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A ONE-DIMENSIONAL SYMMETRY RESULT FOR A CLASS OF NONLOCAL SEMILINEAR EQUATIONS IN THE PLANE
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We consider entire solutions to Lu = f (u) in R 2 , where L is a nonlocal operator with translation invariant, even and compactly supported kernel K. Under different assumptions on the operator L, we show that monotone solutions are necessarily one-dimensional. The proof is based on a Liouville type approach. A variational characterization of the stability notion is also given, extending our results in some cases to stable solutions.

Introduction

In this paper, we consider solutions of an integral equation driven by a nonlocal, linear operator of the form Lu(x) := R n u(x) -u(y) K(x -y) dy.

(1)

Laplacian (-∆) s with s ∈ (0, 1) (and possibly arising from a more general kernel, which is not scale invariant and does not possess equivalent extended problems). Also, convolution operators are nowadays very popular, also in relation with biological models, see, among the others [START_REF] Fife | Mathematical aspects of reacting and diffusing systems[END_REF][START_REF] Fife | An integrodifferential analog of semilinear parabolic PDEs. Partial differential equations and applications[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Medlock | Spreading disease: Integro-differential equations old and new[END_REF].

We consider here solutions u of the semilinear equation

Lu = f (u) in R 2 . ( 2 
)
Notice that, in the biological framework, the solution u of this equation is often thought as the density of a biological species and the nonlinearity f is a logistic map, which prescribes the birth and death rate of the population. In this setting, the nonlocal diffusion modeled by L is motivated by the long-range interactions between the individuals of the species.

The goal of this paper is to study the symmetry properties of solutions of [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi[END_REF] in the light of a famous conjecture of De Giorgi arising in elliptic partial differential equations, see [START_REF] Giorgi | Proceedings of the international meeting on recent methods in nonlinear analysis[END_REF]. The original problem consisted in the following question: Then, u is necessarily one-dimensional, i.e. there exist u : R → R and ω ∈ R n such that u(x) = u (ω • x), for any x ∈ R n , at least when n ≤ 8.

The literature has presented several variations of Conjecture 1.1: in particular, a weak form of it has been investigated when the additional assumption

lim xn→±∞ u(x 1 , . . . , x n ) = ±1 (3) 
is added to the hypotheses. When the limit in ( 3) is uniform with respect to the variables (x 1 , . . . , x n-1 ) ∈ R n-1 , the version of Conjecture 1.1 obtained in this way is due to Gibbons and is related to problems in cosmology.

In spite of the intense activity of the problem, Conjecture 1.1 is still open in its generality. Up to now, Conjecture 1.1 is known to have a positive answer in dimension 2 and 3 (see [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi[END_REF][START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF] and also [START_REF] Alberti | On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]) and a negative answer in dimension 9 and higher (see [START_REF] Del Pino | On De Giorgi's conjecture in dimension N ≥ 9[END_REF]). Also, the weak form of Conjecture 1.1 under the limit assumption in (3) was proved, up to the optimal dimension 8, in [START_REF] Savin | Regularity of flat level sets in phase transitions[END_REF] (see also [START_REF] Farina | 1D symmetry for solutions of semilinear and quasilinear elliptic equations[END_REF] for more general conditions at infinity), and the version of Conjecture 1.1 under a uniform limit assumption in (3) holds true in any dimension (see [START_REF] Barlow | The Liouville property and a conjecture of De Giorgi[END_REF][START_REF] Berestycki | One-dimensional symmetry of bounded entire solutions of some elliptic equations[END_REF][START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF]). Since it is almost impossible to keep track in this short introduction of all the research developed on this important topic, we refer to [START_REF] Farina | The state of the art for a conjecture of de Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions. Based on the international conference on reaction-diffusion systems and viscosity solutions[END_REF] for further details and motivations.

The goal of this paper is to investigate whether results in the spirit of Conjecture 1.1 hold true when the Laplace operator is replaced by the nonlocal operator in [START_REF] Alberti | On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property[END_REF]. We remark that symmetry results in nonlocal settings have been obtained in [START_REF] Cabré | Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian[END_REF][START_REF] Cabré | Sharp energy estimates for nonlinear fractional diffusion equations[END_REF][START_REF] Cabré | Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, Hamiltonian estimates[END_REF][START_REF] Cabré | Nonlinear equations for fractional Laplacians, II: Existence, uniqueness, and qualitative properties of solutions[END_REF][START_REF] Cabré | Layer solutions in a half-space for boundary reactions[END_REF][START_REF] De La Llave | Symmetry for a Dirichlet-Neumann problem arising in water waves[END_REF][START_REF] Sire | Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result[END_REF], but all these works dealt with fractional operators with scaling properties at the origin and at infinity (and somehow with nice regularizing effects).

Also, some of the problems considered in the previous works rely on an extension property of the operator that brings the problem into a local (though higher dimensional and either singular or degenerate) problem (see however [START_REF] Bucur | Nonlocal diffusion and applications[END_REF][START_REF] Cinti | Quantitative rigidity results for nonlocal phase transitions[END_REF] where symmetry results for fractional problems have been obtained without extension techniques).

In this sense, as far as we know, this paper is the first one to take into account kernels that are compactly supported, for which the above regularization techniques do not always hold and for which equivalent local problems are not available. Moreover, the strategy used in our proof is different from the ones already exploited in the nonlocal setting, since it relies directly on a technique introduced by [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF] and refined in [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi[END_REF], which reduced the symmetry property of the level sets of a solution to a Liouville type property for an associated equation (of course, differently from the classical case, we will have to deal with equations, and in fact inequalities, of integral type, in which the appropriate simplifications are more involved).

In this paper, we prove the following one-dimensional result in dimension 2. Here, and throughout the paper, B r denotes the open Euclidean ball with radius r > 0 and centered at the origin, B r (x) = x + B r , and χ E denotes the characteristic function of a set E. Theorem 1.2. Let n = 2 and let L be an operator of the form (1), with K satisfying either

m 0 χ Br 0 (ζ) ≤ K(ζ) ≤ M 0 χ B R 0 (ζ) (4) or m 0 χ Br 0 (ζ) ≤ |ζ| 2+2s K(ζ) ≤ M 0 χ B R 0 (ζ), (5) 
for any ζ ∈ R 2 , for some fixed M 0 ≥ m 0 > 0, R 0 ≥ r 0 > 0, and 0 < s < 1 in (5). Let u be a solution of (2),

with u ∈ C 1 (R 2 ) and f ∈ C 1,α (R). Assume that ∂ x 2 u(x) > 0 for any x ∈ R 2 . (6) Then, u is necessarily one-dimensional.
The assumptions in (4) and ( 5) correspond, respectively, to the case of an integrable kernel of convolution type and to the case of a cutoff fractional kernel. For the existence and further properties of one-dimensional solutions of (2) under quite general conditions, see Theorem 3.1(b) in [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF], and [START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case[END_REF]. As far as assumption (5) is concerned, there is no direct reference on the existence of one-dimensional solutions. However, an adaptation of the techniques in [START_REF] Palatucci | Valdinoci Local and global minimizers for a variational energy involving a fractional norm[END_REF] could lead to such a result.

We recall that if condition (5) (or, more generally, (H1) below) is assumed, one needs to interpret (1) in the principal value sense, i.e., as customary, Lu(x) := P.V.

R n u(x) -u(y) K(x -y) dy := lim r→0 R n \Br(x) u(x) -u(y) K(x -y) dy.
As a matter of fact, our proof of Theorem 1.2 does not use any special structure of the kernel K, but only relies on the following facts: the kernel K has compact support, and the operator L satisfies a Harnack inequality. More precisely, we need:

(H1) The operator L is of the form (1), with the kernel K satisfying K ≥ 0,

K(ζ) = K(-ζ) and K(ζ) ≥ m 0 χ Br 0 (ζ) in R 2 for some m 0 > 0 and r 0 > 0. Moreover, K has compact support in B R 0 for some R 0 > 0, that is, K ≡ 0 in R 2 \ B R 0 ,
and

B R 0 |ζ| 2 K(ζ)dζ < ∞.
(H2) The operator L satisfies the following Harnack inequality: if ϕ is continuous and positive in R 2 and is a weak solution to

Lϕ + c(x)ϕ = 0 in B R , with c(x) ∈ L ∞ (B 1 ) and c L ∞ (B R ) ≤ b, then sup B R/2 ϕ ≤ C inf B R/2 ϕ
for some constant C depending on L and b, but independent of ϕ. Under these assumptions, we have the following.

Theorem 1.3. Let n = 2, let L be an operator of the form (1), with K and L satisfying (H1) and (H2), and let u be a solution of (2),

with u ∈ C 1 (R 2 ) and f ∈ C 1 (R). Assume that ∂ x 2 u(x) > 0 for any x ∈ R 2 .
If K is not integrable, assume in addition that u ∈ C 3 (R 2 ). Then, u is necessarily one-dimensional.

When (4) holds, then (H2) follows from the results of Coville (more precisely, Corollary 1.7 in [START_REF] Coville | Harnack type inequality for positive solution of some integral equation[END_REF]). Similarly, when ( 5) is in force, then (H2) follows from a suitable generalization of the results in [START_REF] Castro | Nonlocal Harnack inequalities[END_REF] (see Remark 1.5 below). Thus, thanks to the results in [START_REF] Coville | Harnack type inequality for positive solution of some integral equation[END_REF][START_REF] Castro | Nonlocal Harnack inequalities[END_REF], Theorem 1.2 follows from Theorem 1.3 -the only difference being the regularity assumed on the solution u.

Notice that when the kernel K is non-integrable at the origin, then one expects the operator L to be regularizing, and thus bounded solutions u to (2) to be at least C 1 (recall that f is C 1 (R)). Moreover, when f is smooth, then u is expected to be smooth. However, in case that K is integrable at the origin (as in 4), then it is not clear if all bounded solutions are in C 1 (R 2 ), and this is why we need to take this assumption in Theorem 1.2.

Remark 1.4. Notice that one can produce a C 1 solution by the following argument: rewrite equation (2) into the following form:

R n u(y)K(x -y)dy = u(x) -f (u(x)). Hence if K is C 1 , then the left hand-side of the equation is also C 1 . Therefore, assuming that the map r → r -f (r) is invertible with a C 1 inverse, leads to a C 1 solution u.
Remark 1.5. Thanks to the results of [START_REF] Castro | Nonlocal Harnack inequalities[END_REF], the Harnack inequality holds for fractional truncated kernels as in (5) -see (2.2)-(2.3) in [START_REF] Castro | Nonlocal Harnack inequalities[END_REF]. Moreover, a straightforward adaptation of their proof allows to take into account the (bounded) zero order term c(x), and thus condition (H2) is satisfied for kernels K satisfying (5).

Harnack inequalities for general nonlocal operators L have been widely studied and are known for different classes of kernels K; see for instance a rather general form of the Harnack inequality in [START_REF] Castro | Nonlocal Harnack inequalities[END_REF]. Notice that in our case, we need a Harnack inequality with a zero order term in the equation. It has been proved when the integral operator is the pure fractional Laplacian in [START_REF] Caffarelli | Regularity theory for fully nonlinear integrodifferential equations[END_REF] and refined in [START_REF] Tan | A Harnack inequality for fractional Laplace equations with lower order terms[END_REF]. It is by now well known that the Harnack inequality may fail depending on the kernel K under consideration, and a characterization of the classes of kernels for which it holds is out of the scope of this paper. Notice indeed that condition (4) is stronger than (H1), but under the general assumption (H1) then the Harnack inequality in (H2) is not known, and thus needs to be assumed in Theorem 1.3.

The rest of the paper is devoted to the proof of Theorems 1.2 and 1.3. In particular, Section 2 will present the proof these results, making use of suitable algebraic identities and a Liouville type result in a nonlocal setting. Then, in Section 3 we will consider the extension of Theorem 1.3 to stable (instead of monotone) solutions, giving also a variational characterization of stability. 1 2. Proof of Theorems 1.2 and 1.3

The proofs of Theorems 1.2 and 1.3 are exactly the same. We will prove them at the same time. The first step towards the proof of these results is a suitable algebraic computation, that we express in this result:

Lemma 2.1. Let u be as in Theorem 1.2 or 1.3. Let u i := ∂ x i u, for i ∈ {1, 2}, and v(x) := u 1 (x) u 2 (x) . ( 7 
)
Also, let τ ∈ C ∞ 0 (R 2 ). Then R 2 R 2 v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy = - R 2 R 2 v(x) -v(y) τ 2 (x) -τ 2 (y) v(y) u 2 (x) u 2 (y) K(x -y) dx dy. (8) 
Proof. First, notice that in case [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF], since f ∈ C 1,α then u ∈ C 1+2s+α (R 2 ). This means that in all cases -either (4) or ( 5) or (H1)-, the derivatives u i are regular enough so that Lu i is well defined pointwise, and hence all the following integrals converge. We observe that, for any g and h regular enough, 2

R 2 Lh(x) g(x) dx = 2 R 2 R 2 h(x) -h(y) K(x -y) dy g(x) dx = R 2 R 2 h(x) -h(y) K(x -y) dy g(x) dx + R 2 R 2 h(y) -h(x) K(x -y) dx g(y) dy = R 2 R 2 h(x) -h(y) g(x) -g(y) K(x -y) dx dy. ( 9 
)
1 This paper is the outcome of two parallel and independent projects developed at the same time for these two classes of operators, see [START_REF] Hamel | A one-dimensional symmetry result for solutions of an integral equation of convolution type[END_REF][START_REF] Ros-Oton | Entire solutions to semilinear nonlocal equations in R 2[END_REF]. Since the motivation and the techniques used are similar, we thought that it was simpler to merge the two projects into a single, and comprehensive, paper.

By (2), we have that

f u(x) u i (x) = ∂ x i f u(x) = ∂ x i Lu(x) = ∂ x i R 2 u(x) -u(x -ζ) K(ζ) dζ = R 2 u i (x) -u i (x -ζ) K(ζ) dζ = Lu i (x). ( 10 
)
Accordingly,

f (u) u 1 u 2 = Lu 1 u 2 and f (u) u 1 u 2 = Lu 2 u 1 .
By subtracting these two identities and using [START_REF] Bucur | Nonlocal diffusion and applications[END_REF], we obtain

0 = Lu 1 u 2 -Lu 2 u 1 = L(vu 2 ) u 2 -Lu 2 (vu 2 ).
Now, we multiply the previous equality by 2τ 2 v and we integrate over R 2 . Recalling (9) together with vu 2 , we conclude that

0 = 2 R 2 L(vu 2 )(x) (τ 2 vu 2 )(x) dx -2 R 2 Lu 2 (x) (τ 2 v 2 u 2 )(x) dx = R 2 R 2 vu 2 (x) -vu 2 (y) τ 2 vu 2 (x) -τ 2 vu 2 (y) K(x -y) dx dy - R 2 R 2 u 2 (x) -u 2 (y) τ 2 v 2 u 2 (x) -τ 2 v 2 u 2 (y) K(x -y) dx dy =: I 1 -I 2 .
By writing

vu 2 (x) -vu 2 (y) = u 2 (x) -u 2 (y) v(x) + v(x) -v(y) u 2 (y),
we see that

I 1 = R 2 R 2 u 2 (x) -u 2 (y) τ 2 vu 2 (x) -τ 2 vu 2 (y) v(x) K(x -y) dx dy + R 2 R 2 v(x) -v(y) τ 2 vu 2 (x) -τ 2 vu 2 (y) u 2 (y) K(x -y) dx dy. (11) 
In the same way, if we write

τ 2 v 2 u 2 (x) -τ 2 v 2 u 2 (y) = τ 2 vu 2 (x) -τ 2 vu 2 (y) v(x) + v(x) -v(y) τ 2 vu 2 (y),
we get that

I 2 = R 2 R 2 u 2 (x) -u 2 (y) τ 2 vu 2 (x) -τ 2 vu 2 (y) v(x) K(x -y) dx dy + R 2 R 2 u 2 (x) -u 2 (y) v(x) -v(y) τ 2 vu 2 (y) K(x -y) dx dy. (12) 
By ( 11) and ( 12), after a simplification we obtain that

I 1 -I 2 = R 2 R 2 v(x) -v(y) τ 2 vu 2 (x) -τ 2 vu 2 (y) u 2 (y) K(x -y) dx dy - R 2 R 2 u 2 (x) -u 2 (y) v(x) -v(y) τ 2 vu 2 (y) K(x -y) dx dy.
Now we notice that

τ 2 vu 2 (x) -τ 2 vu 2 (y) = v(x) -v(y) τ 2 (x) u 2 (x)+ + τ 2 (x) -τ 2 (y) u 2 (x) v(y) + u 2 (x) -u 2 (y) τ 2 (y) v(y),
and so

I 1 -I 2 = R 2 R 2 v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy + R 2 R 2 v(x) -v(y) τ 2 (x) -τ 2 (y) v(y) u 2 (x) u 2 (y) K(x -y) dx dy.
This proves [START_REF] Cabré | Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian[END_REF].

Now we use a Liouville type approach to prove that solutions v of the integral equation in [START_REF] Cabré | Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian[END_REF] are necessarily constant (and this is the only step in which the assumption that the ambient space is R 2 plays a crucial role): Lemma 2.2. Let u be as in Theorem 1.2 or 1.3, and let v = u 1 /u 2 . Then v is constant.

Proof. First, by the previous Lemma v satisfies [START_REF] Cabré | Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian[END_REF] 

for all τ ∈ C ∞ c (R 2 ). Let R > 1, to be taken arbitrarily large in the sequel. Let τ := τ R ∈ C ∞ 0 (B 2R ), such that 0 ≤ τ ≤ 1 in R 2 , τ = 1 in B R and |∇τ | ≤ CR -1 , (13) 
for some C > 0 independent of R > 1. Throughout the proof, C will denote a positive constant which may change from a line to another, but which is independent of R > 1. Using [START_REF] Cabré | Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian[END_REF], and recalling (4), ( 6) and the support properties of τ , we observe that

0 ≤ J 1 := R 2 R 2 v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy ≤ R R v(x)-v(y) τ (x)-τ (y) τ (x)+τ (y) |v(y)| u 2 (x) u 2 (y) K(x-y) dx dy =: J 2 , (14) 
where

R R := {(x, y) ∈ R 2 × R 2 s.t. |x -y| ≤ R 0 } ∩ S R and 
S R := (B 2R × B 2R ) \ (B R × B R ) ∪ B 2R × (R 2 \ B 2R ) ∪ (R 2 \ B 2R ) × B 2R .
Moreover, making use of the Cauchy-Schwarz inequality, we see that

J 2 2 ≤ R R v(x) -v(y) 2 τ (x) + τ (y) 2 u 2 (x) u 2 (y) K(x -y) dx dy • R R τ (x) -τ (y) 2 v 2 (y) u 2 (x) u 2 (y) K(x -y) dx dy. (15) 
Now we notice that u 2 (x) ≤ C u 2 (y) (16) for any (x, y) ∈ R R , for a suitable C > 0, possibly depending on R 0 but independent of R > 1 and (x, y) ∈ R R . This is a consequence of (10) with f (u) ∈ L ∞ (R 2 ) and of assumption (H2) applied recursively to some shifts of the continuous and positive function u 2 .

From ( 13), ( 16) and the assumption v u 2 ∈ L ∞ (R 2 ), we obtain that, for any

(x, y) ∈ R R , τ (x) -τ (y) 2 v 2 (y) u 2 (x) u 2 (y) ≤ CR -2 |x -y| 2 v 2 (y) u 2 2 (y) ≤ CR -2 |x -y| 2
, for some C > 0 independent of R > 1 (the constant C in the last term may be larger than the one in the second term). Hence, by ( 4), (H1) and the symmetry in the (x, y) variables,

R R τ (x) -τ (y) 2 v 2 (y) u 2 (x) u 2 (y) K(x -y) dx dy ≤ C R -2 R R |x -y| 2 K(x -y) dx dy ≤ 2 C R -2 B 2R B R 0 |z| 2 K(z) dz dx ≤ C,
for some C > 0. Therefore, recalling (15),

J 2 2 ≤ C R R v(x) -v(y) 2 τ (x) + τ (y) 2 u 2 (x) u 2 (y) K(x -y) dx dy. ( 17 
)
Hence, since

τ (x) + τ (y) 2 = τ 2 (x) + τ 2 (y) + 2τ (x) τ (y) ≤ 2τ 2 (x) + 2τ 2 (y),
we can use the symmetric role played by x and y in ( 17) and obtain that

J 2 2 ≤ C R R v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy,
up to renaming C > 0. So, we insert this information into ( 14) and we conclude that

R 2 ×R 2 v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy 2 = J 2 1 ≤ J 2 2 ≤ C R R v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy, (18) 
for some C > 0.

Since R R ⊆ R 2 × R 2 and u 2 and K are nonnegative, we can simplify the estimate in [START_REF] Giorgi | Proceedings of the international meeting on recent methods in nonlinear analysis[END_REF] by writing

R 2 ×R 2 v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy ≤ C.
In particular, since τ = 1 in B R ,

B R ×B R v(x) -v(y) 2 u 2 (x) u 2 (y) K(x -y) dx dy ≤ C.
Since C is independent of R, we can send R → +∞ in this estimate and obtain that the map

R 2 × R 2 (x, y) → v(x) -v(y) 2 u 2 (x) u 2 (y) K(x -y) belongs to L 1 (R 2 × R 2 ).
Using this and the fact that R R approaches the empty set as R → +∞, we conclude from Lebesgue's dominated convergence theorem that

lim R→+∞ R R v(x) -v(y) 2 u 2 (x) u 2 (y) K(x -y) dx dy = 0.
Therefore, going back to [START_REF] Giorgi | Proceedings of the international meeting on recent methods in nonlinear analysis[END_REF] and recalling the properties of τ = τ R ,

R 2 ×R 2 v(x) -v(y) 2 u 2 (x) u 2 (y) K(x -y) dx dy 2 = lim R→+∞ R 2 ×R 2 v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy 2 ≤ lim R→+∞ C R R v(x) -v(y) 2 τ 2 (x) u 2 (x) u 2 (y) K(x -y) dx dy. = 0.
This and ( 6)

imply that v(x) -v(y) 2 K(x -y) = 0 for a.e. (x, y) ∈ R 2 × R 2 .
Hence, recalling assumption (H1), we have that v(x) = v(y) for any x ∈ R 2 and any y ∈ B r 0 (x). As a consequence, the set {y ∈ R 2 s.t. v(y) = v(0)} is open and closed in R 2 , and so, by connectedness, we obtain that v is constant.

By combining Lemmata 2.1 and 2.2, we can finish the proof of Theorems 1.2 and 1.3:

Completion of the proof of Theorems 1.2 and 1.3. Using first Lemma 2.1 and then Lemma 2.2, we obtain that v is constant, where v is as in [START_REF] Bucur | Nonlocal diffusion and applications[END_REF]. Let us say that v(x) = a for some a ∈ R. So we define ω := (a,1) √ a 2 +1 and we observe that

∇u(x) = u 2 (x) (v(x), 1) = u 2 (x) √ a 2 + 1 ω. Thus, if ω • y = 0 then u(x + y) -u(x) = 1 0 ∇u(x + ty) • y dt = 1 0 u 2 (x + ty) √ a 2 + 1 ω • y dt = 0.
Therefore, if we set u (t) := u(tω) for any t ∈ R, and we write any x ∈ R 2 as

x = (ω • x) ω + y x with ω • y x = 0, we conclude that u(x) = u ((ω • x) ω + y x ) = u ((ω • x) ω) = u (ω • x) .
This completes the proof of Theorem 1.3.

It is an interesting open problem to investigate if symmetry results in the spirit of Theorems 1.2 and 1.3 hold true in higher dimension.

Stable solutions and extension of the main results

We discuss here the extension of Theorems 1.2 and 1.3 to the more general context of bounded stable solutions u of (2) in the whole space R n with n ≥ 2. In the case of second order equations, there are two equivalent definitions of stability: a variational one and a non-variational one. In case of nonlocal operators (1), these two different definitions read as follows.

(S1) The following inequality holds

1 2 R n R n ξ(x) -ξ(x + y) 2 K(y) dy dx ≥ R n f (u)ξ 2 for every ξ ∈ C ∞ c (R n ).
That is, the second variation of the energy functional associated to ( 2) is nonnegative under perturbations with compact support in R n . (S2) There exists a positive continuous solution ϕ > 0 to the linearized equation

Lϕ = f (u)ϕ in R n . ( 19 
)
For completeness, we observe that a more general version of Theorems 1.2 and 1.3 holds true, namely if we replace assumption [START_REF] Berestycki | One-dimensional symmetry of bounded entire solutions of some elliptic equations[END_REF] with the following non-variational stability condition (S2).

Theorem 3.1. Let n = 2 and L be an operator of the form (1), with K satisfying either (4), or (5), or (H1)-(H2). Let u be a solution of (2), with u ∈ C 1 (R 2 ) and f ∈ C 1,α (R), and with u ∈ C 3 (R 2 ) in case (H1)-(H2). Assume that u is stable, in the sense of (S2). Then, u is necessarily one-dimensional.

Notice that, in this setting, Theorems 1.2 and 1.3 are a particular case of Theorem 3.1, choosing ϕ := u 2 = ∂ x 2 u and recalling [START_REF] Cabré | Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, Hamiltonian estimates[END_REF].

The proof of Theorem 3.1 is exactly the one of Theorem 1.3, with only a technical difference: instead of [START_REF] Bucur | Nonlocal diffusion and applications[END_REF], one has to define, for i ∈ {1, 2}, v(x) := u i (x) ϕ(x) .

Then the proof of Theorem 1.3 goes through (replacing u 2 with ϕ when necessary) and implies that v is constant, i.e. u i = a i ϕ, for some a i ∈ R. This gives that ∇u(x) = ϕ(x) (a 1 , a 2 ), which in turn implies the one-dimensional symmetry of u.

Given the result in Theorem 3.1, we discuss next the equivalence between the two definitions of stability (S1) and (S2). We will always assume that the kernel K satisfies assumption (H1). Proposition 3.2. Let n ≥ 1 and L be any operator of the form (1). Let u be a bounded solution of (2) in the whole of R n with f ∈ C 1 (R). Assume that the kernel K satisfies assumption (H1). Then, (S2) =⇒ (S1).

Proof. Let ξ ∈ C ∞ 0 (R n ). Using ξ 2 /ϕ as a test function in the equation Lϕ = f (u)ϕ, we find

R n f (u)ξ 2 = R n ξ 2 ϕ
Lϕ.

Next, we use (9) (which holds in R n as in R 2 ) to see that at least at the formal level for any function v and w such that Lw is well defined and v belongs to

L ∞ (R n ) R n v Lw = B(v, w) 2 ,
where

B(v, w) := R n R n v(x) -v(y) w(x) -w(y) K(x -y) dx dy.
We find (recall that ϕ is such that Lϕ exists and ξ is compactly supported) 2

R n f (u)ξ 2 = B ϕ, ξ 2 /ϕ . Now, it is immediate to check that ξ 2 (x) ϕ(x) - ξ 2 (y) ϕ(y) = ξ 2 (x) -ξ 2 (y) ϕ(x) + ϕ(y) 2ϕ(x)ϕ(y) -(ϕ(x) -ϕ(y)) ξ 2 (x) + ξ 2 (y) 2ϕ(x)ϕ(y) ,
and this yields 2

R n f (u)ξ 2 = R n R n ϕ(x) -ϕ(y) ξ 2 (x) -ξ 2 (y) ϕ(x) + ϕ(y) 2ϕ(x)ϕ(y) K(x -y)dx dy - R n R n ϕ(x) -ϕ(y) 2 ξ 2 (x) + ξ 2 (y) 2ϕ(x)ϕ(y) K(x -y)dx dy.
Let us now show that Θ(x, y) := ϕ(x) -ϕ(y) ξ 2 (x) -ξ 2 (y) ϕ(x) + ϕ(y) 2ϕ(x)ϕ(y)

-ϕ(x) -ϕ(y) 2 ξ 2 (x) + ξ 2 (y) 2ϕ(x)ϕ(y) ≤ ξ(x) -ξ(y) 2 . ( 20 
)
Once this is proved, then we will have 2

R n f (u)ξ 2 ≤ R n R n ξ(x) -ξ(y) 2 K(x -y)dx dy,
and thus the result will be proved.

To establish [START_REF] Del Pino | On De Giorgi's conjecture in dimension N ≥ 9[END_REF], it is convenient to write Θ as

Θ(x, y) = 2 ϕ(x) -ϕ(y) ξ(x) -ξ(y) ξ(x) + ξ(y) ϕ(x) + ϕ(y) • ϕ(x) + ϕ(y) 2 4ϕ(x)ϕ(y) -ϕ(x) -ϕ(y) 2 • ξ(x) + ξ(y) ϕ(x) + ϕ(y) 2 2ξ 2 (x) + 2ξ 2 (y) ξ(x) + ξ(y) 2 • ϕ(x) + ϕ(y) 2 4ϕ(x)ϕ(y) . Now, using the inequality 2 ϕ(x) -ϕ(y) ξ(x) -ξ(y) ξ(x) + ξ(y) ϕ(x) + ϕ(y) ≤ ≤ ξ(x) -ξ(y) 2 + ϕ(x) -ϕ(y) 2 • ξ(x) + ξ(y) ϕ(x) + ϕ(y) 2 , we find Θ(x, y) ≤ ξ(x) -ξ(y) 2 ϕ(x) + ϕ(y) 2 4ϕ(x)ϕ(y) + + ϕ(x) -ϕ(y) 2 • ξ(x) + ξ(y) ϕ(x) + ϕ(y) 2 • ϕ(x) + ϕ(y) 2 4ϕ(x)ϕ(y) • 1 - 2ξ 2 (x) + 2ξ 2 (y) ξ(x) + ξ(y) 2 . But since 1 - 2ξ 2 (x) + 2ξ 2 (y) ξ(x) + ξ(y) 2 = - ξ(x) -ξ(y) 2 ξ(x) + ξ(y) 2 , we obtain Θ(x, y) ≤ ξ(x) -ξ(y) 2 ϕ(x) + ϕ(y) 2 4ϕ(x)ϕ(y) -ϕ(x) -ϕ(y) 2 • ξ(x) -ξ(y) 2 4ϕ(x)ϕ(y) = ξ(x) -ξ(y) 2 4ϕ(x)ϕ(y) ϕ(x) + ϕ(y) 2 -ϕ(x) -ϕ(y) 2 = ξ(x) -ξ(y) 2 .
Hence ( 20) is proved, and the result follows.

Notice that the previous proposition holds for any operator of the form (1), with no additional assumptions on K. However, we do not know if the two stability conditions (S1) and (S2) are equivalent for all operators L. Indeed, in order to show the other implication (S1) =⇒ (S2), we need some additional assumptions. Namely, we need:

if w ∈ L ∞ (R n ) is any weak solution to Lw = g in B 1 , with g ∈ L ∞ (B 1 ), then w C α (B 1/2 ) ≤ C g L ∞ (B 1 ) + w L ∞ (R n )
for some constants α ∈ (0, 1] and C > 0 independent of w and g. [START_REF] Castro | Nonlocal Harnack inequalities[END_REF] and the space H K (R n ), defined as the closure of C ∞ 0 (R n ) under the norm

w 2 H K (R n ) := 1 2 R n R n w(x) -w(y) 2 K(x -y) dx dy is compactly embedded in L 2 loc (R n ). ( 22 
)
Remark 3.3. These two assumptions (21)-( 22) are satisfied for all kernels satisfying (5). Indeed, the C α estimate (21) can be found in [13, Section 14], while the compact embedding [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF] follows easily in two steps: fix p ∈ R n and use [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF] to have compactness in L 2 (B r 0 /2 (p)); then use a standard covering argument to have the compact embedding in B R (for any R > 0).

Using ( 21)-( 22), we have the following.

Proposition 3.4. Let n ≥ 1 and L be any operator of the form (1) with kernel K satisfying (5). Let u be any bounded solution of (2) in the whole of R n , with f ∈ C 1,α (R). Then, (S1) =⇒ (S2)

Proof. Let R > 0 and consider the quadratic form

Q R (ξ) = 1 2 R n R n ξ(x) -ξ(y) 2 K(x -y) dx dy - B R f (u)ξ 2 dx,
for ξ ∈ C ∞ 0 (R n ). Let H K (R n ) be as in [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF] and λ R be the infimum of Q R among the class S R defined by

S R := ξ ∈ H K (R n ) s.t. ξ = 0 in R n \ B R and B R ξ 2 = 1
Since the functional Q R is bounded from below in S R (recall that f (u) is bounded) and thanks to the compactness assumption in [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF], we see that its infimum λ R is attained for a function φ R ∈ S R . Moreover, by assumption (S1), we have λ R ≥ 0 (23) Also, we can assume that φ R ≥ 0, since if φ is minimizer then |φ| is also a minimizer. Thus, the function φ R ≥ 0 is a solution, not identically zero, of the problem

Lφ R = f (u)φ R + λ R φ R in B R , φ R = 0 in R n \ B R .
It follows from the strong maximum principle for integro-differential operators (remember that K satisfies (5)) that φ R is continuous in R n and φ R > 0 in B R . On the other hand, for any 0 < R < R we have

B R φ R Lφ R = B R φ R Lφ R < B R φ R Lφ R .
inequality in (H2), we have that, for a sequence (R k ) k∈N → +∞, the functions ϕ R k converge to a continuous function ϕ > 0 in R n and satisfying [START_REF] De La Llave | Symmetry for a Dirichlet-Neumann problem arising in water waves[END_REF].

Conjecture 1 . 1 .

 11 Let u be a bounded solution of-∆u = u -u 3in the whole of R n , with ∂ xn u(x) > 0 for any x ∈ R n .
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The equality above is a consequence of (9) (in R n ), while the inequality follows from the fact that φ R = 0 in B R \ B R , and thus Lφ R < 0 in that annulus. Hence, using the equations for φ R and φ R we deduce that

Therefore, λ R < λ R for any R > R > 0. From this and [START_REF] Farina | The state of the art for a conjecture of de Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions. Based on the international conference on reaction-diffusion systems and viscosity solutions[END_REF], it follows that λ R > 0 for all R > 0.

Now consider the problem

for any fixed c R > 0. The solution to this problem can be found by writing

It is immediate to check that the energy functional associated to this last problem is bounded from below and coercive, thanks to the inequality λ R > 0. Therefore, ψ R and ϕ R exist.

Next we claim that ϕ R > 0 in B R . To show this, we use ϕ - R as a test function for the equation for ϕ R . We find

Since λ R > 0, this means that ϕ - R vanishes identically, and thus ϕ R ≥ 0. Since K satisfies (5), ϕ R is then continuous and positive in R n . The above arguments also imply that the solution ϕ R of ( 24) is unique, whence (1/c R )ϕ R is actually independent of R > 0. Therefore, one can choose the constant c R > 0 so that ϕ R (0) = 1. Then, by the Hölder regularity in [START_REF] Castro | Nonlocal Harnack inequalities[END_REF] and the Harnack