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An m-(arc-)colored digraph D has a k-colored kernel if there exists a subset K of its vertices such that for every vertex v / ∈ K there exists an at most k-colored directed path from v to a vertex of K and for every u, v ∈ K there does not exist an at most k-colored directed path between them. A directed cycle on n vertices is denoted by -→ C n. In this paper, we prove that an m-colored semicomplete r-partite digraph D has a k-colored kernel provided that r ≥ 3 and

is, two directed triangles joined by an arc) contained in D is at most 2-colored, (iii) k = 2 and every -→ C 3 and -→ C 4 contained in D is monochromatic.

If D is an m-colored semicomplete bipartite digraph and k = 2 (resp. k = 3) and every -→ C 4 ↑↑ -→ C 4 (that is, two -→ C 4's joined by two consecutive arcs) contained in D is at most 2-colored (resp. 3-colored), then D has a 2-colored (resp. 3-colored) kernel. Using these and previous results, we obtain conditions for the existence of k-colored kernels in m-colored semicomplete r-partite digraphs for every k ≥ 2 and r ≥ 2.

Introduction

Let m, j and k positive integers. A digraph D is said to be m-colored if the arcs of D are colored with m colors. Given u, v ∈ V (D), a directed path from u to v of D, denoted by u ; v, is j-colored if all its arcs use exactly j colors and it is represented by u ; j v. When j = 1, the directed path is said to be monochromatic. If j equals the number of arcs of u ; v, the directed path is said to be rainbow. A nonempty set S ⊆ V (D) is a k-colored absorbent set if for every vertex u ∈ V (D) -S there exists v ∈ S such that u ; j v with 1 ≤ j ≤ k. A nonempty set S ⊆ V (D) is a called a k-colored independent set if for every u, v ∈ S there does not exist u ; j v with 1 ≤ j ≤ k. Let D be an m-colored digraph. A set K ⊆ V (D) is called a k-colored kernel if K is a k-colored absorbent and independent set. This definition was introduced in [START_REF] Martínez Chigo | Trayectorias monocromáticas en digráficas m-coloreadas (Monochromatic paths in m-colored digraphs)[END_REF], where the first basic results were proved. We observe that a 1-colored kernel is a kernel by monochromatic directed paths, a notion that has widely studied in the literature, see for instance [START_REF] Galeana-Sánchez | On monochromatic paths and monochromatic cycles in edge colored tournaments[END_REF], [START_REF] Galeana-Sánchez | Kernels in edge-colored digraphs[END_REF], [START_REF] Galeana-Sánchez | Kernels by monochromatic paths in m-colored unions of quasi-transitive digraphs[END_REF], [START_REF] Galeana-Sánchez | On monochromatic paths and monochromatic 4-cycles in bipartite tournaments[END_REF], [START_REF] Galeana-Sánchez | Monochromatic paths and monochromatic cycles in edge-colored k-partite tournaments[END_REF], [START_REF] Sands | On monochromatic paths in edge-colored digraphs[END_REF], [START_REF] Shen | On monochromatic paths in m-colored tournaments[END_REF] and [START_REF] Włoch | On kernels by monochromatic paths in the corona of digraphs[END_REF].

An arc (u, v) ∈ A(D) is asymmetric (resp. symmetric) if (v, u) / ∈ A(D) (resp. (v, u) ∈ A(D)). We denote by -→ C n the directed cycle of length n. A semicomplete r-partite digraph D with r ≥ 2 is an orientation of an r-partite complete graph in which symmetric arcs are allowed. A digraph D is called 3quasi-transitive if whenever distinct vertices u 0 , u 1 , u 2 , u 3 ∈ V (D) such that u 0 -→ u 1 -→ u 2 -→ u 3 there exists at least (u 0 , u 3 ) ∈ A(D) or (u 3 , u 0 ) ∈ A(D). In particular, bipartite semicomplete digraphs are 3-quasi-transitive.

Let D a subdigraph of an m-colored digraph D. We say that D is monochromatic if every arc of D is colored with the same color and D is at most k-colored if the arcs of D are colored with at most k colors. In this paper, we particularly use subdigraphs of semicomplete r-partite digraph which are at most 2and 3-colored. We defined the digraphs

- → C 3 ↑ - → C 3 (resp. - → C 4 ↑↑ - → C 4 ) as two directed cycles - → C 3 (resp. - → C 4
) joined by an arc (resp. by two consecutive arcs), see the next picture. The goal of this work is to complete the study of the existence of k-colored kernels in semicomplete rpartite digraphs for every k ≥ 2. The problem for 1-colored kernels in bipartite tourrnaments was studied in [START_REF] Galeana-Sánchez | On monochromatic paths and monochromatic 4-cycles in bipartite tournaments[END_REF]. In that paper, the authors proved that a if every -→ C 4 contained in an m-colored bipartite tournament T is monochromatic, then T has a 1-colored kernel. Let r ≥ 3. In [START_REF] Galeana-Sánchez | Monochromatic paths and monochromatic cycles in edge-colored k-partite tournaments[END_REF], it was proved that if every -→ C 3 and -→ C 4 contained in a r-partite tournament T is monochromatic then T has a 1-colored kernel. In [START_REF] Galeana-Sánchez | k-colored kernels[END_REF] among other results, we showed that m-colored quasi-transitive and 3-quasi-transitive digraphs have a k-colored kernel for every k ≥ 3 and k ≥ 4, respectively. As a consequence, m-colored semicomplete bipartite digraphs have a k-colored kernel for every k ≥ 3 and k ≥ 4, respectively.

In this paper we prove that an m-colored semicomplete r-partite digraph D has a k-colored kernel provided that r ≥ 3 and

(i) k ≥ 4, (ii) k = 3 and every - → C 4 contained in D is at most 2-colored and, either every - → C 5 contained in D is at most 3-colored or every - → C 3 ↑ - → C 3 contained in D is at most 2-colored, (iii) k = 2 and every - → C 3 and - → C 4 contained in D is monochromatic.
If D is an m-colored semicomplete bipartite digraph and k = 2 (resp. k = 3) and every

- → C 4 ↑↑ - → C 4 contained in D is at most 2-colored (resp. 3-colored), then D has a 2-colored (resp. 3-colored) kernel.
Using these and previous results, we obtain conditions for the existence of k-colored kernels in m-colored semicomplete r-partite digraphs for every k ≥ 2 and r ≥ 2 (see Corollary 4.5). If we are restricted to the family of the m-colored multipartite tournaments, then we have conditions for the existence of k-colored kernels for every k ≥ 1 and r ≥ 2 using the main results of this paper and those obtained in [START_REF] Galeana-Sánchez | On monochromatic paths and monochromatic 4-cycles in bipartite tournaments[END_REF] and [START_REF] Galeana-Sánchez | Monochromatic paths and monochromatic cycles in edge-colored k-partite tournaments[END_REF] (see Corollary 4.6).

We finish this introduction including some simple definitions and a well-known result that will be useful in proving the main results.

Let D be a digraph and x, y ∈ V (D). The distance from x to y, denoted by d(x, y) is the minimum length (number of arcs) of a x ; y.

Recall that a kernel K of D is an independent set of vertices so that for every u ∈ V (D) \ K there exists (u, v) ∈ A(D), where v ∈ K. We say that a digraph D is kernel-perfect if every nonempty induced subdigraph of D has a kernel.

Given an m-colored digraph D, we define the k-colored closure of D, denoted by

C k (D), as the digraph such that V (C k (D)) = V (D) and A(C k (D)) = {(u, v) : ∃ u ; j v, 1 ≤ j ≤ k}. Remark 1.1 Observe that every m-colored digraph D has a k-colored kernel if and only if C k (D) has a kernel.
We will use the following theorem of P. Duchet [START_REF] Duchet | Graphes noyau-parfaits[END_REF].

Theorem 1.2 If every directed cycle of a digraph D has a symmetric arc, then D is kernel-perfect.
The symbol will be used to denote the end of a claim or a subclaim. We follow [START_REF] Bang-Jensen | Digraphs: Theory, algorithms and applications[END_REF] for the general terminology on digraphs.

Preliminary results

We set r ≥ 3 for the rest of the paper. We denote by A, B, C, . . . the partite sets of a semicomplete multipartite digraph D.

Lemma 2.1 Let D be an m-colored semicomplete r-partite digraph and x, y ∈ V (D). If there exists x ; k y with k ≥ 4 and there does not exist y ; k x with k ≤ 4, then d(x, y) ≤ 2.

Proof: Suppose that x ∈ A and y ∈ B. Since there does not exist y ; k x, we have that (x, y) ∈ A(D). Therefore, we assume that x, y ∈ A and for a contradiction, suppose that d(x, y) ≥ 3. Consider the directed path of minimum length

x -→ x 1 -→ x 2 -→ • • • -→ x t -→ y (t ≥ 2). Therefore x 1 ∈ B (with B = A) and then (y, x 1 ) ∈ A(D). If x 2 / ∈ A, then (x 2 , x) ∈ A(D) (the arc (x, x 2
) implies a shorter path from x to y). In this case, the directed path y -→ x 1 -→ x 2 -→ x is a y ; k x with k ≤ 3, a contradiction (there does not exist y ; k x with k ≤ 4). Hence x 2 ∈ A and t ≥ 3, since x t / ∈ A and (x t , y) ∈ A(D). Recalling that x 2 ∈ A, we get that x 3 / ∈ A and there exists (x 3 , x) ∈ A(D) (the arc (x, x 3 ) implies a shorter path from x to y). We obtain that the directed path Proof: Suppose that x ∈ A and y ∈ B. Since there does not exist y ; k x, we have that (x, y) ∈ A(D). Therefore, we assume that x, y ∈ A and for a contradiction, suppose that d(x, y) ≥ 5. Consider the directed path of minimum length

y -→ x 1 -→ x 2 -→ x 3 -→ x
x -→ x 1 -→ x 2 -→ • • • -→ x t -→ y (t ≥ 4). If x 2 / ∈ A, then (y, x 2 ) ∈ A(D) and (x 2 , x) ∈ A(D) (observe that (x 2 , y) ∈ A(D) or (x, x 2 ) ∈ A(D)
implies a shorter path from x to y). Therefore the directed path y -→ x 2 -→ x is a y ; k x with k ≤ 2, a contradiction to the supposition of the lemma. Hence x 2 ∈ A and so x 3 / ∈ A. In a similar way as done before, (y, x 3 ) ∈ A(D) and (x 3 , x) ∈ A(D). It follows that the directed path y -→ x 3 -→ x is a y ; k x with k ≤ 2, a contradiction to the supposition of the lemma. The proof for k = 3 follows analogously.
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Lemma 2.3 Let D be an m-colored semicomplete r-partite digraph such that every -→ C 4 contained in D is at most 2-colored, k = 3 and x, y ∈ V (D). If there exists x ; k y and there does not exist y ; k x with k ≤ 3, then d(x, y) ≤ 2.

Proof: Suppose that x ∈ A and y ∈ B. Since there does not exist y ; k x, we have that (x, y) ∈ A(D). Therefore, we assume that x, y ∈ A. By Lemma 2.2, d(x, y) ≤ 4. We consider two cases.

Case 1: d(x, y) = 3. Let x -→ x 1 -→ x 2 -→ y be a directed path from x to y. Since x 1 , x 2 / ∈ A, we have that (y, x 1 ), (x 2 , x) ∈ A(D) and so y -→ x 1 -→ x 2 -→ x is a y ; k x with k ≤ 3, a contradiction to the supposition of the lemma.

Case 2: d(x, y) = 4. Let

x -→ x 1 -→ x 2 -→ x 3 -→ y be a directed path from x to y. If x 2 / ∈ A, then (y, x 2 ), (x 2 , x) ∈ A(D) and so y -→ x 2 -→ x is a y ; k x with k ≤ 2, a contradiction to the supposition of the lemma. Hence x 2 ∈ A. Notice that x 1 , x 3 / ∈ A and then (y, x 1 ), (x 3 , x) ∈ A(D). Hence, the directed path

y -→ x 1 -→ x 2 -→ x 3 -→ x is a y ; k x with k = 4
(that is, a heterochromatic directed path from y to x), otherwise there exists a y ; k x with k ≤ 3, a contradiction to the supposition of the lemma. Therefore (y,

x 1 , x 2 , x 3 , y) ∼ = - → C 4 is at least 3-colored, a contradiction, every - → C 4 of D is at most 2-colored.
Lemma 2.4 Let D be an m-colored semicomplete r-partite digraph such that every -→ C 3 and -→ C 4 contained in D is monochromatic, k = 2 and x, y ∈ V (D). If there exists x ; k y and there does not exist y ; k x with k ≤ 2, then d(x, y) ≤ 2.

Proof: Suppose that x ∈ A and y ∈ B. Since there does not exist y ; k x, we have that (x, y) ∈ A(D). Therefore, we assume that x, y ∈ A. By Lemma 2.2, d(x, y) ≤ 4. We consider two cases.

Case 1: d(x, y) = 3. Let x -→ x 1 -→ x 2 -→ y be a directed path from x to y. Since x 1 , x 2 / ∈ A, we have that (y, x 1 ), (x 2 , x) ∈ A(D). Since (y, x 1 , x 2 , y), (x, x 1 , x 2 , x) ∼ = - → C 3 are monochromatic, the directed path y -→ x 1 -→ x 2 -→ x is a monochromatic y ; x, a contradiction to the supposition of the lemma. Case 2: d(x, y) = 4. Let x -→ x 1 -→ x 2 -→ x 3 -→ y be a directed path from x to y. If x 2 / ∈ A, then (y, x 2 ), (x 2 , x) ∈ A(D) and so y -→ x 2 -→ x is a y ; k x with k ≤ 2, a contradiction to the supposition of the lemma. Hence x 2 ∈ A. Notice that x 1 , x 3 / ∈ A and then (y, x 1 ), (x 3 , x) ∈ A(D). Since (y, x 1 , x 2 , x 3 , y), (x, x 1 , x 2 , x 3 , x) ∼ = - → C 4 are monochromatic, the directed path y -→ x 1 -→ x 2 -→ x 3 -→ x
is a monochromatic y ; x, a contradiction to the supposition of the lemma.
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Analogously, we can prove the following lemma in case of semicomplete bipartite digraphs. 3 Flowers, cycles and closed walks in the k-colored closure of semicomplete r-partite digraphs

To begin with, we define the flower F s with s petals as the digraph obtained by replacing every edge of the star K 1,s by a symmetric arc. If every edge of the complete graph K n is replaced by a symmetric arc, then the resulting digraph D on n vertices is symmetric semicomplete.

Remark 3.1 Let D be an m-colored digraph isomorphic to a - → C 3 or a flower F s such that s ≥ 1. Then C k (F s ) with k ≥ 2 is a symmetric semicomplete digraph.
This section is devoted to detail the common beginning of the proofs of Theorems 4.1 -4.4 in the next section. The procedure is similar to that employed in the proof of Theorem 7 of [START_REF] Galeana-Sánchez | k-colored kernels[END_REF]. We include it here to make this work self-contained. In every case, we apply Theorem 1.2 and Remark 1.1 to show that every directed cycle of the k-colored closure C k (D) of the corresponding digraph D has a symmetric arc and we proceed by contradiction.

First, we make a sketch of the following procedure in general terms. We suppose that there exists a directed cycle γ in C k (D) without symmetric arcs and using Lemmas 2.1, 2.3, 2.4 and 2.5 according to each specific case, we prove that every arc of γ corresponds to an arc or a directed path of length 2 in the original digraph D. At this point, we consider the closed walk δ, subdigraph of D, constructed by the concatenation of the already mentioned arcs or directed paths of length 2 and study its properties. In the next step, we define a closed subwalk ε of δ satisfying some prefixed properties. Then, we show that this subdigraph of δ exists and can be described in a neat form.

Formally, let D be an m-colored semicomplete r-partite digraph with r ≥ 2. For a contradiction, suppose that γ = (u 0 , u 1 , . . . , u p , u 0 ) is a cycle in C k (D) without any symmetric arc. Observe that if p = 1, then γ has a symmetric arc and we are done. Therefore, assume that p ≥ 2. Let x and y be two consecutive vertices of γ. Consider the following instances recalling that γ has no symmetric arcs: Therefore, in any case we can assume that every arc of γ corresponds to an arc or a directed path of length 2 in D. Let δ be the closed directed walk defined by the concatenation of the arcs and the directed paths of length 2 corresponding to the arcs of γ. Remark 3.2 There exist at least two consecutive vertices of γ in every directed walk of length at least 3 of δ.

The following lemma settles two simple properties of δ. Proof: For the first claim, suppose that every directed path of δ has length at most 2. Then, either δ contains a -→ C 3 or δ is isomorphic to a flower F s with s ≥ 2 and by Remarks 3.1 and 3.2, γ has a symmetric arc, a contradiction. For the second, observe that if δ contains -→ C 3 or a flower F s with s ≥ 2, then by Remark 3.2, two consecutive vertices u i and u i+1 of γ (the subindices are taken modulo p) belong to the vertices of a -→ C 3 or a flower F s , respectively. Hence, by Remark 3.1, there exists a symmetric arc between u i and u i+1 of γ, which is a contradiction.
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Let δ = (y 0 , y 1 , ..., y s ). (ii) There are no consecutive vertices of γ in a flower.

(iii) If there exists a subdigraph y j -→ y j+1 -→ y j+2 -→ y j+3 -→ y j+4 of δ, where y j+1 = y j+3 (that is, y j+1 ←→ y j+2 is a flower), then y j+2 ∈ V (γ).

Notice that if δ = γ, as we will see, the same argument of the proof will work even easier.

Observe that there exist y i0 , y i1 , ...y ip ∈ V (δ) such that i j < i j+1 and u l = y j l , where 0 ≤ l ≤ p.

We define ε = (y i , y i+1 , . . . , y i+l ) of minimum length (0 ≤ i ≤ s and the indices are taken modulo s + 1) such that (i)

y i = y i+l , l ≥ 3, (ii) y i = y t for i + 1 ≤ t ≤ i + l -1, (iii) if y q = y r , then r = q + 2 (i + 1 ≤ q, r ≤ i + l -1),
(iv) there exist y i1 , y i2 , . . . , y i k+1 ∈ V (ε) such that y i1 = u j , y i2 = u j+1 , . . . , y i k+1 = u j+k with k ≥ 1, and (v) y i+1 = y i+l-1 .

Lemma 3.5 There exists ε a closed subwalk of δ.

Proof: Since δ is a closed walk, p ≥ 2 and using Lemma 3.3(i), condition (i) is satisfied. For (ii), if there exists t < l such that y i = y i+t , then, by the minimality of ε, t = 2 and l -t = 2 and therefore

(i + l) -(i + t) = 2
. By (i), we have that y i = y i+t = y i+l and so l = 4. We obtain that

y i+1 ←→ y i = y i+2 = y i+4 ←→ y i+3 ,
which is a flower F 2 in δ, a contradiction to Lemma 3.3(ii). Condition (iii) follows from the minimality of ε and condition (iv) is immediate from the definition of δ and the fact that l ≥ 3. If y i+1 = y i+l-1 , then by (iii), l = 4 and hence

y i+4 = y i ←→ y i+1 = y i+3 ←→ y i+2
which is a flower F 2 in δ, a contradiction to Lemma 3.3(ii). Condition (v) follows. 2

Since δ is not a flower itself by supposition, we can establish the structure of ε with precision.

Corollary 3.6 The closed subwalk ε of δ is a directed cycle of length at least 3 with perhaps symmetric arcs attached to some vertices (maybe none) of the cycle for which the exterior endpoints are vertices of γ.

An example of ε is depicted in [START_REF] Galeana-Sánchez | k-colored kernels[END_REF] (see page 1976).

For the sake of a clearer exposition of the forthcoming proofs in the next section, let us rename ε = (y 0 , y 1 , . . . , y l ). By (v) of the definition of ε, we have that y 1 = y l-1 and by (iv), there exist consecutive u 0 , u 1 , . . . , u k ∈ V (γ) in ε with k ≥ 1. Notice that u 0 and u k could not be consecutive vertices of γ and similarly, (y l-1 , y 0 ) ∈ A(ε) could not be an arc of γ. Let u 1 = y i be the second vertex of γ from y 0 . Observe that 1 ≤ i ≤ 3 by the definition of ε and either

u 0 = y 0 (1 ≤ i ≤ 2) or u 0 = y 1 (2 ≤ i ≤ 3).
Let us suppose that there exists (u 1 , y 0 ) ∈ A(D), then (i) if u 0 = y 0 , then (u 1 , u 0 ) ∈ A(D) and γ has a symmetric arc between u 0 and u 1 , a contradiction, (ii) if u 0 = y 1 , then we have that u 1 -→ y 0 -→ y 1 = u 0 and we arrive at the contradiction of (i).

Therefore, without loss of generality we can assume that

(u 1 , y 0 ) / ∈ A(D). (1) 

Main results

First, we recall that by supposition γ = (u 0 , u 1 , . . . , u p , u 0 ) is a cycle in C k (D) without any symmetric arc and ε = (y 0 , y 1 , . . . , y l ) is a closed subwalk of δ. The beginning of every proof of the following theorems are the arguments stated in Section 3. Proof: In this case, we use instance (a) of Section 3 to assume that every arc of γ corresponds to an arc or a directed path of length 2 in D.

Claim. (u 1 , y ) ∈ A(D) for some l -2 ≤ j ≤ l -1.
Proof of the Claim. For a contradiction, suppose that q is the maximum index such that (u 1 , y q ) ∈ A(D) with q ≤ l -3. Consider the directed path

u 1 -→ y q -→ y q+1 -→ y q+2 -→ y q+3
(observe that q + 3 ≤ l). First, we will show that u 1 and y q+3 belong to the same part of D.

If (u 1 , y q+3 ) ∈ A(D), then q + 3 = l because q is maximum and y q+3 = y 0 , a contradiction to [START_REF] Bang-Jensen | The structure of strong arc-locally semicomplete digraphs[END_REF]. If (y q+3 , u 1 ) ∈ A(D), then we have the directed cycle (u 1 , y q , y q+1 , y q+2 , y q+3 , u 1 ).

If y q = u t for some 2 ≤ t ≤ p, then either y q+1 = u t+1 or y q+2 = u t+1 . Therefore there exists u t+1 ; k u t with k ≤ 4, a contradiction, γ has a symmetric arc between u t and u t+1 .

Analogously, if y q+1 = u t and either y q+2 = u t+1 or y q+3 = u t+1 , then we arrive to the same contradiction as before. Finally, if y q+1 = u 0 , then there exists u 1 ; k u 0 with k ≤ 4, a contradiction, γ has a symmetric arc between u 0 and u 1 . We conclude that u 1 , y q+3 ∈ A (the same part of the semicomplete r-partite digraph D). As a consequence, y q , y q+2 / ∈ A and there exists (y q+2 , u 1 ) ∈ A(D) by the maximality of q. We obtain the directed cycle -→ C 4 ∼ = (y q , y q+1 , y q+2 , u 1 , y q ) in which there are no two consecutive vertices of γ, otherwise γ has a symmetric arc, a contradiction. Hence, y q+1 = u t and y q+3 ∈ V (γ). Since there exists u 1 ; k y q+3 with k = 4, we have that y q+3 = u 0 , otherwise γ has a symmetric arc between u 0 and u 1 . Then y q+3 = u t+1 and thus q + 3 < l and we consider the extended directed path

u 1 -→ y q -→ y q+1 = u t -→ y q+2 -→ y q+3 = u t+1 -→ y q+4 .
Recall that u 1 , y q+3 ∈ A and then y q+4 / ∈ A. By the maximality of q and since (u 1 , y 0 ) / ∈ A(D), there exists (y q+4 , u 1 ) ∈ A(D). We obtain the directed path

u t+1 = y q+3 -→ y q+4 -→ u 1 -→ y q -→ y q+1 = u t ,
a contradiction, there exists a symmetric arc between u t and u t+1 in γ. The claim is proved.

We conclude the proof of the theorem applying the Claim. In the worst case, we have that q = l -2 and y 1 = u 0 . We obtain the directed cycle -→ C 4 ∼ = (u 1 , y q = y l-2 , y l-1 , y 0 , y 1 = u 0 , u 1 ) and there exists u 1 ; k u 0 with k = 4, a contradiction, γ has a symmetric arc between u 0 and u 1 . In any other case, there exists u 1 ; k u 0 with k ≤ 4 and it yields the same contradiction as before.

2 Proof: In this case, we use instance (b) of Section 3 to assume that every arc of γ corresponds to an arc or a directed path of length 2 in D.

Claim. (u 1 , y ) ∈ A(D) for some l -2 ≤ j ≤ l -1.
Proof of the claim. To prove the claim, we proceed by contradiction. Suppose that q is the maximum index such that (u 1 , y q ) ∈ A(D) with q ≤ l -3. Consider the directed path

u 1 -→ y q -→ y q+1 -→ y q+2 .
First, we will show that u 1 and y q+2 belong to the same part of D. Observe that (u 1 , y q+2 ) ∈ A(D) is impossible by the choice of q and since q + 2 < l. Therefore, we suppose that (y q+2 , u 1 ) ∈ A(D). If there exist u t , u t+1 ∈ V (γ) (indices are taken modulo p + 1), such that u t , u t+1 ∈ {y q , y q+1 , y q+2 }, then there exists u t+1 ; k u t with k ≤ 3, a contradiction, γ has a symmetric arc between u t and u t+1 . Hence y q+1 = u t and y q , y q+2 / ∈ V (γ). Since the directed cycle -→ C 4 ∼ = (u 1 , y q , y q+1 , y q+2 , u 1 ) is at most 2-colored, the directed path

u 1 -→ y q -→ y q+1 -→ y q+2 -→ y q+3
is at most 3-colored and then y q+3 = u 0 and y q+3 = u t+1 (in virtue of the definition of ε). Moreover, q + 3 < l. Let us suppose that there exists an arc between y q+3 and u 1 . By the maximality of q, we have that (y q+3 , u 1 ) ∈ A(D). Then

y q+3 = u t+1 -→ u 1 -→ y q -→ y q+1 = u t
is an at most 3-colored directed path, a contradiction, γ has a symmetric arc between u t and u t+1 . In consequence, u 1 , y q+3 ∈ A (a same part of D), y q / ∈ A and there exists an arc between y q and y q+3 . If (y q+3 , y q ) ∈ A(D), then the directed path y q+3 = u t+1 -→ y q -→ y q+1 = u t is an at most 3-colored directed path, a contradiction, γ has a symmetric arc between u t and u t+1 . Thus, (y q , y q+3 ) ∈ A(D) and let us consider the extended directed path

u 1 -→ y q -→ y q+1 = u t -→ y q+2 -→ y q+3 = u t+1 -→ y q+4 ,
where q + 4 ≤ l and furthermore, y q+4 / ∈ A. There exists the arc between u 1 and y q+4 . If (u 1 , y q+4 ) ∈ A(D), then by the maximality of q, y q+4 = y l = y 0 and we obtain a contradiction to the assumption [START_REF] Bang-Jensen | The structure of strong arc-locally semicomplete digraphs[END_REF]. Consequently, (y q+4 , u 1 ) ∈ A(D). Recalling that (y q+3 , u 1 ), (y q , y q+3 ), (y q+4 , u 1 ) ∈ A(D),

we have the directed cycles - → C 4 ∼ = (u 1 , y q , y q+1 = u t , y q+2 , u 1 ) and - → C 4 ∼ = (y q+3 = u t+1 , y q+4 , u 1 , y q , y q+3 ), (2) 
which are at most 2-colored by the condition of the theorem. Then the directed path

u t+1 = y q+3 -→ y q+4 -→ u 1 -→ y q -→ y q+1 = u t
is at most 3-colored given that the directed cycles of ( 2) have the common arc (u 1 , y q ). We have a contradiction, γ has a symmetric arc between u t and u t+1 . We conclude that u 1 , y q+2 ∈ A (a same part of D). As a consequence, y q , y q+1 , y q+3 / ∈ A. The maximality of q implies that (y q+1 , u 1 ) ∈ A(D). If there exists (u 1 , y q+3 ) ∈ A(D), then by the maximality of q, y q+3 = y l = y 0 , a contradiction to (1) Hence, there exists (y q+3 , u 1 ) ∈ A(D).

If (y q , y q+2 ) ∈ A(D), then there exists the directed cycle

- → C 4 ∼ = (u 1 , y q , y q+2 , y q+3 , u 1 )
which is at most 2-colored and therefore there exists u t+1 ; k u t where k ≤ 3 and with u t , u t+1 ∈ {y q , y q+1 , y q+2 , y q+3 }, a contradiction, γ has a symmetric arc between u t and u t+1 . Hence (y q+2 , y q ) ∈ A(D). In brief, we have that (y q+1 , u 1 ), (y q+3 , u 1 ), (y q+2 , y q ) ∈ A(D) in the directed path u 1 -→ y q -→ y q+1 -→ y q+2 -→ y q+3 .

Observe that u t ∈ {y q , y q+1 }. If y q+2 = u t+1 , then u t+1 = y q+2 -→ y q -→ y q+1 is at most 3 -colored, a contradiction, γ has a symmetric arc between u t and u t+1 . We conclude that y q+1 = u t and either y q+3 = u t+1 or y q+3 = u 0 . If y q+3 = u t+1 , then

u t+1 = y q+3 -→ u 1 -→ y q -→ y q+1
is at most 3-colored, a contradiction, γ has a symmetric arc between u t and u t+1 . Thus y q+3 = u 0 . By condition of the theorem, every

- → C 5 contained in D is at most 3-colored or every - → C 3 ↑ - → C 3 contained in D is at most 2-colored. If every - → C 5 is at most 3-colored, then - → C 5 ∼ = (u 1 , y q , y q+1 , y q+2 , y q+3 = u 0 , u 1 )
is at most 3-colored and consequently, there exists u 1 ; k u 0 at most 3-colored, a contradiction, γ has a symmetric arc between u 0 and u 1 . If every

- → C 3 ↑ - → C 3 is at most 2-colored then the - → C 3 ↑ - →
C 3 induced by {u 1 , y q , y q+1 , y q+2 } is at most 2-colored and there exists u 1 ; k u 0 at most 3-colored, a contradiction, γ has a symmetric arc between u 0 and u 1 .

The claim is proved.

To finish the proof of the theorem, we apply the Claim and consider two cases: Case 1: (u 1 , y l-1 ) ∈ A(D). In this case the directed path u 1 -→ y l-1 -→ y 0 -→ y 1 is at most 3colored and we know that u 0 ∈ {y 0 , y 1 }. We arrive to a similar contradiction as before, γ has a symmetric arc between u 0 and u 1 .

Case 2: (u 1 , y l-2 ) ∈ A(D). Observe that y 0 = u 0 and y 1 = u 0 , otherwise

u 1 -→ y l-2 -→ y l-1 -→ y 0 = u 0
is at most 3-colored, an we have the contradiction of Case 1 once more. Thus, we have the directed path

u 1 -→ y l-2 -→ y l-1 -→ y 0 -→ y 1 = u 0 .
By assumption (1), the arc (y 0 , u 1 ) could belong to A(D). If that is the case, then the directed cycle

- → C 4 ∼ = (u 1 , y l-2 , y l-1 , y 0 , u 1 )
is at most 2-colored by the condition of the theorem and therefore, u 1 ; k u 0 at most 3colored, a contradiction, γ has a symmetric arc between u 0 and u 1 . Hence, we suppose that (y 0 , u 1 ) / ∈ A(D). By (1), we have that (u 1 , y 0 ) / ∈ A(D) and then u 1 , y 0 ∈ A and u 0 = y 1 / ∈ A. Consequently, there exists an arc between y 1 = u 0 and u 1 . It is clear that

(u 0 , u 1 ) ∈ A(D) (otherwise we have a contradiction). If every - → C 5 is at most 3-colored, then - → C 5 ∼ = (u 1 , y l-2 , y l-1 , y 0 , y 1 = u 0 , u 1 )
is at most 3-colored and we arrive to a similar contradiction as shown before. Hence, we can suppose that there exists a -→ C 5 at least 4-colored and thus we assume the condition that every

- → C 3 ↑ - → C 3 is at most 2-colored in D.
Notice that y l-1 ∈ B = A and then there exists an arc between y l-1 and u 1 . Since l -2 is the maximum index such that (u 1 , y l-2 ) ∈ A(D), we have that (y l-1 , u 1 ) ∈ A(D). Also y l-2 ∈ C / ∈ {A, B} and then there exists an arc between y 0 and y l-2 . If (y 0 , y l-2 ) ∈ A(D), then the

- → C 3 ↑ - → C 3 induced by {u 1 , y l-2 , y l-1 , y 0 } is at most 2- colored.
Hence there exists u 1 ; k u 0 at most 3-colored, a contradiction, γ has a symmetric arc between u 0 and u 1 . If (y l-2 , y 0 ) ∈ A(D), then Proof: In this case, we use instance (c) of Section 3 to assume that every arc of γ corresponds to an arc or a directed path of length 2 in D.

u 1 -→ y l-2 -→ y 0 -→ y 1 = u 0 is at most 3-colored,
Claim 1: (u 1 , y j ) ∈ A(D) for some l -2 ≤ j ≤ l -1.

Proof of the Claim 1. To prove the claim, we proceed by contradiction. Suppose that q is the maximum index such that (u 1 , y q ) ∈ A(D) with q ≤ l -3. Without loss of generality, suppose that u 1 ∈ A. We will need the following three subclaims. Subclaim 1: y q+1 ∈ V (γ).

Proof of the Subclaim 1. For a contradiction, suppose that y q+1 / ∈ V (γ) and consider the directed path u 1 -→ y q -→ y q+1 -→ y q+2 (q + 3 ≤ l). Then y q , y q+2 ∈ V (γ) and without loss of generality, we can suppose that y q = u t and y q+1 = u t+1 for some 2 ≤ t ≤ p -1 and u t+1 = u 0 (otherwise there exists u 1 ; k u 0 with k ≤ 2, a contradiction, γ has a symmetric arc between u 0 and u 1 ). Observe that if y q+2 = u t+1 / ∈ A, then there exists an arc between u 1 and y q+2 . By the maximality of q, we have that (y q+2 , u 1 ) ∈ A(D) and then u t and u t+1 are contained in the monochromatic cycle -→ C 4 ∼ = (u 1 , y q , y q+1 , y q+2 , u 1 ) (by hypothesis). Thus, there exists a monochromatic u t+1 ; u t , a contradiction, γ has a symmetric arc between u t and u t+1 . Hence, y q+2 = u t+1 ∈ A. We know that y q / ∈ A. Let us suppose that y q ∈ B = A. There exists an arc between y q and y q+2 . If (y q+2 , y q ) = (u t+1 , u t ) ∈ A(D), then we arrive to the same contradiction as before. Therefore (y q , y q+2 ) = (u t , u t+1 ) ∈ A(D). As a consequence y q+1 does not exist in ε by the definition of γ, a contradiction. Subclaim 2: y q+2 / ∈ V (γ). Proof of the Subclaim 2. For a contradiction, suppose that y q+2 ∈ V (γ) and hence y q+2 = u t+1 because q + 2 ≤ l -1. Therefore, we have the directed path u 1 -→ y q -→ y q+1 = u t -→ y q+2 = u t+1 .

If y q+2 = u t+1 / ∈ A, there exists the arc (y q+2 = u t+1 , u 1 ) ∈ A(D) by the maximality of q. But then u t and u t+1 are contained in a monochromatic cycle -→ C 4 ∼ = (y q+2 = u t+1 , u 1 , y q , y q+1 = u t , y q+2 = u t+1 ), a contradiction, there exists a monochromatic u t+1 ; u t and a symmetric arc between u t and u t+1 in γ. Therefore, y q+2 = u t+1 ∈ A and there exists an arc between y q and y q+2 = u t+1 (recall that y q / ∈ A). If (y q+2 = u t+1 , y q ) ∈ A(D), then (y q+1 = u t , y q+2 = u t+1 , y q , y q+1 = u t ) is a monochromatic -→ C 3 by hypothesis and there exists a monochromatic u t+1 ; u t and we get the same contradiction. Hence (y q , y q+2 = u t+1 ) ∈ A(D). Consider the extended directed path u 1 -→ y q -→ y q+1 = u t -→ y q+2 = u t+1 -→ y q+3 , is monochromatic and of the same color as the -→ C 3 of (3) because they share the arc (u 1 , y q ) ∈ A(D). Analogously, if y q+3 = u 0 or y q+3 = u t+1 , we arrive to the same contradiction, γ has a symmetric arc.

The subclaim follows.

Continuing with the proof of Claim 1, we have the following directed path

u 1 -→ y q -→ y q+1 = u t -→ y q+2 -→ y q+3 ,
where u 1 , y q+3 ∈ A, y q ∈ B, y q+2 / ∈ A, y q+2 / ∈ V (γ) and y q+3 ∈ V (γ) using Subclaims 1-3. By the maximality of q, there exists (y q+2 , u 1 ) ∈ A(D) creating the monochromatic directed cycle -→ C 4 ∼ = (y q+2 , u 1 , y q , y q+1 = u t , y q+2 ).

Hence, there exists u 1 ; k y q+3 with k ≤ 2 and therefore, y q+3 = u 0 (otherwise, γ has a symmetric arc between u 0 and u 1 ) and then y q+3 = u t+1 with q + 3 < l. Consider the extended directed path

u 1 -→ y q -→ y q+1 = u t -→ y q+2 -→ y q+3 = u t+1 -→ y q+4 ,
where y q+4 / ∈ A (since y q+3 ∈ A). Therefore there exists an arc between u 1 and y q+4 . If (u 1 , y q+4 ) ∈ A(D), then by the maximality of q, we have that y q+4 = y 0 , a contradiction to (1). Thus, there exists (y q+4 , u 1 ) ∈ A(D).

On the other hand, since y q+3 = u t+1 ∈ A and y q ∈ B, there exists an arc between y q and y q+3 . If (y q+3 = u t+1 , y q ) ∈ A(D), then u t and u t+1 belong to the monochromatic -→ C 4 ∼ = (y q , y q+1 = u t , y q+2 , y q+3 = u t+1 , y q ) and thus there exists a monochromatic u t+1 ; u t , a contradiction, γ has a symmetric arc between u t and u t+1 . Hence (y q , y q+3 = u t+1 ) ∈ A(D) and we obtain the monochromatic directed cycle -→ C 4 ∼ = (y q , y q+3 = u t+1 , y q+4 , u 1 , y q )

of the same color of the -→ C 4 of (4) because they share the arc (u 1 , y q ) ∈ A(D). Thus, there exists the monochromatic u t+1 = y q+3 ; y q+1 = u t , a contradiction, γ has a symmetric arc between u t and u t+1 .

Claim 1 is proved.

Claim 2: y 0 ∈ A.

Proof of Claim 2. For a contradiction, let us suppose that y 0 / ∈ A. Then there exists an arc between u 1 and y 0 . By (1), there exists (y 0 , u 1 ) ∈ A(D). Hence the directed cycle

- → C 4 ∼ = (y 0 , u 1 , y l-2 , y l-1 , y 0 ) or - → C 3 ∼ = (y 0 , u 1 , y l-1 , y 0 )
is monochromatic and hence there exists u 1 ; k u 0 with k ≤ 2 (recall that y 0 = u 0 or y 1 = u 0 ). We arrive to a contradiction, γ has a symmetric arc between u 0 and u 1 , completing the proof of the claim.

To finish the proof of the theorem, we consider two cases according to Claim 1.

Case 1: j = l -2. By Claim 2, y 0 ∈ A and then y l-1 / ∈ A. Thus, there exists an arc between y l-1 and u 1 . By the maximality of j, there exists (y l-1 , u 1 ) ∈ A(D). Hence the directed cycle

- → C 3 ∼ = (u 1 , y l-2 , y l-1 , u 1 ) (5) 
is monochromatic by hypothesis and then there exists u 1 ; k y 0 with k ≤ 2. If y 0 = u 0 , then we have a contradiction, γ has a symmetric arc between u 0 and u 1 . Therefore y 1 = u 0 . On the other hand, there exists an arc between y l-2 and y 0 since y l-2 / ∈ A and y 0 ∈ A.

If (y 0 , y l-2 ) ∈ A(D), then the directed cycle - → C 3 ∼ = (y l-1 , y 0 , y l-2 , y l-1
) is monochromatic and of the same color as the -→ C 3 of (5). Thus, there exists u 1 ; k u 0 with k ≤ 2, particularly,

u 1 -→ y l-2 -→ y l-1 -→ y 0 -→ y 1 = u 0 ,
we have the same contradiction as previously. In consequence, (y l-2 , y 0 ) ∈ A(D). In addition, since y 0 ∈ A and y 1 = u 0 / ∈ A, there exists the arc (u 0 , u 1 ) ∈ A(D) (otherwise, (u 1 , u 0 ) ∈ A(D) yielding the same contradiction as before). Then the directed cycle -→ C 4 ∼ = (y 1 = u 0 , u 1 , y l-2 , y 0 , y 1 = u 0 ) is monochromatic and there exists a monochromatic u 1 ; u 0 , the same contradiction once more.

Case 2: j = l -1. In this case, there exists the directed path u 1 -→ y l-1 -→ y 0 . Therefore, y 0 = u 0 , otherwise we have a contradiction, γ has a symmetric arc between u 0 and u 1 . Hence y 1 = u 0 and since y 0 ∈ A by Claim 2, y 1 = u 0 / ∈ A. Thus, there exists an arc between u 0 and u 1 which should be (u 0 , u 1 ) ∈ A(D) (if not, (u 1 , u 0 ) ∈ A(D) and we have a contradiction). Therefore the directed cycle -→ C 4 ∼ = (y 1 = u 0 , u 1 , y l-1 , y 0 , y 1 = u 0 ) is monochromatic and there exists a monochromatic u 1 ; u 0 , the same contradiction once more.

This concludes the proof of the theorem.

2

In a very similar way as the proofs of the above theorems, we can show the following theorem for semicomplete bipartite digraphs. We summarize the known results on the existence of k-colored kernels for m-colored semicomplete multipartite digraphs and multipartite tournaments in the next two corollaries. We conclude this paper with the following challenging conjecture. If it were true, the resulting theorem would be a fine generalization of Theorem 3.3 proved in [START_REF] Galeana-Sánchez | Monochromatic paths and monochromatic cycles in edge-colored k-partite tournaments[END_REF]. 

Fig. 1

 1 Fig.1:-→ C 3 ↑ -→ C 3 and -→ C 4 ↑↑ -→ C 4, respectively.

2 Lemma 2 . 2

 222 is a y ; k x with k ≤ 4, a contradiction to the supposition of the lemma. Let D be an m-colored semicomplete r-partite digraph, k = 2 (resp. k = 3) and x, y ∈ V (D). If there exists x ; k y and there does not exist y ; k x with k ≤ 2 (resp. k ≤ 3), then d(x, y) ≤ 4.

Lemma 2 . 5

 25 Let D be an m-colored semicomplete bipartite digraph such that every -→ C 4 ↑↑ -→ C 4 contained in D is at most k-colored, k = 2 (resp. k = 3) and x, y ∈ V (D). If there exists x ; k y and there does not exist y ; k x with k ≤ 2 (resp. k ≤ 3), then d(x, y) ≤ 2.

(a) k ≥ 4 .

 4 The conditions of Lemma 2.1 are satisfied and we conclude that d(x, y) ≤ 2. (b) k = 3 and every -→ C 4 contained in D is at most 2-colored. The conditions of Lemma 2.3 are satisfied and we conclude that d(x, y) ≤ 2. (c) k = 2 and every -→ C 3 and -→ C 4 contained in D is monochromatic. The conditions of Lemma 2.4 are satisfied and we conclude that d(x, y) ≤ 2. (d) r = 2, k = 2 or 3 and every -→ C 4 ↑↑ -→ C 4 contained in D is at most k-colored. The conditions of Lemma 2.5 are satisfied and we conclude that d(x, y) ≤ 2.

Lemma 3 . 3

 33 Let δ be defined as before. Therefore (i) δ contains a directed path of length at least 3 and (ii) there are neither -→ C 3 nor flowers F s with s ≥ 2 in δ.

Remark 3. 4

 4 (i) If there exists a flower F s in δ, then s = 1.

Theorem 4 . 1

 41 Let D be an m-colored semicomplete r-partite digraph and k ≥ 4. Then D has a k-colored kernel.

Theorem 4 . 2 3

 423 Let D be an m-colored semicomplete r-partite digraph and k = 3. If every -→ C 4 contained in D is at most 2-colored and, either every -→ C 5 contained in D is at most 3-colored or every contained in D is at most 2-colored, then D has a 3-colored kernel.

2 Theorem 4 . 3 C 3 and - → C 4

 2434 a contradiction, γ has a symmetric arc between u 0 and u 1 .The theorem is proved. Let D be an m-colored semicomplete r-partite digraph and k = 2. If every -→ contained in D is monochromatic, then D has a 2-colored kernel.

Theorem 4 . 4 4

 444 Let D be an m-colored semicomplete bipartite digraph and k = 2 (resp. k = 3). contained in D is at most 2-colored (resp. 3-colored), then D has a 2-colored (resp. 3-colored) kernel.

Corollary 4 . 5

 45 Let D be an m-colored semicomplete r-partite digraph and r ≥ 2.

  (i) If r ≥ 3, k = 2 and every -→ C 3 and -→ C 4 contained in D is monochromatic, then D has a 2-colored kernel (Theorem 4.3). (ii) If r ≥ 3, k = 3 and every -→ C 4 contained in D is at most 2-colored and, either every -→ C 5 contained in D is at most 3-colored or every -→ C 3 ↑ -→ C 3 contained in D is at most 2-colored, then D has a 3-colored kernel (Theorem 4.2). (iii) If r ≥ 2 and k ≥ 4, then D has a k-colored kernel (Theorem 4.1 and Theorem 14 of [7]). (iv) If r = 2, k = 2 (resp. k = 3) and every -→ C 4 ↑↑ -→ C 4 contained in D is at most 2-colored, then D has a 2-colored (resp. 3-colored) kernel (Theorem 4.4).

Corollary 4 . 6

 46 Let D be an m-colored r-partite tournament with r ≥ 2. Then the conclusions (i)-(iv) of Corollary 4.5 remain valid. Moreover, (i) if r = 2, k = 1 and every -→ C 4 contained in D is monochromatic, then D has a 1-colored kernel (Theorem 2.1 of [8]), and (ii) if r ≥ 3, k = 1 and every -→ C 3 and -→ C 4 contained in D is monochromatic, then D has a 1-colored kernel (Theorem 3.3 of [9]).

Conjecture 4 . 7

 47 Let D be an m-colored semicomplete r-partite digraph with r ≥ 2. If every -→ C 3 and -→ C 4 contained in D is monochromatic, then D has a 1-colored kernel.
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where y q+3 / ∈ A (since y q+2 = u t+1 ∈ A). Then, there exists an arc between u 1 and y q+3 . If (u 1 , y q+3 ) ∈ A(D), then y q+3 = y l = y 0 , a contradiction to [START_REF] Bang-Jensen | The structure of strong arc-locally semicomplete digraphs[END_REF]. Thus, (y q+3 , u 1 ) ∈ A(D). Recall that (y q , y q+2 = u t+1 ) ∈ A(D). Hence,

is monochromatic by hypothesis. Thus, there exists u t+1 ; k u t with k ≤ 2, a contradiction, γ has a symmetric arc between u t and u t+1 . As a consequence of Subclaim 2, we have that y q+3 ∈ V (γ).

Proof of the Subclaim 3. For a contradiction, suppose that y q+3 / ∈ A. By Subclaim 1, we can suppose that y q+1 = u t ∈ V (γ). Consider the directed path

Then there exists an arc between u 1 and y q+3 (recall that u 1 ∈ A). By the maximality of q, we have that (y q+3 , u 1 ) ∈ A(D). By Subclaim 2, y q+2 / ∈ V (γ) and thus y q+3 ∈ V (γ). We consider two cases: Case 1: y q+2 / ∈ A. By the maximality of q, there exists (y q+2 , u 1 ) ∈ A(D) and the directed cycle

is monochromatic by hypothesis. If y q+3 = u 0 , then there exists u 1 ; k u 0 with k ≤ 2, a contradiction, γ has a symmetric arc between u 0 and u 1 . If y q+3 = u t+1 , then here exists u t+1 ; k u t with k ≤ 2, a contradiction, γ has a symmetric arc between u t and u t+1 . Case 2: y q+2 ∈ A. Then y q+1 / ∈ A and since y q ∈ B (see the proof of Subclaim 1), we have that y q+1 / ∈ B. Without loss of generality, suppose that y q+1 ∈ C. By the maximality of q, there exists (y q+1 , u 1 ) ∈ A(D) and therefore the directed cycle

is monochromatic. On the other hand, there exists an arc between y q and y q+2 . If (y q+2 , y q ) ∈ A(D), then the directed cycle -→ C 3 ∼ = (y q+2 , y q , y q+1 = u t , y q+2 ) is monochromatic and has the same color of the -→ C 3 of (3) because they share the arc (y q , y q+1 = u t ) ∈ A(D). If y q+3 = u 0 , then there exists u 1 ; k u 0 with k ≤ 2, a contradiction, γ has a symmetric arc between u 0 and u 1 . If y q+3 = u t+1 , then there exists u t+1 ; k u t with k ≤ 2, a contradiction, γ has a symmetric arc between u t and u t+1 . Hence, we conclude that there exists (y q , y q+2 ) ∈ A(D). In this case, the directed cycle -→ C 4 ∼ = (u 1 , y q , y q+2 , y q+3 , u 1 )