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On the Use of Tracking Loops for Low-Complexity Multi-Path Channel
Estimation in OFDM Systems *

Huagiang Shu | Eric Pierre Simon f and Laurent Ros T

Abstract—This paper treats pilot aided multi-path channel
estimation with tracking loops for OFDM systems under slow
to moderate fading conditions. Recent works have presented
theoretical results for the tuning of second-order and third-
order tracking loops in the particular context of Jakes’s Doppler
spectrum channel. The method for getting the loop coefficients
resorted either to the use of a given constraint, which made
the obtained coefficients sub-optimal, or was obtained in part
by simulations. Here, we perform a global optimization of the
coefficients without constraints to get the optimal coefficients,
and analytical formulas are provided. One remarkable result of
this optimization is that only the natural frequency depends on
the transmission parameters, i.e., the channel Doppler spectrum,
the power delay profile, and the noise variance. Consequently,
only one parameter has to be tuned. Moreover, asymptotic
performance is formulated in a more general way as a function of
the 2rth moments of the Doppler spectrum (r is the loop order).
Hence, all our derivations are usable for any Doppler spectrum
and are not specific to Jakes’s Doppler spectrum. A complete
table sums up for the three orders the theoretical results of the
optimal coefficients together with the asymptotic performance.
The performance is also compared with that of the asymptotic
Kalman filter.

Index Terms—OFDM, Channel estimation, Kalman filter,
Phase-locked loop

I. INTRODUCTION

This paper treats pilot aided multi-path channel estimation
for orthogonal frequency division multiplexing (OFDM) trans-
missions under slow to moderate fading conditions. In the
OFDM technique, a wide-band frequency-selective channel
is converted to a number of parallel narrow-band flat fading
subchannels that are free of inter-symbol interference and
inter-carrier interference (for negligible channel time varia-
tions within one OFDM symbol period 7'). However, reliable
estimation of the channel is crucial in order to recover the
information symbols. Most of the conventional channel esti-
mation methods work with a symbol-by-symbol scheme [2]-
[4], using the correlation of the channel only in the frequency
domain, i.e., the correlation between the subchannels. More
advanced algorithms also exploit the time-domain correlation
of the channel, and various approaches are possible, as re-
viewed in [5]. In this paper, we focus on the class of parametric
estimators that track the complex amplitudes (CAs) of the
paths of the channel, assuming a primary acquisition of the de-
lays. Also, we assume moderate normalized Doppler frequency
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(f4T) values, i.e., f4T < 10~2, whereby the channel variation
within the duration of one symbol can be neglected (as in
[4], [6]-[11]). Note that this scenario typically corresponds to
low mobility with the classical standards, like LTE or WiMax,
but could also correspond to high mobility since low carrier
frequencies are investigated with the development of cognitive
radio. For instance, VHF/UHF television broadcast bands from
54 MHz to 862 MHz [12] and aeronautical bands from 960
MHz to 1215 MHz are planned for deployment. For such
systems, f41 values around 10~2 can correspond to several
hundreds of km/h.

A natural way to perform a joint estimation of the multi-
path CAs is to use Kalman filters (KFs). In this perspective, a
linear recursive state space model, such as the rth order auto-
regressive model, ARr, or the rth order integrated Random
Walk model, RWr [13], has to be used to approximate the
dynamics of the the channel CAs (see [5]). AR model Kalman
filters are widely used in OFDM systems [6], [7], [14], [15],
based on a correlation matching (CM) criterion to fix the ARI
coefficient. To pursuit a more precise estimate, especially in
slow to moderate fading conditions, the asymptotic variance
(MAV) criterion has been proved to be more efficient [16]-
[18], associated to either the AR model or the RW model. Re-
cent research in [13], [19] has shown analytically (for a single-
carrier single path Rayleigh channel with Jakes’s Doppler
Spectrum scenario) that the Asymptotic Mean Squared Error
(AMSE) performance of KFs can be improved by switching
from a first-order model, e.g., ARl or RWI1, to a second-
order RW or a third-order RW model. The resulting RW2-
KF and RW3-KF have been shown to better take into account
the fact that the exact path CA continues in a given direction
for several symbols if f;7 is low, and then shows a strong
trend behavior. The larger the order of the model, the better
the approximation of the actual fading statistics, but also the
greater the computational complexity.

However, the KFs for the joint estimation of the path
CAs in OFDM are very complicated. We now focus on a
reduced-complexity adaptive algorithm based on a Complex
Amplitude Tracking Loop (CATL), and referred to here as
RWr-LS-CATL. It can be interpreted as a simplification of
the reference RWr-KF, for the same model orders » = 1,2 or
3. The RW2-LS-CATL algorithm was introduced in [20], then
theoretically analyzed in [5]. Such an algorithm is generally
slower than a second-order KF during the convergence, but
shows almost the same asymptotic performance (e.g., the
performance obtained in tracking mode). This algorithm is



inspired by digital Phase-Locked Loops (PLLs), as well as
by the “prediction—correction” principle of the KF in the
steady-state mode [21], [22], given the close link between the
two [23], [24]. As its main advantage, the RWr-LS-CATL
presents a linear complexity in terms of the number of pilot
sub-carriers N, versus a cubic complexity (O(N;})) for the
reference Kalman algorithms (details in Section III).

Inspired by digital PLL, the RWr-LS-CATL is based on
a CATL structure, and on a specific CA error signal. This
error signal is created from the LS estimate of the path’s
CA obtained from the pilot subcarriers of the current OFDM
symbol. The key ideas that allow interpreting the RWr-LS-
CATL as a simplified algorithm compared to RWr-KF rely on
two main points: its per-path processing, and its steady-state
mode. First, the front-end pilot-aided LS estimator permits
converting the primary observation at pilot frequencies into a
primary (instantaneous) estimate of the path’s CAs, and then
obtaining separate error signals for each of the L paths. The
use of the LS estimator allows us to have in output a per-
path processing with L branches that track each path CA
separately, instead of the full joint processing as in the highly
complicated RWr-KF algorithm. Consequently, the per-path
processing gives a first reduction in complexity with a RWr-
LS-CATL that acts in each branch [, i.e., for each multi-path
component oY), as a single-path single-carrier RWr-CATL
[24]. Secondly, the single-path single-carrier RWr-CATLs
used in each branch can be viewed as steady-state versions of
the single-path single-carrier RWr-KFs. Then, we gain here a
second reduction in complexity compared to the Kalman-based
algorithms, since the single-path single-carrier RWr-CATLs
are constant coefficient filters, unlike the single-path single-
carrier RWr-KFs, which require matrix inversion at each
iteration to update their time-varying coefficients. However,
we can expect almost the same AMSE performance since
[13] has proved that the single-path single-carrier RWr-KF
is equivalent in steady-state mode and slow-tracking scenario
to the single-path single-carrier RWr-CATL with fixed given
parameters (specified in [13]).

The contribution of this paper is multi-fold, as an extension
of our previous studies that were restricted either to the
second-order loops and the Rayleigh channel with Jakes’s
Doppler spectrum, or to the single-carrier single-path scenario.
In this paper we perform and present for the first time a global
optimization of the r coefficients of the RWr-CATL in order
to minimize the AMSE. Note that in our previous paper, [24],
dedicated to single path single carrier systems, the method of
getting the loop coefficients for the third-order loop resorted to
the use of a given constraint (see [24], Eq. (65) or appendix
C), which made the obtained coefficients sub-optimal. And
in the previous paper, [5], dedicated to the second-order loop
(r = 2), we optimized analytically only one parameter, the
natural frequency of the loop f,,, and the other parameter (the
damping factor () was fixed (at %) only by means of a grid-
search numerical optimization (see [5], figure 3). Note that
part of our previous studies is used as a preliminary to this
paper. A table summarizing these previous results is provided
(see Table I) so that the interested reader can go back to the
original developments. In this table, the global optimization

means the optimization obtained without constraint.

One remarkable result of the present paper is the analytic
proof that despite a global optimization, only one optimal
parameter, the natural frequency f,, depends on the trans-
mission parameters, i.e., the channel Doppler spectrum, the
power delay profile, and the noise variance. Consequently,
only this parameter f,, has to be tuned, even if we have a
structure with » = 2 or 3 parameters. In other words, the
remaining 7 — 1 parameters can be fixed to the optimal values
delivered in this paper, regardless of the channel condition.
This study provides then a complete table of the analytic
formulae for the tuning and steady-state performance of the
RWr-LS-CATL (r = 1,2, 3), usable for the multi-path multi-
carrier scenario and adaptable to any Doppler spectrum model
of a wide-sense stationary channel. Indeed, the asymptotic
performance is formulated in a more general way than in
our previous papers, as a function of the 2rth moments of
Doppler spectrum, where r is the loop order. Hence, all our
derivations are usable for any Doppler spectrum and are not
specific to Jakes’s Doppler spectrum as in our previous papers.
For example, a 3D scattering model is more suitable than the
Jakes model for an urban environment [26]. So we apply our
formula for the 3D Doppler spectrum, and check their validity
by means of simulations. In the same way, another contribution
of the paper is the generalization to the second and third order
loop of the link between the maximum frequencies of the Jakes
and 3D model Doppler spectra that give the same asymptotic
performance. This link could be obtained directly from the
literature for the first order loop for which the performance
depends on the second-order moment of the Doppler spectrum.
Indeed it was shown in [27] that the second-order moment of
the Jakes channel model and a 3D (flat spectrum) model could
be matched by adapting the maximum Doppler frequency. We
have thus extended these previous results to the fourth- and
sixth-order moments, which can be exploited to calculate the
AMSE of the RW2- and RW3-LS-CATL. A last contribution
of this paper is a performance comparison between the AMSE
of the tracking loops and that of the Kalman-based channel
estimator for OFDM recently proposed in the literature [28]
[29].

It is noteworthy that the RWr-LS-CATL refers to the multi-
path multi-carrier context whereas the RWr-CATL refers to
the single-path single-carrier context. This paper is organized
as follows: Section II presents the model. Section III gives the
per-path presentation of the RW-LS-CATL, and a summary
table containing the loop characteristics, the analytic formulae
for the tuning, as well as the optimized performances. Finally,
Section IV presents some simulation results and conclusions.

Notation: [x];, denotes the kth entry of the vector x, and
[X]m,n denotes the [m,n]th entry of the matrix X (indices
begin from 1). The notation diag{x} denotes the diagonal
matrix with x on its main diagonal; blkdiag{X,Y} is the
block diagonal matrix with the matrices X and Y on its main
diagonal. Iy is the N x N identity matrix. The symbols {-}T,
{-}# and ® stand for the transpose, Hermitian conjugate, and
Kronecker product, respectively.



TABLE I: Relevant works from the authors (or the same group) on similar topics on CATL (AMSE performance with f;T < 1,

link with asymptotic KF)

Paper algo model modulation Doppler optimization comments
type / order / channel / type
(201 CATL RW OFDM Jakes global CATL 1st proposition,
(conf.) 1,2 multipath numeric no AMSE formula
(51 CATL RW OFDM Jakes global JnTakes): theory
(journal) 1,2 multipath theory/numeric ¢: numeric
[19] KF RW  single-carrier Jakes global asympt. RW2-KF (var. O',i)
. ; . as _ V2
(conf.) 2 single-path theory seen as CATL (¢ = Tl,
~ Ll ( %u 35
fnT ~ QW(UL )2)
(25] CATL PLL single-carrier Jakes constrained fnTakes): theory
(conf.) 3 single-path theory/numeric m & 3, ~ 0.37: numeric
(24] CATL RW single-carrier Jakes constrained fnTakes), m ~ 3.19,
(journal) 3 single-path theory ¢ =~ 0.39: theory
[13] KF RW  single-carrier General, global asympt. RW3-KF (var. Ui)
(journal) 3 single-path Jakes theory seen as CATL (m = 2,
1
(=3 TR (F)3)
present AT RW OFDM  General, global FnTopy and AMSE w.rt. Sy,
paper 1,2,3 multipath Jakes, 3D theory Cloptys Mopyy for a given r
c e l
II. SYSTEM MODEL AND ESTIMATION OBJECTIVE individual elements of {O‘Ek;))} (I=1,...,L) are uncorrelated

A. OFDM transmission

Let us consider an OFDM system with /N sub-carriers, and
a cyclic prefix length N,. The duration of an OFDM symbol is
T = NpTs, where Ty is the sampling time and Np = N+ N,,.
Let x(3) be the sequence of transmitted elementary symbols
of the kth OFDM symbol. The nth element [X()], (n =
1,..., N) is the phase-shift modulated (M-PSK) or quadrature
amplitude modulated (M-QAM) symbol transmitted on the
sub-carrier with index n—1— % The sequence of transmitted
symbols is assumed to be zero-mean and stationary with unit
variance: E{|[x(k)}n’2} = 1. Then, a quasi-static channel
is considered where the channel may vary from one OFDM
symbol to the other, yet constant within one OFDM symbol.
This corresponds to a low mobility scenario. Let us consider
the following parametric channel impulse response with L
paths at the kth OFDM symbol:

L
hao(r) = Y aghd(r - rOT) (1)
=1

where a&)) is the complex amplitude of path [ and (T is

the corresponding physical time delay (7(") is not necessarily
an integer, but & < Ng). Note that our work is developed
in the framework of parametric (physical) channel model with
the assumption of primary acquisition of the path delays as
in [9], [10], instead of the discrete-time equivalent channel
framework in [29]-[32]. The variable 0482) is supposed to
be a narrow-band stationary process, with power spectral
density (PSD) I',,(f) with support limited within £ f;. The L

with one another, with global variance o2 = ZlL_l o2y We

. . =1"a
assume in the present study that during one OFDM symbol
time, the CA in each path can be considered as a constant.
As a consequence, the kth received OFDM symbol y;, after
transmission over the multi-path channel and fast Fourier
transform demodulation, is given by

Yoy = diag{h} - Xy + W), 2)

where w(;,) is an NV x 1 zero-mean complex circular Gaussian
noise vector with covariance matrix 021 and ﬁ(k) isaNxl1
vector containing the frequency response of the channel for
the k&th OFDM symbol, H(k)( f), evaluated at the subcarrier
frequency positions f = —Z . Af+nAf ,forn=0,..,N—1,

where Af = ﬁ is the subcarrier spacing :

- N/2 N/2—1\1"
hy = |:H(k) (_NTS) N ) (NTSH (3)

with:
L

—jonfrOT,
Hyo(f) =D af)e 20T )
=1

The observation model (2), based on a N x N diagonal matrix
H(;) = diag{h)} containing the channels elements, can be
equivalently written by the following model (5), based on a
N x N diagonal matrix diag{x(;)} containing the symbols :

Yo = diag{x(} - Ay + W, 5)



The vector ﬁ(k) containing the frequency response of the
channel, with its elements given by

=1

i)

can be rewritten by the inner product:

ﬁ(k) = F ap,, (7N

where o) = [agllg)) ag,f))] is an L x 1 vector containing
only the CAs, and F is an N x L Fourier matrix depending
only on the delay distribution, with elements given by [F],; =
eIt %)T(”, forn=1,..,.N,l=1,..., L.

Using (7) and (5), the observation model of (2) can be re-
written [9] as

Yoy = diag{xp)}F o) +wep. )

The IV, pilot sub-carriers are evenly inserted into the N sub-
carriers at the positions P = {ny|n, = (p— 1)Ly + 1, p =
1,...,N,} with Ly the distance between two adjacent pilots.
The received pilot sub-carriers can be written as

Yok) = X)) + Wp(k) ©)
with Xy = diag{xp(x) }Fp. The N, x 1 vectors x, y, and w,
correspond, respectively, to the sent data symbol, the received
data symbol, and the channel noise on the pilot sub-carriers.
The N, x L matrix F}, is the Fourier matrix of the pilot sub-
carriers, with elements given by [Fp], ; = e (=m0
where n, € P.

B. Channel model

First, we assume that the L CAs 0483) are independent

wide-sense stationary zero-mean complex circular Gaussian
processes, namely the Rayleigh channel model (due to the law
of the modulus of the CA). Second, the wireless mobile chan-
nel could be modeled differently, using different correlation
functions R((f()l) = E[aE%aEQin)] or, equivalently, a different
Doppler PSD T' o) (f).

a) “Rayleigh—Jakes” model: The “Rayleigh-Jakes”
model [33] is the most accepted model, with correlation
coefficients for the time-lag ¢ given by

RUD) Jakesy = 020 027 faTq), (10)
where Jj is the zeroth order Bessel function of the first kind.

The channel has a ‘U’-shaped Doppler spectrum defined by

S ACR
sof-(E)

fa

0, if

|f] < fa
Ifl = fas

where f; is the maximum Doppler frequency.

Fa(”(]akes)(f) = (11)

b) 3D model: Besides, Clark et al. [26] find that, in an
indoor environment, the 3D model can properly describe a
real channel with a constant spectrum within the maximum
Doppler frequency:

2
T it |f] < f
Lowapy(f) = { 2f ! =Jd (12)
o 0 if |f]> fa,
with the correlation function defined by
R p) = 02 sine(2faTq). (13)

We will see that the results summarized in this paper are
usable for all channels as long as the Doppler spectrum is
known.

C. Estimation objective

For an estimator &y of o), the AMSE (mean value per
path) is defined by

9 1

oe=7E {(ovry — @)™ (14)

) = aw)}-
The estimation objective is that the AMSE o2 approach the
Bayesian Cramer—Rao bound (BCRB). The on-line BCRB
for the estimation of c ) from the present and previous
observations over a multi-path Rayleigh fading channel and
OFDM modulation has been calculated by [34].

III. PER-PATH STRUCTURED RW-LS-CATL
A. Equations of the RW-LS-CATL

Inspired by a PLL structure, the RWr-CATL is an rth order
loop used for tracking the CAs of a single-path (flat-fading)
channel in a single carrier system. The derivation of the CATL
structure from the KF was carried out in [24] for the single-
path single-carrier context. This can be extended, in the case
of a multi-path channel in a multi-carrier system, to a vector
structured loop by employing a vector error signal at the front-
end of the main loop [5] [20]. The equations of the vector
CATL algorithm are given below.

Error signal:

Vek) = f {Yp(k);d(ldk—l)}’ (15)
Loop filter:
angl(k) = vLagl(k‘—l) + /vE(kt)’ (16)
Uraga(k) = Vrag2(k—1) T VLagi(k)> (17)
Ve(k) = M Ve(k) T H2Vragi(k) + U3 VrLag(k—1)> (18)
Numerically controlled generator:
Q(kt1)k) = Oklk—1) T Ve(k)s (19)
Final estimation:
Q(k|k) = Ok|k—1) T H1Ve(k)- (20)

Note that the error signal vy in (15) is used to drive
the loop; it is usually defined as a function f{-} of the
current received pilot symbol y ;) and the previous prediction
Q1 |k—1)- Different error signals are possible, but lead to
differing performances [20].



B. Error signal

The error signal employed in the RWr-LS-CATL is defined
by

Vek) = Gi)Yp(k) = C(klk—1)

= Qus(k) — Ok|k—1)> (21)

-1
with Gy = (XgC)X(;g)) ch) the LS operator. The loop
equation (15) is then replaced by (21).

By using (9) and the definition of G, we have

Qus(k) = OUk) T Wis(k)s (22)
with W4y the input noise of the loop:
Wis(k) = Gy Wp(k)> (23)
with the covariance matrix
-1
B { Wiy - Wik =02 (FiR) T @4
The input loop noise for the path [ is
-1
oo =od [(BE) ] . (25)

The average noise variance for a single path (0% =
. SE o2 ;) can be calculated to be

2
2 Ow
Oy = A+ —, (26)
LS N,
with \ a normalizing factor (> 1) defined by
N, _
A= T” - Trace { (Fi'F,) ™'} (27)

Note that Trace{(Ff Fp) "'} depends on the channel power
delay profile. In general, A > 1, while in the special case that
Ff Fp is a diagonal matrix equal to NpI;, one has A = 1.
This occurs only when the path delays of channel 7()T} are
multiples of the sampling time T}, i.e., if the 7(!) are integers
(see [28], appendix A for more details).

According to (15), the error signal vy is actually the
difference between the noisy observation of the CA vector
Q5(k) (see (22)) and the last prediction g x—1). The role
of the LS estimator is to produce a preliminary estimate of
a from the pilot sub-carriers of the current OFDM symbol.
Such an error signal remains co-linear with the prediction error
Q (k) — O(k|k—1)» and is free from inter-path interference.

C. Per-path presentation of the RW-LS-CATL

The RWr-LS-CATL can thus be interpreted as a parallel
structure that is in fact a juxtaposition of L single-path
single-carrier RWr-CATLs combined with an LS estimator, as
illustrated in Fig. la. This figure gives a per-path structured
presentation of the RWr-LS-CATL, with each branch corre-
sponding to a scalar single path RWr-CATL (Fig. 1b). As
we can see in the branch structure figure, the RWr-CATL is
controlled by r loop coefficients. For = 3, the algorithm is
controlled by three real positive parameters 1, pe and s,
for r = 2, u3 = 0, and for r = 1, puo = puz = 0. We
have also connected these three parameters with the ones used

(1) &0
ALs(k) / / (k[k)
7> RW-CATL 7
1 1
path(1)
Yp(k) Qrs(k) 0 & Q(k|k)
/ Yrs(r) / (kIk)
o /| RW-CATL ++>
N, L 1 1 L
path(l)
A () ()
QLS(kJ/ /a(k'lk')
7 RW-CATL 7
1 1
path(L)
(a) global structure of the RW-LS-CATL
RW-CATL
o CA Error Detector o _Loo_p Fil_ter ______
Susol [N " Ve 7 o ot
NI 1 gl H N
A | P l
{U] '
il e N N T Pl
(e e :
() : |
I Z_l Uaga(k) H |
I oDyl 1 :
| NPAg : |
\ A ! ]
N e e e e e e e — - _: -7
correction
Q(k|k—1) é ("'&)k)
------ B T i T C R EEtl BN
Numerically controlled CA generator
M () N
| Tt N1 Vel
e ,
\ A ,

(b) RW-CATL structure of path (1)

Fig. 1: Presentation of the RW-LS-CATL

by a third-order PLL, the capacitance ratio m, the damping
factor ¢, and the natural frequency f;,, (or the natural impulsion
wy, = 27 fy). The relations between [u1, po] and [(, f,,] for
the second-order loop, as well as between p; and the cut-off
frequency f,, are found for the first order, as summarized in
Table II. Also, we would like to point out that, for a third
order loop, the loop filter structure is not unique: the structure
presented in 1b is deduced from a RW3-KF; if the CATL is
deduced directly from a third-order PLL, then the structure is
slightly different, but can lead to the same AMSE variance,
as shown in [25]. The analysis of the RWr-LS-CATL can
be carried out by exploiting the results for the corresponding
RWr-CATL.

D. Asymptotic MSE of the RW-LS-CATL

In single-path single-carrier scenarios, the asymptotic ex-
pressions of the RW-CATL were given in our previous paper
[24]. These results can be applied to every branch (each one
corresponds to a single path, according to (22)) of the RW-
LS-CATL by using the loop noise variance st(l) instead of
the observation noise variance o2:
= Ufau) + 02 (28)

2
Ot ew(®)
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Fig. 2: AMSE versus loop parameters for different channel conditions (3D or Jakes Doppler, SNR=0 or 20 dB). (a) » = 1,
AMSE versus fn/fa ; (b) 7 = 2, AMSE versus ¢ ; (¢)-(f) » = 3, AMSE versus (m, ()
. Red points indicate the theoretical global optimum parameters. Black points indicate sub-optimum parameters with
constraint (36). Green points indicate the equivalent optimized parameters for RW3-KF.

where afa(l), the dynamic error variance, results from the
high-pass filtering of the input CA «(y while Ufw(,), the
static error variance, is the low-pass filtering of the input loop
noise. We are interested in the global variance. Therefore, the
variance of the estimation error is the average value of the two
components:

1 L 1 L
02——5 o2 —|——E o? = g2 —|—02
€ L l_l e L o ew® T Yea ew"*

The average dynamic error variance is calculated by the
averaged spectrum:

(29)

+o ‘
oz, / To(f) |1 —L(?™T)2df, (30

—ar

where T'o(f) = £ 37, Tow (f) and L(2) is the low-pass
transfer function of the RWr-LS-CATL, expressed in the z-
domain, or in the frequency-domain for z = /277 The
function £(z) is expressed in terms of the loop coefficient.
To preserve a physical meaning, £(e*T) in the s-domain
(with s = j27f) can also be approximated by the analog
PLL transfer function £(e*T). Note that the approximation
L(e5T) = L(e*T) is valid under the condition fT" < 1, which
yields e=*T ~ 1—sT. The exact transfer function £(z) and the
approximated one ﬁ(eST) are given in Table II (first part). Fig
3 shows the magnitude-frequency diagram of £(z), 1 — L(z)
as well as £(e*T) for the RWr-LS-CATL.

|L(2)] RW2-LS-CATL

|L(z)| RWI-LS-CATL

|L(z)| RW3-LS-CATL

o L(s)
1 - [(z)| RWI-LS-CATL
-70r [1 = L(2)| RW2-LS-CATL 1

|1 = L{#)| RW3-LS-CATL
.90 I S S | I S S I S S |

107 10° 107 3
IT

Fig. 3: Magnitude-frequency diagram of L(e/*™/T), 1 —
L(e32IT) L5271 (in dB) for RWr-LS-CATL, loop pa-
rameters are optimized for f,7 = 3-1073

The noise variance is calculated by the average loop noise

PSD as
+or
ey

L
2T

|L(e7™T)|2df. G1)

1) New global optimization: The optimization of the LS-
CATL leads to the optimum parameters presented in Table II
(second part). Here, we should point out that for the RW3LS-
CATL, we use a method different from that in [24], where
we used a constraint to enhance the linear approximation of



TABLE II: Asymptotic expressions (first part) and global optimization (second part) for the RWr-LS-CATL under the
assumption f;T < f,T < 1

RW1-LS-CATL RW2-LS-CATL RW3-LS-CATL
Transfer ~ L(z) pa (1 —p2)(1 = 271) + po (1 —p2) (1= 27 4 (2 — p3) (1 — 27 ") + s
| - o) = 2P+ (A=) = )+ (= )= 2 ) +
function exact 1-— 1—2"YH+ [ H1 - _
(exac) (=)L =200 (-2 bl (a — ) — 27Y) + o)
Transfer  L£(e*7T) Wn 2wn - 5+ w2 (m + 2)Cwn - 82 + (1 4+ 2m¢?)w?2 - s + mCw?
function  (approx.) 54 wn 52 4+ 2€wn - s + w2 5%+ (m+2)Cwn - s + (14+2m¢?)w? - s + mlw?
. _ pi—p
B1—po (m+2) - ConT = 11-#12
with: weT = AL 20 (wnT) = =4 (1+2m?) - (waT)? = La=tis
2 P
(nT)? = 8- G- (D) = 2
_ (mA2)Cwn TH(142m¢?) (wn T) 2 +m(wn T)3
oy HL = T mT2) Con T+ (1 F2mC2) (wn T)2 +mC (wn T)3
Loop filter _ waT — _20wnTH(wnT)” _ (142m¢?) (wn T)2+ml(waT)3
P H1 = 110, T B = T2t T+ (wn T)? H2 = T Gn12) Cam T+ (142mC2) (wn T) 2+ ml(wn T)®
coefficients po = (wnT)2 _ m¢(w, T)3
T+2¢wn T+ (wn T)2 M3 = T mt2)ComT+(1+2mc2) (wnT)2+me(anT)3
N 0<pr <2
Condition 0< <2 0<m <2 0 < p3 < p1pe
of Stabilit
Y 0<pz<4-2m Apr +2p2 + pz < 8
1 4L 1
Sa(general) f_g Fa(f) ! (fT)zdf f_g Fa(f) ! (fT)4df f_; Fa(f) ' (fT)Gdf
2 _Sa _ _Sa _ Sa
Tea (FnT)? (Fn )T (mO)2(fnT)®
o2, 7 fnTots 2 fuT(C + i)afs 27 fu TB(m, ¢)os
T 25, \ 3 25, s 35, +
fn (opt) (Tro'gs) (Wjﬂ%)) (W)
2 4 i 6
D 3(4m)s 22ver(C+ 4215 2 (2)" (@Bm. )
0 in Di(02%)3(Sa)3 Da(0%)% (Sa)? Ds(0%)? (Sa)?
Mopy) - - 14.3
Com - 0.5 0.16
B(m, {)om - 1 1.99

|1 — £(e727IT)| (that method leads to a sub-optimal result, as
explained in [24] for a specific third-order CATL).

First, we present the results for o2, and o2, of Table I
(second part). These results are obtained with approximations
that are detailed hereafter. In (30), £ is first replaced by L,
then |1 — £(e/27T)|? is approximated by a linear function of
(f/fn)?" (asymptote) in the low frequency region (f < fy):

2r
11— L™~ K, - (;) for f < fn, (32)

where K, is a constant that can be computed by

lim (w—n)r . (1 — E(eST)) ’2 ,

s—0 S

K, =

(33)

that is, K, = 1 for r = 1 and 2, and K3 = 1/(m()?. The
validity of this linear approximation can be seen by measuring
the slope of the high pass filter |1 — L(e/2"/T)| in Fig. 3. This
first approximation is made in order to simplify the calculation
of the integral in o2,. We define the term Se(generar) in Table
II, which can be viewed as the 2rth moments of the Doppler



TABLE III: Application of the global optimization for Jakes and 3D Doppler spectra

RWI1-LS-CATL RW2-LS-CATL RW3-LS-CATL
S, 1, T?i 3. T‘*.i Tﬁ.ﬁx
a(Jakes) 5 - (fal)= - 5 (faT)" - 16 - (faT)” - 5
S, 1. (f,T)?. % 1. (f,T). % 1 )6 . 74
a(3D) 3 (fd ) L 5 (fd ) L 7 (fd ) L
f T 1 (2! % 2 3 ai 5 4 1 oi % 6
i (7?) (faT)3 (Haﬁs) (faT)3 0.6 (f?ﬁs) (faT)?
2 o2 3 4 7 6
FnTlm) ( ) (faT)s (siL = ) (faT)s 0.54 - (%?‘*) " (faT)?
2 2.2 (o2 % 214 (o2 % 2.8 (o2 %
Te min (akes 2 (faT'ois)3 (Ta) 9 (faT'ois)5 (T(y) 8.7 (faTois)7 (Ta)
2 2.2 (o2 % 2.4 (o2 % 2.6 (o2 %
02 i o0y 8- (faToZ)} (Tu) 2. (faTok)? (T) 7.8 (faTol)? (Tu)

TABLE IV: Optimization under constraint (36) for RWr-LS-CATL

RW1-LS-CATL RW2-LS-CATL RW3-LS-CATL
Constraint (36) - 4%2-1=0 m2(4¢2 —1)+4=0
TM(sub-opt) - - 3.19
Csub-opt - = 0.39
B(m, C)om = = 1.74
— — 1 o2 + 6
STt = = 0.73 - (f OT“) (faT)7
Ls
_ _ o2\ ¥ s
FaTom) = = 0.65 - (% 0—;) (faT)*
Ls
2 — — 246 o2 %
O¢ min (Jakes) = = 9.3 (faTois)7 (Ta)
2 — — 6 o2 %
O¢ min 3D) = = 8.31: (faTois)7 ( 0‘)

w2

spectrum [27]:

+2r )
Sa(general) = / Fa(f) : (fT) Tdf
~r
Now, o2, can be written in closed-form as a function of
S a(general) *
S,
2 ) o(general)
Oca = Kr~ (34)
(fnT)?"
This allows obtaining a general expression for o2, for any

(narrow-band) channel spectrum I'(f). The Sq geneml) are
then specified for the flat (3D) and the Jakes Doppler spectrum
in Table III.

Then, a second approximation is used to simplify the calcu-
lation of o2,. It consists in neglecting the higher order terms

of w,T when calculate the equivalent noise bandwidth of the
estimator, since f,7 < 1. Then we can obtain the simplified
noise bandwidth, and then o2, is proportional to 27 f,, 0% o,
as shown in Table II. The coefficient of proportionality is fixed
to B = 5 for RW1, and is B(¢) = ( + ¢ for RW2 [5], with
then a dependency on (. Note that for RW3, B(m,() is a
coefficient which depends on m and ( [24]:

2m3¢t 4+ 12m2¢* 4+ 8me* + 6m¢2 + 4¢% + 1
4m2¢3 + 8m(3 + 4¢

B(m,¢) =
(35)

Second, we present the global optimization results for the

r parameters. The derivations are detailed in the Appendix.
The minimization of o2 consists in setting to zero the partial
derivative w.r.t. each of the r parameters, i.e., f,, (, and
m for r = 3. By solving these equations, we first find the



optimal f,, of the loop as a function of the SNR, S,, (, and
m according to the order. That optimal f,, is given in Table
IT (second part). Then the optimal ¢ and m (according to the
order) can be found directly, without any dependence on the
channel parameters (the SNR and fy7, S,). Consequently,
only one parameter, i.e., f,, has to be tuned regardless of the
loop order. The remaining »—1 parameters can be fixed to their
optimal values, as given in the table. This remarkable result
is illustrated by Fig. 2 for the Jakes or 3D Doppler models
and for two values of the SNR. The red points correspond to
the global optimization obtained by our theoretical formulae
of Table II. For the third order loop, it can be seen from
Fig. 2 ¢) to f) that the optimum values of m and ( are
quite independent of the channel parameters and are fixed to
Copp = 0.16 and m,,, = 14.3, according to the theory (see the
Appendix and Table II). In the same way for the second order
loop, the optimization of ¢ leads to the same value (,, = 0.5,
regardless of the channel parameters (see Fig. 2(b)). Finally,
for the first order loop, only f,, can be optimized. We can
check in Fig. 2(a) that the minimum point’s position varies
as a function of SNR, f,;7T, and S, in accordance with the
theory. More comparisons between the MSE obtained with
given parameters and the exact minimum MSE (obtained by
means of a numerical search of the actual best parameters)
were performed in our previous studies [24](Fig. 3, Fig. 4)
for order 3 with Jakes’s spectrum, and in [5](Fig. 3, Fig. 4,
Fig.5) for orders 1 and 2 with Jakes’s spectrum.

2) Optimization with constraint (review): We recall that for
RW3-LS-CATL, it is also possible to find a sub-optimal result
by using a constraint:

2r
1= L(PT? = K, - <Jf> for f = fn,  (36)
which means that we require that the low-pass transfer func-
tion line passes the asymptote at the point f = f,,. This has
been intuitively shown in [24, Fig.2] for RW3-CATL. With
constraints, we can exploit the method of Lagrange to optimize
the estimator, which yields Mo = 3.19 and (.o = 0.39.
The constraints and the sub-optimal results with constraint
are given in Table IV, and are illustrated in Fig. 2 (c) to (f).
We notice that for the third order loop, this sub-optimal point
(black point) is not near the optimal point in the m — ( plane,
but the MSE values are very close since they are both in the
min-value valley [24, fig. 3]. Note also that this constraint can
be applied to the second order loop and it yields the same
result as with the global optimization, that is ¢ = 0.5.

E. Equivalence of RWr-LS-CATL channel estimation for flat
(3D) and Jakes’s Doppler spectrum

For the afore-mentioned Rayleigh—Jakes and the flat (3D)
models, the moment S, can be found in closed form:

2
Oq

L )
where S is a constant depending on the chosen spectrum
and loop order. Then the closed form minimum AMSE of
the RWr-LS-CATL can be obtained it is proportional to the
and is also

S, =8 (fsT)%" (37)

2r +1 &

proportional to the 2
are given in Table III)
In the two special cases of flat and Jakes’s Doppler spec-
trum, we can find the equivalent maximum Doppler frequen-
cies for a target performance of the RWr-LS-CATL. For
example, let us define the maximum Doppler frequency of
these two channel models as fjjakes) and fa3p) respectively
(we assume that these frequencies are less than — L. In order
that ae(hkes) = 06(31)), their dynamic parts should be identical:

/+f a(Jakes)
—fa(Jakes)

(38)
We can find the equivalent Doppler frequency of the Jakes and

the 3D model by letting Sq(akes) = Saip) for RWr-LS-CATL,
yielding (from first and second rows of Table III):

27" +f43D)
Fa(]akes)(f) (fT df /

fa3D)

3

faepy/ fagakes) = \/; for r =1, (39)
15

facpy/ fagakes) = | 5 for r =2, (40)
35

faep)/ fagakes) = | % for r = 3. (41)

In other words, to retain the same estimation performance, the
range of fqap) should be /3/2, /15/8, ¢/35/16 times larger
than fggakes)- The result for the first order loop, based on the
second-order moment, corroborates that obtained in [27].

F. Connection between RW-LS-CATL and RW-KF (optimized
in Jakes’s case)

In the single-path single-carrier scenario (Jakes’s Doppler
spectrum), the RWr-KF based estimator has been proved to
be equivalent to the same order RWr-CATL with fixed given
parameters [13], [19], [24]. However, in the multi-path multi-
carrier scenario, the equivalence between the RWr-LS-CATL
and the RWr-KF is not aways available: the former processes
the paths separately, and optimized by the average path power,
whereas the latter processes the multi-path channels jointly.
However, a link between the RWr-LS-CATL and a per-path
processing RWr-KF [28] can be found.

A per-path RWr-KF is a multi-path channel estimator that
processes each path separately with a single-path RWr-KF.
Each single-path KF is optimized by the channel state noise
variance. It has been shown that the per-path processing KF
can have almost the same performance as the joint multipath
KF for the AR1 model [29], and this approximation has been
analytically proved for RW models [28]. The per-path and joint
multipath KF are identical when the discrete-time equivalent
channel is uncorrelated, i.e., Ff Fp, = NIz, or, equivalently,
the multipath delays are multiples of the sample time, i.e., 7(!)
are integers ( [28], appendix A).

The global MSE of the optimized per-path RWr-KF is (
[28]) ,

052 win = Cr (de)T:—l : ( )2T+1 Br

where C,. is a constant related to the KF order: C; =
2 4
373,05 = L(v2m)3,C5 = 35(1m) %, The coefficients 3,

(42)

Cogo)(f)-(fT)*"df.



(r = 1,2, 3) are noise factors that depend on the channel PDP,
and are defined by

o= Sl
This formula shows that the asymptotic performance of RWr-
KF varles the same as the RWr-LS-CATL, as a function of
(faT)2r 1 2747 and (o )2r+1 However, the coefficient /3, depends
on the channel PDP. If all the paths are supposed to have the
same attenuation, then 3, can be simplified:

Z\TT 1 ¢ iy
= ()7 e

T 0R)TE @)

(44)
=1
By using (25) and by letting 2511 approach 1,
L _2r
2r4+1
CARGES Z{ (EE) ], )7 @)
we can rewrite (42) as
1
T 2r 2 2r+1
G @ (2) T ao

The relation between RWr-KF and RWr-LS-CATL can thus
be found by comparing with J6 min (Jakes) in Table III:
similar to the single-path single-carrier scenario, for RW1, they
have the same asymptotic performance; for RW2, if we choose
=2 /2 for LS-CATL, we can reach the same asymptotic
performance as the KF optimized in [19]. For RW3, an LS-
CATL with m = 2 and ¢ = 0.5 can reach the same AMSE as
the KF optimized in [13]. We can see clearly in Fig. 2(c, d)
that this point m = 2 and ¢ = 0.5 (green point) is far away
from the global minimum point m = 14.3 and ¢ = 0.16 but
leads to a very close AMSE since it is still in the min-value
valley.

To sum up, RWr-LS-CATL and RWr-KF are not strictly
equivalent in steady-state mode, but are strongly connected:
the RWr-LS-CATL can be viewed as a steady-state mode per-
path RWr-KF. When assuming a energy-uniformly-distributed
multi-path channel, they can thus achieve very close asymp-
totic performances.

G. Algorithmic complexity

One can compute the number of operations of complex
multiplication in the iteration equations of the tracking loop
(15)~(20), with (15) defined by (21). Note that the matrices
G 1) can be pre-calculated (assuming a fixed pilot pattern), so
their contribution to the algorithmic complexity is negligible
when the number of transmitted OFDM symbols is large.
Thus, in fact, the complex multiplication in (15) is counted
only in (21). Then we have, for (15), N, x L multiplications;
for (18), » x L multiplications (between a real and a complex
number). The algorithmic complexity of RWr-LS-CATL is
O(N,).

For the joint multipath RWr-KF, the number of complex
multiplications is N + (r + 1)LN} + (r*L* + rL* 4+ rL +
L +1)N, [28]. The complex1ty of RWr-KF is O(N}2), which
is much hlgher than that of RWr-LS-CATL.

TABLE V: Complex multiplications in RWr-LS-CATL (per
iteration)

Operation Equation Multiplications
G ) Yp() 2D NpL
P1Ver) + HoPumr) T (pg) L

H3VLag2(k—1)

IV. SIMULATION

In the simulations, we used a 4QAM-OFDM (by default)
system with N = 128 sub-carriers to validate the proposed
approximate method and the analytic results. The OFDM
system has N, = 16 samples of CP, and the system bandwidth
is 1/Ts = 2 MHz. The channel delays 7® are assumed
perfectly known, but can be estimated with algorithms such as
the ESPRIT [35]. The impact of an estimation error has been
investigated in [36] which showed the good robustness of the
CATL.

First, the evolution of the factor \ as a function of the
number of pilot sub-carriers will be illustrated. We recall that
the noise amplification factor (compared to the single-path
single-carrier performance) would be equal to 1 (minimum
value) when the path delays of the channel are multiples of the
sampling time Ts = 500 ns in our case. Two types of channels
with different power delay profiles (given in Table VI) were
used, the GSM [37] and the WiMAX mobile (Vehicular A)
6-tap outdoor channel models. For the rest of the simulations,
only the GSM channel model was used and the number of pilot
sub-carriers for each OFDM symbol was fixed at IV, = 16.

For a given channel PDP, A can be calculated by (27): it
decides the level of the loop noise. Note that the value of
A depends on both the number of pilot sub-carriers and the
channel PDP. Table VII gives the values of A in two types of
channels. We find that A decreases as the number of pilot sub-
carriers increases. The WiMAX mobile channel corresponds to
a lower value of A than does the GSM channel. According to
(26), the value of \ is proportional to the static error variance.
From Fig. 4, we find that the MSE values (which vary as
a function of N,) in a GSM channel are always higher than
those obtained in a WiMAX channel, since the former channel
PDP corresponds to a larger A. The theoretical values are then
validated by the simulations for RW1-, RW2- and RW3-LS-
CATL.

The optimal natural (cut-off) frequencies with respect to IV,,
and SNR, for the two typical channels, are also summarized
in Tables VIII and IX, respectively. These two tables show
that the optimal natural (cut-off) frequencies of RWr-LS-
CATL increase as the number of pilot sub-carriers increases,
and also as the SNR. The higher the loop order, the slower
the augmentation of its optimal natural frequencies (with
respect to N, or SNR). Besides, the optimal natural (cut-
off) frequencies for a GSM channel are smaller than those
for WiMAX, because the loop noise level is relatively higher
in the GSM case, and the optimal natural (cut-off) frequencies
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Fig. 4: AMSE versus N, (number of pilot sub-carriers) with
f4T = 1073, SNR =20 dB

are decreasing functions of the loop noise variance.

Fig. 5 shows the simulated AMSE (mean value per path) of
the AR1:),-KF and the RW-LS-CATLs, the theoretical AMSE
of the RW-LS-CATLs, and the BCRB as functions of the SNR
for f4T = 1073. Fig. 6 presents the MSE evolution as a
function of fy7'. We can see clearly that the RW-LS-CATLs
outperforms the ARI1¢jp/-KF. Moreover, the MSEs obtained
by the simulation approximately coincide with the theoretical
values. Note that we have made approximations for the an-
alytical expressions of the AMSE employing the assumption
of a low fyT and a low f,T, such as f;T < f,T < 1;
these approximations becomes poorer when f;7' increases,
as shown in Fig. 6, and when SNR increases, as shown in
Fig. 5. Also we can note that in these cases, the error for
first order model is getting larger compared to the second and
third order models. For » = 1,2, 3, the AMSE are respectively
proportional to the 2/3, 4/5, 6/7 powers of the f471', and are
inversely proportional to the 2/3, 4/5, 6/7 powers of the SNR,
as argued in the previous section. In addition, we show the
simulation results of a numerically optimized RWr-KF in Fig.
5, to show that the simplified RWr-LS-CATL can reach almost
the same asymptotic performance as the RWr-KF.

The equivalence of the RWr-LS-CATL channel estimation
in the flat and the Jakes Doppler spectrum was verified. First
we fixed the Doppler frequency f47 at 1072 to simulate
the Jakes spectrum channel by RWr-LS-CATL (r = 1, 2
and 3). Then, we simulated the flat (3D) spectrum channel
by using f/T/fsT = \/3/2, Y/15/8, ¢/35/16 for RW1,
2, 3 respectively. The simulation results are given in Fig.
7. These two groups of curves are very close to each other,

which confirms our previous analysis in section III-E. We can
conclude that for a given f;7, the channel estimation with
flat spectrum (3D) channel has a better performance than that
with Jakes’s spectrum channel.

In Fig. 8, the BER performances of the RW-LS-CATL, the
AR1¢/-KF, and the conventional non-parametric channel es-
timators are compared. For symbol decision, the estimators are
completed by a Zero-forcing (ZF) equalizer in the frequency
domain, ie., X = I:I(_,:)y(k) with I:I(k) = diag{Fé& ;) }. The
AR1¢,-KF is a Kalman estimator based on the first-order
AR model. Note that the first two algorithms are based on the
parametric channel model and estimate the complex amplitude
of the channel, whereas the non-parametric estimators estimate
the frequency-domain channel matrix without presuming any
knowledge of the channel PDP. The conventional frequency-
domain algorithms are presented in [2]-[4], and are based on
the observation models: y, ;) = diag{xp () thp(k) + Wp(k)s
without exploiting the knowledge of the channel PDP. The first
algorithm, LS(FD)-LPI, exploits the LS method to estimate
the diagonal elements of the channel matrix on the pilot
sub-carriers: flp(k) = diag{xp(k)}’lyp(k). Then a low-pass
interpolation (LPI) is carried out to obtain the full channel
matrix I:I(k) (a diagonal matrix containing the frequency re-
sponse on its main diagonal), by using the Matlab™ function
“interp”. For the second algorithm, AR1-KF(FD)-LPI [6], after
the LS estimation of the pilot channel matrix, as in the first
algorithm, a time-domain filtering is processed by AR1l¢ ;-
KF to refine the pilot channel matrix. Then the same LPI
procedure is executed. It is noteworthy that the channel PDP
is not exploited in either of the two conventional methods,
in contrast with the parametric channel estimations. It can
be seen that, with 8 pilots, the parametric methods largely
outperform the conventional non-parametric algorithms. Their
performances are brought closer as the number of pilot sub-
carriers increases. Among the parametric channel estimators,
the first-order algorithms (AR1cj/-KF and RW1-LS-CATL)
have similar performances. The RW2- and RW3-LS-CATL
outperform the first-order ones, with the BER lines almost
reaching the performance with perfect Channel State Informa-
tion (CSI).

Fig. 9 shows for f;7 = 1073 and N, = 8 the Bit Error
Rate (BER) performances for the proposed RW-LS-CATLs
with and without coding, using a zero-forcing equalizer and
a 64-QAM modulation. Also shown is the performance for
the AR1¢)/-KF. For reference, we have added the BER for
the case of perfect CSI. Without coding, we can observe that
the AR1¢/-KF curve and the RW1-LS-CATL curve are very

TABLE VI: Power delay profile of the simulation channels

Channel Path 1 2 3 4 5 6

s 0 0.4 1 3.2 46 10

GSM 52 @B) 7219 4219 6219 -10219  -12219  -14.219
[a's

WiMAX 70 0 0.62 1.42 2.18 3.46 5.02

mobile o2 ;) (dB)  -3.1425 41425  -12.1425  -13.1425  -18.1425  -23.1425




TABLE VII: Evolution of A with respect to IV,

Np 6 8 16 32 64 128
X (GSM) 13.271 3.703 2.804 2.736 2.725 2.722
A (WiIMAX mobile) 2.445 1.711 1.559 1.535 1.529 1.528
TABLE VIII: Optimal normalized natural frequencies f,,/fq versus N, (SNR = 20 dB)
Ny 6 8 16 32 64 128
RW1 13.25 22.55 31.16 39.59 49.95 62.95
GSM RW2 4.45 6.12 7.43 8.58 9.87 11.34
RW3 2.61 3.27 3.76 4.17 4.60 5.08
RW1 23.52 29.16 37.90 48.00 60.55 76.31
WiMAX mobile RW2 6.28 7.14 8.36 9.63 11.07 12.72
RW3 3.33 3.66 4.09 4.53 5.00 5.52
TABLE IX: Optimal normalized natural frequencies f,/fq versus SNR (N, = 16)
SNR (dB) 0 5 10 15 20 25 30 35 40
RWI1 6.7 9.9 14.5 21.2 31.2 45.7 67.1 98.5 145
GSM RW2 3.0 3.7 4.7 5.9 7.4 9.4 11.8 14.8 18.7
RW3 1.9 2.3 2.7 32 3.8 4.4 5.2 6.2 7.3
RWI1 8.2 12.0 17.6 25.8 37.9 55.6 81.7 120 176
iIMAX
Wi ) RW2 3.3 4.2 53 6.6 8.4 10.5 13.3 16.7 21
mobile RW3 2.1 25 2.9 35 4.1 48 5.7 6.8 7.9
» T
close. Furthermore, the RW2-LS-CATL curve and the RW3- 10 ‘ ‘ B
LS-CATL curve nearly coincide. At a BER target of 1073, [ "o el
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and closer to the RW2-LS-CATL curve. At a BER target of
1075, there is an SNR loss of about 2.5 dB between the
RW1-LS-CATL and the AR1¢/-KF curves, and only 0.5 dB
between the RW1-LS-CATL and RW2-LS-CATL curves.

In Fig.10, we show the tracking performance of the RWr-
LS-CATL for the three orders, r = 1,2,3. As expected, it is
seen that the convergence speed of the algorithm is decreasing
with the model order.

V. CONCLUSION

In this study, the tracking loops for channel estimation
were thoroughly analysed in the context of OFDM systems
under the conditions of slow to moderate fading. The analytic
optimization of the first three order loops was carried out
globally, in contrast with the treatments in the literature, where
the use of a constraint yields sub-optimal coefficients. The
loop coefficients are the natural frequency f,, for the first-
order case, f, and the damping factor ¢ for the second-order
case, and f,, ¢, and the capacitance ratio m for the third-
order case. One remarkable aspect of this global optimization
is that only f, has to be tuned as a function of the transmission
parameters, i.e., the channel Doppler spectrum, the power

10 15 20
SNR (dB)
Fig. 5: AMSE versus the SNR with f;7 = 1073, N, = 16,
GSM channel

delay profile, and the noise variance. For the second-order
case, the optimal value of ( is fixed at 0.5 and for the third-
order case, the optimal values of ¢ and m are fixed at 14.3 and
0.16, respectively, regardless of the transmission conditions.
Moreover, the asymptotic performance is formulated in a new
way as a function of the 2rth moment of the Doppler spectrum,
where r is the loop order. This way, our results are not limited
to the Jakes Doppler spectrum, and can be applied to any
Doppler spectrum as long as its 2rth moment is known. In
addition, based on this new formulation, we have generalised
to the second and third order cases the link between the maxi-
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mum frequency of the Jakes Doppler spectrum fgjakes) and the
maximum frequency of the 3D model Doppler spectrum fq3p)
that give the same asymptotic performance. More precisely, it

had been established in the literature that fyip)/ fagakes) = %
ensures that the second moments of the Doppler spectra are
identical. From our formulae, we proved that this leads to

the same asymptotic performance for the first order loop.
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Fig. 9: BER performance for 64-QAM modulation, f;7" =
1073, N, = 8 uncoded and coded (NRNSC) [5, 7] scenarios,
GSM channel
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Fig. 10: Tracking performance of RWr-LS-CATL,f;T =

10~3, SNR =20 dB, N, = 16, GSM channel

This relation has been generalised to the second order loop
with f43p)/ fagakes)y = 1/ %, and to the third order loop with

faapy/ fagakesy = 1/ %. A performance comparison with the
asymptotic Kalman filter was also provided.

APPENDIX: GLOBAL OPTIMIZATION OF THE
RWr-LS-CATL

We start from RW3, to minimize (29), we set its partial

derivatives to zero:

do? o 35, B

afT mosB(m, ) — W =0, a7
do? o Sy B

am = Wa[,sfnT-@m - m3§2(fnT)6 - 0’ (48)
80'62 Sa

3 = Tor fn TP — BT 0, (49)



with
@mZBBMLO
om
_ mA¢ 4+ 4m3¢ + 8m32¢5 + 8m¢® — m{ 4+ 2¢
T 2mAC4 + 8mB3¢4 4 8m2¢4 + 4m2¢2 + 8m(2 +2°
9B(m, ()
D =
_ 2m5¢0 + 16m*¢6 + 32m3¢6 + 16m2¢6 + - .-
~ 4AmA¢6 + 16m3¢6 + 16m2¢6 + 8m2¢4 + 16m¢4 + 4¢2
c 4 20m3¢* — 3m2¢2 4 16met +4¢2 -1

(50)

(51D

From (47), we obtain the optimum f,7 as a function of
m,(, S, and o2

35, 7
Iulon = (wB(m, c>oss<m<>2> @
Rewrite (48) and (49),
m3C Dol (fuT)" — Sq =0, (53)
{ m?CBPerol(fuT) — So = 0. (54)

Then replace f,T by (52), we can obtain a simplified system:

B
mPy, — w _0, (55)
B(m,
(P — % _o. (56)
This system no longer depends on o2 and S,. We solve this
system and obtain an optimum solution! m, = 14.3 and
Copy = 0.16.
Similarly, for RW2, we solve the system
o2 9 1 25,
£ = —)— ——5 =0, 57
o5,7 "t ad) T Gy 7
do? 9 1
aic = WUI‘anT(l — 47(2) = 0, (58)
leading to (., = 0.5 and f,T,, given in Table II.
And for RW1, we have:
Oo? 9 25,
£ = ——==0 59
of,T " (fT )

leading to f,7,, given in Table IIL.
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