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Abstract

In this paper, we propose a numerical strategy to define a multiscale analysis for color and
multicomponent images based on the representation of data on a graph. Our approach consists in
computing the graph of an image using the psychovisual information and analysing it by using the
spectral graph wavelet transform. We suggest introducing color dimension into the computation of
the weights of the graph and using the geodesic distance as a mean of distance measurement. We
thus have defined a wavelet transform based on a graph with perceptual information by using the
CIELab color distance.

This new representation is illustrated with denoising and inpainting applications. Overall, by
introducing psychovisual information in the graph computation for the graph wavelet transform we
obtain very promising results. Therefore results in image restoration highlight the interest of the
appropriate use of color information.

Address all correspondence to: David Helbert, E-mail: david.helbert@univ-poitiers.fr

1 Introduction

The use of the multiscale analysis transform in the field of image processing efficiently analyses the
visual information of an image allowing the localization of the information in the time and frequency
domains. The classical schemes of the wavelet decomposition are not specially defined for a color
image and they are usually marginalized: it consists in applying the transform to each component
separately. But that could lead to undesirable effects on the color. We can still find in the literature
several frameworks that propose multiscale vectorial techniques. For example in our team we have
developed an approach that uses the analytic wavelet which is principally based on the principle of the
monogenic signal [1]. This allows the non-marginalized processing of color and provides an analysis of
the separate orientations of the information but this representation is based on the signal principle.

Recently many fundamental based-graph tools in the field of signal processing have emerged and
have allowed to extend the classical multiscale transform to an irregular domain [2], [3]. In [4] the
diffusion wavelets are based on the definition of the diffusion operator and the localization at each scale
depends on the dyadic powers of this operator. The graph wavelet transform proposed by Crovella and
Kolaczyk in [5] is an example of the design in the vertex domain, when the construction of the wavelet
function ψj,n is designed using the geodesic distance and is localized according to the source n and the
scale j. In [6] Narang and Ortega proposed a local two channel critically sampled filter bank on graphs
that requires the combination of different processing blocks such as upsampling on graphs (select of
vertex and graph reduction) [7] and filtering. For this, the authors introduced the technique of graph
partition based on the max cut on the graph and the k-RGBs as a graph reduction method. In order
to ensure the recovery, they proposed in [8] a perfect reconstruction of the two channel wavelet filter
banks. So they take advantages of the properties of the bipartite graphs to define the low pass and
high pass filters. They also need to decompose the original graph into a series of bipartite subgraphs.
In [9] Shuman et al extend the Laplacian pyramid transform on the graph domain. For this, they
suggest a general way to select vertices based on the polarity of the largest eigenvector, then they use
the Kron reduction technique [10] followed by the step of sparsification graph [11]. That provides a
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perfect reconstruction transform but the dimension of the output is different than the input signal.
None of these methods takes into account the perceptual information in the based-graph wavelet
decomposition.

In [12] the Spectral Graph Wavelet Transform (SGWT) is based on the representation of the
wavelet coefficients in the spectral domain. It turns out that it is more flexible and technically easier
to implement. Furthermore, graph construction is a significant milestone for the application of this
transform.

In our work, we focus on the properties of the SGWT to define an approach for color analysis. In
practice, it is increasingly necessary to adapt strategies with human vision and it is thus becoming
desirable to take into consideration the psychovisual system in the design of the multi-scale analysis
tools. The idea is to use the geodesic distance to compute the weight of pairwise pixels. This principle
helps highlight the perceptual properties through the implementation of the ∆E2k color difference[13,
14, 15]. To the best of our knowledge, it is the first suggestion of a wavelet transform based on
perceptual graphs.

In this paper, we review a few methods to construct graphs from image data and we give an
overview of the spectral graph theory and the main characteristics of the SGWT. We then suggest a
color representation by inserting the color dimension into the measured distance, and more generally
we consider the possibility of a psychovisual representation by the insertion of the ∆E2k color difference
in the graph computation. To interpret the influence of the structure of the graph on the wavelet scale
coefficients, we propose a general way to understand the behavior of the decomposition using the
notion of quadratic form. We use the highlight of the color perceptual features associated with this
new representation through the application of image denoising and we develop a method of inpainting
on a graph from the wavelet coefficients.

In section 2 we recall some elements of the weighted graph and spectral graph theory. In section
3 we develop our method by inserting the color dimension into the distance measured and finally in
section 4 we develop a color image denoising method and an inpainting strategy.

2 Preliminary Notations and Definitions

This section provides the notations and the definition of a graph used throughout the paper, we also
present how one can represent discrete data defined on regular or irregular domains with a weighted
graph. To begin with, we will review some concepts that are introduced or presented for example in
[16, 17, 12].

2.1 Definition of a graph

Any discrete domain can be represented by a weighted graph. We note G = (V,E,w) a loopless,
undirected and weighted graph where V is a finite set comprised of elements called vertices and E is a
subset of edges V ×V . An edge (n,m) ∈ E connects two neighbor vertices n and m. The neighborhood
of a vertex n is noted:

N (n) = {m ∈ V \{n} : (m,n) ∈ E} . (1)

The weight wmn of an edge (m,n) can be defined with a function w : V × V −→ R+ such that
w(m,n) = wmn if (m,n) ∈ E and w(m,n) = 0 otherwise.

Let µmn be a distance computed between the vertices m and n. In practice, it is difficult to establish
a general rule to define this distance. The methods used are essentially based on local and non-local
comparisons of features (see more details in [18]). Obviously, the weight function is represented by a
decreasing function as follows:

w(m,n) = exp(
−µ2mn
σ2

), σ > 0, (2)

where σ is the parameter that adjusts the influence on the pixel’s neighborhood in the distance
computation: the weight w(m,n) of edge (m,n) increases when σ increases.
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See more examples of weight functions in [19].
We note A the weighted adjacency matrix of size N ×N with N the total number of vertices:

Am,n =

{
w(m,n) if (m,n) ∈ E
0 otherwise.

(3)

The degree δm of a vertex m is defined as the sum of the weights of all the adjacent vertices to m
in the graph:

δm =
∑
n6=m

Am,n. (4)

The degree matrix D is the diagonal matrix of the degrees δm of G.
One of the issues encountered when dealing with the graph is the graph construction. There are

two steps to build the graph, the first one consists in the definition of the graph topology which
focuses primarily on the link between all regions. Then, in the second step the weights are computed
to measure the similarities between these regions, as discussed below.

Depending on the structure of the data, there are different ways to construct the graph. The
constructed graph has to be adapted to represent the discrete domain of the data but there is no
general rule of data representation and that basically depends on the application [20]. Indeed, in the
case of an irregular domain, one can use the v-neighborhood graph noted Gv [21] [22]. Its principle is
based on the notion of neighborhoods of a vertex n that determine the set of vertices Nv(µ) whenever
the distance µ is lower than or equals the threshold parameter v. The distance µ helps measure
the similarities between the features vectors associated with the pixels. The simplest distance is the
Euclidean distance noted ED.

In the case of a regular domain, the spatial organization of data is well-known, thus appropriate
measurements are used in order to design a regular mesh such as the infinity norm and the unitary
norm. An alternative approach used in image processing consists in representing data structure in
the shape of regions which are represented thereafter by a Region Adjacency Graph (see examples
of partitions in [23, 24, 25]). In our approach we work directly on the pixels and to analyze the
constructed graph we propose to work in the spectral graph domain. In the following we give some
definition and notation of the spectral graph theory.

2.2 The spectral graph theory

In this section, we recall some basic definitions of the spectral graph theory [16, 17], and we also
provide some details about the Spectral Graph Wavelet Transform (SGWT) [12].

Here, we consider an undirected weighted graph G with N vertices. We can associate a vector in
RN on any scalar valued function f defined on the vertices of the graph. In the case of a color image,
this vector is the three components of the image.

2.2.1 The based-graph Fourier transform

This amounts to adapting the Fourier transform for the graph domain. Let G = (E, V,w) be a
weighted graph, the non-normalized Laplacian graph L is:

L = D−A, (5)

where A and D denote respectively the adjacency matrix and the degree matrix computed according
to equations 3 and 4.

Thanks to the spectral analysis, it is established that the Fourier basis is associated with the
eigenvectors of the Laplacian operator. By analogy, the eigenvectors of L noted by χl with l =
0, · · · , N − 1 constitute an orthonormal basis for the graph spectral domain:

Lχl = λlχl, (6)

with {(λl, χl)}l=0,1,...,N−1 the eigenvalue and eigenvector pairs of the graph Laplacian L.
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Let f ∈ RN be a based-graph signal. Consequently, the based-graph Fourier transform is defined
by:

f̂(l) = 〈χl, f〉 =

N∑
n=1

χ∗l (n)f(n), (7)

with N the number of vertices. We can also use a vector expression:

f̂ = XT f, (8)

where X is the matrix whose columns are equal to the eigenvectors of the Laplacian graph L and XT

the transpose of a matrix X.
The construction of the elements of the basis of spectral graph domain from the eigenvalues and

the eigenvectors therefore leads to the definition of the wavelet transform on graphs[12].

2.2.2 The spectral graph wavelet transform

The SGWT is an approach of a multiscale graph-based analysis which is defined in the spectral
domain [12]. The scale notion for the graph domain is defined by analogy with the representation of
the classical wavelet transform in the spectral domain.

The graph wavelet operator at a given scale t is defined by T tg = g(tL) with g(x) stands for the
wavelet kernel which is considered as a band pass function: g(0) = 0, limx→∞ g(x) = 0. The wavelet
coefficient Wf at the scale t has the following expression[12]:

Wf (t, n) = T tg(f)(n) = (g(tL)f) (n) (9)

=
∑
l

g(tλl)f̂(l)χl(n), (10)

whereas the scaling function coefficient Sf is given by:

Sf (n) = (h(L)f) (n) =
∑
l

h(λl)f̂(l)χl(n), (11)

where h(x) represents a low pass function satisfying h(0) > 0, and h(x)→ 0 as x→∞.
The wavelet and the scaling kernels have to satisfy some conditions [12]. In order to simplify the

calculations, we chose to implement the cubic spline kernel. To facilitate the use of this transform,
the Chebyshev polynomial approximation is suggested by the authors [12]. One can notice that this
transform is invertible.

This transform provides a general framework for adapting the data representation. Indeed one may
observe that one of the central elements of the construction of this representation will be of course
the graph and more specifically the structure that is associated with the input data. This transform
is also well suited for introducing psychovisual information.

We will now introduce our strategy for graph construction. The objective is to build a graph with
a model organized in such a way as to measure the color similarities.

3 Graph construction from the color image

In this section we develop an adaptive approach where the study is not restricted to spatial coordinates.
The idea is to be able to compute the distances between a pairwise of vertices which can be used to
further characterize the color structure. In low-dimensional embedding, the geodesic distance has
proven its efficiency to estimate the intrinsic geometry of the data manifold used for example in
nonlinear data analysis (Isomap technique [26]). Traditionally geodesics are defined through a parallel
transport of a tangent vector in a linear connection. This distance is adequate for our definition in
order to model the topological structure of the data rather well. In the next section, we note (xm, ym)
the embedding of the graph G of the image on 2-dimensional Euclidean space with m the vertex,
(Rm, Gm, Bm) the embedding on 3-color Red-Blue-Green space and (L∗m, a

∗
m, b

∗
m) the embedding on

CIELAB space.
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3.1 Graph connection

The computation of the geodesic distance is estimated by applying an Isomap strategy [26] which con-
sists in finding first the k-Nearest Neighbors (k-NN) for each pixel having the coordinates (x, y, r, g, b).
In order to find the shortest paths between two vertices and thus two color pixels we used the Dijkstra
algorithm[27]. The goal is to find the shortest path from the source vertex to the other vertices in the
graph.

To properly identify the geodesic distances the choice of the number of the k-Nearest Neighbors
must not be too high [28]. Indeed some abnormal neighborhood edges deviate from the underlying
manifold (short circuit effect). Moreover this value should be as low as possible in order to minimize
the calculation time. Ideally, we should compute all possible cases of the geodesic distance but for
larger data, this requires significant computing and memory capacity. To achieve this, we consider
only a small percentage of the totality of the structure.

The weighted graph defined by equation (2) is thus obtained by applying the function, with σ > 0
and the geodesic distance ρmn between vertices m and n is defined as follows:

ρmn = dmi + dij + · · ·+ dkn, (12)

with m → i, i → j · · · k → n the shortest path connecting two vertices according dij the path
distance connecting two vertices. The choice of distance is discussed in 3.2 and 3.3.

The weight function attempts to measure the difference between vertices and provides a clear link
with the graph connection and the smoothness of the signal on the graph. If we choose an important
value of σ this leads to add more edges to the graph and also increases the total variation because two
different values of the signal on the graph will probably be connected as discussed below.

We now wish to discuss how our proposed framework can yield a graph wavelet for a color image by
inserting a color dimension into the measured distance. Two approaches are put forward: in the first
we are interested in simply representing the data in the classical Red Green Blue (RGB) color space,
in the second we have used the CIELab space which can bring a visual aspect to the analysis. With
this approach, we are interested in highlighting the visual characteristics in order to have a relevant
representation of the color data through a weighted graph. Such a strategy allows us to enhance the
link between two similar colors and to clearly indicate the ruptures of the color regions.

3.2 Euclidean distance on RGB color space

We denote ∆Emnd the Euclidian color distance between a pair of color values in RGB space (R∗m, G
∗
m, B

∗
m)

and (R∗n, G
∗
n, B

∗
n) of both vertices m and n. The k-NN distance between two vertices m and n is also

defined by:

d2mn = (xm − xn)2 + (ym − yn)2 + (∆Emnd )2 . (13)

Equation (2) is then used to compute the weights of the edges. This way of building the graph
allows us to consider all the color components of the image. Transforms are applied on each color
component which is represented as a signal on the graph. In figures 1 and 2 we show an example of
the application on a color image using two different values of σ (σ1 = 5, σ2 = 30), the scale number
J is set to 3. The approximation result in figure 2 with a high σ has more homogeneous areas than
the approximation result in figure 1 and also more details in the scales. It is to be noted that the
choice of σ remains empirical. We indicate on these figures a value qτ , the mean of quadratic form
of wavelet coefficient on each scale τ for each color component and a value q, the mean of quadratic
form of wavelet coefficient for each color component. It should be noted that the quadratic form is
introduced in the following paragraph.

Now we propose a model of the behavior of the information in the SGWT basis. Parameter σ has
some influence on the analysis revolving around two main observations:

• the nature of details does not decrease according to the wavelet scale;

• when σ increases more information is contained in higher frequency bands.
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To clarify these issues, we focused on the distribution of the energy through the wavelet scale
coefficients. Possibly the simplest way to measure this energy is to rely on the notion of the global
smoothness by measuring the Laplacian quadratic form q.

Figure 1: SGWT on image 4(a) using the ED, J = 3, σ = 5, q = 366.6: (a) approximation (q0 = 339),
(b) scale 1 (q1 = 191), (c) scale 2 (q2 = 187) and (d) scale 3 (q3 = 30).

Figure 2: SGWT on image 4(a) using the ED, J = 3, σ = 5, q = 6821.2: (a) approximation
(q0 = 6034), (b) scale 1 (q1 = 3199), (c) scale 2 (q2 = 3931) and (d) scale 3 (q3 = 601).

The quadratic form is defined as follows [29] [30]:

q =
√
fTLf, (14)

where f is the signal on the graph. The quadratic form is small when f is similar at the two extremes
of the edge with a high weight [31].

Usually, the energy of information of the classical wavelet transform increases with the scale.
Consequently the quadratic form increases also with the scale.
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Proposition 1 The quadratic form of a given signal on a graph f can be written as follows:

q =

√√√√N−1∑
l=0

(f̂(l)
√
λl)2. (15)

Proof Let us consider the expression of the quadratic form shown in (14). L is defined as follows:

L = XΛXT , (16)

where Λ = diag(λ0, λ1, λ2, · · · , λN−1) is the matrix of eigenvalues of L, substituting (16) in (14):

q2 = fTXΛXT f, (17)

q2 = (XT f)TΛ(XT f). (18)

According to equation (8) we have:

q2 = f̂TΛf̂ =

N∑
l=1

(f̂(l)
√
λl)

2. (19)

Writing the quadratic form in the spectral domain is a good representation of the variation of the
signal on the graph, hence the quadratic form has a significant value when the based-graph Fourier
transform coefficients on the high frequencies are high.

Let pτ be the wavelet kernel at the scale τ with p0 the scaling function kernel. The based-graph
Fourier transform of the wavelet coefficients at each scale is written:

f̂τ (l) = pτ (l)f̂(l), (20)

with f the original signal on the graph. According to proposition 1, the quadratic form of the wavelet
coefficients at each scale τ is:

q2τ =
N∑
l=1

p2τ (λl)f̂
2(l)λl. (21)

The localization of the information follows equation (21) defined in the spectral domain.

Figure 3: Flowchart of a wavelet decomposition on graph of a color image.

A color image is decomposed in 3 scales using the numerical scheme in figure 3. In figure 1 one
can observe clearly more details at scale 1 then scale 2 and in figure 2 one can see clearly more details
at scale 2 then scale 1.

This is verified by comparing their quadratic form values (q equals the average of the quadratic
form of all color components) as presented in figures 1 and 2.
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As explained before, σ involves modifications in adjacencies in the graph structure. In particular,
that has a considerable impact on the variation of the information content. This phenomenon is
measured in our framework by the quadratic form which increases with the number of connections
in the weighted graph. This involves more localization of the energy of the signal f in the higher
frequencies (see more details in [31]) as one can see in figure 2.

One can observe that the SGWT extracts various high level information or details to solve a
specific problem. For example, in the case of image denoising application, the choice of σ and the
color distance is adapted to obtain a significant separation of noise as will be see in section 4.

We now explore the specifications of the graph construction through the geodesic distance to
introduce a psychovisual conception in the graph wavelet.

3.3 The ∆E2k difference

The use of the visual features is becoming increasingly widespread in the field of image processing.
Several metrics developed to assess the perceptual qualities of color images falls within this context.
The principle is thus based on the modeling of the human visual system. The CIELab color space
is considered as the most complete color space which describes all colors visible to the human eye.
This representation is created to serve as a device independent model used as a reference. The three
coordinates of CIELab represent the lightness of the color (L∗), the position between red and green
(a∗) and the position between yellow and blue (b∗).

Intuitively, the employment of these characteristics in the analysis of the data provides a good
localization of the specific means of the color which can be adapted to the human vision. The purpose
of this work is to introduce this aspect on the multi-scale analysis, therefore we compare the features of
a given pair of vertices by using the ∆E2k color difference. The ∆E2k difference allows us to measure
the difference between two colors modeled on the psychovisual system [32]. Moreover, a high ∆E2k

difference corresponds to an important colorimetric difference (see [13, 14, 15]).
This notion can be included into the transform through the computation of the geodesic distances of

the data represented in the CIELab space. This amounts to combining spatial and color comparisons.
As regard to the color difference, we opt for the ∆E2k difference.

We denote ∆E2k the color difference between a pair of color values in CIELab space (L∗m, a
∗
m, b

∗
m)

and (L∗n, a
∗
n, b
∗
n) of both pixels m and n as follows:

∆E2k(L
∗
m, a

∗
m, b

∗
m, L

∗
n, a
∗
n, b
∗
n) = ∆Emn2k , (22)

the k-NN distance between two pixels m and n is also defined by:

d2mn = (xm − xn)2 + (ym − yn)2 + (∆Emn2k )2 , (23)

We illustrate the decomposition based on the ∆E2k difference and by using the same parameters
as the previous section. For all of computations, ∆E2k differences are computed for an observer visu-
alizing images 47 cm away from a LCD monitor displaying 72 dots per inch (a standard configuration).
So a ∆E2k greater than 4 corresponds to a high perceptual difference and it is thus not necessary to
weight the perceptual difference and the spatial distance.

The influence of parameter σ is illustrated in both figures 5 (σ = 5) and 6 (σ = 30). Indeed when
σ increases, details shift to the high frequencies.

If we compare the difference with the classical Euclidean distance, at a fixed value of σ, the
computation of the distance measured in the CIELab space creates obviously more edges and enhances
the links between neighbors. The quality of the real color distance has direct impact on the increasing
quadratic form: the energy of the based-graph signal f is more concentrated on the higher frequencies.
From proposition 1, we deduce that the values of the coefficients of the based-graph Fourier transform
f̂(l) in the higher frequencies increase in relation to the weights and the number of edges. To illustrate
this point, we obtain a larger value of the quadratic form for color distance (figure 6, q = 20507), than
for Euclidean distance (figure 2, q = 6828.2).

Consequently, the change of the distance implies a transfer of details to the higher frequencies, as
one can see when comparing figures 2 and 6 (or figures 1 and 5 ). In figure 2 the scaling function
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coefficient has the higher quadratic form (q0 = 6034.4) while in figure 6 the higher quadratic form
corresponds to the wavelet coefficient on the scale 2 (q2 = 15499). This phenomenon is explained
in the equation 21: the ∆E2k difference causes an increase of the Fourier coefficients on the higher
frequencies, and this increase is controlled by the wavelet kernel at each scale noted (pτ (λ)).

To conclude, figure 5(a) highlights the importance of taking into account the human visual system.
Indeed color regions appear notably more contrasted than figures 1 and 2 and one can observe also
a good separation with sharper edges. In figure 6(a) the colored regions become more homogeneous
because of the effect of parameter σ.

Figure 4: Images for experimentations: (a) image 1, (b) image 2.

Figure 5: SGWT on image 4(a) using the ∆E2k distance, J = 3, σ = 5, q = 2661: (a) approximation
(q0 = 1888), (b) scale 1 (q1 = 1171), (c) scale 2 (q2 = 1706) and (d) scale 3 (q3 = 506).

3.4 Conservation of the data organization into the basis

So far, in order to illustrate the importance of the phase information in the Fourier transform, many
authors have proposed to mix the phase of a first image with the magnitude of the Fourier coefficients
of a second image. In this subsection, in order to illustrate how our scheme takes into account the
geometry of the data and captures singularities of the image, we suggest a similar operation. We will
construct the graph from a first image and compute the analysis with the SGWT on a second image.
In our example we use the image 4(a) to construct the graph, then the SGWT is applied on the image
4(b). Figures 7, 8 illustrate respectively the representation in the RGB and CIELab color space.

It is to be noted that the geometry is recovered into the scaling function coefficients. We set the
parameter of deviation σ at a large value in order to minimize the information content of image 4(b)
at the scaling function coefficients. Two observations can be made:
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Figure 6: SGWT on image 4(a) using the ∆E2k distance, J = 3, σ = 30, q = 10851: (a) approximation
(q0 = 1888), (b) scale 1 (q1 = 7440), (c) scale 2 (q2 = 15499) and (d) scale 3 (q3 = 3691).

• Figure 7(a) shows that the Euclidean distance is in better accord with textures (on the left)
because this distance designed in the RGB space recognizes well the data organization. In-
deed textures are characterized by energy measures: the perceptual approach is therefore not
appropriate.

• Figure 8(a) shows that the ∆E2k color difference conserves edges well and keeps more color
regions. We also see a preservation of the specular region on objects presented on the original
image 4(a).

Figure 7: SGWT with the graph constructed from image 4(a) and applied on image 4(b) using the
ED, J = 3, σ = 30: (a) approximation, (b) scale 1, (c) scale 2 and (d) scale 3.

The experiment above has shown the advantages of the implementation of perceptual features in
the analysis of the color data: the color information is well encoded into the wavelet basis.
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Figure 8: SGWT with the graph constructed from image 4(a) and applied on image 4(b) using the
∆E2k difference, J = 3, σ = 10: (a) approximation, (b) scale 1, (c) scale 2 and (d) scale 3.

4 Potential of this color transform for image restoration

Image denoising is one of the fundamental applications of the multiscale analysis. The representation
on a graph domain preserves the structure of the data and it ensures also the robustness of the
denoising process. We assess the performance of our approach with the two representations of the
color data.

To compare our proposed denoising methods in the same context (multiscale transform and thresh-
olding), we compute the classical denoising method based on an undecimated D8 Daubechies wavelet
transform (UWT) with three scales. We have used the undecimated Wavelet transform because this
decomposition obtains better denoising results than the classical orthogonal Wavelet thresholding and
the SWGT is also a redundant transform. The SGWT is computed with a cubic spline kernel as
specified in 2.2.2.

4.1 Comparison of image denoising methods

The denoising procedure by both wavelet transforms simply consists in thresholding the wavelet co-
efficients on each color component and computing the inverse transform. Hard thresholding[33] of a
wavelet coefficient Wf (t, n) is defined by:

T Hα (Wf (t, n)) = Wf (t, n)1(|Wf (t,n)|>α), (24)

with α the threshold. In our application, α is the empirical threshold defined as α = 3τ with variance
τ which is estimated using the absolute median of the wavelet decomposition’s first scale.

The denoising processing with the perceptual graph wavelet transform consists in algorithm 1. A
flowchart is proposed in figure 9. We note that geometrical and color structuration is contained in
graph G.

We simulate noisy images by adding a Gaussian white noise to a color image with a known standard
deviation and we then compute the image recovered from the noisy one by each method.

One of the drawbacks of the SGWT is the poor denoising performance when applied directly on
noisy images [34]. This poor separation of noise is due to the fact that the scaling function is arbitrary
and not scale-dependent [35]. In figure 10 we show an example of direct application of the SGWT on
noisy images. We have a degraded quality of the wavelet coefficient at each scale and the coefficients
provide limited details. Therefore, such a decomposition depends heavily on the constructed graph,
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Initialization: Color Image I;
Ismooth ← Smooth(I);
Compute graph G of Ismooth;
Compute L;
for each color component do

Compute SGWT on I with L;
Compute hard thresholding;
Compute inverse SGWT;

end
Algorithm 1: Graph wavelet denoising

Figure 9: Flowchart of the denoising with the wavelet decomposition on graph of a color image.

we need a regularized graph which will allow us to estimate the image structure and provides with
the wavelet coefficients a good separation between the noise and the information.

We recall that our aim through this study is to illustrate the advantages of the representation in
the CIELab color space. To regularize coarsely the noisy image, we apply a Gaussian smoothing and
we construct the graph on this result. We then compute an analysis with the SGWT on each color
component (RGB) of the noisy image using a cubic spline wavelet kernel with three scales (J = 3).

It is to be noted that we did not choose the same value of σ for the graph construction to compare
the results of reconstructions. As we have seen previously for the same value of σ, the ∆E2k differ-
ence allows us to localize more energy in the higher frequencies : this can affect the quality of the
reconstructed image. One can address this issue by choosing a lower value of σ.

Several techniques of estimation of the clean image and wavelet coefficients thresholding are also
discussed in [34].

4.2 Results interpretation

We discuss the denoising schemes with two color images girl and butterfly which propose different
textures and colors, specular effects, round objects, edges in different directions, etc.
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Figure 10: SGWT applied on a noisy image 4(a) using the ED, σ = 10: (a) approximation, (b) scale
1, (c) scale 2 and (d) scale 3.

Figure 11: Denoising results for image Girl with a low noise: (a) Original image; (b) Noisy im-
age (SNR=(3.4,5.1,3.9)dB, SSIM=0.965, QSSIM=0.944); (c) Smoothed image (SNR=(3.3,5.0,3.8)dB,
SSIM=0.924, QSSIM=0.922); (d) ED, σ = 10 (SNR=(1.8,3.1,1.6)dB, SSIM=0.916, QSSIM=0.905);
(e) ∆E2k, σ = 1 (SNR=(4.2,6.3,5.4)dB, SSIM=0.947, QSSIM=0.939); (f) UWT (SNR=(3.3,5,3.8)dB,
SSIM=0.931, QSSIM=0.927).
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Figure 12: Denoising results for butterfly image with a low noise: (a) Original image; (b) Noisy image
(SNR=(13.4,12.2,9.9)dB, SSIM=0.903, QSSIM=0.850); (c) Smoothed image (SNR=(9.9,9.4,7.9)dB,
SSIM=0.861, QSSIM=0.853); (d) ED, σ = 10 (SNR=(14.0,12.7,10.3)dB, SSIM=0.918, QS-
SIM=0.898); (e) ∆E2k, σ = 2 (SNR=(14.0,12.9,10.5)dB, SSIM=0.928, QSSIM=0.907); (f) UWT
(SNR=(12.6,11.3,9.1)dB, SSIM=0.921, QSSIM=0.916).

One can note that this quality of restoration is confirmed by the measurement of SNR (we have
noted the SNR measurements on the red, green and blue bands as SNR =

(
SNRred,SNRgreen,SNRblue

)
dB.

The structural similarity (SSIM) index [36] is computed to measure the quality of the reconstruction
of the original geometrical and structural information. This measure is associated with the Value
component of the color image. We compute also the quaternion structural similarity index (QSSIM)
[37] that takes into account the quality of the reconstruction of the color information.

In figures 11(e) and 12(e), we observe that the restoration in CIELab color space provides satis-
factory results with a low level of noise. Indeed, the psychovisual consideration improves the visual
quality of noisy image and ensures the conservation of the discontinuity between the homogeneous
regions. One can observe that the reconstruction in the RGB color space in figures 11(f) and 12(f) in-
dicates a good result but a lot of details of the image have disappeared. Comparing the UWT method
in figures 11(f) and 12(f), we observe that important details are preserved (such as the reflection on
the shield) with our method. The graph structuration allows us to connect vertices similar in terms
of color distance or perceptual difference.

This indicates that the classical measures are not always appropriate for estimating the degrada-
tion: the SSIM and QSSIM are greater in the noisy image in figure 11(b), because these measures are
particularly sensitive to very small variations and the low noise does not enough damage the structure
of our original image in figure 11(a). However the image denoising with our method using the psy-
chovisual information in figure 11(e) is better in terms of SSIM, QSSIM and SNR than the reference
denoising using UWT in figure 11(f).

When we increase the noise level (figure 13(b)), it is difficult to construct a graph without a good
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Figure 13: Denoising results for image Girl with a high noise: (a) Original image; (b) Noisy image
(SNR=(-0.8,-1.1,-3.3)dB, SSIM=0.733, QSSIM=0.571); (c) Smoothed image (SNR=(-0.2,-0.5,-2.7)dB,
SSIM=0.830, QSSIM=0.823); (d) ED, σ = 10 (SNR=(-3.8,-3.1,-4.9)dB, SSIM=0.792, QSSIM=0.740);
(e) ∆E2k, σ = 2 (SNR=(0.6,0.6,-1.5)dB, SSIM=0.810, QSSIM=0.763); (f) UWT (SNR=(-0.2,-0.5,-
2.7)dB, SSIM=0.817, QSSIM=0.819).

estimation of the coarse approximation of the original image. This is due to the problem of the
estimation of the initial graph. A simple Gaussian smoothing (figure 13(c)) does not produce a good
noise-free coarse representation of data and one can observe a cartoon-like effect on the homogeneous
zones of the denoised image in figures 13(d) and 13(e).

It is to be noted that there is no global perceptual difference between the UWT and the SGWT
defined with The Euclidian distance. Both these restorations are however different from one antoher
with a better enhancement of edges for the homogeneous regions for the SGWT method (figure 13(d))
in comparison to the UWT method (figure 13(f)).

We propose to assess the quality of methods by measuring structural similarity indices (SSIM and
QSSIM) between denoised images and the original one for different levels of noise. In figure 14(a)
the SSIM highlights that the method based on the SGWT with the ∆E2k difference obtains a better
reconstruction than the same method with the ED. In figure 14(b) the QSSIM highlights the same
results. We observe that the method based on the SGWT with the ∆E2k difference obtains a best
perceptual reconstruction for a slight noise. When the standard deviation of noise is greater than 5.5,
the UWT D8 obtains a better perceptual reconstruction compared to our based-graph decomposition.
Indeed, one cannot obtain a good first estimation of the based-graph image after a simple regularization
when the noise is too high. It will be necessary in the future to define a better strategy to estimate
the based-graph coarse approximation of the image.
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(a) (b)

(c) (d)

(e) (f)

Fig 13 Denoising results for image Girl with a high noise.

(a)

(b)

Fig 14 Structural similarity indices in function the noise standard devi-
ation for each method (noisy image in cyan, SGWT with ED in blue,
SGWT with �E2k in red, smoothed image in green and UWT in ma-
genta).

(a) (b)

Fig 15 Topology on edge with missing data.

(a) (b)

(c)

Fig 16 Inpainting on an attacked image.

4

Figure 14: (a) Structural similarity index and (b) quaternion structural similarity index in function
the noise standard deviation for each method (noisy image in cyan, SGWT with ED in blue, SGWT
with ∆E2k in red, smoothed image in green and UWT in magenta).

4.3 Potential of these color transform for inpainting

We propose to extend the scope of applications to the inpainting in color images. We extend the
principle of inpainting with classical wavelet on the graph domain. Our approach consists in the use
of a classical thresholding iterative process.

Let f be the observed signal and y = Φv + n the signal with missing pixels at locations Φ, n an
additive noise. The estimation ŷ can be obtained by resolving the following optimization:

ŷ = argmin
v

1

2
‖y − Φv‖22 + ΛR(v), (25)

where R is a regularizer which imposes an a priori knowledge and Λ should be adapted to the noise
level.

By definition, v is sparse in the dictionary W ∗ (synthesis operator) and v is obtained by linear
combination v = W ∗a. We compute a sparse set of coefficients denoted a in a frame W = (ψm):

â = argmin
a

1

2
‖y − ΦΨ∗a‖22 + Λ R(a), (26)

with R(a) the `1 sparsity regularizer defined by:

R(a) =
∑
m

‖am‖2 . (27)

The problem corresponds to a linear ill posed inverse problem. It can be solved by an iterative
scheme with the hard thresholding operator T Hα . In the case of the SGWT, the wavelet transform is
computed in respecting the structure of data, the solution is also obtained by the numerical scheme
presented in algorithm 2.

The graph cannot be constructed for damaged zones: we should therefore provide graph construc-
tion techniques more suitable for missing data.

To connect vertices in the spatial domain with edges, a regular mesh represents a simpler tool
to estimate the data structure of the missing areas (cf figure 15). From this principle we propose to
introduce a regular mesh within the processing areas.

We have applied the graph-based wavelet inpainting method on the image in figure 16(a). One
can notice that the color information is diffused in the damaged regions and results show clearly the
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Initialize N
v0 ← y; k ← 0;
Compute L;
while k < N do

T tg ← g(tL);

vk+1 ← vk + Φ
[(
T tg
)∗ T Hα (

T tg
)
vk − vk

]
;

k ← k + 1;

end
Algorithm 2: Graph wavelet inpainting

Figure 15: Topology on edge with missing data: (a) classical, (b) with kppv.

Figure 16: Inpainting on an attacked image: (a) Attacked image (SNR=(3.2, 1.9, 12.4)dB, SSIM=0.88,
QSSIM=0.89); (b) ED (SNR=(10.8, 12.2, 16.0)dB, SSIM=0.93, QSSIM=0.92; (c) ∆E2k distance
(SNR=(10.8, 14.1, 16, 0)dB, SSIM=0.93, QSSIM=0.93).

limitation of the method when applied on textured regions, that is a classical problem in the inpainting
using a PDE-based method. We propose to restore this image with an inpainting processing using the
RGB color space 16(b) and using the CIELab color space to compute the graph (figure 16(c)). The
graph structuration allows us to regularize similar zones whose vertices are connected.

In term of SNR, the inpainting results with a graph structure computed with an Euclidian distance
and those computed with a ∆E2k are close except on the green component. The quality metrics (SSIM
and QSSIM) highlight a good reconstruction of structures.
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5 Conclusion

We have introduced a framework which takes into account the intrinsic geometry and the color infor-
mation of an image. Indeed we have developed a perceptual wavelet transform based on the graph
of the image and, in particular, on the ∆E2k color difference in the graph computation. Furthermore
using the Laplacian quadratic form to measure the amount of energy of information helps understand-
ing the behavior of this new representation. Moreover, the quadratic form depicts the influence of
parameters on the localization of information across the wavelet scales.

The application on the image denoising shows that the restoration in the CIELab space allows to
enhance homogeneous zones with respect to their ruptures and keeping some important visual details.
It is to be noted that the use of the geodesic distance allows us to preserve the geometry of the image.
This provides an enhancement of regions and does not create any artifact or blur. We illustrate
the respect of color in a restoration processing by introducing perceptual information in the graph
computation. We have compared this new representation with an approach based on the Euclidian
distance. We have also introduced the perceptual SGWT in a classical inpainting process and the
results are correct but do not depend on the two distances for graph computation.

Our work yields promising results and shows the relevance of taking into consideration the geometry
of the image and perceptual information (with the CIElab space) for the wavelet transform. This
methodology can be extended to a multi- or hyperspectral image where the choice of the distance to
compute the graph may have a great influence on the denoising process, inpainting application and
texture characterization.
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