
HAL Id: hal-01174203
https://hal.science/hal-01174203v1

Submitted on 8 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D.1.1 – Survey on Weak Consistency Approaches for
Large-Scale Systems

Davide Frey, Achour Mostefaoui, Matthieu Perrin, François Taïani

To cite this version:
Davide Frey, Achour Mostefaoui, Matthieu Perrin, François Taïani. D.1.1 – Survey on Weak Con-
sistency Approaches for Large-Scale Systems. [Technical Report] D1.1, LINA-University of Nantes;
IRISA. 2015. �hal-01174203�

https://hal.science/hal-01174203v1
https://hal.archives-ouvertes.fr


ANR-13-INFR-0003
socioplug.univ-nantes.fr

D.1.1 – Survey on Weak
Consistency Approaches for
Large-Scale Systems

Davide Frey1,2, Achour Mostéfaoui3,
Matthieu Perrin3, François Taïani1,2,4

1IRISA Rennes
2Inria Rennes - Bretagne Atlantique
3LINA, Université de Nantes
4Université de Rennes 1 - ESIR
Email contact: {francois.taiani,davide.frey}@irisa.fr,
matthieu.perrin@etu.univ-nantes.fr, achour.mostefaoui@univ-nantes.fr

Keywords: Infrastucture, Use cases, Complementarity of task

1 Introduction
Distributed systems are often viewed as more difficult to program than sequential systems be-
cause they require solving a number of communication issues. Shared objects that can be accessed
concurrently by multiple parties can be used as a practical communication abstraction to let pro-
cesses enjoy a more general view of the system. A precise specification of these objects is therefore
essential to ensure their adoption as well as the reliability of distributed systems.

Many models have been proposed to specify shared memory, and several inventories [Mos93,
AG96] can be found in the literature. In [Lam86], Lamport defines linearizable registers that
ensure that everything appears as if all the operation where executed instantaneously at a point
between the moment when the operation is called and the moment when it returns. Sequential
consistency [Lam79] is a little weaker: it only guarantees that all the operations appear as totally
ordered, and that this order be compatible with the program order, the order in which each process
performs its own operations.

These strong consistency criteria are very expensive to implement in message-passing systems.
In terms of latency, it is necessary to wait for answers for the reads or the writes for sequential
consistency [LS88] and for all kinds of operations in the case of linearizability [AW94]. In terms
of fault tolerance, strong hypotheses must be respected by the system: it is impossible to resist
to partitioning [Bre00, GL02]. Many weaker consistency criteria have been proposed to solve
this problem. Among them, PRAM [LS88], causal memory [ANB+95] and eventual consistency
[Vog08] are best documented. PRAM is a local consistency criterion: each process only sees its
own reads and all the writes, and all these operations appear to it as totally ordered by an order
that respects the program order. Causal consistency strengthens PRAM by imposing to these total
orders to be compatible with a partial order that is common to all processes, the causal order, that
not only contains the process order, but also a writes-into relation, that encodes data dependencies
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between the write and the read operations. Eventual consistency expects that, if all the processes
stop writing, they will eventually read the same values.

Memory is a good abstraction in sequential programming models because all kinds of objects
can be implemented using variables. Things are more complicated for distributed computing
because of race conditions: complex concurrent editing can often lead to inconsistent states. Crit-
ical sections offer a generic solution to this problem but at a high cost: they reduce parallelism
and they are unable to tolerate faulty behaviors. A better solution is to design the shared objects
directly, without using shared memory.

This deliverable surveys the main consistency criteria that exist in the literature, and expresses
them in a consistent way, thereby making it easy to compare them. An object should be totally
specified by two facets: a sequential specification given by an abstract data type, and a consis-
tency criterion, that defines a link between distributed histories and sequential specifications.
Sequential specifications are very easy to design because they are based on the well studied and
understood notions of languages and automata. This makes it possible to apply all the tools de-
veloped for sequential systems, from their simple definition using structures and classes to the
most advanced techniques like model checking and formal verification. Sequential objects cannot
be used directly in distributed environments. A consistency criterion is necessary to adapt the
sequential specification to the environment. Graphically, we can imagine a consistency criterion
as a way to take a picture of the distributed histories so that they look sequential.

The remainder of this document is organized as follows. Section 2 presents the basic notions
of sequential specification and consistency criteria and studies their general properties. Section
3 surveys the main consistency criteria existing in the literature. Section 4 provides a brief de-
scriptions of recent systems that trade off some consistency for performance. Finally, Section 5
concludes the survey.

2 Specifying shared objects
In distributed systems, sharing objects is a way to abstract communications between processes.
The abstract type of these objects has a sequential specification, defined in this paper by a transi-
tion system, that characterizes the sequential histories allowed for this object. As shared objects
are implemented in a distributed system, typically using replication, the events in a distributed
history are partially ordered. A consistency criterion is therefore necessary to make the link be-
tween the sequential specifications and the distributed executions that invoke them, by a charac-
terization of the histories that are admissible for a program that uses the objects, depending on
their type.

The notions defined in this section, namely, operation, history, and partial order on operations
are usual in the definition of strong consistency criteria [AW04, HS08, Lyn96, Ray12].

2.1 Update-query abstract data types
We use transition systems to specify sequential abstract data types. Our modeling of update-
query abstract data type is intermediate between Mealy machines [Mea55] and transition systems.
We separate the input alphabet into two classes of operations: the updates and the queries†. On
the one hand, the updates can have a side-effect that usually affects everyone, but do not return
a value. They correspond to transitions between abstract states in the transition system. On the
other hand, the queries can only read the state of the object but not modify it. Like in mealy
machines, they produce an output that depends on the state on which they are executed.

Definition 1. An update-query abstract data type (UQ-ADT) is a 7-tuple T = (U,Qi,Qo,S,s0,µ,ϕ)
such that:

• U is a countable set of update operations;

† Some objects, such as Compare&Swap and Test&Set for example, have operations that are both an update and a query.
Such objects are out of the scope of this paper.
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• Qi and Qo are countable sets called input and output alphabets. Q = Qi×Qo is the set of query
operations. A query operation (qi,qo) is denoted qi/qo;

• S is a countable set of states;

• s0 ∈ S is the initial state;

• µ : S×U → S is the transition function that specifies the updates;

• ϕ : S×Qi→ Qo is the output function that specifies the queries.

We consider the UQ-ADTs up to isomorphism as the names of the states are never used in our
work. The set of all the UQ-ADTs is denoted by T .

An infinite sequence of operations (li)i∈N ∈ (U ∪Q)ω is recognized by T if there exists an infinite
sequence of states (si)i≥1 ∈ Sω such that for all i∈N, µ(si, li) = si+1 if li ∈U or si = si+1 and ϕ(si,qi) =
qo if li = qi/qo ∈ Q. The set of all infinite sequences recognized by T and their finite prefixes is
denoted by L(T ). Informally, L(T ) contains the sequential histories that are admissible for T .

Suppose one wants to use several objects together in their program. We can model the com-
position of these objects as another object on which it is possible to apply the operations of both
objects. The composition of two UQ-ADTs T1 and T2 is a parallel, asynchronous product of tran-
sitions systems. A word is recognized by the composition if it is the interleaving of two words
recognized by T1 and T2 respectively. This composition is associative and commutative, and there
is one neutral element T1 that contains one state and no transition and an absorbing element T0
that contains no state and no transition.

Definition 2. We define the composition of two UQ-ADTs (U,Qi,Qo,S,s0,µ,ϕ)×(U ′,Q′i,Q′o,S′,s′0,µ′,ϕ′)
as the UQ-ADT (UtU ′,QitQ′i,Qo∪Q′o,S×S′,s′0,µ

′′,ϕ′′) with, for all s∈ S, s′ ∈ S′, u∈U , u′ ∈U ′, q∈Qi
and q′ ∈ Q′i, µ′′((s,s′),u) = T (s,u), µ′′((s,s′),u′) = µ′(s′,u′), ϕ′′((s,s′),q) = ϕ(s,q) and ϕ′′((s,s′),q′) =
ϕ′(s′,q′). The symbol t stands for the disjoint union of sets.

We illustrate UQ-ADTs by two examples. We first give the full sequential specification of the
register and the memory. Then, we define the graph as a class, like in sequential object-oriented
programming languages.

The integer register Mx can be accessed by a write update operation wx(n), where n ∈ N and a
read query operation rx that returns the last value written, if there is one, or the default value 0
otherwise. The integer memory MX is the collection of the integer registers of X . More formally,
they correspond to the UQ-ADTs given in Example 1.

Example 1. Let x be any symbolic register name. We define the integer register on x by the UQ-ADT:

Mx = ({wx(n) : n ∈ N},{rx},N,N,0,µ,ϕ)

with, for all n, p ∈ N, µ(n,wx(p)) = p and ϕ(n, rx) = n.
Let X be a countable set of register names, we define the integer memory on X by the UQ-ADT:

MX = ∏
x∈X

Mx.

Figure 1 presents another more usual way to define sequential specifications. Here, the graph
type G is specified by a class. A graph is constituted of a set of vertices, here represented by
integers, and a set of edges, that are pairs of vertices. It provides four update operations, to
insert and delete edges and vertices, and two query operation that check if a vertex or an edge
is present in the graph and return a boolean value. A graph must remain consistent: it cannot
contain edges between vertices that do not exist in the graph. To ensure this, vertices are inserted
or edges are deleted to avoid inconsistencies. An UQ-ADT can easily been deduced from this
specification. The states and the operations are defined by the member variables and methods of
the class, the output alphabet contains all the values that can be returned by the queries, here the
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class G
var vertices⊂ N← /0;
var edges⊂ N×N← /0;
update Iv (v ∈ N) /* insert vertex */

vertices← vertices∪{v};
end
update Dv (v ∈ N) /* delete vertex */

edges← edges\ (V ×{v}∪{v}×V );
vertices← vertices\{v};

end
query Qv (v ∈ N) ∈ {⊥,>} /* get vertex */

return v ∈ vertices;
end
update Ie (v1 ∈ N,v2 ∈ N) /* insert edge */

vertices← vertices∪{v1,v2};
edges← edges∪{(v1,v2)};

end
update De (v1 ∈ N,v2 ∈ N) /* delete edge */

edges← edges\{(v1,v2)};
end
query Qe (v1 ∈ N,v2 ∈ N) ∈ {⊥,>} /* get edge */

return (v1,v2) ∈ edges;
end

end

Figure 1: Sequential specification of the graph

booleans values true (>) and false (⊥), the transition function is defined by the implementation
of the update methods and the output function by the query methods. We consider the pruned
transition system, in which all the states are reachable.

2.2 Distributed histories
During an execution, the participants call the operations of an object, an instance of the abstract
data type, which produces a set of events labelled by the operations of the abstract data type.
In general, the computing entities are sequential, which imposes a strict ordering between their
own operations, so the events are partially ordered. For example, in the case of communicating
sequential processes, an event a precedes an event b in the program order if they are executed by
the same process in that sequential order. In this case, the processes correspond to the maximal
chains of the history. This representation of distributed histories is generic enough to model a
large number of distributed systems, such as peer-to-peer systems where peers join and leave
permanently, or more complex modern systems in which new threads are created and destroyed
dynamically. Note that the discreteness of the space of the events does not mean that the opera-
tions must return immediately, as our model does not introduce any notion of real time.

Definition 3. A distributed history (or simply history) is a 5-tuple H = (U,Q,E,Λ, 7→) such that:

• U and Q are disjoint countable sets of update and query operations, and all queries are in the
form qi/qo;

• E is a countable set of events;

• Λ : E→U ∪Q is a labelling function;
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• 7→⊂ E ×E is a partial order called program order, such that for all e ∈ E,{e′ ∈ E : e′ 7→ e} is
finite, i.e. all event has a finite past.

The set of all the distributed histories is denoted by H .

Let H = (U,Q,E,Λ, 7→) be a distributed history. We now introduce a few notations.

• The update and query events of H are denoted by UH = {e ∈ E : Λ(e) ∈U}, QH = {e ∈ E :
Λ(e) ∈ Q}.

• Two events e and e′ are concurrent (denoted e||e′) if they are not comparable for 7→, i.e. e 67→ e′

and e′ 67→ e.

• PH denotes the set of the maximal chains of H:

PH =

{
p⊂ E :

∀e,e′ ∈ p,(e 7→ e′∨ e′ 7→ e)
∧∀e′′ ∈ E \ p,(e||e′′∨ e′||e′′)

}
.

In the case of sequential processes, each p ∈PH corresponds to the events produced by a
process. In the remainder of this article, we use the term "process" to designate such a chain,
even in models that are not based on a collection of communicating sequential processes.

• We also define some projections on the histories. The first one allows to withdraw some
events: for F ⊂ E, HF = (U,Q,F,Λ|F , 7→ ∩(F×F)) is the history that contains only the events
of F . The second one allows to replace the program order by another order→: if→∩(E×E)
respects the definition of a program order, H→ = (U,Q,E,Λ,→ ∩(E ×E)) is the history in
which the events are ordered by →. Note that the projections commute, which allows the
notation H→F .

• A history in which a composition of two objects is used can also be seen as the composition
of two sub-histories that only contain the events of one of the objects. Let H = (U,Q,E,Λ, 7→)
be a distributed history and {E1,E2} be a partition of E. We say that H is a composition of
HE1 and HE2 . There is more than one way to compose histories, so the composition of two
histories is a set of histories. The set of all the compositions of H1 and H2 is denoted by
H1×H2.

• Finally, a linearization of H corresponds to a sequential history that contains the events of H
in an order consistent with the program order. More precisely, it is a word Λ(e0) . . .Λ(en) . . .
such that {e0, . . . ,en, . . .}= E and for all i and j, if i < j, then e j 67→ ei. We denote by lin(H) the
set of all linearizations of H.

2.3 Consistency criteria
A consistency criterion characterizes which histories are admissible for a given data type. More
formally, it is a function C that associates a set of consistent histories C(T ) to all UQ-ADTs T =
(U,Qi,Qo,S,s0,µ,ϕ) such that, for all H = (U ′,Q′,E,Λ, 7→) in C(T ), U ′ ⊂U and Q′ ⊂ Qi×Qo. The
set of all consistency criteria is denoted by C . A shared object is C-consistent for a consistency
criterion C and a UQ-ADT T if all the histories it admits are in C(T ).

We say that a criterion C1 is stronger than a criterion C2, denoted C2≤C1, if for all T ∈ T , C1(T )⊂
C2(T ). A strong consistency criterion guaranties stronger properties on the histories it admits, so
a C1-consistent implementation can always be used instead of a C2-consistent implementation of
the same abstract data type if C2 ≤C1.

Sometimes, one wants an object to respect several consistency criteria simultaneously (e.g. a
causally consistent and eventually consistent memory). We define a join operator C1 +C2 : T 7→
C1(T )∩C2(T ). (C ,≤,+) is a join-semilattice. It has a minimal element, C⊥, that accepts all the
histories for all the objects and a maximal element, C>, that accepts none of them.
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We can now define the composition of two consistency criteria. If C1 and C2 are two consistency
criteria, C1×C2 denotes the set of the histories that are the composition of a C1 consistent history
and a C2 consistent history.

Definition 4. Let C1 and C2 be two consistency criteria. We define C1×C2 as the strongest con-
sistency criterion such that, for all T1,T2 ∈ T and for all histories H1 ∈ C1(T1) and H2 ∈ C2(T2),
H1×H2 ⊂ (C1×C2)(T1×T2). This strongest criterion exists since the property that we require on it
is conserved by +.

(C ,×) is a commutative monoid (i.e. × is commutative and associative and C> is neutral), C⊥
is absorbing, × is distributive for + (i.e. C1× (C2 +C3) = C1×C2 +C1×C3), ≤ is compatible with
× (i.e. C1 ≤C2⇒C1×C3 ≤C2×C3) and C1×C2 ≤C1.

We use the classical power notation Cn for the composition of n C-consistent objects, and the
compositional closure C? : T 7→

⋃
n∈NCn(T ) stands for the composition of any number of C-consistent

objects. Intuitively, C? is the limit of Cn when n grows to infinity.
One could expect that a program that uses two C-consistent objects together will remain C-

consistent with respect to the composition of the objects. This property, called composability, is
an important property because it allows to program in a modular way, but only C2 ≤C is true in
general.

Definition 5. A consistency criterion C is composable if it is idempotent for composition, i.e. C2 =C.

As we will see in Section 3, composability is difficult to achieve. The reciprocal, however, is
a natural request to all consistency criteria: if a history is globally consistent, it should also be
consistent for all the objects that are involved in it. Decomposability means that, for all T1,T2 ∈T
and all history H ∈C(T1×T2), there exists histories H1 ∈C(T1), H2 ∈C(T2) such that H ∈ H1×H2.
All the consistency criteria defined thereafter are decomposable.

3 Common consistency criteria
We now illustrate the concept of consistency criteria with common examples. We first illustrate
the formalism with sequential consistency [Lam79] and its derivatives, cache consistency [Goo91]
and linearizability [HW90]. We then formalize pipelined consistency [LS88], that is very close in
its definition to local consistency. Causal consistency [ANB+95] is more complicated to extend be-
cause its definition is closely related to the semantics of the operations on the registers. We finish
this presentation with eventual consistency [Vog08] and strong eventual consistency [SPB+11].
All these criteria are illustrated on small examples on the memory and graph data types.

3.1 Sequential consistency
Sequential consistency was originally defined by Lamport in [Lam79] as: “the result of any execu-
tion is the same as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the order specified
by its program“. In our formalism, such a sequence is a word of update and query operations
that has two properties: it is correct with respect to the sequential specification of the object (i.e.
it belongs to L(T )) and the total order is compatible with the program order (i.e. it belongs to
lin(H)).

Definition 6. A history H is sequentially consistent (SC) with an UQ-ADT T if lin(H)∩L(T ) 6= /0.

Figure 2a shows a sequentially consistent history. It can be viewed as two processes sharing
a graph of G . The first process first inserts the edge (1,2) and then reads that the vertex 3 was
inserted, while the second process inserts the edge (2,3) and then reads that the vertex 1 was not
inserted yet. The word Ie(2,3).Qv(1)/⊥.Ie(1,2).Qv(3)/> is in both lin(H) and L(G), so this history
is sequentially consistent.

The history of Figure 2b is very close, but the shared object is a memory, and each query returns
the initial value of the register. This history is not sequentially consistent because the first event
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•
Ie(1,2) •

Qv(3)/>

•
Ie(2,3)

•
Qv(1)/⊥

(a) SC(G)

•
wx(1) •

ry/0

•
wy(1)

•
rx/0

(b) SC?, not SC

Figure 2: A sequential history for an instance of G and a cache consistent history for an instance
of M{x,y} that is not sequentially consistent

p1 e1 e3

p2
e2 e4

•
e1 •

e3

•e2
•e4

Figure 3: The program order is defined considering real time dependencies. We cannot have both
e1||e4 and e2||e3

of any linearization must be a write which precedes the read of the same variable, that should
return a 1. To be sequentially consistent, at least one read should return a 1.

Cache consistency The compositional closure seems to be an easy way to define composable
consistency criteria, as C? is the strongest composable consistency criterion weaker than C. How-
ever, this criterion can be very weak. For example, SC?, known as cache consistency [Goo91] or
simply coherence [GLL+90] for memory in the literature, does not allow any guaranty of synchro-
nization between the variables.

As rx/0.wx(1) is a possible linearization for the events on Mx and ry/0.wy(1) is a possible lin-
earization for the events on My, the history of Figure 2b is cache consistent for M{x,y} = Mx×My.

Linearizability: the case of real time Linearizability is very close to sequential consistency, as
it also imposes the existence of a total order on all the events in the history. Real time must be
respected by this total order in linearizability: if an event e1 finishes before another event e2 starts,
then e1 must precede e2 in the total order.

We did not introduce real time in our model yet because it is not relevant for most consistency
criteria, and no global clock can be implemented in asynchronous distributed systems. However,
it is possible to model real-time dependencies between events directly in the histories, by only
considering interval orders [Fis85] for the program orders. In this paragraph, we change the
modeling of the executions: an event e1 precedes an event e2 in the program order if and only if
e1 returns before e2 starts. Let us consider Figure 3. A process p1 produces the events e1 and e3
while a process p2 produces the events e2 and e4. It is impossible that e3 starts before e2 finishes
and e4 starts before e1 finishes at the same time, which implies e1 7→ e4 or e2 7→ e3 if the program
order models real time.

Definition 7. A history (U,Q,E,Λ, 7→) is real time consistent (RT) if (e1 7→ e3 ∧ e2 7→ e4)⇒ (e1 7→
e4∨ e2 7→ e3) for all e1,e2,e3,e4 ∈ E.

Real time consistency is not composable. However, if real time is respected during the compo-
sition of sequentially consistent histories, the composed histories are also sequentially consistent.

Proposition 1. SC2 +RT = SC+RT.

Proof. It is clear that SC2 +RT ≤ SC+RT and that RT ≤ SC2 +RT . We prove that SC ≤ SC2 +RT .
Let T1,T2 ∈T , H1 = (U1,Q1,E1,Λ1, 7→1)∈ SC(T1) and H2 = (U2,Q2,E2,Λ2, 7→2)∈ SC(T2). We suppose
that H = (U,Q,E,Λ, 7→) ∈ H1×H2∩RT (T1×T2). We prove that H ∈ SC(T1×T2).

By definition of sequential consistency, for i ∈ {1,2} there is a total order ≤i on Ei and a unique
word li such that lin

(
H≤i

i

)
∩L(Ti) = {li} and 7→i⊂≤i. For sake of simplicity, we extend ≤i on E by
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•
Iv(1) •

Iv(2)
•

Ie(1,2) •
Qv(1)/> •

Qe(1,2)/>

•
Dv(1)

•
Qv(1)/⊥

•
Qe(1,2)/⊥

Figure 4: A locally consistent history on G

taking its reflexive closure. We pose ◦=≤1 ∪ ≤2 ∪ 7→ and • as the transitive closure of ◦. We first
prove that • is antisymmetric.

Let e1 ◦ e2 ◦ ... ◦ en−1 ◦ en ∈ E, with e1 ∈ E1. We prove by induction on n that there are e,e′ ∈ E
such that e1 ≤1 e 7→ e′ ≤2 en (and by symmetry, e1 ≤2 e 7→ e′ ≤1 en if e1 ∈ E2). If n = 1, we have
e1 ≤1 e1 7→ e1 ≤2 e1. Suppose the result is true for n and let us examine it for n+ 1. We have
e1 ≤1 e 7→ e′ ≤2 en ◦ en+1. There are three cases for ◦.

• If en ≤2 en+1, by transitivity, e1 ≤1 e 7→ e′ ≤2 en+1.

• If en ≤1 en+1 and en 6= en+1, then en ∈ E1 so e′ = en. Moreover, e∈ E1 because e1 ≤1 e, so e≤1 en.
We have e1 ≤1 en+1 7→ en+1 ≤2 en+1.

• If en 7→ en+1, by real-time, either e 7→ en+1 or en 7→ e′ holds. In the first case, e1 ≤1 e 7→ en+1 ≤2
en+1. In the second case, en ≤2 e′ ≤2 en, so e′ = en. By transitivity of 7→, e1 ≤1 e 7→ en+1 ≤2 en+1.

Let e1,e2 ∈ E such that e1 • e2 and e2 • e1. Let us prove that e1 = e2.

• Suppose e1,e2 ∈ E1 (the case e1,e2 ∈ E1 is symmetric). We have e1 ≤1 e 7→ e′ ≤2 e2 ≤1 e′′ 7→
e′′′ ≤2 e1, so e1 ≤1 e≤1 e′ = e2 ≤1 e′′ ≤1 e′′′ = e1 and e1 = e2.

• Suppose now that e1 ∈ E1 and e2 ∈ E2 (which proves the case e1 ∈ E2 and e2 ∈ E1 by symme-
try). We have e1 ≤1 e 7→ e′ ≤2 e2 ≤2 e′′ 7→ e′′′ ≤1 e1. By real-time, we have either e 7→ e′′′ or
e′′ 7→ e′. Suppose that e 7→ e′′′ (the other case is symmetric). We have e1 ≤1 e 7→1 e′′′ ≤1 e1, so
e1 = e = e′′′. Moreover, e′′ 7→ e′′′ = e 7→ e′, which implies e2 = e′′ = e′. Finally, e1 = e 7→ e′ =
e2 = e′′ 7→ e′′′ = e1, so e1 = e2.

As • is a partial order, we can extend it in a total order≤. lin
(
H≤

)
contains exactly one word l, that

is an interleaving of l1 and l2. As l1 ∈ L(T1) and l2 ∈ L(T2), l ∈ L(T1×T2). Finally, H ∈ SC(T1×T2).

3.2 Pipelined consistency
Pipelined consistency is an extension of pipelined random access memory (PRAM) [LS88] for
other data types. It allows the processes to be aware of some, but not all, of the events. The
definition of pipelined consistency is very close to those of local consistency, a very easily under-
stood consistency criterion that we introduce first to illustrate the formalism needed for pipelined
consistency.

Local consistency Local consistency is the criterion respected by local variables. A local variable
contains an object of type T that is not shared on the network. All the events on it are done by
a sequential process, so they form a maximal chain p in the history. We recall that the maximal
chains of the history H are contained into PH . This means that lin(Hp) is a singleton {l} that only
contains the sequential history seen by p. Local consistency requires that this history is correct
with respect to the sequential specification of the object, i.e. l ∈ L(T ). More formally, Definition 8
requires that lin(Hp)∩L(T ) is not empty, as it must contain l.

Definition 8. A history H is locally consistent (LC) with an UQ-ADT T if ∀p∈PH , lin(Hp)∩L(T ) 6=
/0.
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•
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(b) PC but not SC?

Figure 5: These histories on Mx,y show that PC is not comparable with SC?

The history on Figure 4 is locally consistent. It represents a graph edited by a thread. At one
point, this thread forks and the graph is edited separately by the father thread and its son. There
are two maximal chains in this history, and the first events are part of both. The operations made
by one thread are ignored by the other thread. Local consistency does not make sense when
threads are allowed to join, because one value must be discarded. If no join is allowed for the
histories, for example because the computation model is based on parallel sequential processes,
local consistency is composable, in the manner of sequential consistency with real time.

Pipelined consistency Pipelined consistency is close in its definition to local consistency, but the
processes are also aware of the updates made by the other processes, and of the order in which
they are made. Each process must be able to explain the history individually by a linearization
of their own knowledge. The consistency is local to each process, as different processes can see
concurrent updates in a different order.

Definition 9. A history H is pipelined consistent (PC) with an UQ-ADT T if ∀p ∈PH , lin(HUH∪p)∩
L(T ) 6= /0.

Pipelined consistency is weaker than sequential consistency, for which the linearizations seen
by different processes must be identical. It is not comparable with cache consistency, as illustrated
on Figure 5. On the graph, that cannot be decomposed into simpler data types, cache consistency
is equal to sequential consistency so we illustrate this on a shared memory.

For memory, cache consistency is very weak as finite locally consistent histories are also cache
consistent. The history of Figure 5a is also cache consistent since rx/0.wx(1) and wy(1).ry/1 are cor-
rect linearizations of the sub-histories that only consider one register at a time. It is not pipelined
consistent because there is no linearization of all the events, that is required for the second process.

As there is only one register in the history of Figure 5b, all the events must be considered in the
same linearization for cache consistency, which is not possible. However, it is pipelined consis-
tent: wx(1).wx(2).rx/2 is a linearization for the first process and wx(2).wx(1).rx/1 is a linearization
for the second process.

We now prove a negative result on composability: there exists no composable consistency cri-
terion between pipelined consistency and sequential consistency.

Proposition 2. ∀C,PC ≤C ≤ SC⇒C2 6=C.

Proof. If there existed a C such that PC ≤C ≤ SC and C =C2, we would have PC ≤C =C2 =C? ≤
SC?. The example of Figure 5a proves that PC 6≤ SC?, so such a C does not exist.

3.3 Causal Consistency
Causal Consistency [ANB+95] is an exception as it cannot be written easily in our model. Indeed,
causal consistency was only defined for memory, and its definition uses the semantics of read
and write operations, which makes it difficult to extend. We recall here the definition of causal
memory.

Causal memory Causal Consistency is an intermediate criterion between pipelined consistency
and sequential consistency. Pipelined consistency is only local; each process has a consistent vi-
sion of the events it is aware of, but they can disagree on the order in which updates happen.



10 ANR SocioPlug – ANR-13-INFR-0003

•
wx(1) •

wx(2) •
wy(3)

•
rt(3) •

rz(1) •
wx(1)

•
wz(1)

•
wz(2)

•
wt(3)

•
ry(3)

•
rx(1)

•
wz(1)

l1 = wx(1)wx(2)wy(3)wz(1)wz(2)wt (3)rt (3)wz(1)rz(1)wx(1)

l2 = wx(1)wx(2)wy(3)wz(1)wz(2)wt (3)ry(3)wx(1)rx(1)wz(1)

Figure 6: This writes-into order is not a correct explanation of the data dependencies in this history

On the other hand, sequential consistency imposes a total order on all the operations of the his-
tory. Causal consistency supposes the existence of a logical time, the causal order, composed
of two kinds of dependences. On the one hand, the program order must be respected: like in
pipelined consistency, if two operations happen on the same process, all the processes that see
both operations must see them in the same order. On the other hand, two events related by data
dependencies must be ordered in the causal order. More precisely, if a read returns the value
written by a write, these events are related by a writes-into order that can affect the linearizations
of all processes. We now recall the formal definition of causal memory.

Definition 10. Let MX be a memory update-query abstract data type. A relation is a writes-into
order if:

• for all e,e′ ∈ E such that e e′, there are x ∈ X and n ∈ N such that Λ(e) = wx(n) and Λ(e′) =
rx/n,

• for all e ∈ E, |{e′ ∈ E : e′ e}| ≤ 1,

• for all e ∈ E such that Λ(e) = rx/n and there is no e′ ∈ E such that e′ e, then n = 0.

A history H is MX -causal if there exists a writes-into order such that:

• the transitive closure→ of ∪ 7→ is a partial order,

• ∀p ∈PH , lin
(

H→UH∪p

)
∩L(MX ) 6= /0.

Limits of causal memory The first limit of causal memory is that it cannot be easily extended to
other data types. Actually, the definition of writes-into orders is deeply related to the semantics
of registers. For other abstract data types, e.g. graphs, counters or stacks, the value returned by
a query does not depend on one particular update, but on all the updates that happened before.
Moreover, in the case of the stack, these updates must be sorted to take into account the order
of the elements in the stack. It might be possible to define a writes-into order for each of these
objects individually, but this approach cannot be used in a data type-independent definition of
causal consistency.

The second limit comes from the fact that the writes-into order is not unique. This weakens the
role of the logical time, as the intuition that a read must be bound to its corresponding write is
not always captured by the definition. Let us illustrate that point with the history on Figure 6. In
this history, we consider the writes-into order in which the reads on x and z are related to the first
write of the other process. This writes-into order is correct, as each read is related to exactly one
write, and the variables and the values are the same. Moreover, l1 and l2 are correct linearizations,
so this history is causally consistent. However, in these linearizations, the value read by the two
last reads was not written by their predecessors in the writes-into relation, but if we change this
relation to restore the real data dependencies, we obtain a cycle in the causal order. This example
shows that the approach of Definition 10, that uses the semantics of the operations, is not well
suited to define the consistency criteria. This issue is solved in [Mis86] by the hypothesis that all
written values are distinct. Even if this can be achieved by the addition of unique timestamps
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Figure 7: In the case of concurrent writes, at least one process should eventually see the value of
the other process

on the values stored by the memory, this solution is not acceptable because it changes the way
the final object can be used. Who could accept to sacrifice the ease of use only for the need of
specification?

Another example that cannot be solved by stamping is illustrated by Figure 7. The causal or-
der from Definition 10 only considers write-read dependencies, while concurrent writes are not
considered at all. In the example, there is no ambiguity on the writes-into order, as all the values
written in each variable are different. The linearizations l3 and l4 show that this history is consis-
tent for causal memory. Nevertheless, many people, thinking of causal reception, would reject it
for causal consistency because it is impossible that the first process receives the notification mes-
sage for wx(2) before it sends the one for wx(1), and the second process receives the notification
message for wx(1) before it sends the one for wx(2): a message cannot be received before it is sent.

3.4 Eventual consistency
Eventual consistency [Vog08] is one of the few consistency criteria that was not originally de-
signed for memory. It requires that, if all the participants stop updating, all the replicas eventu-
ally converge to the same state. In other word, H is eventually consistent if it contains an infinite
number of updates (i.e. the participants never stop to write) or if there exists a state compatible
with all but a finite number of queries (the consistent state).

In our formalism, a consistency criterion must impose to all the events to be labelled by cor-
rect operations of the data type. It is not clear in the literature whether it is the case for eventual
consistency. A lot of work has been done to fully specify CRDTs [SPBZ11a], a kind of objects espe-
cially designed to achieve eventual consistency. In [BZP+12], it is explicitly mentioned that if an
insertion and a deletion of the same element are done concurrently on the set, then any state can
be specified as consistent state, including, for example, an error state. Moreover, no assumption
is made on the queries made before convergence, so we can imagine that data inconsistencies are
acceptable for a short amount of time. For example, a query operation that returns a local copy of
the graph could return an edge starting from a vertex that does not exists. These exotic behaviors
may cause issues with data integrity, and our definition does not allow them. It is necessary to
explicitly modify the sequential specification, for example by adding unreachable states, to take
them into account.

Definition 11. A history H is eventually consistent (EC) if it contains an infinite number of updates
or there exists a state s ∈ S such that the set {qi/qo ∈ QH : ϕ(s,qi) 6= qo} of queries that cannot be
issued while in the state s is finite.

The history of Figure 8a is not eventually consistent since there are only two updates and no
valid state can contain the edge (1,2) but not the vertex 2. The other histories of Figure 8 are
eventually consistent since only one query is repeated infinitely often.

Strong eventual consistency Strong eventual consistency [SPB+11] requires that two replicas
of the same object converge as soon as they have received the same updates. The problem with
that definition is that the notions of replica and message reception are inherent to the implemen-
tation, and are hidden to the programmer that uses the object, so they should not be used in a
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Figure 8: On these histories for an instance of G , An event labelled ω is repeated an infinity of
times. We can see that SEC 6= EC and that PC and SC are not comparable with EC and SEC.

specification. To capture this, a visibility order is introduced to explain the history.

Definition 12. A history H is strong eventually consistent (SEC) if there exists an acyclic and reflex-
ive relation→ (called visibility relation) that contains 7→ and such that:

• Eventual delivery: when an update is viewed by a replica, it is eventually viewed by all
replicas, so there can be at most a finite number of operations that do not view it: ∀u ∈
UH ,{e ∈ E,u 6→ e} is finite;

• Growth: if an event has been viewed once by a process, it will remain visible forever:
∀e,e′,e′′ ∈ E,(e→ e′∧ e′ 7→ e′′)⇒ (e→ e′′) ;

• Strong convergence: if two query operations view the same past of updates V , they are
issued in the same state s: ∀V ⊂UH ,∃s ∈ S,∀qi/qo ∈ QH ,
{u ∈UH : u→ qi/qo}=V ⇒ ϕ(s,qi) = qo.

Strong eventual consistency is strictly stronger than eventual consistency. Figure 8b shows a
history that is strong eventually consistent but not eventually consistent. The update Ie(1) must
be visible by all the queries of the first process (by reflexivity and growth), so there are only
two possible sets of visible updates ({Ie(1)} and{Ie(1),De(1)}) for these events. By the growth
property, the query event Qe(1)/⊥must have the same view as the previous event or the following
event, which is impossible.

Eventual consistency and strong eventual consistency are not comparable with pipelined con-
sistency and causal consistency. The history of Figure 8a is causally consistent but not eventually
consistent. Conversely, the history of Figure 8c is strong eventually consistent but not pipelined
consistent. To build the linearization of the first process, it is necessary to insert the Iv(3) between
the two Qv(3), but it is impossible to insert the Dv(2) before any Qv(2). If these queries returned
⊥, the history would be causally consistent but no more eventually consistent.

Eventual consistency can hardly be used directly to program reliable applications because it
gives too few guaranties on the operations made before convergence. It can be used, however,
for applications in which the object is controlled by humans. For example, it makes sense for a
collaborative text editor like Logoot [WUM09] to ensure that all the collaborators will eventually
see the same document.
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Figure 9: A summary of the criteria exposed in Section 3. The underlined criteria are composable.
An arrow between C1 and C2 express the fact that C1 ≤C2. This arrow is thick if no composable
consistency criteria exists along it

4 Survey of Weakly Consistent Systems
Figure 9 sums up all the consistency criteria evoked in Section 3. Some, like C⊥, C> and RT only
have a theoretical interest, but others have real practical applications. For brevity, we cannot
present this deep analysis for all the weak consistency conditions that have been proposed in the
past. But we will now briefly review the most recent systems that offer various weak consistency
guarantees. We first consider general purpose systems such as key-value stores, and then consider
the special case of collaborative editing.

Consistency in distributed data stores. Amazon was one of the first companies to contribute to
the success of key value stores. In 2007, they presented Dynamo [DHJ+07], the system they were
using to manage their large-scale online-shopping infrastructure . The architecture of Dynamo re-
sembles that of a distributed hash table (DHT) like Chord [SMK+01], although each Dynamo node
maintains global membership information. Dynamo replicates data items over multiple nodes for
availability and fault tolerance, but in order to scale, it adopts a quorum-based system and propa-
gates write and read operations asynchronously to respectively W and R nodes, where W +R > N,
N being the total number of replicas. This yields a form of eventual consistency: writes always go
through, while reads may yield conflicting data versions that have to be reconciled. Specifically,
Dynamo detects conflicting version by tagging each data version with a vector clock [Mat89]. If
the vector clocks of two version on the same data item can be ordered, then Dynamo can safely
discard the older. Otherwise, it leaves it to the application to reconcile the conflicting updates.

Cassandra [LM10] also provides a ring-based key-value data store, but unlike Dynamo it sup-
ports data with multiple columns. Cassandra uses quorums to provide different forms of con-
sistency and fault tolerance that depend on the nature of the required quorums. More precisely,
applications can specify for each operation a consistency guarantee that is dependent on the loca-
tion of replicas: for instance the constraints LOCAL_QUORUM requires a quorum of replicas in
the local data center, while EACH_QUORUM requires a quorum in each data center.

Subsequent work has proposed key-value stores that offer stronger semantic guarantees. Wal-
ter [SPAL11], for example, introduces a model called parallel snapshot isolation in the context of
geo-distributed systems. Specifically, Walter provides snapshot isolation within each single site,
but relaxes this property between transactions executed on different sites. Specifically, it allows
them to exhibit different commit orderings on different sites, while at the same time guaranteeing
the absence of write-write conflicts between committed transactions.

Others [CRS+08, TPK+13] have proposed data stores that allow programmers to choose differ-
ent consistency guarantees in their code by offering an enriched API. In particular,Pileus [TPK+13]
allows developers to establish service-level agreements in the trade-off between consistency and
responsiveness. For example, a developer can specify that a request should be satisfied within
a given delay and if possible with strong consistency guarantees. This allows the data store to
dynamically offer the strongest consistency guarantee that satisfies the developer’s request.

Salt [XSK+14] proposes a compromise between traditional ACID transactions and the BASE
paradigm (Basically Available Soft-state Eventually consistent). Salt decouples atomicity from
isolation by introducing BASE transactions, consisting of sequences of a new form of nested
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transactions, alkaline transaction. Salt maintains atomicity and isolation between ACID trans-
actions, and also between ACID and BASE transactions. However, it makes the committed state
of alkaline transactions visible to other alkaline or BASE transactions. This yields an important
performance improvements for those transactions that can get away without strong ACID seman-
tics, while at the same time simplifying the implementation of transaction that require stronger
guarantees.

Weak consistency guarantees in the face of distribution are linked to optimistic replication
schemes [SS05], which can be understood as an early attempt to model and systematize even-
tual consistency. The idea of optimistic replication is to strive for (eventual) consistency across
replicas, but still allow some level of inconsistency. These schemes, some of which dates back to
early internet systems such as DNS or Usenet, typically include some form of delayed conflict
detection and resolution, in a form that is reminiscent of eventually consistent objects.

Causal+ consistency [LFKA11] is a stronger version of causal consistency, that combines causal
and eventual consistency criteria by insuring that replicated items are causally consistent, but
also eventually converge to a state reflecting a total order of operations. The convergence is
guaranteed by resolving conflicting updates to the same data item in an identical manner across
all replicas. In the system proposed by Lloyd et al., called COPS (Clusters of Order-Preserving
Servers) Causality is implemented using version numbers, and eventual convergence using Lam-
port timestamps to impose an eventual global order on all write operations.

Almeida, Leitão, and Rodrigues have proposed ChainReaction [ALaR13], a geo-replicated data
store that also implement causal+ consistency, but this time by building on a method known as
chain replication. In each datacenter, ChainReaction organizes replicas in a ring DHT in which data
items are replicated across k successive nodes. The approach then adapts a method of lineariza-
tion called chain replication [VRS04]. Chain replication provides linearizability by serializing read
and write requests respectively either to the head, or the tail of the chain of servers handling the
corresponding data items. ChainReaction adapts this schemes by exploiting intermediate servers
for read operations in a way that insures causal+ consistency within a datacenter. Causal+ consis-
tency is then insures across datacenters by keeping track of the propagation of updates in different
datacenters in a chain index vector. This vector is used to detect when a new version of an item has
stabilized across all datacenters.

Convergent Replicated Datatypes [SPBZ11b] (or CRDT) are distributed abstract data types (i.e.
abstract data types whose operations are invoked from distributed nodes) that provide guar-
antees of eventual convergence towards a well-defined distributed state. In survey presented
by Shapiro, Preguiça, Baquero, and Zawirski distinguished between state-based and operation-
based CDRDTs. The simpler form, state-based CRDTs are formally defined on the basis of a
semi-lattice, i.e. a partial order ≤ in which a least upper bound operation (LIB, usually noted t) re-
turns the smallest element that is higher than both operands. Said differently, for any x and y, the
set {z|x≤ z∧ y≤ z} admits a smallest element, which is xt y. A semi-lattice induces a state-based
CRDT that insure that all replicas of the CRDT converge to the LUB of its initial and updates
values by propagating updates through the replicas and using the LUB operation (termed merge
in this case [SPBZ11b]) to combine all values into a uniform, converged final result. State-based
CRDTs realize a data types whose operations are commutative and associative. Operation-based
CRDTs are data types that contain some operations that do not commute and must add further
constrains to guarantee convergence. These additional constrains come in the form of a delivery
order (typically an order that is weaker or equivalent to causal order) imposes on the propagation
of operations that do not commute, but yet converge if this delivery order is respected. A number
of data types can be implemented using the CDRTs frameworks, including counters, registers,
sets, graphs, and text [SPBZ11b]. These datatypes often do not have the exact same properties
of the traditional data type they take their name of (e.g. in the 2-phase set, an element can only
be added and removed once), which allow them to provide the convergence property without
recurring to delivery orders stronger than causality.

Bolt-on causal consistency [BGHS13] is a mechanisms proposed by Bailis, Ghodsi, Hellerstein,
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and Stoica to add causal consistency as a generic mechanism on top of an eventually consistent
data store (noted ECDS in the original publication). The idea is to extend an ECDS with a shim
layer that keeps a local view of the system’s (key,values) pair while insuring that this local view
always forms a causal cut. The notion of causal cut is extended from that of consistent cut often
found in distributed checkpoint algorithm, and guarantees that the values read from the local
view respect causality. The shim then proactively updates this view while tracking write causal
dependencies, in practice delaying updates that are visible in the ECDS, but for which all causal
dependencies have not been resolved yet. Conceptually, this treats the ECDS as an unreliable
broadcast medium, with an additional property of eventual delivery.

In their work, Burckhardt et al. [BGYZ14], present a formal approach derived from abstract data
types to specify formally the behavior of complex CRDTs. The approach uses the notion of opera-
tions context (the set of events perceived) to describe the axioms an single data-type must respect.
It then introduce consistency axioms to describe the allowed behavior of a whole data store, in
which multiple objects might co-exist. The author use this formalism to propose a method of
verification of the implementation of CDRTs that abstracts away some the complexity induced by
distribution and replication when trying to link an abstract specification and a concrete algorith-
mic description. Finally the same work offers lower bounds on the size of the meta-data required
to implement different data types, and a method to obtain these bounds.

Consistency for collaborative editing. Molli et al. [OUMI06] proposed WOOT, a set of algo-
rithms for maintaining consistency in the context of a distributed collaborative editing platform.
The authors observe that while causal consistency represents a desirable and necessary condition
for collaborative editing, it does not suffice by itself. Not only must participating nodes agree on
the relative order of causally related operations (character insertions/deletions), but they must
also agree on a correct character ordering for the final text sequence. The authors model this
need as the combination of three properties: causality, convergence, and intention preservation.
Causality and convergence could be provided by a total-ordering protocol such as Lamport’s log-
ical clocks [Lam78] model, but this would introduce spurious potential dependencies that would
not satisfy intention preservation. WOOT, on the other hand, only relies on semantic dependen-
cies and therefore makes it possible to reorder operations that do not lead to changes in the final
output value.

Preguiça et al. [PMSL09] also propose a consistency framework for collaborative editing by ex-
ploiting the concept of commutative replicated data type. They propose a tree structure, Treedoc,
that encodes a document in the form of an infix-ordered path in a binary tree. To support con-
current edits, they employ mini-nodes, which aggregate characters that are inserted concurrently
at the same position. The framework associates each (mini) node with a disambiguator—for ex-
ample, a globally unique identifier—which is uses to establish an ordering between mini-nodes
inserted at the same position. Unlike WOOT, the use of Unique identifiers in the TreeDoc struc-
ture makes it possible to delete tree nodes associated with deleted characters, thereby limiting
memory consumption for frequently modified documents.

Enforcing consistency criteria. Another important topic consists in understanding how to best
enforce consistency guarantees during the software development process. To this end [ABCH13]
provides a nice overview of levels at which consistency criteria can met within an application. The
paper considers two extremes: I/O-level and application-level approaches. The former include
traditional techniques such as state-machine replication [Lam84], group-communication [BJ87],
and all the different consistency guarantees offered at the storage level [CDE+12]. The latter
involves embedding consistency code directly into each application in a customized fashion.

The authors of [ABCH13] argue that both these approaches are unsatisfactory because they
either underfit, or overfit application needs. To this end, they give the example of two appli-
cations that operate on a graph: a deadlock detector, and a garbage collector. The former only
considers stable properties that persist once they are established; as a result, it can work with
very weak consistency criteria that can reorder any operation. The latter, on the other hand, re-
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quires that all the graph be explored before declaring an object as unreferenced. A developer
that wished to use the same consistency-aware graph library for both application would obtain
an overly constrained deadlock detector, while one that decided to have application-specific code
would end up with error-prone code duplication. The authors explore intermediate solutions
that include object level approaches like CRDTs [SPBZ11a, SPB+11], flow-level approaches like
Blazes [ACHM13], and language-level approaches like Bloom [ACHM11].

5 Conclusion
Sharing objects is essential to abstract communication complexity in large scale distributed sys-
tems. A lot of work has been done until now to specify many kinds of shared memory, but very
few for other data types. In this survey, we proposed a framework to easily specify shared objects.
This framework is based on a clear separation between sequential specifications and consistency
criteria. The interest of this approach is that sequential specifications are easy to understand as
they are already widely used in sequential object-oriented programming.

Programming in a modular way is very important for reliability because it helps focusing on
simpler pieces of codes. Composability is required to put the pieces together in the final pro-
gram. However, this property seems very difficult to achieve, in particular for the strongest crite-
ria. In this paper, we have shown that there exists no composable consistency criterion between
pipelined consistency and sequential consistency. The example of linearizability shows that it
might be possible to add constraints on the composition to make another consistency criterion
composable. We could imagine an algorithm to compose C-consistent objects with respect to a
criterion C′ such that C2 +C′ = C +C′. Such a C′ always exists, as C2 +C = C +C but a weaker
criterion could lead to more efficient implementations. We leave all this as future work.
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