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Abstract—The identification of image regions associated with
external variables through discriminative approaches yields ill-
posed estimation problems. This estimation challenge can be
tackled by imposing sparse solutions. However, the sensitivity
of sparse estimators to correlated variables leads to non-
reproducible results, and only a subset of the important
variables are selected. In this paper, we explore an approach
based on bagging clustering-based data compression in order to
alleviate the instability of sparse models. Specifically, we design
a new framework in which the estimator is built by averaging
multiple models estimated after feature clustering, to improve
the conditioning of the model. We show that this combination
of model averaging with spatially consistent compression can
have the virtuous effect of increasing the stability of the weight
maps, allowing a better interpretation of the results. Finally, we
demonstrate the benefit of our approach on several predictive
modeling problems.
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I. INTRODUCTION

Using machine learning on neuroimaging data, brain re-
gions can be linked with external variables[1]. In particular,
linear predictive models are interesting as their coefficients
form brain maps that can be interpreted. However, because
of the high dimensionality of brain imaging data, their
estimation is an ill-posed problem and in order to find
a feasible solution, some constrains must be imposed to
the estimator. A popular way to solve that problem is to
use a sparsity constraint as it isolates putatively relevant
features. In practice, the high correlation between neighbor-
ing voxels leads to selecting too few features, and hinders
the estimators’ ability to recover a stable support. The
estimation instability causes a high variance of both the
prediction scores and the model coefficients, and therefore
may result in non reproducible findings [2], [3]. To mitigate
this instability, stability selection [2] adds randomization
to sparsity for feature selection. More generally, two main
classes of methods are known to stabilize models with high-
correlated features. Feature clustering based methods reduce
both the local correlations and the dimensionality of the
data [4], [5]. Model aggregation methods –such as bagging–
generate new training sets from an original one with data
perturbation schemes. They build multiple estimators from
the perturbed data to combine them in an estimate with
reduced variance. Stability selection methods [2], [6] are
variants that use sparsity to perform feature selection. In [5],

the authors found that, for fMRI data, combining clustering
with stability-selection method can select a small number of
voxels that increases the prediction score and enhances the
interpretability of the weight maps.

Our contribution: Clustering reduces the local correla-
tion of the voxels as well as the dimensionality of the data
at the expense of spatial resolution. We propose to combine
it with bagging to mitigate the loss of spatial resolution.
Importantly, we do not rely on feature selection but on model
averaging, which is an easier problem and enables us to cut
computation times. We show that our method outperforms
standard sparse classifiers in prediction accuracy, feature
recovery, and computational efficiency.

Our method relates to the model proposed in [5] but
differs in the following: i) we rely here on bagging rather
than voxel selection, and ii) our model estimates far fewer
classifiers, which makes it computationally more efficient.

II. METHODS

Sparse recovery: Consider the linear regression model

y = f (Xβ + ε) , (1)

where f(.) represents the decision function, y ∈ Rn is the
categorical/behavioral variable related to the experimental
condition, X ∈ Rn×p represents n observed brain images
composed of p voxels, and ε is a noise vector where
ε ∼ N (0, σ2In). Given a pair (y,X) the goal is to estimate
the unknown weight vector β ∈ Rp. Typically, n is a few
hundreds of images while p can be thousands of voxels
(p � n). Due its high-dimensional and ill-conditioned
nature, the model (1) is not identifiable. This challenge
can be tackled by imposing a sparse estimate for β, e.g.
by seeking a small number of non-zero β-coefficients. The
standard approach relies on using `1 penalization:

β̂(λ) = argmin
β∈Rp

(L(y,X, β) + λ‖β‖1) , (2)

where λ ∈ R+ is the regularization parameter that controls
the amount of sparsity in the estimate β̂, and L(y,X, β) is
the loss function that measures the quality of the estimator.
Here, we focus on the logistic loss, log(1 + exp(−yXβ)),
given that it is well-suited for classification settings. The
corresponding classifier is a sparse logistic regression (SLR),
used routinely in neuroimaging [7].



Formal conditions for success in the recovery of an
s-sparse vector require the irrelevant variables not to be
too correlated with the relevant ones. This is known as
Incoherence or Irrepresentability criterion [8]. In practice,
if several columns of X are strongly correlated, sparse
estimators will select arbitrarily only one of them, leading
for instance to a high rate of false negatives in the support
estimation (see Fig. 4). Below, we address this issue, using
clustering techniques.

Clustering: Clustering techniques have been frequently
used in medical imaging as a means to compress informa-
tion, with empirical success [9]. Indeed, they account for
the latent structure of these images. The aim of clustering
methods is to define a suitable partition of the image volume,
where local averages of the signal are grouped, capturing
the local correlations into spatial clusters. By doing this,
the high-frequency noise is reduced while preserving the
low-frequency signal of interests. Let (ui)i∈[q] be the set
of projectors to q spatial components (clusters), the reduced
design Xred ∈ Rn×q is defined as

Xred = RNN(X, q) = 〈X, ui〉 , ∀i ∈ [q]. (3)

The ensuing estimates can then be embedded back into the
original space (lossy compression) by inverting the projec-
tors as a piecewise constant mapping, yielding Xcomp ∈
Rn×p . Xred is expected to yield better-behaved estimates,
as there are less variables and less correlation between
them. Data clustering can be performed through various
approaches, such as k-means or agglomerative clustering.
Here we use a recursive nearest neighbor agglomeration
(RNN ) taking into account the 3D image lattice structure.

Bagging multiple clusterings: As a given clustering is
a lossy representation of the image domain, we use multiple
clusterings and average the results across them. For this
purpose, we sub-sample the data, resorting to standard K-
fold approaches as in cross-validation: each clustering is
slightly different in each fold1. On each fold, we estimate a
linear model with the corresponding clustering. We finally
average models across folds. Thus the different clustering
solutions complete each other and each weight map does
not reflect only one given set of clusters. The benefit of
using a K-fold approach is also that we can use the out-
of-bag prediction error to set the hyper-parameters of the
estimator: in each fold, we compute a regularization path,
and select on this path the estimator that minimizes the error
on left-out data. A summary of this method is presented in
the algorithm 1.

III. EXPERIMENTS

As our aim is to assess model stability and prediction
accuracy, we directly turn to a series of discriminative tasks

1In practice, when performing clustering, we have found it useful to
further sub-sample the observations, to increase the spatial entropy of
clusters across different folds.

Algorithm 1 Sparse Clustered Logistic Regression (SCLR)
Require: Input data X with shape (p, n), q number of clus-

ters, [λ1, . . . , λM ] ∈ Λ ⊂ R+ the range of values for the
sparsity-inducing penalty, J the number of resampling
sets kj , sub-sampling fraction π ∈ [0, 1].

1: for j ← 1 to J do
2: X̃← X[kj ] ∈ Rπn×p (Sub-sample)
3: Xred ← RNN

(
X̃[k], q

)
, Xred ∈ Rπn×q

(Image reduction)
4: for m← 1 to M do
5: β̂mred(λm)← arg min

β∈Rq

{L(y,Xred;β) + λm‖β‖1}

(Solve the `1 logistic regression)
6: end for
7: β̂jbest-red ← µ

(
(β̂ired)i∈[1,...,J]

)
(µ selects the best estimator)

8: β̂jbest ← RNN−1(β̂kbest-red)
(Returning to the voxels space)

9: end for
10: β̂agg ← J−1

∑J
j=1 β̂

j
best

(Mean aggregation of the best models)
11: return Solution β̂agg

involving public neuroimaging datasets (either anatomical or
functional) to evaluate how reproducible the predictions and
coefficients obtained through SLR/SCLR are.

functional Magnetic Resonance Imaging (fMRI).: We
use 4 studies drawn from the OpenfMRI2 project [10].
Specifically, we relied on the object recognition tasks and
cueing tasks. Contrasts of these tasks were obtained by
general linear model application upon the preprocessed data
resampled at 3mm resolution in the MNI space, which
yields about 54, 239 voxels. We focus here on the binary
classification problem that consists in predicting which task
the subject was performing (e.g. viewing a cat or a chair) in
an inter-subject discrimination setting.

Anatomical: We performed a discriminative task on the
OASIS dataset [11]: prediction of the gender of the subject.
We used 403 anatomical images and processed them with
the SPM8 software to obtain VBM modulated grey matter
density maps sampled in the MNI space at 2mm resolution.
The images were masked to an approximate average mask
of the grey matter, leaving 140, 398 voxels.

For the training step, we leave half of the subjects out, so
that the other half remains unseen by the estimator. To assess
the stability of the model, we create a set of artificial data
from the training data using 80 Bootstrap samplings, then the
estimator is trained and tested on the unseen test data. When
clustering (reduction) is applied, the number of clusters is
defined as q ≈ 10% p, this number of clusters represents
a good trade-off between resolution and compression on

2https://openfmri.org/data-sets

https://openfmri.org/data-sets


brain images, and with a sub-sample fraction of π = 0.6
(this number can be chosen arbitrarily in ]0, 1[). The inner
fold is a Leave-One-Subject-Out cross validation. The set of
regularization parameters Λ is defined as a grid of 24 values
in the log-scale [10−5, 105] interval.

Implementation aspects: The data that we used are the
publicly available OASIS and OpenfMRI datasets. We relied
on the scikit-learn library [12] (v0.15) for machine learning
tasks (logistic regression) and for clustering. We relied on
the Nilearn library for interaction on neuroimaging data.

IV. RESULTS

We benchmark our novel approach against a standard
sparse logistic regression, by considering its impact on
accuracy and the stability of the brain maps. In the
following, SLR denotes the sparse logistic regression and
SCLR denotes the sparse clustered logistic regression.

Prediction accuracy: A scatterplot of the F1 scores (i.e.
harmonic mean of precision and recall) computed over 17
binary classification tasks is presented in Fig. 1. Average
scores are given in table I. This shows that the SCLR often
obtains a higher F1 score than the classical SLR.

Stability: Fig.3 shows the dice coefficient used to
measure the spatial overlap between the most representative
coefficients of the linear estimator across different bootstrap
realizations. We observe that the bagged clustering approach
increases the overlap of the weight maps, going from 10%
to 16% in average, and contributes to the stabilization of
the weights by improving the conditioning of the model
and reduction of statistical fluctuations. Fig.2 shows the
Z-scores of the maps across bootstrap replicates for two
discriminative tasks. We can observe that bagged clustering
increases the stability of the weights through a reduction of
their variance. In Fig 4 we can see that the bagged clustering
approach effectively mitigates the loss of spatial resolution
produced by sparse models, increasing the number of true
positive detections and leading to a better feature recovery.

Finally, using cluster-based methods to reduce the dimen-
sionality of the problem yields better classification perfor-
mance on the reduced space than the whole volume with a
much smaller computation time (by more than one order of
magnitude). For instance, on the ds108 dataset, we observe
a 15-fold speed increase: SLR = 7.64s, SCLR= 0.49s.

V. DISCUSSION

We have devised a strategy for enhancing the prediction
scores and stability of sparse linear estimators. We built an
ensemble of feasible models that maximizes the explainable
variance for each fold of cross-validation and decreases
collinearity effects by clustering. This model comes with
significantly reduced computational cost with respect to the
standard sparse classifiers, as it performs the model fitting
on a smaller dimensionality and model averaging during the
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Figure 2. Z-score obtained across bootstraps for two discriminative tasks,
using the candidate approaches. Higher values hint at lower variability
across bootstrap replications. SCLR decreases the variability and yields
larger standardized effects.

cross-validation step. While there is no guarantee that the
spatial clustering is meaningful per se, it brings a good
dimensionality reduction that minimizes information loss
and captures better the signal than noise. Our experiments
demonstrate the ability of the averaged estimator to achieve
higher or equal prediction scores in less computational time.
But, more importantly, it enhances the interpretability of the
results by reducing the variance of the resulting patterns.
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Figure 1. Comparison of the prediction accuracy
across approaches: each point represents the F1-score
obtained for a given discrimination task and Boostrap
sampling in SCLR vs SLR. The observed difference is
significant (p < 0.005 , paired Wilcoxon rank test).

SLR SCLR0.0

0.1

0.2

0.3

0.4

0.5

D
ic

e
co

ef
fic

ie
nt

Figure 3. Spatial overlap of the maps, thresholded at 95% and obtained
through bootstrap sampling (80 replications), in 17 classification problems.
The boxplot represents the 80×79

2
× 17 Dice coefficients obtained through

the different approaches. This shows that the bagged clustering approach
increases the stability of the weight maps in average.
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