity.

In the multiplicative case, by Lemma 10.1, for any t0 ≥ 0:

d

dt |t=t0
E

[

(

XN
t

)⊗k
]

= GN
k E

[

(

XN
t0

)⊗k
]

.

Thus, E
[

(XN
t )⊗k

]

is a semi-group in C

[

ρAk

N

]

. The Theorem 7.2 of [15] allows us to

conclude.
We must now prove that the family

(

XN
t

)

t≥0
converges in A-expectation. We will only

explain the multiplicative case as the additive case is similar. We have to prove that for
any 0 ≤ t1 ≤ t2... ≤ tn,

(

XN
ti

)n

i=1
converges in A-expectation as N tends to infinity. Let

us define t0 = 0. Using the definition of Levy processes, we know that for any positive
integer N , (XN

ti (X
N
ti−1

)−1)ni=1 is a family of independent random matrices, each of them

is invariant in law by conjugation by G(N). Besides for any i ∈ {1, ..., n}, XN
ti (X

N
ti−1

)−1

has the same law as XN
ti−ti−1

. Using the first part of the proof, we know that for any

i ∈ {1, ..., n}, XN
ti (X

N
ti−1

)−1 converges in A-expectation as N tends to infinity. Using

Theorem 7.10, one concludes that (XN
ti )

n
i=1 converges in A-expectation as N tends to

infinity. Because of the discussion we just had, we also get that
(

(XN
t )N∈N

)

t≥0
is a

A-non-commutative matricial Levy process.

An application of Theorem 4.5 allows us to prove that
(

(

XN
t

)

N∈N

)

t≥0
converges in P-

expectation. By definition, we have proved that it is a matricial A-free Levy process, and
since

(

XN
t

)

t≥0
is G-invariant for any positive integer N , as a consequence of Theorem

7.2, it is also a P-non-commutative Levy process.
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We define the RA-functional of the family
(

(

GN
k

)

N∈N

)

k∈N
. Recall Definition 10.1 of

[15].

Definition 10.3. — Let us suppose that for any positive integer k,
(

GN
k

)

N∈N converges

as N goes to infinity. We define RA(G) as the only element in e[A] such that for any
positive integer k and any p ∈ Ak,

(RA(G))p = lim
N→∞

κp
(

GN
k

)

.

From now on, we suppose that for any positive integer k, (GN
k )N∈N, seen as an element

of
∏

N∈NC[Ak(N)], converges. Recall the notions of me⊞[A] and me⊠[A] defined in
Definition 10.5 and 10.6 in [15].

Definition 10.4. — We say that
(

GN
k

)

k,N
condensates (resp. weakly condensates) if

RA(G) ∈ me⊞[A] (resp. RA(G) ∈ me⊠[A]).

Let us compute the RA-functional of
(

XN
t

)

t≥0
. Recall the notation E(i)[A] defined in

Definition 10.3 of [15]. If E is an element of E[A], we denote by E|E(i)[A] the restriction

of E to
⋃

k∈N∗

A
(i)
k . Recall also Definitions 10.7 and 10.8 in [15].

Theorem 10.2. — Let us suppose that for any postive integer N ,
(

XN
t

)

t≥0
is an addi-

tive Levy process. For any real t0 ≥ 0,

d

dt |t=t0
RA[Xt] = RA[G]⊞RA[Xt0 ].

This equation can also be written in the following way, for any t0 ≥ 0:

RA[Xt0 ] = e
t0RA[G]
⊞

.

A consequence is that, for any real t0 ≥ 0:

(RA [Xt0 ])|E(i)[A] = t0 (RA [G])|E(i)[A] .

Let us suppose that for any positive integer N ,
(

XN
t

)

t≥0
is a multiplicative Levy pro-

cess. For any real t0 ≥ 0,

d

dt |t=t0
RA[Xt] = RA[G]⊠RA[Xt0 ].

This equation can also be written in the following way, for any t0 ≥ 0:

RA[Xt0 ] = e
t0RA[G]
⊠

.

Besides, for any positive integer k, any p ∈ Pk and any t0 ≥ 0:

d

dt |t=t0
Emp(Xt, ...,Xt) =

∑

p1∈[id,p]Ak

κp1A (Gk)Emtp1◦p(Xt0 , ...,Xt0).
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Proof. — The first equation appears when one takes the limit of Equation (17) when
N goes to infinity. Let k be a positive integer, let p be an irreducible partition in Ak.
Using the first equality and using the fact that (RA[G])∅ = 0, we get:

d

dt |t=t0
(RA[Xt])p = (RA[G])p ,

hence (RA[Xt])p = t (RA[G])p for any t ≥ 0.

The equations in the multiplicative case are consequences of Equations (18) and (19)
in Theorem 7.2 of [15].

Theorem 10.3. — In the additive case, if
(

GN
k

)

k,N
condensates, the asymptotic P-

factorization property holds for
(

(XN
t )N∈N

)

t≥0
.

In the multiplicative case, if
(

GN
k

)

k,N
weakly condensates, the asymptotic P-

factorization property holds for
(

(XN
t )N∈N

)

t≥0
.

Proof. — Let us prove first that for any positive real t, the A-factorization property
holds for (XN

t )N∈N. Let t be a positive real. Using Theorem 10.2, in the additive case

RA[Xt] = e
tR[G]
⊞

and in the multiplicative case RA[Xt] = e
tR[G]
⊠

. By Definition 10.4,

(GN
k )k,N condensates if RA(G) ∈ me⊞[A], and (GN

k )k,N weakly condensates if RA(G) ∈
me⊠[A]. By Theorem 10.2 of [15], we see that under the condensation property, in the
additive case as for the multiplicative case, RA[Xt] ∈ ME[A], which is equivalent, by
Proposition 6.1, to say that the asymptotic A-factorization property holds for (XN

t )N∈N.
As a consequence of Proposition 7.2, the asymptotic A-factorization property holds for

(

(XN
t )N∈N

)

t≥0
since the increments are asymptotically A-free. Then using the fact that

the Levy processes we considered areG-invariant, an application of Proposition 4.5 allows
us to assert that the asymptotic P-factorization property holds for

(

(XN
t )N∈N

)

t≥0
.

In order to show that (GN
k )N∈N converges for any positive integer k, it is often easier

to compute the normalized moments of GN
k . Thus it would be interesting to have a cri-

terion about normalized moments in order to know if (GN
k )k,N∈N condensates or weakly

condensates.

Lemma 10.2. — The family
(

GN
k

)

k,N
condensates if and only if for any positive integer

k and l, for any p1 ∈ Ak and any p2 ∈ Al,

mp1⊗p2

(

(

GN
k+l

)

N∈N

)

= 0.

The family
(

(GN
k )N∈N

)

k∈N weakly condensates if and only if for any positive integer
k and l, for any p1 ∈ Ak and any p2 ∈ Al,

mp1⊗p2

(

(

GN
k+l

)

N∈N

)

= mp1

(

(

GN
k

)

N∈N

)

+mp2

(

(

GN
l

)

N∈N

)

.

We will only give the proof for the weak condensation, the first assertion can be proved
with a similar argument.

Proof. — Let us recall that we defined an application J : e(i)[A] → e[A] in Definition
10.6 of [15]. Besides, we defined an application MA in Definition 10.9 of [15] which
can be restrained to e[A]. In this proof, we will consider thus MA : e[A] → e[A]. Let
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us define two others applications. The first application allows us to extend a function
defined on the irreducible partitions to all the partitions:

AA : e(i)[A] → e[A]

such that for any E ∈ e(i)[A], for any positive integer k, for any p ∈ Ak,

(AA(E))p =
∑

C∈C(p)
Epc .

The second one M(i)
A is defined as the application:

M(i)
A : e(i)[A] → e(i)[A]

such that for any E ∈ e(i)[A], for any positive integer k, for any p ∈ Ak which is
irreducible:

(

M(i)
A (E)

)

p
= ((MA ◦ J) (E))p

Let us remark that M(i)
A is a bijection. Let us prove that the following diagram is

commutative:

e(i)[A]
J //

M(i)
A

��

e[A]

MA

��
e(i)[A]

AA // e[A]

Let us consider E ∈ e(i)[A], let k be a positive integer, let p ∈ Ak, let p1, ..., pr be the
extraction of p on its cycles. We can suppose that p = p1 ⊗ ...⊗ pr with p1, ..., pr some
irreducible partitions. Using the factorization of the geodesics and using the fact that
for any p′ ∈ Ak, (J(E))p′ is equal to zero if p′ is not weakly irreducible, we get:

(MA (J(E)))p =
∑

p′∈[id,p1⊗...⊗pr]Ak

(J(E))p′ =

r
∑

i=1

∑

p′
i
∈[id,pi]Ak

(J(E))p′i

=

r
∑

i=1

(

M(i)
A (E)

)

pi
=
((

AA ◦M(i)
A

)

(E)
)

p
.

Using the commutative diagram, one gets the following equalities:

AA

[

ei[A]
]

= AA ◦M(i)
A

[

(

M(i)
A

)−1
[

ei[A]
]

]

= MA ◦ J
[

ei[A]
]

= MA [me⊠[A]] .

Thus any element E ∈ e[A] belongs to me⊠[A] if and only if MA(E) ∈ AA

[

ei[A]
]

. By
applying this to RA(G) one gets the expected result.
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10.2.2. The ∗-convergence. — Let us consider the same sequence
(

(

XN
t

)

t≥0

)

N≥0

of G-invariant Levy processes used in the last subsection. If the matrices XN
t are

complex-valued, one can not deduce any convergence in probability of normalized

A-moments using the Theorem 10.3: one has to show that
(

(

XN
t ,
(

XN
t

)∗)
t≥0

)

N∈N
or

(

(

XN
t ,XN

t

)

t≥0

)

N∈N
converges as N goes to infinity and satisfies the A-factorization

property in order to be able to apply the second part of Theorem 2.2. This is what we
do in this section: we generalize Theorems 10.1, 10.2 and 10.3.

We will suppose that for any integer N , (XN
t )t≥0 is a multiplicative Levy process,

since often the additive Levy processes considered are in the Hermitian matrices space

for which the convergence of
(

(

XN
t ,
(

XN
t

)∗)
t≥0

)

N∈N
is a direct consequence of the con-

vergence of
(

(

XN
t

)

t≥0

)

N∈N
.

Let us recall that according to the Equation (16),

(

E

[

(XN
t )⊗k ⊗

(

XN
t

)⊗l
])

t≥0

is a

semi-group of endomorphisms. We define, for any integers k, l and N :

GN
k,l =

d

dt |t=0
E

[

(

XN
t

)⊗k ⊗
(

XN
t

)⊗l
]

.

Recall the operation Sk defined in Definition 2.5. For any positive integer k and

l, for any real t ≥ 0, the endomorphism E

[

(

XN
t

)⊗k ⊗
(

(XN
t )∗

)⊗l
]

commutes with

the tensor action of G on
(

CN
)⊗(k+l)

: according to Theorem 3.1, it is an element of

C

[

ρ
Ak+l

N

]

, or with a slight abuse of notation it is an element of C[Ak+l(N)]. This im-

plies that E

[

(

XN
t

)⊗k ⊗
(

XN
t

)⊗l
]

which is equal to Sk

[

E

[

(

XN
t

)⊗k ⊗
(

(XN
t )∗

)⊗l
]]

is in

C[Pk+l(N)] if G = S, in C[Bk+l(N)] if G = O and in Sk [C[Sk]] ⊂ Bk+l if G = U . The
same conclusion holds for GN

k,l. The proof of the following theorem is similar to 10.1,
thus we will omit it.

Theorem 10.4. — If for any positive integer k and l, the sequence
(

GN
k,l

)

N≥0
, seen

as an element of
∏

N∈NC [Pk+l(N)] converges, then the family
(

(

XN
t , (XN

t )∗
)

t≥0

)

N∈N
converges in P-expectation as N goes to infinity.

Let us suppose, from now on that for any positive integer k and l, the sequence
(

GN
k,l

)

N≥0
converges. We can define for any positive integer k and l,

(R(G))k,l =
∑

p∈Pk+l

κp(Gk,l)p ∈ C [Pk+l(∞,∞)] .
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Since
(

(

XN
t , (XN

t )∗
)

t≥0

)

N∈N
converges in P-expectation as N goes to infinity, we can

define for any positive integer k and l and any real t ≥ 0:

(R(Xt))k,l =
∑

p∈Pk+l

κp
(

(

XN
t

)

N∈N , ...,
(

XN
t

)

N∈N ,
(

XN
t

)

N∈N
, ...,

(

XN
t

)

N∈N

)

p,

where we wrote k times (XN
t )N∈N and l times

(

XN
t

)

N∈N
.

Definition 10.5. — We say that
(

GN
k,l

)

k,l,N
weakly condensates if for any positive

integer k and l, for any p ∈ Pk+l, if p is not weakly irreducible,

κp(Gk,l) = 0,

and

κidk+l(Gk,l) = kκid1(G1,0) + lκid1(G0,1).

This definition allows us to state the following theorem which is a generalization of
Theorems 10.2 and 10.3.

Theorem 10.5. — For any real t0 ≥ 0, the following equality holds in C[Pk+l(∞,∞)]:

d

dt |t=t0

(

R(Xt)
)

k,l
= (R(G))k,l

(

R(Xt0)
)

k,l
.

Moreover, for any integer k and l, any p ∈ Pk and any t0 ≥ 0:

d

dt |t=t0
mp

[

E

(

X⊗k
t ⊗Xt

⊗l
)]

=
∑

p1∈[id,p]Ak

κp1(Gk,l)mtp1◦p
[

E

(

X⊗k
t0 ⊗Xt0

⊗l
)]

,

where mp

[

E

(

X⊗k
t0 ⊗Xt0

⊗l
)]

stands for the limit as N goes to infinity of the mean

moment mp

[

E

(

XN
t0

⊗k ⊗
(

XN
t0

)⊗l
)]

.

Besides, if
(

GN
k,l

)

k,l,N
weakly condensates, the asymptotic P-factorization property

holds for
(

(

XN
t , (XN

t )∗
)

t≥0

)

N∈N
and thus the normalized P-moments of

(

XN
t

)

t≥0
con-

verge in probability.

10.2.3. Higher order. — More generally, one can state similar results for the fluctuations
than those we get in Section 10.2.1. The proofs are similar to the one for the zero order,
and all the tools that one needs in order to prove them are included either in [15], namely
Theorem 9.3, or in this article, thus we will omit them. Let m be a non negative integer.

Theorem 10.6. — Let us suppose that for anypositive integer k, (GN
k )N∈N, seen as an

element of
∏

N∈N C[Ak(N)], converges up to order m of fluctuations. Then (XN
t )t≥0

converges in P-expectation up to order m of fluctuations as N goes to infinity. Besides
the family

(

(XN
t )N∈N

)

t≥0
is a matricial A- and P-non-commutative Levy process up to

any order of fluctuations.

Let us define the R(m)
A -functional of the family

(

(

GN
k

)

N∈N

)

k∈N
.
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Definition 10.6. — Let us suppose that
(

GN
k

)

N∈N, seen in
∏

N∈NC[Ak(N)], converges

up to order m of fluctuations. We define R(m)
A (G) as the only element in E(m)[A] such

that for any positive integer k, any p ∈ Ak and any i ∈ {0, ...,m}:
(RA(G))p,i = lim

N→∞
κpi
(

GN
k

)

,

and for any i ∈ {0, ...,m}, (RA(G))∅,i = 0.

From now on, we suppose that
(

GN
k

)

N∈N converges up to order m of fluctuations. Let

us recall the two operations ⊞ and ⊠ defined in Section 10.1 of [15].

Theorem 10.7. — Let us suppose that for any positive integer N , (XN
t )t≥0 is an ad-

ditive Levy process. For any real t0 ≥ 0,

d

dt |t=t0
R(m)

A [Xt] = R(m)
A [G]⊞R(m)

A [Xt0 ].

Let us suppose that for any integer N , (XN
t )t≥0 is a multiplicative Levy process. For

any real t0 ≥ 0,

d

dt |t=t0
R(m)

A [Xt] = R(m)
A [G]⊠R(m)

A [Xt0 ].

Besides, for any integer k, any p ∈ Pk, any t0 ≥ 0 and any i0 ∈ {0, ...,m}:
d

dt |t=t0
Emi0

p (Xt, ...,Xt) =
∑

p1∈Ak

∑

i+j+df(p1,p)=i0

κp1i (Gk)Em
j
tp1◦p(Xt0 , ...,Xt0).

10.2.4. Special cases. — Using Lemma 3.9 in [15] which states that any geodesic in
the set of Brauer elements between permutations is included in the set of permutations,
we can state a slightly stronger theorem for sequence of O-invariant Levy processes.
Let

(

(XN
t )t≥0

)

N≥0
be a sequence of O-invariant Levy processes which are either all

multiplicative or additive. Let us suppose that for any positive integer N , for any

positive real t, XN
t ∈ L∞− ⊗MN (C). As usual, let us define for any positive integer k

and N :

GN
k =

d

dt |t=0
E

[

(

XN
t

)⊗k
]

.

Let us recall, with a slight abuse of notation, that using the dualities in Theorem 3.1,
for any positive integers k and N , GN

k ∈ C[Bk]. As a consequence of Proposition 2.3 in
this article and Theorem 4.3, Theorem 7.3, Equations (18) and (20) in the article [15]
one can prove the following theorem.

Theorem 10.8. — Let us suppose that for any positive integer k, the Sk-normalized
moments of

(

GN
k

)

converge as N goes to infinity and that the Bk-normalized moments

of
(

GN
k

)

are bounded, then (XN
t )t≥0 converges in S-expectation as N goes to infinity.

As a special case, let us suppose that for any positive integer N ,
(

XN
t

)

t≥0
is a O-

invariant Levy process which is defined on the set of orthogonal or symmetric matrices,
then the condition of boundeness of the Bk-normalized moments of

(

GN
k

)

is not necessary:
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the B-normalized moments of
(

GN
k

)

N∈N will converge and because of Theorem 10.1,
(

(

XN
t

)

N∈N

)

t≥0
converges in P-expectation.

Besides let
(

(Y N
t )t≥0

)

N≥0
be a sequence of U -invariant Levy processes which is of the

same type than
(

(XN
t )t≥0

)

N≥0
(i.e. multiplicative of additive). Let us define for any

positive integer k and N :

G
′N
k =

d

dt |t=0
E

[

(

Y N
t

)⊗k
]

.

Let us suppose that
(

G
′N
k

)

N∈N
seen as an element of

∏

N∈N C[S(N)] converges. Let us

suppose that for any positive integer k and any σ ∈ Sk:

lim
N→∞

mσ

(

G
′N
k

)

= lim
N→∞

mσ

(

GN
k

)

or lim
N→∞

κσ
(

G
′N
k

)

= lim
N→∞

κσ
(

GN
k

)

,

then
(

(

XN
t

)

t≥0

)

N≥0
has the same S-law as

(

(

Y N
t

)

t≥0

)

N≥0
.

The reader must be aware that Theorem 10.8 holds only for O-invariant Levy pro-
cesses. It does not hold for a general S-invariant Levy process, due to the fact that the
geodesics from a permutation to the identity might go through an element of Pk \Sk.
Yet, a similar result holds for S(N)-invariant Levy processes which are defined on the
set of permutation matrices: this is a consequence of Lemma 2.4.

Theorem 10.9. — Let us suppose that for any integer N ,
(

XN
t

)

t≥0
is a S-invariant

Levy process which is defined on the set of permutation matrices.
Let us suppose that for any integer k, the S-normalized moments of

(

GN
k

)

N∈N con-

verge, then the P-normalized moments of
(

GN
k

)

N∈N converge. As a consequence, because

of Theorem 10.1,
(

(

XN
t

)

N∈N

)

t≥0
converges in P-expectation.

10.3. Brownian motions, convergence and matricial Wick formula. — In this
section, we study the convergence of Brownian motions on some Lie algebras and Lie
groups. We decided to write a whole section about Brownian motions since we will
explain different ideas than the ones which will be presented in the general setting of
Levy processes in Section 10. Besides, the intuitions that we will develop in this section
will allow us to prove Theorem 8.2.

10.3.1. General definitions. — Let us define some useful space of matrices. We will
follow the presentation of Levy in [23]. Let K be either R or C, let N be a positive
integer.

Definition 10.7. — The spaces of skew-symmetric and symmetric real matrices of size
N are respectively:

aN = {M ∈ MN (R), tM = −M},
sN = {M ∈ MN (R), tM = M}.
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The space of skew-Hermitian matrices of size N is:

uN = {M ∈ MN (C),M∗ = −M}.

It is easy to see that the space of Hermitian matrices of size N is iuN . We will use
the conventions:

u(N,K) =

{

aN if K = R,
uN if K = C.

and:

h(N,K) =

{

sN if K = R,
iuN if K = C.

Even more generally, we will consider:

gǫ(N,K) =

{

u(N,K) if ǫ = −1,
h(N,K) if ǫ = 1.

Besides, we will also use the following notation:

βK =

{

1 if K = R,
2 if K = C.

Let us consider ǫ ∈ {−1, 1}.

Definition 10.8. — We will always consider gǫ(N,K) as a Lie algebra endowed with
the scalar product:

∀X,Y ∈ gǫ(N,K), <X, Y >=
βKN

2
Tr(X∗Y ).

Let us remark that the scalar product on R = g1(1,R) is <x, y>= 1
2xy for any reals

x and y.

Definition 10.9. — Let d be the dimension of gǫ(N,K). Let (Xi)
d
i=1 be an orthonormal

basis of gǫ(N,K). We define the Casimir of gǫ(N,K) as:

Cgǫ(N,G) =

d
∑

i=1

Xi ⊗Xi.

This is an easy and well-known result that the definition of the Casimir does not
depend on the orthonormal basis we have chosen. We remind the reader that we defined
the transpositions and the Weyl contractions in Definition 2.8 of [15]. Using the results
of Levy in [23], we know the value of the Casimir operator.

Lemma 10.3. — The Casimir of gǫ(N,K) is equal to:

1

N
ρB2
N

(

ǫ(1, 2) + (2− βK)[1, 2]
)

.

This lemma implies the following result.
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Lemma 10.4. — Let d be the dimension of gǫ(N,K), and let (Xi)
d
i=1 be an orthonormal

basis of gǫ(N,K). Then:

d
∑

i=1

XiXi = cgǫ(N,K)Id,

with cgǫ(N,K) = ǫ+ 2−βK

N .

In the following, we will use the following notation:

U(N,K) =

{

O(N) if K = R,
U(N) if K = C.

The group N , U(N,K) is a Lie group, whose Lie algebra is u(N,K).

10.3.2. Brownian motion on gǫ(N,K). — Let N be an integer and let ǫ be in {−1, 1}.
As Levy did in [23], we now define the notion of Brownian motion on gǫ(N,K). Let d
be the dimension of gǫ(N,K), and let (Xi)

d
i=1 be an orthonormal basis of gǫ(N,K).

Definition 10.10. — Let
(

(Bi
t)t≥0

)d

i=1
be a d-tuple of independent real Brownian mo-

tions. The process (Ht)t≥0 where for any t ≥ 0:

Ht =

d
∑

i=1

Bi
tXi.

is a Brownian motion on gǫ(N,K). Any process which has the same law as (Ht)t≥0 is
called a Brownian motion on gǫ(N,K).

Remark 10.1. — The law of the process (Ht)t≥0 does not depend on the choice of the
orthonormal basis of gǫ(N,K): this allows us to show that (Ht)t≥0 is a U(N,K)-invariant
process.

A consequence of Definition 10.10 is that any Brownian motion in gǫ(N,K) is an
additive Levy process. Besides, we can compute the bracket of Ht with itself:

dHt ⊗ dHt =
d
∑

i,j=1

dBi
tdB

j
tXi ⊗Xj =

(

d
∑

i=1

Xi ⊗Xi

)

dt = Cgǫ(N,K)dt,(18)

due to the fact that for any i, j ∈ {0, ..., d}, dBi
tdB

j
t = δi,jdt. Let us remark that one

can easily compute the bracket of Ht with
tHt and

tHt with itself since:

dHt ⊗ tdHt = S1 [dHt ⊗ dHt]
tdHt ⊗ tdHt = S0 [dHt ⊗ dHt] ,

where Sk is the operation defined in Definition 2.5. We will be interested in the case
where K = C and ǫ = −1: let us suppose so just for this discussion. Then, we get the
following equalities:

dHt ⊗ tdHt = − 1

N
ρBk

N

(

[1, 2]
)

dt,(19)

tdHt ⊗ tdHt = − 1

N
ρSk

N (1, 2)dt.(20)
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We recall that we defined the insertion operator II in Definition 3.4. Using the Itô’s
formula, one has the following lemma.

Lemma 10.5. — Let us consider (Ht)t≥0 a Brownian motion on gǫ(N,K). For any

integer k ∈ N \ {2}, GN
k = d

dt |t=0
E

[

H⊗k
t

]

= 0 and:

GN
2 =

d

dt |t=0
E
[

H⊗2
t

]

= Cgǫ(N,K).

10.3.3. Brownian motion on U(N,K). — We can now define the multiplicative notion
of Brownian Motion.

Definition 10.11. — Let (Ht)t≥0 be a Brownian motion on u(N,K). The solution of
the Stratonovich stochastic equation:

{

dUt = dHt ◦ Ut,
U0 = IN ,

is a Brownian motion on U(N,K). We can reformulate this in terms of Itô integral.
The solution of the Itô stochastic equation:

{

dUt = dHtUt +
cu(N,K)

2 Utdt,
U0 = IN ,

is a Brownian motion on U(N,K). Any process which has the same law as (Ut)t≥0 is a
Brownian motion on U(N,K).

It is an important result that any Brownian motion on U(N,K) is a multiplicative
Levy process which is invariant by conjugation by U(N,K): this is a consequence of the
fact that the linear Brownian motion is also invariant by conjugation by U(N,K).

We can also compute the bracket of Ut with itself. Let (Ht)t≥0 be an additive Brownian
motion on u(N,K) and let (Ut)t≥0 be the Brownian motion on U(N,K) associated with
(Ht)t≥0. Then:

dUt ⊗ dUt =dHtUt ⊗ dHtUt =(dHt ⊗ dHt)(Ut ⊗ Ut) =Cu(N,K)(Ut ⊗ Ut)dt,

where the last equality is a consequence of the additive case.
This remark allows us to compute the action of the infinitesimal generator on the

tensor product. Using the Itô’s formula and Lemma 10.4, we get the following formula
given in [23] :

Lemma 10.6. — Let us consider (Ut)t≥0 a Brownian motion on U(N,K). For any
positive integer k:

GN
k =

d

dt |t=0
E

[

U⊗k
t

]

=
kcuN,K

2
Id⊗k +

∑

1≤i<j≤k

I{i,j}
[

Cu(N,K), Id
⊗k−2

]

.

We can also generalize this lemma in order to understand d
dt |t=0

E

[

U⊗k
t ⊗ Ut

⊗l
]

when

K = C. Since Ht is skew-Hermitian, dHt = − tdHt. Besides, by Definition 10.11, we
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know that dUt = dHtUt − 1
2Utdt, thus:

dUt = − tdHtUt −
1

2
Utdt.

This implies that:

dUt ⊗ dUt = −dHtUt ⊗ tdHtUt =
1

N
ρBk

N

(

[1, 2]
) (

Ut ⊗ Ut

)

dt,

dUt ⊗ dUt =
tdHtUt ⊗ tdHtUt = − 1

N
ρSk

N

(

(1, 2)
) (

Ut ⊗ Ut

)

dt.

This remark, the Equations (19) and (20) allow us to use the Itô’s formula in order
to show the following result which was already proved by T. Levy in [23], and by A.
Dahlqvist in [1].

Lemma 10.7. — Let us consider (Ut)t≥0 a Brownian motion on U(N,C). For any
positive integers k and k′, we have, with a slight abuse of notations:

GN
k,k′ =

d

dt |t=0
E

[

U⊗k
t ⊗ Ut

⊗k′
]

= −k + k′

2
Id⊗k − 1

N





∑

1≤i<j≤k+k′

(i, j) +
∑

1≤i≤k<j≤k+k′

([i, j] − (i, j))



 .

10.3.4. Convergence of additive Brownian motion. — Let us state the results about
convergence of additive Brownian motions.Let ǫ ∈ {−1, 1}. Let A be equal to S if
K = C and equal to B if K = R. For any integer N , let

(

HN
t

)

t≥0
be a Brownian motion

on gǫ(N,K).

Theorem 10.10. — The process
(

HN
t

)

t≥0
converges in P-expectation up to any order

of fluctuations as N tends to infinity. The family
(

(HN
t )N∈N

)

t≥0
is a matricial A- and

P-non-commutative additive Levy process up to any order of fluctuations.

Besides, the asymptotic P-factorization property holds for
(

(

HN
t

)

N∈N

)

t≥0
: this im-

plies that the P-moments of
(

HN
t

)

t≥0
converges in probability to a non-random constant

as N goes to infinity. Moreover, for any positive real t:

RA

(

(HN
t )N∈N

)

= e
tRA(G)
⊞

,

with:

RA(G) = ǫ(1, 2) + (2− βK)[1, 2].

Proof of Theorem 10.10. — We have seen that
(

HN
t

)

t≥0
is invariant by conjugation by

U(N,K). As an application of Theorems 10.2, 10.3 and 10.6, using the notations of
Lemma 10.5, it remains to show that for any integer k,

(

GN
k

)

N∈N, seen as an element of
∏

N∈N C [Ak(N)], converges up to any order of fluctuations, and that:

RA(G) = ǫ(1, 2) + (2− βK)[1, 2].

Indeed if so, by Theorem 10.6 the process
(

HN
t

)

t≥0
converges in P-expectation

up to any order of fluctuations as N tends to infinity. Since (1, 2) and [1, 2] are
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irreducible, RA[G] ∈ me⊞[A]: by Theorem 10.3, the asymptotic P-factorization

holds for
(

(

HN
t

)

N∈N

)

t≥0
. Using the fact that we are considering matrices which

are in gǫ(N,K), this implies that the asymptotic P-factorization also holds for
(

(

HN
t

)

N∈N

)

t≥0
∪
((

HN
t

)

N∈N

)

t≥0
: by Theorem 2.2, the assertion on the convergence

in probability of the P-moments is proved. The remaining assertion is a consequence of
Theorem 10.2.

By Lemma 10.5, GN
k = 0 if k 6= 2 and GN

2 = Cu(N,K). Recall the notation MN
k defined

in Definition 5.1 of [15]. Using Lemma 10.3 and Lemma 5.4 of [15], it is enough to show
that:

(MN
2 )−1

(

1

N
(ǫ(1, 2) + (2− βK)[1, 2])

)

converges in C[A2] and has an asymptotic development as an infinite power series in 1
N .

For any integer N :

(MN
2 )−1

(

1

N
(ǫ(1, 2) + (2− βK)[1, 2])

)

= ǫ(1, 2) + (2− βK)[1, 2].

Thus for any positive integer k,
(

GN
k

)

N∈N, seen as an element of
∏

N∈NC [Ak(N)],
converges up to any order of fluctuations, and using the discussion we just had:

RA[G] = ǫ(1, 2) + (2− βK)[1, 2].

This concludes the proof.

When ǫ = 1, it is well-known that the limit of the mean empirical eigenvalues distri-
bution of HN

1 is the Wigner semicircular distribution.

Theorem 10.11. — For any positive integer N , let
(

HN
t

)

t≥0
be a Brownian motion on

g1(N,K). The mean empirical eigenvalues distribution of HN
1 converges in probability

to the Wigner semicircle distribution:

µsc =
1

2π

√

4− |x |211[−2,2]dx.

Proof. — Using the usual arguments we explained in the beginning of Section
2.1, namely Theorem 2.1, we only have to prove that for any positive integer k,

1
NE

[

Tr

(

(

H
g1(N,K)
1

)k
)]

converges when N goes to infinity to:

∫

R

xkµsc(dx) = #
{

Non-crossing pair-partitions of {1, ..., k}
}

.

Actually, one needs to prove some uniformity sub-Gaussian property for the mean empir-
ical eigenvalues distribution, this can be proved using concentration of measure for the
operator norm of a random matrix. We refer to the discussion in [32] at the beginning
of Section 2.4.2.
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Let us remark that, using the bijection between non-crossing pair-partitions of
{1, ..., k} and involutions without fixed points in [id, (1, ..., k)]Sk

, we see that:

#
{

Non-crossing pair-partitions of {1, ..., k}
}

=
∑

σ involution in Sk,#C(σ)= k
2
,σ∈[id,(1,...,k)]Sk

1.

Thus:

#
{

Non-crossing pair-partitions of {1, ..., k}
}

=
(

MS

[

e
(1,2)
⊞

])

(1,...,k)
,

where the application MS was defined in Definition 10.9 of [15]. Let A be equal to S

if K = C or B if K = R. By Theorem 10.10, RA

[

(HN
1 )N∈N

]

= e
(1,2)+(2−βK)[1,2]
⊞

, thus:

MA

[

(

HN
1

)

N∈N

]

= MA

[

RA

[

(

HN
1

)

N∈N

]]

= MA

[

e
(1,2)+(2−βK)[1,2]
⊞

]

.

As an application of Proposition 10.4 of [15] and using the fact that
(

eE
⊞

)

|E[S]
= e

E|S

⊞
,

one gets, for any positive integer k:
(

MA

[

(

HN
1

)

N∈N

])

(1,...,k)
=

(

MS

[

(

e
(1,2)+(2−βK)[1,2]
⊞

)

|E[S]

])

(1,...,k)

=
(

MS

[

e
(1,2)
⊞

])

(1,...,k)

= #
{

Non-crossing pair-partitions of {1, ..., k}
}

=

∫

R

xkµsc(dx),

which is the equality we wanted to prove.

10.3.5. Matricial Wick Formula. — In this section, we only write in a more usual way
the equation stated in Theorem 10.10: one can recover a matricial Wick formula. In
order to do so, we need the following definition. Let n be a positive integer.

Definition 10.12. — A one-specie pairing of n is a partition of {1, ..., n} into pairs.
A two-species pairing of n is a partition of {1, ..., n} into pairs, with a partition in two
sets of these pairs: (Tm,Wm).

We denote by Fn(1) the set of one-specie pairings of n and Fn(2) the set of two-species
parings of n. By convention #Wm = 0 for any one-specie pairing m.

Any one-specie pairing of n can be written as
{

{i, ji}, i ∈ I
}

where I is a subset of
{1, ..., n} of size n/2. For example, the partition {{1, 4}, {2, 3}, {5, 6}} is a one-specie
pairing of 6 and {{1, 4}, {2, 3}, {5, 6}} with the partition Tm = {{1, 4}, {5, 6}}, Wm =
{{2, 3}} is a two-species pairing of 6.

There is an obvious bijection between one-specie pairings of n and involutions in
Sn, thus we will often consider a one-specie pairing as a permutation of {1, ..., n}. We
can also inject the set of two-species pairings of n in Bn. Recall the definitions of the
transposition (i, j) and the Weyl contraction [i, j] stated in Definition 2.8 of [15].
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Definition 10.13. — Let m =
({

{i, ji}, i ∈ I
}

, Tm,Wm

)

be a two-species pairing of n.
We consider bm ∈ Bn equal to:

bm =
∏

i∈I,{i,ji}∈Tm

(i, ji)
∏

i∈I,{i,ji}∈Wm

[i, ji].

The elements in the product commute, thus the order is not important.

Often we will consider a two-species pairing m of n either as a colored partition of
{1, ..., n} or as an element of Bn.

Definition 10.14. — Let M be a random matrix in MN (K). It is a standard Gaussian
gǫ(N,K) matrix if the equality in law holds:

M =
√
NH1,

where (Ht)t≥0 is a Brownian motion on gǫ(N,K).

When ǫ = 1 this is an equivalent definition for the G.O.E and G.U.E ensembles.

Theorem 10.12. — For any integer N , let MN be a standard Gaussian g1(N,K) ran-
dom matrix. The mean empirical eigenvalues distribution of 1√

N
MN converges in prob-

ability to the Wigner semicircular distribution µsc as N goes to infinity.

Besides, one has a matricial Wick theorem.

Theorem 10.13. — Let (M1, ...,Mk) be a random vector of matrices such that there
exist a k×k′ complex matrix A and a k′-tuple of independent standard Gaussian gǫ(N,K)

matrices (M̃1, ..., M̃k′) such that the following equality in law holds:

(Mi)
k
i=1 =





k′
∑

j=1

Ai,jM̃j





k

i=1

,

or in a shorter way:

t(M1, ...,Mk) = A.t(M̃1, ..., M̃k′).

Let us define for any i, j in {1,...,k}, C(Mi,Mj) = (A tA)i,j . Then:

E[M1 ⊗ ...⊗Mk] =
∑

m∈Fk(3−βK)



ǫ#Tm
∏

{i,j}∈m
C(Mi,Mj)



 bm,

where we have made a slight abuse of notation by writing bm instead of ρBk

N (bm).

Proof. — First of all, the result holds if one considers only one matrix M . Indeed, if M
is a standard Gaussian gǫ(N,K) matrix, then:

E

[

M⊗k
]

=
∑

m∈Fk(3−βK)

ǫ#Tmbm.
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Indeed, M has the same law than
√
NH1 where (Ht)t≥0 is a Brownian motion on

gǫ(N,K). Yet, we have seen in the proof of Theorem 10.10 that for any positive in-
teger k:

Gk =
d

dt |t=0
E[H⊗k

t ] = δk=2

[

MN
2 (ǫ(1, 2) + (2− βK)[1, 2])

]

.

Using Lemma 10.1, for any positive real t0:

d

dt |t=t0
E

[

H⊗k
t

]

=
∑

I⊂{1,...,k},#I=k−2

II
[

E

[

H
⊗(k−2)
t0

]

, G2

]

.

Let
(

Ek
t

)

k∈N,t≥0
be such that for any k ∈ N, (Ek

t )t≥0 ∈ C[Pk]
R+

and such that
(

Ek
t

)

k∈N,t≥0
is the solution of: ∀k ∈ N:

d

dt |t=t0
Ek

t =
∑

I⊂{0,...,k},#I=k−2

II
[

Ek−2
t , ǫ(1, 2) + (2− βK)[1, 2]

]

,(21)

with the initial condition: ∀k ∈ N, Ek
0 = idk. Then for any positive integer k, for any

positive real t,

E

[

H⊗k
t

]

= ρBk

N

[

MN
2

(

Ek
t

)]

.

Thus, we only have to find a solution of Equation (21): this is given for any positive real
t and any k ∈ N by:

Ek
t =

∑

m∈Fk(3−βK)

ǫ#Tmt
k
2 bm.

Thus for any integer k:

E

[

M⊗k
]

= N
k
2E[H⊗k

1 ] = N
k
2 ρBk

N



MN
2





∑

m∈Fk(3−βK)

ǫ#Tmbm









=
∑

m∈Fk(3−βK)

ǫ#Tmbm.

Now let (M1, ...,Mk) be a random vector of matrices such that there exist a k × k′

complex matrix A and a k′-tuple of independent standard Gaussian gǫ(N,K) matrices

(M̃1, ..., M̃k) such that the following equality in law holds:

t(M1, ...,Mk) = A.t(M̃1, ..., M̃k′).

Let us define for any i, j in {1,...,k}, C(Mi,Mj) = (A tA)i,j . Then:

E [M1 ⊗ ...⊗Mk] =
k′
∑

i1,...,ik=1

Ai1
1 ...A

ik
k E[M̃i1 ⊗ ...⊗ M̃ik ]

=
∑

π∈Pk

∑

Ker((i1,...,ik))=π

Ai1
1 ...A

ik
k E[M̃i1 ⊗ ...⊗ M̃ik ].
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Using the independence of the
(

M̃i

)k′

i=1
, and using the result already proved for one

matrix, one gets:

E [M1 ⊗ ...⊗Mk]

=
∑

π∈Pk





∑

Ker((i1,...,ik))=π

Ai1
1 ...A

ik
k





∑

m∈Fk(3−βK),m≤π

ǫ#Tmbm.

We can go on the calculation:

E [M1 ⊗ ...⊗Mk]

=
∑

m∈Fk(3−βK)





∑

π∈Pk,m≤π

∑

Ker((i1,...,ik))=π

Ai1
1 ...A

ik
k



 ǫ#Tmbm,

and the result follow from the easy equality which holds for any m ∈ Fk(3− βK):

∑

π∈Pk,m≤π

∑

Ker((i1,...,ik))=π

Ai1
1 ...A

ik
k =

∏

{i,j}∈m

k′
∑

l=1

Al
iA

l
j

=
∏

{i,j}∈m
C(Mi,Mj).

Hence the matricial Wick formula.

We stated the result for the calculation of E[M1 ⊗ ... ⊗ Mk], yet using Theorem
10.13, one can see that for any l ∈ {1, ..., k − 1}, one can calculate the value of
E
[

M1 ⊗ ...⊗Ml ⊗Ml ⊗Ml+1 ⊗ ...⊗Mk

]

. One can use two ways to do it: one can
either decompose any random matrices using its real part and imaginary part, and
apply Theorem 10.13 for the real matrices, or one can use the fact that M∗ is either
equal to M or −M . Let us illustrate the second possibility: for example, let us consider

E

[

M⊗k ⊗M
⊗k
]

, M being a standard Gaussian g1(N,C). Using Theorem 10.13, we

know that:

E

[

M⊗k ⊗ (M∗)⊗k
]

= E

[

M⊗k ⊗M⊗k
]

=
∑

m∈Fk(1)

ǫ#Tmbm.

And thus:

E

[

M⊗k ⊗M
⊗k
]

= Sk

(

E[M⊗k ⊗ (M∗)⊗k]
)

=
∑

m∈Fk(1)

ǫ#TmSk (bm) ,

where the operation Sk was defined in Definition 2.5.

10.3.6. Convergence of multiplicative Brownian motion. — Let us now state the results
about convergence of multiplicative Brownian motions. Let A be equal to S if K = C or
equal to B if K = R. For any integer N , let

(

UN
t

)

t≥0
be a Brownian motion on U(N,K).

The next theorem is inspired by the results of T. Lévy in ??: we extend slightly his
results to our setting.
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Theorem 10.14. — The process
(

UN
t

)

t≥0
converges in P-expectation up to any order

of fluctuations as N tends to infinity. The family
(

(

UN
t

)

N∈N

)

t≥0
is a matricial A and

P-non-commutative multiplicative Levy process up to any order of fluctuations.

The asymptotic P-factorization property holds for
(

(

UN
t

)

N∈N

)

t≥0
. For any t ∈ R+:

RA

(

(

UN
t

)

N∈N

)

= e
tRA(G)
⊠

,

where, for any positive integer k,

(

RA(G)
)

k
= −k

2
idk +

∑

1≤i<j≤k

(−(i, j) + (2− βK) [i, j]) .(22)

And for any t0 ≥ 0, any positive integer k, and for any p ∈ Pk:

d

dt |t=t0
Emp(Ut, ..., Ut) =

∑

p1∈Ak,p1≤p

(RA(G))p1 Emtp1◦p(Ut0 , ..., Ut0).(23)

Let us suppose that K = C. Then the family
(

UN
t ,
(

UN
t

)∗)
t≥0

converges in P-

expectation up to any order of fluctuations as N tends to infinity. Besides, the asymptotic

P-factorization property holds for
(

(

UN
t

)

N∈N

)

t≥0
∪
(

((

UN
t

)∗)
N∈N

)

t≥0
. In particular,

the normalized P-moments of the family
(

UN
t ,
(

UN
t

)∗)
t≥0

converges in probability to the

limit of their expectation as N goes to infinity.
Let us use the same notations as for Theorem 10.5. Then for any real t0 ≥ 0, for any

positive integer k and l, the following equality holds in C[Pk+l(∞,∞)]:

d

dt |t=t0

(

R(Ut)
)

k,l
= (R(G))k,l

(

R(Ut0)
)

k,l
,

where

(

R(G)
)

k,l
= −k + l

2
idk+l −

∑

1≤i<j≤k+k′

(i, j) −
∑

1≤i≤k<j≤k+k′

([i, j] − (i, j)) .

Moreover, for any positive integer k and l, any p ∈ Pk+l and any t0 ≥ 0:

d

dt |t=t0
mp

[

E

(

U⊗k
t ⊗ Ut

⊗l
)]

=
∑

p1∈Ak,p1≤p

(

(

R(G)
)

k,l

)

p1
mtp1◦p

[

E

(

U⊗k
t ⊗ Ut

⊗l
)]

,

where mp

[

E

(

U⊗k
t ⊗ Ut

⊗l
)]

stands for the limit as N goes to infinity of the mean nor-

malized moment mp

[

E

(

UN
t

⊗k ⊗
(

UN
t

)⊗l
)]

.

Proof of Theorem 10.14. — For any integer N , let (UN
t )t≥0 be a Brownian motion on

U(N,K). Let us prove first all the statements about
(

(UN
t )N∈N

)

t≥0
. We have seen

that
(

UN
t

)

t≥0
is invariant by conjugation by U(N,K). As an application of Theorems

10.6, 10.2 and 10.3, using the notations of Lemma 10.6, it remains to show that for any
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positive integer k,
(

GN
k

)

N∈N, seen as an element of
∏

N∈NC [Ak(N)], converges up to
any order of fluctuations and that for any positive integer k,

(RA[G])k = −k

2
idk +

∑

1≤i<j≤k

(−(i, j) + (2− βK)[i, j]) .

Indeed if so, by Theorem 10.6 the process
(

UN
t

)

t≥0
converges in P-expectation up to

any order of fluctuations as N tends to infinity. Since (i, j) and [i, j] are weakly irre-
ducible, RA[G] ∈ me⊠[A]: by Theorem 10.3, the asymptotic P-factorization holds for
(

(UN
t )N∈N

)

t≥0
. The remaining assertion is a consequence of Theorem 10.2.

Using Lemma 10.6, Lemma 10.3 of this article and Lemma 5.4 of [15], it is enough to
show that for any positive integer k:

(

MN
k

)−1





kcu(N,K)

2
idk +

1

N

∑

1≤i<j≤k

(−(i, j) + (2− βK)[i, j])





converges in C[Ak] and has an asymptotic development as an infinite power series in 1
N .

Using Lemma 10.4, for any positive integer N , this is equal to:

k

2

(

−1 +
2− βK
N

)

idk +
∑

1≤i<j≤k

(−(i, j) + (2− βK)[i, j]) .

Thus for any positive integer k,
(

GN
k

)

N∈N, seen as an element of
∏

N∈N C[Ak(N)], con-
verges up to any order of fluctuations, and using the discussion we just had:

RA(G) = J

(

− 1

2
id1 − (1, 2) + (2− βK)[1, 2]

)

where J was defined in Definition 10.6 of [15], or equivalently, for any integer k,

(RA(G))k = −k

2
idk +

∑

1≤i<j≤k

(−(i, j) + (2− βK)[i, j]) .

This finishes the first part of the theorem.

Let us suppose that K = C. We can prove the assertions about
(

(

UN
t , (UN

t )∗
)

t≥0

)

N∈N

and

(

(

UN
t , UN

t

)

t≥0

)

N∈N
by using similar arguments to the ones we just used and using

Lemma 10.7, Theorem 10.4, Theorem 10.5 and Theorem 2.2.

One can also calculate for any positive real t, the limit of the moments of the mean
empirical eigenvalues distribution of UN

t . The first proof of the next theorem was given
by Biane in [8], and then by Levy in [24]. The proof we give here is just a reformulation
in our framework of the latter proof. For this, let us define, for any real t ≥ 0 and any
positive integer k,

mk(t) = e−
kt
2

k−1
∑

l=0

(−t)l

l!
kl−1

(

k

l + 1

)

.
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Theorem 10.15. — For any integer N , let
(

UN
t

)

t≥0
be a Brownian motion on U(N,K).

For any t ≥ 0, the empirical eigenvalues distribution of UN
t converges in probability to

a measure νt as N goes to infinity and for any positive integer k:
∫

U

zkνt(dz) =

∫

U

z−kνt(dz) = mk(t).

Thus for any integer r ≥ 1, any integers l1, ..., lr in Z, for any real t ≥ 0,

E

[

1

N
Tr
(

(UN
t )l1

)

...
1

N
Tr
(

(UN
t )lr

)

]

−→
N→∞

r
∏

i=1

mli(t).

Proof. — For any positive integer N , let
(

UN,K
t

)

t≥0
be a Brownian motion on U(N,K).

Let RA

[

GK
]

be the RA-functional of the family
((

GN,K
k

))

k∈N
, where as usual,

GN,K
k =

d

dt |t=0
E

[

(

UN,K
t

)⊗k
]

.

Using Theorem 10.14,
(

(

UN,K
t

)

N∈N

)

t≥0
converges in P-expectation and each normalized

S-moment of
(

(

UN,K
t

)

N∈N

)

t≥0
converges in probability to the limit of their expectation.

Using a similar argument to the one used in Theorem 2.1, for any positive real t, the

empirical eigenvalues distribution of UN,K
t converges in probability to a probability mea-

sure called νK,t. Again using Theorem 10.14, the restriction on E[S] of RB
[

GR
]

is equal

to RS

[

GC
]

. Thus, by Theorem 10.8,
(

(

UN,R
t

)

N∈N

)

t≥0
and

(

(

UN,C
t

)

N∈N

)

t≥0
have the

same S-law: in particular, for any positive real t,

νC,t = νR,t.

We denote for any positive real t, νt = νC,t. We have to show now that for any k ≥ 1:
∫

U

zkνt(dz) = mk(t).

For any integer k ≥ 1, let us denote by mν,k(t) the moment
∫

U
zkνt(dz). Using the

Equality (22) in Theorem 10.14, the family (mν,k(t))t≥0,k∈N satisfies the following system

of differential equations:

∀k ≥ 1,∀t0 ≥ 0,
d

dt |t=t0
mν,k(t) = −k

2
mν,k(t0)−

k

2

k−1
∑

l=1

mν,l(t0)mν,k−l(t0).

In [23], Levy proved in Lemma 2.4 that (mk(t))t≥0,k∈N also satisfies the same system of
linear differential equations with the same initial conditions. By unicity we get that:

∫

U

zkνt(dz) = mk(t).

This allows us to conclude.

10.4. Levy processes. —
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10.4.1. The generator. — The main step in order to show the convergence of the Brow-
nian motions in Section 10.3, was to compute the action of the generator at time t = 0
on the application M → M⊗k. The Itô’s formula allowed us to do so in Lemma 10.5
and Lemma 10.6. Fortunately, there exists an automatic way to compute the generator
given by Theorem 31.5 in [30] and Hunt’s Theorem, Theorem 1.1 in [25].

Theorem 10.16. — Let E be a finite dimensional vector space of dimension d, let
(Yi)

d
i=1 be a basis of E. Let (Xt)t≥0 be an additive Levy process in E. There exist:

1. Y0 ∈ E,
2. a symmetric positive semidefinite matrix (yi,j)

d
i,j=1,

3. a Levy measure Π on E, that is a measure on E such that Π({0}) = 0 and such
that, if B is the ball of center 0 and radius 1 in E:

∫

B
|| x ||2E Π(dx) ≤ ∞ and Π(Bc) < ∞,

such that the generator G of (Xt)t≥0 is given for any f ∈ C2
0 (E) and any y ∈ E by

Gf(y) = d
dt |t=0

E[f(y +Xt)] which is equal to:

∂X0f(y) +
1

2

N2
∑

i,j=1

yi,j∂Yi
∂Yj

f(y) +

∫

HN

[f(y + x)− f(y)− 11B(x)∂xf(y)] Π(dx).

Conversely, every operator of this form is the generator of a unique Levy process (Xt)t≥0.
Besides, let us suppose that E is equal to the Lie algebra g of a compact Lie group G.

Let H be a Lie subgroup of G. Let us suppose that Y0, the operator
∑N2

i,j=1 yi,j∂Yi
∂Yj

and
Π are invariant by conjugation by any element of H, then the Levy process associated is
invariant by conjugation by H.

Remark 10.2. — One can change 11B in the form of the generator given by the last
theorem by anything of the form 11V where V is a neighborhood of 0. This operation only
changes the drift X0. This remark will be important latter as we will work with a Levy
measure which is compactly supported: it is then easier to suppose that Supp(Π) ⊂ B.

A similar result exists for compact Lie groups. Let G be a compact Lie group and let
g be the Lie algebra of G. Let A : G → g be a smooth mapping such that:

A(Id) = 0 and dId = idg.

As explained by G. Cébron in [10] for the case of U(N)-valued Levy processes, one can
use on U(N,K) the mapping:

A : M 7→ M −M∗

2
.

From now on, we will denote this application iℑ, even when we are working on O(N).
Besides, it is also invariant by conjugation by U(N,K): for any U ∈ U(N,K), for any
M ∈ M(N,K):

UA(M)U−1 = A(UMU−1).

For any matrix M , we denote by ℜ(M) the matrix M+M∗

2 . We recall also that any
element X in the Lie algebra g induces a right invariant vector field which is defined
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for any g in g, by Xr(g) = DRg(X), with DRg being the diffential map of the right
multiplication operation Rg : h 7→ gh. Hunt’s theorem, see [25], allows to compute the
generator of a Levy process on a compact Lie group.

Theorem 10.17. — Let (Xt)t≥0 be a Levy process on a compact Lie group G. Let d be
the dimension of the Lie algebra g of G. Let (Yi)

d
i=1 be a basis of g. There exist:

1. Y0 ∈ gN ,
2. a symmetric positive semidefinite matrix (yi,j)

d
i,j=1,

3. a Levy measure Π on G, that is a measure on G such that Π({Id}) = 0 and for
any neighborhood V of Id in G, we have:

∫

V
||A(x) ||2g Π(dx) ≤ ∞ and Π(V c) < ∞,

such that the generator G of (Xt)t≥0 is given for any f ∈ C2(G) and any h ∈ UN by

Gf(h) = d
dt |t=0

E[f(Xth)] which is equal to:

Y r
0 f(h) +

1

2

d
∑

i,j=1

yi,jY
r
i Y

r
j f(h) +

∫

G
[f(gh)− f(h)−A(g)rf(h)] Π(dg).

Conversely, every operator of this form is the generator of a unique Levy process (Xt)t≥0.
Let H be a Lie subgroup of G. Let us suppose that Y0, the measure Π and the operator

∑d
i,j=1 yi,jY

l
i Y

l
j are invariant by conjugation by any element of H, then the Levy process

associated is invariant by conjugation by H.

Remark 10.3. — We will apply Theorem 10.16 and Theorem 10.17 to the case where
E is one of the Lie algebra defined in Section 10.3.1 and where G is one of the Lie group
defined in the same section. In Definition 10.8, we defined a scalar product on these
Lie algebras: from now on, we will always assume that the basis (Yi)

d
i=1 used in both

theorems is an orthonormal basis for this scalar product.

10.4.2. Free additive and multiplicative divisible measures. — One of our goal is to study
the convergence of some natural Levy processes using the new setting we developed and
to characterize the limit of the mean eigenvalues distribution. In order to do so, we
need to introduce the well-known notions of free additive and multiplicative infinitely
divisible measures. First, let us recall the notions of free additive and multiplicative
convolutions.

We denote for any topological set K, P(K) the set of probability measure on K and
Pc(K) the elements in P(K) which are compactly supported. Let U be the unit circle.
Recall all the definitions in Section 10 of [15].

Definition 10.15. — Let µ be in Pc(C). For any positive integer n, let [(1, ..., n)]Sn

be the conjugacy class of (1, ..., n) in Sn. Let M(i)(µ) be the element of E(i)[S] such

that for any integer n, for any σ ∈ [(1, ..., n)]Sn
,
(

M(i)(µ)
)

σ
=
∫

C
zndµ(z). The moment

invariant of µ is:

M(µ) = M
(

M(i)(µ)
)

.
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The cumulant invariant of µ is:

R(µ) = RS [M(µ)] .

The moment invariant and the cumulant invariant characterize the measures which
are compactly supported either by the real line or by the unit circle, this is a well-known
consequence of the Stone-Weierstrass’s theorem.

Lemma 10.8. — Let µ1, µ2 be two measures either both in Pc(R) or in P(U). If either
M(µ1) = M(µ2) or R(µ1) = R(µ2) then µ1 = µ2.

Recall the notion of strong approximation of a measure µ defined in Section 9.1. The
following lemma is straightforward.

Lemma 10.9. — Let µ ∈ Pc(C). Let (MN )N∈N be an element of L∞− ⊗M(C) which
is a strong approximation of µ, then MS[(MN )N∈N] = M[µ].

In order to define the free additive convolution, we need the following lemma.

Lemma 10.10. — For any Hermitian matrix M of size N , we denote by λ1(M) ≥
... ≥ λN (M) the eigenvalues of M . Let A and B be two Hermitian matrices, for any
i ∈ {1, ..., N}:

λN (A) + λN (B) ≤ λi(A+B) ≤ λ1(A) + λ1(B).

Now we can define the free additive convolution of two probability measures supported
by the real line.

Proposition 10.1. — Let µ and ν be in Pc(R). There exists a unique probability mea-
sure in Pc(R), denoted µ⊞ ν, such that the equation:

R(µ ⊞ ν) = R(µ)⊞R(ν)

holds in E[S]. Moreover, the application ⊞ : Pc
R
×Pc

R
→ Pc

R
can be extended by continuity

from Pc
R
to PR.

Proof. — We will only give a proof of the first assertion. The second result is a conse-
quence of Proposition 4.13. of [7].

Let µ and ν be in Pc(R). Their moments are finite: let us consider two independent
natural strong approximations of µ and ν, as defined in Proposition 9.1, respectively
(

MN
µ

)

N∈N and
(

MN
ν

)

N∈N. For each positive integer N , let us consider UN a matrix

such that
(

MN
µ ,MN

ν , UN

)

are independent, and UN is Haar distributed on U(N). Then

for any integer N , MN
µ is independent of UNMN

ν U∗
N which is invariant by conjugation

by U(N). By Theorem 7.10,
(

MN
µ

)

N∈N and
(

UNMN
ν U∗

N

)

N∈N are asymptotically S-free.

By Theorem 7.1,

MN = MN
µ + UNMN

ν U∗
N

converges in S-expectation when N goes to infinity. Besides, by Lemma 10.10, the
mean eigenvalues distributions E [ηMN ] of MN are uniformly compactly supported. By
Theorem 2.1, there exists a measure that we denote µ⊞ ν such that:

E [ηMN ] −→
N→∞

µ⊞ ν.
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By Theorem 7.9, we also get that:

RS

(

(

MN
)

N∈N

)

= RS

(

(

MN
µ

)

N∈N

)

⊞RS

(

(

MN
ν

)

N∈N

)

.

Let us remark that
(

MN
)

N∈N is a strong approximation of µ⊞ ν. Indeed, as (MN
µ )N∈N

and (MN
ν )N∈N are strong approximations, RS

(

(

MN
µ

)

N∈N

)

and RS

(

(

MN
ν

)

N∈N

)

are

multiplicative. By Theorem 10.1 of [15],

RS

(

(

MN
µ

)

N∈N

)

⊞RS

(

(

MN
ν

)

N∈N

)

is also multiplicative. This implies that RS

(

(

MN
)

N∈N

)

is multiplicative, and thus

MS

(

(

MN
)

N∈N

)

is multiplicative. Using Lemma 10.9, the measure µ⊞ ν satisfies:

R(µ⊞ ν) = R(µ)⊞R(ν),

which is the equality we wanted to prove.

Proposition 10.2. — Let µ and ν be in P(U). There exists a unique probability mea-
sure in P(U), denoted µ⊠ ν, such that the equation:

R(µ⊠ ν) = R(µ)⊠R(ν)

holds in E[S].

Proof. — The proof is similar to the proof of Proposition 10.1. Let µ and ν be in P(U).
We can consider two independent natural strong matricial approximations of µ and ν,
respectively

(

MN
µ

)

N∈N and
(

MN
ν

)

N∈N. For each positive integer N , let us consider UN a

matrix such that
(

MN
µ ,MN

ν , UN

)

are independent, and UN is Haar distributed on U(N).
By the Theorems 7.1 and 7.10, the matrix:

MN = MN
µ UNMN

ν U∗
N

converges in S-expectation when N goes to infinity. For any integer N , MN is a uni-
tary matrix: the mean eigenvalues distribution E [ηMN ] of MN is supported by U. By
Theorem 2.1, there exists a measure that we denote µ⊠ ν such that:

E [ηMN ] −→
N→∞

µ⊠ ν.

Besides, by Theorem 7.9, we also get that:

R
(

(

MN
)

N∈N

)

= R
(

(

MN
µ

)

N∈N

)

⊠R
(

(

MN
ν

)

N∈N

)

,

in E[S]. Using similar arguments to those used in Proposition 10.1,
(

MN
)

N∈N is a
strong approximation of µ⊠ ν. Using Lemma 10.9, the measure µ⊠ ν satisfies:

R(µ⊠ ν) = R(µ)⊠R(ν),

which is the equality we wanted to prove.

As one can do for the usual convolution, we can define the notion of free additive and
multiplicative infinitely divisible measures.
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Definition 10.16. — Let µ be in P(R) and ν be in P(U). The measure µ is a free
additive infinitely divisible measure if for any integer n ≥ 1 there exists µ 1

n
∈ P(R) such

that µ = µ⊞n
1
n

. The measure ν is a free multiplicative infinitely divisible measure if for

any integer n ≥ 1 there exists ν 1
n
∈ P(U) such that ν = ν⊠n

1
n

.

Let λU be the uniform probability measure on U. Let µ be any measure in P(R) or
P(U) \ {λU} which is a free additive (resp. multiplicative) infinitely divisible measure.
There exists a continuous one parameter semi-group of measures (µt)t≥0 for the free ad-
ditive (resp. multiplicative) convolution such that µ = µ1 and µ0 = δ0 (resp. µ0 = δ1).
This semi-group is unique in the additive case and in the multiplicative case there is
a canonical way to associate a free multiplicative convolution semi-group. We will not
explain in details how to construct these continuous one parameter semi-group of mea-
sures. Just let us explain briefly what is the canonical choice for the free multiplicative
convolution.

Let ν be a free multiplicative infinitely divisible measure in P(U) \ {λU}. From the
explanations given in Section 2.6 of [10], there exist a unique ω ∈ U and a unique
measure ρ on U such that ρ(U) < ∞, such that the S-transform of ν is given by:

S(z) = ω exp

(∫

U

1 + z + ζz

1 + z − ζz
dρ(ζ)

)

.

Conversely, any function of the form given above is the S-transform of a unique free
multiplicative infinitely divisible measure in P(U). We did not define in the article what
was the S-transform but one can read [10] for an explanation. The only thing to be
known for this article is that it characterizes the measures defined on U and it transforms
the ⊠ operation in a multiplication in the space of formal power series. Let arg(ω) be
the argument of ω defined in ]− π, π]. Let us define for any t ≥ 0,

St(z) = eitarg(ω) exp

(
∫

U

1 + z + ζz

1 + z − ζz
d(tρ)(ζ)

)

,

then for any positive real t there exists νt such that the S-transform of νt is St. Yet, for
any positive real t1 and t2, St1St2 = St1+t2 thus νt1 ⊠ νt2 = νt1+t2 . The family (νt)t≥0 is
a one-parameter semi-group of measures for the free multiplicative convolution which is
in fact continuous and which satisfies ν1 = ν. We see here that one could have chosen
any arg(ω) + 2kπ, with k ∈ Z, instead of arg(ω) in the definition of St: this would have
given a different one parameter continuous semi-group hence the non-unicity property
stated above. Each time we will consider the canonical semi-group associated with ν,
the reader will have to understand that we consider the one constructed just above with
the use of arg(ω).

Let µ be in P(R) and let ν be in P(U) \ {λU}. Let us suppose from now on that µ
is a free additive infinitely divisible measure and that ν is a free multiplicative infinitely
divisible measure. Let (µt)t≥0 and (νt)t≥0 be the canonical continuous semi-group associ-

ated respectively with µ and ν. By definition, (R(µt))t≥0 and (R(νt))t≥0 are continuous

one parameter semi-groups in respectively (E[S],⊞) and (E[S],⊠) which begin at the
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neutral element. Thus there exist G(µ) and LR(ν) in E[S] such that:

d

dt |t=t0
R(µt) = G(µ)⊞R(µt0),(24)

d

dt |t=t0
R(νt) = LR(ν)⊠R(νt0),(25)

hold in E[S]. The element G(µ) is easy to understand.

Lemma 10.11. — The element G(µ) is the unique element in me⊞[S] such that, for
any positive integer k, for any p ∈ Sk which is irreducible:

(G(µ))p = (R(µ))p .

Definition 10.17. — The log-cumulant invariant of ν is LR(ν).

This definition is equivalent to the one given by G. Cébron in [11] and [10]. Let
us remark that in some sense, the S-transform is the exponentiation in the algebra of
formal series of the log-cumulant. One can introduce the S-transform as a way to send
the ⊠ operation on the simpler multiplication of formal series.

Using Lemma 10.8, we get the following lemma.

Lemma 10.12. — Let ν1 and ν2 be two free multiplicative infinitely divisible measures
in P(U) distinct from λU. If LR(ν1) is equal to LR(ν2), then ν1 = ν2.

It remains to characterize the cumulant invariant of free additive infinitely divisible
measures and the log-cumulant invariant of free multiplicative infinitely divisible mea-
sures. This is given by the two following theorems. We warn the reader that these
theorems are only reformulations of well-known results about the R- and S-transforms
of free infinitely divisible measures that one can find in [4] and [6].

Let us recall that a measure ρ on R is a Levy measure if ρ({0}) = 0 and
∫

R

min(x2, 1)ρ(dx) < ∞.

Let us also recall that any multiplicative element E of E[S] is determined by its

restriction on the irreducible partitions: this gives an element of E(i)[S]. Let us suppose
that E is invariant by conjugation by any permutation: we recall that this means that
for any positive integer k and any σ ∈ Sk, the following equality holds in C[Ak(N)] for
any positive integer N :

σEkσ
−1 = Ek.

The restriction of E on the irreducible partitions is an element of
(

E(i)[S]
)S

. Yet,

E(i)[S] is isomorphic to the affine space of formal series of the form C1[[z]] with constant
coefficient equal to 1. Let us suppose that for a complex number z, the evaluation of
this formal series converges, then we denote this evaluation by E(z).

Theorem 10.18. — Let µ be a free additive infinitely divisible measure. For any com-
plex number z such that Im(z) < 0, R(µ)(z) is defined, and there exist η ∈ R, a ∈ R+
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and ρ a Levy measure on R which are unique and such that:

R(µ)(z) = 1 + ηz + az2 +

∫

R

(

1

1− tz
− 1− tz11[−1,1](t)

)

ρ(dt).(26)

Conversely, for any η ∈ R, a ∈ R+ and any Levy measure ρ on R, there exists a free
additive infinitely divisible measure µ ∈ P(R) such that for any complex number z such
that Im(z) < 0, the equality (26) is satisfied. In particular, if the Levy measure of µ is
compactly supported, then there exist η ∈ R, a ∈ R+ and ρ a Levy measure on R which
are unique and such that:

R(µ) = M
(

1 +
∑

n∈N∗

κnz
n

)

,

where we used the bijection explained in Proposition 10.1 of [15], and where:

– κ1 = η,

– κ2 = a+
∫

R
x2ρ(dx),

– ∀n ≥ 3, κn =
∫

R
xnρ(dx).

The last triplet (η, a, ρ) will be called the ⊞-characteristic triplet of µ.

A similar theorem exists for the free multiplicative infinitely divisible measures. Recall
that ν, a measure on U, is a Levy measure if ν({1}) = 0 and

∫

U

(1 + ℜ(ζ))dν(ζ) < ∞,

where ℜ(ζ) is the real part of ζ. Recall the definition of J in Definition 10.6 of [15].

Theorem 10.19. — Let η be a free multiplicative infinitely divisible measure. There
exist ω ∈ U, b ∈ R+ and ν a Levy measure on U which are unique and such that:

LR(ν) = J [(Lκn)n∈N∗ ](27)

where:

– Lκ1 = iarg(ω)− b
2 +

∫

U
(ℜ(ζ)− 1)dν(ζ),

– Lκ2 = −b+
∫

U
(ζ − 1)2dν(ζ),

– ∀n ≥ 3, Lκn =
∫

U (ζ − 1)ndν(ζ).

Conversely, for any element LR of the form given by (27), there exists a free multiplica-
tive infinitely divisible measure µ ∈ P(U) such that LR(µ) = LR. The triplet (ω, b, ν)
is called the ⊠-characteristic triplet of ν.

Proof. — One could give a proof by using the characterization of the S-transform of
a multiplicative infinitely divisible measure. Yet, G. Cébron showed already in [10]
the forthcoming Theorem 10.26. In the proof of Theorem 10.26, we compute the log-
cumulant invariant of µ given by Equation (29). This allows to conclude.

In the following, we will give a new proof of results found in [5], [9] and [10], in the
setting we have developed.
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Theorem 10.20. — Let µ ∈ P(R) be a free additive infinitely divisible measure. Let
us suppose that the Levy measure ρ of µ is compactly supported. Let (µt)t≥0 be the

continuous semi-group associated with µ. There exists
(

(

XN
t

)

N∈N

)

t≥0
a matricial P-

non-commutative additive Levy process such that:

– for any positive integer N , for any positive real t, XN
t is hermitian,

– for any positive integer N , (XN
t )t≥0 is U -invariant,

– for any t ≥ 0, M(µt) = MS[Xt].

In [5] it is proved that one can remove the condition on the measure µ. The Theorem
10.20 is a consequence of Theorem 10.24. In [10], a similar result for free multiplicative
infinitely divisible probability measures is proved.

Theorem 10.21. — Let ν ∈ P(U) \ {λU} be a free multiplicative infinitely divisible
measure. Let (νt)t≥0 be the canonical continuous semi-group associated with ν. There

exists
(

(

XN
t

)

N∈N

)

t≥0
a matricial P-non-commutative multiplicative Levy process such

that:

– for any positive integer N , for any positive real t, XN
t is unitary,

– for any positive integer N , (XN
t )t≥0 is U -invariant,

– for any t ≥ 0: M(νt) = MS[Xt].

This theorem is a consequence of Theorem 10.26. We will also extend these theorems
to the real setting.

Theorem 10.22. — Let us use the same notations than those in Theorem 10.20. There
exists

(

(

XN
t

)

N∈N

)

t≥0
a matricial P-non-commutative additive Levy process such that:

– for any integer N , for any positive real t, XN
t is symmetric,

– for any integer N , (XN
t )t≥0 is O-invariant,

– for any t ≥ 0: M(µt) = MS[Xt].

This theorem is a consequence of Theorem 10.25. In order to state a similar theorem
for multiplicative semi-groups of measures, we need to define the notion of being even
according to the conjugation.

Definition 10.18. — Let ν be a measure on U. It is even according to the conjugation
if for any continuous function f : U → R, one has:

∫

U

f(z)dν(z) =

∫

U

f(z)dν(z).

Theorem 10.23. — Let us use the same notations than those in Theorem 10.21. Let
(ω, b, η) be the characteristic triplet of ν. Let us suppose that η is even according to

the conjugation and ω is equal to one. There exists
(

(

XN
t

)

N∈N

)

t≥0
a matricial P-non-

commutative multiplicative Levy process such that:

– for any integer N , for any positive real t, XN
t is orthogonal,

– for any integer N , (XN
t )t≥0 is O-invariant,

– for any t ≥ 0: M(νt) = MS[Xt].
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This theorem is a consequence of Theorem 10.28.

10.4.3. Strong approximation in h(N,C). —

Theorem 10.24. — Let (η, a, ρ) be the characteristic triplet of µ, a free additive mul-
tiplicative infinitely divisible probability measure on R. Let (µt)t≥0 be the one-parameter
semi-group for the free additive convolution associated with µ. Let us suppose that the
measure ρ has a compact support. Let us define for any integer N :

aN = aIdN2 ,

ρN (f) = N

∫

R

∫

U(N)
f











g











x 0 · · · 0

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0











g∗











dgdρ(x).

For any positive integer N , let (XN
t )t≥0 be a Levy process on h(N,C) with character-

istic triplet
(

ηIN , aN , ρN
)

. The process (XN
t )t≥0 converges in P-expectation as N goes

to infinity. The family
(

(XN
t )N∈N

)

t≥0
is a matricial P-non-commutative additive Levy

process and the asymptotic P-factorization property holds for
(

(XN
t )N∈N

)

t≥0
: this im-

plies that the normalized P-moments of
(

XN
t

)

t≥0
converges in probability when N goes

to infinity to the limit of their expectation. Besides, for any t ≥ 0 and any k ∈ N,

lim
N→∞

E

[

1

N
Tr
(

(

XN
t

)k
)

]

−→
N→∞

∫

R

zkdµt.

Proof. — For any positive integer N , let (XN
t )t≥0 be a Levy process on h(N,C) with

characteristic triplet
(

ηIN , aN , ρN
)

defined in the theorem. Using the last assertion

of Theorem 10.16, for any positive integer N , (XN
t )t≥0 is a Levy process invariant by

conjugation by U(N).
Let us prove that for any positive integer k and N :

(

GN
k =

d

dt t=0
E

[

(

XN
t

)⊗k
]

)

N∈N

converges in S-moments, and let us compute RS(G). Let us suppose, without loss of
generality, that for any x ∈ Supp(ρ), the matrix:











x 0 · · · 0

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0











is in the ball of center 0 and radius 1. We can compute the action of the generator using
Theorem 10.16. Depending on the value of k, we have:

– if k = 1:

d

dt |t=0
E
[

XN
t

]

= ηIN ,
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– if k = 2:

d

dt |t=0
E

[

(

XN
t

)⊗2
]

=
a

2
CHN

+

∫

HN

g⊗2ρN (dg),

– if k ≥ 3:

d

dt |t=0
E

[

(

XN
t

)⊗k
]

=

∫

HN

g⊗kρN (dg).

The convergence of GN
1 is obvious, and we have already understood the convergence

of a
2CHN

in Section 10.3. Let k be an integer greater than two, it remains to study the

sequence
(

∫

HN
g⊗kρN (dg)

)

N∈N
. Let σ be a permutation in Sk, we have the following

equalities:

mσ

(∫

HN

g⊗kρN (dg)

)

=
1

TrN (σ)
Trk

[∫

HN

g⊗kρN (dg) tσ

]

=
N

TrN (σ)

∫

R

xkdρ(x).

We recall that TrN (σ) = Nnc(σ∨id) and nc(σ ∨ id) is the number of cycles of σ, thus:

mσ

(
∫

HN

g⊗kρN (dg)

)

−→
N→∞

δσ∈[(1,...,k)]Sk

∫

R

xkdρ(x),(28)

where we recall that [(1, ..., k)]Sk
is the conjugacy class of (1, ..., k) in Sk. Thus for any

k ≥ 1,
(

GN
k

)

N∈N converges in S-moments.

We would like to compute RS[G]: we see in (28) that the moments of GN
k concentrate

on the k-cycles as N goes to infinity. It is easy to compute the limit of the coordinate
numbers of GN

k : using Theorem 4.1 in the article [15], we get:

(R[G])(1) = lim
N→∞

κ(1)(GN
1 ) = η,

(R[G])(1,2) = lim
N→∞

κ(1,2)(GN
2 ) =

a

2
+

∫

R

x2dρ(dx),

∀k ≥ 3, (R[G])(1,...,k) = lim
N→∞

κ(1,...,k)(GN
k ) =

∫

R

xkdρ(dx),

and for any partition p which is not irreducible, (R[G])p = 0.

By Theorem 10.1, the process (XN
t )t≥0 converges in P-expectation as N goes to

infinity. Besides the family
(

(XN
t )N∈N

)

t≥0
is a matricial P-non-commutative additive

Levy process. Using the calculation of RS[G], and using Theorem 10.3, the asymptotic
P-factorization property holds for

(

(XN
t )N∈N

)

t≥0
. Finally, using Theorem 10.2, we know

that for any positive real t0:

d

dt |t=t0
RS [Xt] = RS[G]⊞RS [Xt0 ] .

Yet, using Theorem 10.18, Lemma 10.11 and Equation (24), we see that (R(µt))t≥0
satisfies the same differential equation with same initial conditions. Thus, for any t ≥ 0,
RS[Xt] = R(µt). Which is equivalent to the fact thatMS[Xt] = M(µt). If one considers
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the evaluation of this equality to the cycles (1, ..., k) with k being any positive integer,
one gets that for any t ≥ 0 and any k ∈ N:

lim
N→∞

E

[

1

N
Tr
(

(

XN
t

)k
)

]

−→
N→∞

∫

R

zkdµt.

It remains to prove that the normalized P-moments of (XN
t )t≥0 converges in probability

when N goes to infinity to the limit of their expectation. Since for any non-negative real
t and any positive integer N the random matrixXN

t is Hermitian, the P-convergence and
the asymptotic P-factorization of (XN

t )t≥0 implies the P-convergence and the asymptotic

P-factorization of (XN
t )t≥0∪

((

XN
t

)∗)
t≥0

. Using Theorem 2.2, we get that the normalized

P-moments of (XN
t )t≥0 converges in probability when N goes to infinity to the limit of

their expectation.

10.4.4. Convergence in sN . —

Theorem 10.25. — Let (η, a, ρ) be the characteristic triplet of µ, a free additive multi-
plicative infinitely divisible measure on R. Let (µt)t≥0 be the one-parameter semi-group
for the free additive convolution associated with µ. Let us suppose that the measure ρ
has a compact support. Let us define for any integer N :

aN = aIdN(N+1)
2

,

ρN (f) = N

∫

R

∫

O(N)
f











g











x 0 · · · 0

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0











tg











dgdρ(x).

For any positive integer N , let (XN
t )t≥0 be a Levy process on h(N,R) with characteristic

triplet
(

ηIN , aN , ρN
)

. The process (XN
t )t≥0 converges in expectation in P-moments as

N goes to infinity. The family
(

(XN
t )N∈N

)

t≥0
is a matricial P-non-commutative additive

Levy process and the asymptotic P-factorization property holds for
(

(XN
t )N∈N

)

t≥0
: this

implies that as N goes to infinity, the normalized P-moments of
(

XN
t

)

t≥0
converge in

probability to the limit of their expectation. Besides, for any t ≥ 0 and any k ∈ N,

lim
N→∞

E

[

1

N
Tr
(

(

XN
t

)k
)

]

−→
N→∞

∫

R

zkdµt.

Proof. — The proof is similar to the proof of Theorem 10.24. Let us show that for any
positive integer k,

(

GN
k =

d

dt |t=0
E

[

(XN
t )⊗k

]

)

N∈N

converges in B-moments. Yet, using Theorem 10.8 or Proposition 2.2, it is enough to
show that for any positive integer k GN

k converges in S-moments as N goes to infinity.
As for the proof of Theorem 10.24:
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– if k = 1:

d

dt t=0
E
[

XN
t

]

= ηIN ,

– if k = 2:

d

dt t=0
E

[

(

XN
t

)⊗2
]

=
a

2
CsN +

∫

sN

g⊗2ρN (dg),

– if k ≥ 3:

d

dt t=0
E

[

(

XN
t

)⊗k
]

=

∫

sN

g⊗kρN (dg).

We have already handled the convergence of ηIN and a
2CsN in Section 10.3. It remains

to show that for any k ≥ 2,
(

∫

sN
g⊗kρN (dg)

)

N∈N
converges in S-moments. But this

calculation has already been made in the proof of Theorem 10.24.
By Theorem 10.8 and 10.1, the process (XN

t )t≥0 converges in P-expectation as N
goes to infinity. The family

(

(XN
t )N∈N

)

t≥0
is a matricial P-non-commutative additive

Levy process.

Besides, for any positive integer k, for any σ ∈ Sk, the limit ofmσ

(

d
dt |t=0

E
[

(XN
t )⊗k

]

)

are equal in the Hermitian and symmetric case. Using Theorem 10.8,
(

(XN
t )N∈N

)

t≥0
has the same S-law as the matricial P-non-commutative additive Levy process defined
in the proof of Theorem 10.24. This proves that for any t ≥ 0 and any k ∈ N,

lim
N→∞

E

[

1

N
Tr
(

(

XN
t

)k
)

]

−→
N→∞

∫

R

zkdµt.

Moreover, since the asymptotic S-factorization holds in the Hermitian case, the
asymptotic S-factorization property holds for (XN

t )N∈N for any t ≥ 0. But for any
positive real t, for any positive integer N , XN

t is symmetric: using a similar argument
as for Proposition 2.2, the asymptotic B-factorization property holds for (XN

t )N∈N. By
Proposition 4.5, it satisfies also the asymptotic P-factorization property, and using the
fact that the increments are independent and G-invariant, we get that the asymptotic
P-factorization property holds for

(

(XN
t )N∈N

)

t≥0
. An application of Theorem 2.2 allows

to state that the normalized P-moments of
(

XN
t

)

t≥0
converge in probability to the limit

of their expectation as N goes to infinity.

10.4.5. Convergence in U(N). — Let us introduce the model of G. Cébron explained
in [10].

Theorem 10.26. — Let (ω, b, ν) be the characteristic triplet associated with µ, a
free multiplicative infinitely divisible measure on the circle U. Let (µt)t≥0 be the one-
parameter semi-group for the free multiplicative convolution associated with µ. Let us
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define:

bN = bIdN2 ,

νN (f) = N

∫

U

∫

U(N)
f











g











ζ 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1











g∗











dgdν(ζ).

For any positive integer N , let (Y N
t )t≥0 be a Levy process with characteristic triplet

(iarg(ω)IN , bN , νN ). The process (Y N
t )t≥0 converges in expectation in P-moments as N

goes to infinity.The family
(

(Y N
t )N∈N

)

t≥0
is a matricial P-non-commutative multiplica-

tive Levy process. Besides the asymptotic P-factorization property holds for the family
(

(Y N
t )N∈N

)

t≥0
. For any t ≥ 0 and any k ∈ N,

lim
N→∞

E

[

1

N
Tr
(

(

Y N
t

)k
)

]

−→
N→∞

∫

U

zkdµt.

Proof. — The proof follows exactly the one of Theorem 10.24. For any positive
integer N , let (Y N

t )t≥0 be a U(N)-valued Levy process with characteristic triplet
(iarg(ω)IN , bN , νN ). Using the last assertion of Theorem 10.17, for any positive integer
N , (Y N

t )t≥0 is a Levy process invariant by conjugation by U(N). We compute the
action of the generator at time t = 0 on the application U 7→ U⊗k. This computation
follows the work of Cébron in Propositions 5.2 and 5.3 of [10]. Applying Theorem 10.17,
for any positive integer k:

GN
k =

d

dt |t=0
E

[

(

Y N
t

)⊗k
]

= kiarg(w)Id⊗k +
b

2
kcgId

⊗k +
1

2

k
∑

i,j=1

I{i,j}(Cg1(N,K), Id
⊗k−2)

+

∫

U(N)

(

M⊗k − Id⊗k −
k
∑

i=1

I{i}(iℑ(M), Id⊗k−1)

)

νN (dM).

Using in the last term the fact that:

M⊗k=(M − Id+ Id)⊗k = Id⊗k +

k
∑

m=1

∑

1≤i1<i2<...<im≤k

I{i1,...,im}
[

(M − Id)⊗m, Id⊗k−m
]
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and the fact that M − Id− iℑ(M) = ℜ(M)− Id, one gets:

d

dt |t=0
E

[

(

Y N
t

)⊗k
]

= kiarg(w)Id⊗k +

k
∑

i=1

I{i}
[

∫

U(N)
(ℜ(M)− Id)νN (dM), Id⊗k−1

]

+
b

2
kcgId

⊗k +
b

2

k
∑

i,j=1

I{i,j}(Cg1(N,K), Id
⊗k−2)

+
∑

2<m≤l

∑

1≤i1<...<im≤k

I{i1,...,im}

[

∫

U(N)
(M − Id)⊗mνN (dM), Id⊗k−m

]

,

result obtained in [10], Proposition 5.3. The proof now differs from the one of C. Cébron.

We want to understand the limit of d
dt |t=0

E

[

(

Y N
t

)⊗k
]

when N tends to infinity. Using

our work on the Brownian motion and on the Casimir element, it remains to understand
the limit of the S-cumulants or of the S-moments of:

(

AN =

k
∑

i=1

I{i}
[

∫

U(N)
(ℜ(M)− Id)νN (dM), Id⊗k−1

])

N∈N
and of

(

BN = I{i1,...,im}

[

∫

U(N)
(M − Id)⊗mνN (dM), Id⊗k−m

])

N∈N
for any m ∈ {2, ..., k} and for any 1 ≤ i1 < ... < im ≤ k.

It is easier to work with the S-moments. Let σ be in Sk, for any positive integer N :

mσ(AN ) = k

∫

U

(ℜ(ζ)− 1)dν(ζ).

Using the cumulant-moment equation:

lim
N→∞

κσ(AN ) =

(

k

∫

U

(ℜ(ζ)− 1)dν(ζ)

)

11σ=idk ,

or, written in a different way:

lim
N→∞

(

Mk
N

)−1
(AN ) =

(

k

∫

U

(ℜ(ζ)− 1)dν(ζ)

)

idk,

where we recall that Mk
N is the application defined in Definition 5.1 of [15].

Let m be a positive integer. Let us understand the sequence (BN )N∈N. For this, it is
enough to understand the sequence:

(

B̃N =

∫

U(N)
(M − Id)⊗mνN (dM)

)

N∈N
For any σ ∈ Sm:

mσ

(

B̃N

)

=
N

Nnc(σ∨id)

∫

U

(ζ − 1)mdν(ζ).
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Thus, as N goes to infinity, for any σ ∈ Sk:

mσ

(

B̃N

)

−→
N→∞

δσ∈[(1,...,m)]Sm

∫

U

(ζ − 1)mdν(ζ),

where we recall that [(1, ...,m)]Sm
is the conjugacy class in Sm of the cycle (1, ...,m).

We can compute the limit of the coordinate numbers of B̃N using Theorem 4.1 in the
article [15]:

κσ
(

B̃N

)

−→
N→∞

δσ∈[(1,...,m)]Sm

∫

U

(ζ − 1)mdν(ζ).

Hence:

lim
N→∞

(

Mk
N

)−1
(B̃N ) =

∑

σ∈[(1,...,m)]Sm

(∫

U

(ζ − 1)mdν(ζ)

)

σ.

Using all the results we just had, we can conclude that

(

Mk
N

)−1
[

d

dt |t=0
E

[

(

Y N
t

)⊗k
]

]

converges as N goes to infinity and its limit is equal to:

(29) k

(

iarg(ω)− b

2
+

∫

U

(ℜ(ζ)− 1)dν(ζ)

)

Idk − b
∑

1≤i<j≤k

(i, j)

+
∑

2<m≤k

∑

c∈Cm

(∫

U

(ζ − 1)mdν(ζ)

)

c,

where Cm is the set of permutations in Sk which have only one non-trivial cycle which
is of length m.

By Theorem 10.1, the process
(

Y N
t

)

t≥0
converges in P-expectation as N goes to infin-

ity. Besides the family
(

(Y N
t )N∈N

)

t≥0
is a matricial P-non-commutative additive Levy

process. Using the calculations we just did and using Theorem 10.3, since any c ∈ Cm
is weakly irreducible, the asymptotic P-factorization property holds for

(

(Y N
t )N∈N

)

t≥0
.

Finally, using Theorem 10.2, we know that for any positive real t0:

d

dt |t=t0
RS [Yt] = RS[G]⊠RS [Xt0 ] .

Yet, using Theorem 10.19 and Equation (25), we see that (R(µt))t≥0 satisfies the same

differential equation with same initial conditions. Thus, for any t ≥ 0, RS[Xt] = R(µt).
Which is equivalent to the fact that MS[Xt] = M(µt). If one considers the evaluation
of this equality on the cycles (1, ..., k) with k being any positive integer, one gets that
for any t ≥ 0 and any k ∈ N:

lim
N→∞

E

[

1

N
Tr
(

(

Y N
t

)k
)

]

−→
N→∞

∫

U

zkdµt.

This concludes the proof.
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In the theorem we just proved, we only proved the P-asymptotic factorization for
(Y N

t )t≥0, yet it would be interesting to have the convergence in P-expectation and the

asymptotic P-asymptotic factorization of
(

Y N
t ,
(

Y N
t

)∗)
t≥0

as N goes to infinity. Indeed,

this would allow to improve the convergence in expectation of the normalized moments
into a convergence in probability. In [10], G. Cébron used some concentration of measure
arguments in order to prove the almost sure convergence of the empirical measure. The
goal of the following discussion is to show that actually, in our setting, no more work as
to be done in order to get the weaker result of convergence in probability.

Let k and k′ be two positive integers. In order to prove that the normalized P-
moments of

(

Y N
t

)

t≥0
converge in probability to the limit of their expectation, we need

to understand
(

Y N
t ,
(

Y N
t

)∗)
t≥0

. Yet it is easier to understand
(

Y N
t , Y N

t

)

t≥0
since

E

[

(Y N
t )⊗k ⊗ (Y N

t )⊗k′
]

is a semi-group. Let us define:

Gk,k′ =
d

dt |t=0
E

[

(Y N
t )⊗k ⊗ (Y N

t )⊗k′
]

.

Using Theorem 10.17, we can compute Gk,k′ and we can see that it is composed of
three parts: a drift and Brownian parts which were already studied in Section 10.3, and
a third part which remains to be understood:

∫

U(N,C)

(

M⊗k ⊗M
⊗k′ − Id⊗k+k′ −

k
∑

i=1

I{i}(iℑ(M), Id⊗k+k′−1)

+
k+k′
∑

i=k+1

I(i)(itℑ(M), Id⊗k+k′−1)

)

νN (dM),

where we used the fact that iℑ(M) = −t(iℑ(M)). Using the same argument as the one

in the proof of Theorem 10.26, we know that M⊗k ⊗M
⊗k′ − Id⊗k+k′ is equal to:

k,k′
∑

m=1,l=1

∑

1≤i1<...<im≤k<j1≤...≤jl≤k+k′

I{i1,...,im,j1,...,jl}

[

(M − Id)⊗m ⊗ (M − Id)⊗l, Id⊗k+k′−m−l
]

.

Let us remark also that M + t(iℑ(M)) = tℜ(M). As for the proof of Theorem 10.26, it
remains to understand the limit of the B-moments or of the B-cumulants of:

∫

U(N,C)
(ℜ(M)− Id)νN (dM),

∫

U(N,C)
(tℜ(M)− Id)νN (dM),

∫

U(N,C)
(M − Id)⊗m ⊗

(

M − Id
)⊗l

νN (dM),

for any (m, l) ∈ {1, ..., k}×{1, ..., k′}. The two first sequences are easy to understand, only
the last sequence is interesting, let (m, l) in {1, ..., k} × {1, ..., k′} and let us understand:

(

CN =

∫

U(N,C)
(M − Id)⊗m ⊗

(

M − Id
)⊗l

νN (dM)

)

N∈N
.
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For any positive integer N , CN commutes with the tensor action of O(N): this is an
element of C[Bm+l(N)]. Let us recall the operation Sm defined in Definition 2.5. The
element Sm(CN ) is equal to:

∫

U(N)
(M − Id)⊗m ⊗ (M∗ − Id)⊗lνN (dM)

which commutes with the tensor action of U(N): it is an element of C[Sm+l(N)], and the
convergence in S-moments of Sm(CN ) implies the convergence in C[Bm+l(N)]-moments
of (CN )N∈N. Yet, for any σ ∈ Sm+l:

lim
N→∞

mσ(Sm(CN )) = δ[(1,...,m+l)]Sm+l
(σ)

∫

U

(ζ − 1)m(ζ − 1)ldν(ζ).

where we remind that [(1, ...,m + l)]Sm+l
is the conjugacy class in Sm+l of the (m+ l)-

cycle (1, ...,m+ l). Using the cumulant-moment relation, we get that for any σ ∈ Sm+l:

lim
N→∞

κσ(Sm(CN )) = δ[(1,...,m+l)]Sm+l
(σ)

∫

U

(ζ − 1)m(ζ − 1)ldν(ζ),

Hence:

lim
N→∞

(

Mm+l
N

)−1
(CN ) =

∑

σ∈[(1,...,m+l)]Sm+l

(∫

U

(ζ − 1)m(ζ − 1)ldν(ζ)

)

Sm(σ).

At the end, we get that (GN
k,k′)N∈N, seen as an element of

∏

N∈NC[Bk+k′(N)] converges

as N goes to infinity, and (GN
k,k′)k,k′,N∈N weakly condensates.

Using Theorem 10.4 and 10.5, this implies that the family
(

Y N
t , (Y N

t )∗
)

t≥0
converges

in P-expectation as N goes to infinity and the P-asymptotic factorization property holds
for this family. In particular for any positive integer m, any m-tuple t1, ..., tm of non
negative reals, for any m-tuple (k1, ..., km) ∈ Zm:

lim
N→∞

E

[

m
∏

i=1

1

N
Tr
(

(Y N
ti )

ki
)

]

=

m
∏

i=1

∫

U

zkidµt.

Besides, this shows that for any positive integer k, any k-tuple t1, ..., tk of non negative

reals, for any k-tuple (l1, ..., lk) ∈ Zk and any p ∈ Pk, mp

(

⊗k
i=1

(

Y N
ti

)li
)

converges in

probability as N goes to infinity. This discussion allows to state the following theorem.

Theorem 10.27. — For any positive integer N , let
(

Y N
t

)

t≥0
be the Levy process defined

in Theorem 10.26. As N goes to infinity, the family
(

(

Y N
t

)

t≥0
,
(

(Y N
t )∗

)

t≥0

)

converges

in expectation in P-moments and satisfies the P-factorization property.

In particular the family
(

(

Y N
t

)

t≥0
,
(

(Y N
t )∗

)

t≥0

)

converges in probability in P-

moments. This means that for any p ∈ P, for any positive integer k, for any k-tuple

(M1, ...,Mk) of elements of A
((

(

Y N
t

)

t≥0
,
(

(Y N
t )∗

)

t≥0

))

,

mp

(

MN
1 ⊗ ...⊗MN

k

)

converges in probability as N goes to infinity.
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10.4.6. Convergence in O(N). —

Theorem 10.28. — Let µ be a free multiplicative infinitely divisible measure on the
circle U. Let (ω, b, ν) be the characteristic triplet of µ. Let (µt)t≥0 be the one-parameter
semi-group for the free multiplicative convolution associated with µ. Let us suppose that
ν is even according to the conjugation and that ω is equal to 1. Let us define:

bN = bIdN(N−1)
2

,

νN (f) = N

∫

[−π,π]

∫

O(N)
f















g















cosθ −sinθ 0 · · · 0
sinθ cosθ 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1















tg















dgdν(θ),

where in the last equality, we considered ν as a measure on [−π, π] instead of a measure
on U.

For any positive integer N , let (Y N
t )t≥0 be a Levy process in O(N) with character-

istic triplet (0, bN , νN ). The process (Y N
t )t≥0 converges in expectation in P-moments

as N goes to infinity and the family
(

(Y N
t )N∈N

)

t≥0
is a matricial P-non-commutative

multiplicative Levy process.
Besides, the asymptotic P-factorization property holds for

(

(Y N
t )N∈N

)

t≥0
: this implies

that the normalized P-moments of
(

Y N
t

)

t≥0
converge in probability to the limit of their

expectation as N goes to infinity. Moreover for any t ≥ 0 and any k ∈ N,

lim
N→∞

1

N
E

[

1

N
Tr
(

(

Y N
t

)k
)

]

−→
N→∞

∫

U

zkdµt.

Proof. — The proof is the same as the proof of Theorem 10.26 and uses the same
arguments as for Theorem 10.25.
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[24] T. Lévy. Schur–Weyl duality and the heat kernel measure on the unitary group. Advances
in Mathematics, 218, no. 2:537–575, 2008.
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