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Introduction

La fonction ζ de Riemann (voir [START_REF] Montgomery | The pair correlation of zeros of the zeta function[END_REF] et [START_REF] Sghiar | Des applications génératrices des nombres premiers et cinq preuves de l'hypothèse de riemann[END_REF] ) est une fonction analytique complexe qui est apparue essentiellement dans la théorie des nombres premiers.

La position de ses zéros complexes est liée à la répartition des nombres premiers et se trouve au carrefour d'un grand nombre d'autres théories.

Hilbert et Pólya ont spéculé que les valeurs de t telle que 1/2 + it soit un zéro de la fonction zêta de Riemann doivent être les valeurs propres d'un opérateur hermitien, et ceci serait une voie pour démontrer l'hypothèse de Riemann (voir aussi [START_REF] Sghiar | Des applications génératrices des nombres premiers et cinq preuves de l'hypothèse de riemann[END_REF] pour sa résolution). Pour le preuve de la conjecture de De Polignac qui fut énoncée par Alphonse de Polignac en 1849 [START_REF]compte rendu des séances de l'académie des sciences[END_REF], l'idée fondamentale est de voir un nombre premier p i comme l'état d'une particule élémentaire de masse p i donc de niveau d'énergie E i , et de voir un nombre non premier i=n i=1 p α i i comme une représentation de l'énergie de l' interaction entre les particules de l'ensemble des α i particules p i , où i ∈ {1, ..., n} qui sont à l'état :

α i E i où E i est le niveau d'énergie de p i .
En relativité, la translation T m agit linéairement sur les masses, par T m (X) = Quant au preuve de l'hypothèse de Riemann. On a pas besoin d'utiliser la quantification de l'énergie. Le résultat se déduit juste du fait de la déformation de l'espace et des propriétés de la fonction ζ.

λX où λ = 1 √ 1-( v c ) 2 ,
Puis par les mêmes techniques, je démontrerai que pour tout entier k ≥ 2 soit il existe une infinité de premiers p i de la forme 1 + y k i = p i , soit il existe une infinité de premiers p i de la forme 3 + y k i = p i , et pour k = 2 l , je démontre qu'il existe une infinité de premiers p i de la forme 1 + y k i = p i . Et je donnerai également une réponse positive à la conjecture de Legendre généralisée.

Dans le Théorème 5.1, je donne une amélioration du Théorème 6.1 (la conjecture de Legendre).

Et pour vérifier le résultat ii-du Théorème 5.1, j'ai écris un code en langage C++ que j'ai utilisé pour un test allant jusqu'au N = 10 18 .

Les mêmes techniques m'ont permis aussi de démontrer la conjecture de Syracuse [START_REF] Crandall | On the "3x + 1" problem[END_REF] encore appelée conjecture de Collatz, conjecture d'Ulam, conjecture tchèque ou problème 3x+1 et dont Paul Erdos a dit [START_REF] Guy | Don't try to solve these problems ![END_REF] " les mathématiques ne sont pas encore prêtes pour de tels problèmes ". J'ai résolu aussi les problèmes sur les nombres de Fermat et de Mersenne [START_REF] Dickson | Fermat numbers f n = 2 2 n +1 ch. 15 in history of the theory of numbers[END_REF],

Ceci montre l'importance des techniques relativistes utilisées.

Enfin, même le célèbre Théorème de Fermat-Weils [START_REF] Wiles | Modular elliptic curves and fermat's last théorème[END_REF] ne peut échapper à ces techniques relativistes, j'en donnerai donc une démonstration relativiste. J'espère que la communauté des mathématiciens finisse par admettre ces techniques. 
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Notations et Définitions

Notons E le C-espace vectoriel (E i ) i , i premier 2. Si x = n i=1 α i E i ,
Si (χ(x)) (x) = λ (une constante) : Si χ(x) = x + v(x), alors (χ(x)) = (x) (v(x)) (d'après le lemme 1.1). Ce qui prouve l'existence et l'unicité de v tel que χ(x) = x + v, ∀x ∈ E .
Inversement si χ est une translation sur E : On a :

χ(x) = x + v, ∀x ∈ E , soit (χ(x)) = (x) (v), et (χ(x)) (x) = λ = (v). Application : Théorème 1.2 (Théorème Fondamental 2) Soit m ∈ N, m ≥ 2. Si T m est la translation définie de Z → Z par x → x + m, alors T m se prolonge en une application linéaire T sur l'espace E, et dont T m |Z est une restriction sur D i,j où D i,j est la droite D i,j = {E i + z(E j -E i ), z ∈ C} avec : i-T (E i ) = N i l=1 n l i E l i (En tant que classes) où n l i ∈ N, ∀i. ii-(T (E i + z(E j -E i ))) = (T m (E i + z(E j -E i ))), ∀z ∈ C.
iii-Pour tout élément n de Z * , il existe z ∈ C tel que :

(E i +z(E j -E i )) = n. iv-(T ( n i=1 α i E i )) = (T m ( n i=1 α i E i )) où n, α i ∈ N. v-Si F i = n i j i =1 α j i E j i où α j i ∈ N. <hal-01174146> Alors : T (F i + z(F j -F i )) = T m (F i + z(F j -F i ))∀i, j ≥ 1 (En tant que classes).
Preuve du Théorème 1.2 :

Première démonstration :

Rappelons qu'on a représenté un nombre i=n i=1 p α i i par l'état :

α i E i où E i est le niveau d'énergie de p i . Pour tout élément n de Z * , il existe z ∈ C tel que : (E i + z(E j -E i )) = n :
En effet, en appliquant le lemme 1.1 ci-dessus, pour n ≥ 1 il suffit de prendre

z = ln n p i ln p j p i , et si n ≤ -1 on prend z = ln -n p i ln p j p i + iπ ln p j p i Identifions tout élément E i +z(E j -E i ) de D i,j par (E i )× 1+ (z(E j -E i ))× 1. D'abord la translation T m se prolonge sur la droite D i,j = {E i +z(E j -E i ), z ∈ C} par : T m (E i + z(E j -E i )) = E i + (z + m )(E j -E i ) avec m = ln(m)
ln(p j /p i ) . En appliquant la preuve du Théorème 1.1 précédent sur cette droite, T m agira sur D i,j par l'action T m (z × 1) = λz × 1 Soit T l'application linéaire définie sur E par : T (E 1 ) = T m (E 1 ), et par

T (E i ) = T m (E 1 ) + λ(E i -E 1 ), ∀i. on a bien : T (E j ) = T (E i ) + λ(E j -E i ), ∀i, j.
T m | D i,j est la restriction de T sur D i,j : En effet :

T (E i + z(E j -E i )) = T (E i ) + λz(E j -E i ) Et T m (E i + z(E j -E i )) = T m ( (E i ) × 1 + (z(E j -E i )) × 1) . Soit T m (E i + z(E j -E i )) = λ( (E i ) + (z(E j -E i ))) × 1 = λ (E i ) × 1 + λ (z(E j -E i )) × 1 = T m (E i ) + λz(E j -E i ) (en tant que classes) Il s'ensuit par récurrence que (T (E i )) = (T m (E i )), ∀i car par hypothèse : T (E 1 ) = T m (E 1 ) et on a : (T (E i + z(E j -E i ))) = (T m (E i + z(E j -E i ))). Et (T (E i )) = ( N i l=1 n l i E l i ) où n l i ∈ N, ∀i Montrons maintenant que : (T ( n i=1 α i E i )) = (T m ( n i=1 α i E i )) où α i ∈ N. En effet :Il résulte du lemme 1.1 et du fait que (T (E i )) = (T m (E i )) .
D'où le résultat.

Deuxième démonstration :

Soient i et j deux entiers distincts ≥ 1, et z ∈ C. T (E i + z(E j -E i ) = T (E i ) + λz(E j -E i ) Or E i + z(E j -E i ) = ( ln P i ln P i P j + z)(E j -E i ) En tant que classes car (E i + z(E j -E i )) = (( ln P i ln P i P j + z)(E j -E i )) Donc T m (E i + z(E j -E i )) = λ( ln P i ln P i P j + z)(E j -E i ) ∀i, j ≥ 1, i = j Pour i = 1 . Par hypothèse T (E 1 ) = T m (E 1 ) , donc T (E 1 ) et T m (E 1 ) appartiennent à D 1j . Il s' ensuit que T (E 1 ) + λz(E j -E 1 ) et T m (E 1 + z(E j -E 1 )) = λ( ln P 1 ln P 1 P j + z)(E j -E 1 ) appartiennent à D 1j . Or T (E 1 ) + λz(E j -E 1 ) = λ( ln P 1 ln P 1 P j + z)(E j -E 1 ) : car T (E 1 ) = T m (E 1 ) = λ( ln P 1 ln P 1 P j )(E j -E 1 )
On en déduit que : Notons P l'ensemble des nombres premiers.

T (E 1 + z(E j -E 1 )) = T m (E 1 + z(E j -E 1 ))∀j ≥ 1, et par suite : T (E i ) = T m (E i )∀i ≥ 1,
T (E i + z(E j -E i )) = T m (E i + z(E j -E i ))∀i, j ≥ 1 Et T (E i ) = N i l=1 n l i E l i où n l i ∈ N, ∀i résulte de T (E i ) = T m (E i )∀i ≥ 1. Posons F i = n i j i =1 α j i E j i où α j i ∈ N. Comme ci-dessus, on voit que : T (F i +z(F j -F i )) = T m (F i +z(F j -F i ))∀i, j ≥ 1(En tant que classes).

Et par suite : (T (F

i )) = (T m (F i ))∀i ≥ 1.
Dans la suite, pour simplifier, je confonds :

i=k i=1 α i E i et i=k i=1 p α i i , et, T m ( i=k i=1 α i E i ) et T m ( i=k i=1 p α i i ). Preuve Première démonstration : Posons : T m (E i ) = N i l=1 n l i E l i où n l i ∈ N (Par le Théorème fondamentale 1.2 -quantifiant l'énergie-).
Si p j = T m ( i=k i=1 p α i i ), alors : En se plaçant sur la droite (F, E j ), où F = k i=1 α i E i , on déduit du Théorème fondamentale 1.2 que :

(E j ) = (T m (F + z(E j -F ))) pour z = 0. Soit (E j ) = (T m (F )) qu'on notera pour faciliter E j = T m (F ). Donc E j = T m ( k i=1 α i E i ) = k i=1 α i T m (E i ) = N i l i =1 ( k i=1 α i n l i )E l i . On déduit qu'il existe i tel que E j = T m (E i ), et il existe donc une particule p i telle que T m (p i ) = p j .
Supposons qu'il existe un entier N assez grand tel que : 

T m (P ∩[N, +∞[)∩P = ∅. Alors : T m (P ∩ [N, +∞[) ⊂ P c où P c = N\P . Or T m (P c ∩ [N, +∞[) ⊂ P c : Car si non, il existe p j ∈ P tel que p j = T m ( i=k i=1 p α i i ), et comme ci-dessus, on déduit qu'il existe i tel que E j = T m (E i ), soit T m (p i ) = p j .

Remarque :

Sous l'action de T m , :

1-Dans i-du Théorème 1.2, on a quantifié l'opérateur T et T m , de plus Si T m (p i ) est un premier p j , ce cas correspond donc au passage de la particule 

p i d'un état d'énergie E i à un état d'énergie E j , avec : (E j ) -(E i ) = p j -p i = m ceci
= (v) = 1 √ 1-( v c ) 2 et mv m 0 = 1 √ 1-( v c ) 2
De plus, λ = (v) augmente avec le vecteur (ou vitesse) de translation v si v est un entier.

3 La conjecture de Goldbach Théorème 3.1 (La conjecture de Goldbach) Tout nombre pair strictement supérieur à 2, peut s'écrire comme somme de deux nombres premiers positifs.

Preuve de la conjecture de Goldbach :

On va encore appliquer le Théorème fondamental 1.2.

Si m est un entier pair ≥ 4, posons :

P (m) = {p i / 2 ≤ p i ≤ m}, où p i est premier.
Supposons que : 

T m (-P (m)) ∩ P = ∅.

FIN DE LA PREUVE DE LA CONJECTURE DE GOLDBACH 4 L'hypothèse de Riemann

Après avoir donné dans [START_REF] Sghiar | Des applications génératrices des nombres premiers et cinq preuves de l'hypothèse de riemann[END_REF] cinq preuves de l'hypothèse de Riemann, je donne dans cette article une sixième preuve relativiste du célèbre problème de l'hypothèse de Riemann dont a dit le mathématicien allemand David Hilbert : "Si je devais me réveiller après avoir dormi pendant mille ans, ma première question serait : l'hypothèse de Riemann a-t-elle été prouvée." 

ζ(s) = s s-1 -s ∞ 1 {u} u 1+s du.
Comme {u} est toujours compris entre 0 et 1, l'intégrale est convergente pour Re(s) > 0.

La fonction ζ satisfait à l'Équation fonctionnelle :

ζ(s) = 2 s π s-1 sin πs 2 Γ(1- s)ζ(1 -s)
valable pour tout nombre complexe s différent de 0 et 1. Ici, Γ désigne la fonction gamma.

Posons : ζ1 2 (z) = ζ(z + 1 2 ) M. Sghiar <hal-01174146>
Tout point de C est considéré comme une particule, et l'application : z -→ z + 1 2 est considéré comme une translation agissant sur les particules. On en déduit par application de la relativité, en considérant que cette translation suivant l'axe (OX) s'effectue à une vitesse v, on doit avoir : 2 que certains mathématiciens n'aiment pas utiliser.

ζ(z + 1 2 ) = ζ(λRe(z) + iIm(z)) où λ = 1 √ 1-( v c ) 2 ou λ = (v) : On peut utiliser λ = (v) car C est inclut dans le C-espace vectoriel C < E i > i où i est premier. Ce qui évitera d'utiliser λ = 1 √ 1-( v c )
On a donc : 

ζ1 2 (z) = ζ(z + 1 2 ) = ζ(λRe(z) + iIm(z))

Deuxième démonstration :

Si f est une fonction complexe, posons

f λ , où λ = 1 √ 1-( v c ) 2 ou λ = (v), le λ-Transformé de f définie par : f λ (z) = 1 λ λRe(z)+iIm(z) f (λRe(z) + iIm(z)) Remarquons que la translation z -→ z+l transforme ζ en ζ λ , où λ = 1 √ 1-( v c ) 2
ou λ = (v). (On le voit en utilisant la série de Dirichlet : iii-Soit il existe une infinité de premiers p i de la forme 1 + y k i = p i , Soit il existe une infinité de premiers p i de la forme 3 + y k i = p i . iv-Si k = 2 l ∀l ∈ N, alors il existe une infinité de premiers p i de la forme

ζ(s) = ∞ n=1 1 n s ). Posons z + 1 2 = λRe(z) + iIm(z),
3 + y k i = p i , et si k = 2 l ∈ N * ,

alors il existe une infinité de premiers p i de la forme 1 + y

k i = p i .
Preuve : Ce qui prouve i-et ii-

Soit k ∈ N * , k ≥ 2. Supposons que ](n + 1) k , (n + 2) k [ contient des premiers. Si l'action x → (n+1) k -n k -1+x envoie le niveau d'énergie n k sur (n+1) k : Soit T m la translation de N -→ N : x -→ x + (n + 1) k -n k -1, où m = (n + 1) k -n k -1. Comme ∀n ∈ N * , n k est de niveau d'énergie kE n , alors T m (n k ) = n k (
Montrons iii- Soit T = T 2 la translation de N -→ N : x -→ x + 2.
Il est évident que si n est pair, alors

T i (n k ) = 2ρ(i) où i ∈ N * et ρ est une application continue de N sur N.
Or si E n est le niveau d'énergie de n, et E 2ρ(i) celui de 2ρ(i), alors n k est de niveau d'énergie kE n , et on aura :

kT i (E n ) = E 2ρ(i) .
Soit :

kT (T i-1 (E n )) = E 2ρ(i)
Pour les i tels que 2ρ(i) = p i + 1 = q i -1 avec p i et q i premiers, et si y est l'entier (ou la particule ) de niveau d'énergie T i-1 (E n ), alors on aura :

1 + y k i = p i ou 3 + y k i = q i
Montrons iv-:

Si k = 2 l , ∀l ∈ N, alors il existe un premier impair r tel que r|k , et comme N ) r ne peut être un premier, alors le résultat s'en déduit.

1 + N r = 1 -(-
Si k = 2 l , l ∈ N * , comme ci-dessus on a :

7 Utilisation de la conséquence de la preuve de l'Hypothèse de Riemann 

π((n + 1) α ) -π(n α ) (n+1) α n α du ln u -C(n + 1) α 2 ln(n + 1). Or (n+1) α n α du ln u ≥ (n+1) α -n α α ln(n+1) αn α-1
α ln(n+1) . Si ∈ R + * avec α 2 -1-0, et si N est un entier tel que (N +1) ln(N +1) alors : 

π((n + 1) α ) -π(n α ) n α/2-1- ln ( 

Problème de syracuse

La conjecture de Syracuse [START_REF] Crandall | On the "3x + 1" problem[END_REF] encore appelée conjecture de Collatz, conjecture d'Ulam, conjecture tchèque ou problème 3x+1.

Dans cette section, je démontre cette belle conjecture dont Paul Erdos a dit [START_REF] Guy | Don't try to solve these problems ![END_REF] " les mathématiques ne sont pas encore prêtes pour de tels problèmes ".

La suite de Syracuse d'un nombre entier N est définie par récurrence, de la manière suivante : -1 (p) = 2 s q avec 2 q, alors on a T i-1 2 (T i-1 -1 (p -1)) = p -1 par invariance sous l'action résultante ; il en résulte que q = 1.

u 0 = N , et pour tout entier n ≥ 0, u n+1 =       
Et par suite p -1 = T i -1 (p) = 2 s = 2 2 r , ce qui contredit notre hypothèse. Preuve :

Soit T = T 2 la translation de N -→ N : x -→ x + 2.

Soit E 2 le niveau d'énergie du nombre (ou de la particule ) 2.

Il est clair qu'il existe une infinité d'entiers i tels que T i (E 2 ) = E 2ρ i avec 2ρ i = q i -1 avec q i premier.

On a donc :

T i (E 2 ) = E 2ρ i = E q i -1 = T -1 (E q i ).
où T -1 la translation : x -→ x -1.

Et par suite :

T -1 (T i (E 2 )) = T -2 (E q i ) = E q i .
Avec q i premier ( Voir la preuve du Théorème 2.1).

Or T i (2) = λ i 2. où λ = 

À

  ce moment, c'était une petite base pour une telle spéculation. Néanmoins Selberg au début des années 1950 a démontré une dualité entre la longueur du spectre d'une surface de Riemann et les valeurs propres de son laplacien. Ceci, que l'on appelle la formule des traces de Selberg avance une ressemblance frappante avec les formules explicites, donna une certaine crédibilité à la spéculation de Hilbert et Pólya. Dans les années 70, Hugh Montgomery [6] rechercha et trouva que la distribution statistique des zéros sur la droite critique possède une certaine propriété. Les zéros ne tendent pas à être trop fermement ensemble, mais à se repousser. En visitant l'Institute for Advanced Study en 1972, il montra ce résultat à Freeman Dyson, un des fondateurs de la théorie des matrices aléatoires,-qui sont très importantes en physique -se rendent compte que les états propres d'un hamiltonien, par exemple les niveaux d'énergie d'un noyau atomique, satisfont à de telles statistiques. Dyson a vu que la distribution statistique trouvée par Montgomery était exactement la même que la distribution des paires de corrélations pour les valeurs propres d'une matrice hermitienne aléatoire. Le travail postérieur a fortement élevé cette découverte, et la distribution des zéros de la fonction zêta de Riemann est maintenant reconnue pour satisfaire les mêmes statistiques que les valeurs propres d'une matrice hermitienne aléatoire, les statistiques de ce que l'on appelle l'ensemble unitaire gaussien. Ainsi, la conjecture de Pólya et Hilbert possède maintenant une base plus solide. Ceci m'a inspiré ce qui suit : Un nombre entier relatif x (de Z) est dit premier si il / ∈ {0, 1, -1} et si les seuls diviseurs de x sont {+1, -1, x, -x}. La conjecture de Goldbach, adressée dans une lettre à Euler en 1742, elle est comme suit : La conjecture de Goldbach : Tout nombre pair strictement supérieur à 2, peut s'écrire comme somme de deux nombres premiers positifs. Cette conjecture a fait l'objet de recherches par plusieurs théoriciens des nombres et a été vérifiée par ordinateur pour tous les nombres pairs jusqu'à 1.1 × 10 18 à la date du février 2008. Conjecture de Alphonse de Polignac : ∀m ∈ 2N, il existe une infinité de paires de nombres premiers consécutifs dont la différence vaut m.

  dans le Théorème fondamental 1.1, je démontrerai que T m agit aussi linéairement sur le C-espace engendré par les niveaux d'énergie E i -Linéairement indépendants -. Ensuite, j'utiliserai les mêmes techniques relativistes pour prouver la conjecture de Goldbach 3.1.

1 )Lemme 1 . 1 (

 111 (x) = (y), nous notons x la classe de x et (x) = (x) Remarque : On sait en relativité que la masse d'une particule est multipliée par un scalaire λ si elle animée d'un mouvement de translation uniforme, en relation avec cela, je démontre les deux Théorèmes fondamentaux 1.1 et 1.2 : Si χ est une action agissante sur E , alors (χ(x)) (x) = λ, ∀x ∈ E si et seulement l'action χ est une translation sur E . Avec λ = (v), où v est le vecteur (ou vitesse) de translation. Lemme fondamentale) i-E et un groupe additif pour la loi x + y = x + y ii-(x + y) = (x) (y) Preuve du Théorème 1.1 :

  et en reprenant la démonstration pour i = 1, on voit que :

2

  La conjecture de Alphonse de Polignac Démontrons d'abord La conjecture de De Polignac qui fut énoncée par Alphonse de Polignac en 1849 [1]. Théorème 2.1 (La conjecture de Alphonse de Polignac [1]) ∀m ∈ 2N, il existe une infinité de paires de nombres premiers consécutifs dont la différence vaut m .

  <hal-01174146> On en déduit que : T m ([N, +∞[) ⊂ P c , ce qui est impossible car P est infinie et T m est continue, donc ∀N ∈ N assez grand, T m (P ∩ [N, +∞[) ∩ P = ∅. Et la conjecture de De Polignac s'en déduit.

  ressemble à la quantification de l'énergie des particules d'un atome en physique. 2-Dans le théorème fondamental 1.1, on a : (χ(x)) (x) = λ, ∀x ∈ E si et seulement l'action χ est une translation sur E . Avec λ = (v), où v est le vecteur (ou vitesse) de translation. Ceci ressemble à ce qu'a été trouvé par Albert Einstein : λ

Corollaire 3 . 1

 31 Alors : T m (-P (m)) ⊂ P (m) c où P (m) c = [0, m]\P (m) Or T m (-P (m) c ) ⊂ P (m) c : Car si non, il existe p j ∈ P (m) tel que p j = T m (-i=k i=1 p α i i ), et comme ci-dessus, on déduit qu'il existe i tel que E j = T m (E i ), soit T m (-p i ) = p j . On en déduit que : T m ([-m, 0]) ⊂ P (m) c , ce qui est impossible car T m ne sera pas bijective. Donc T m (-P (m)) ∩ P = ∅. Et la conjecture de De Goldbach s'en déduit. Si m est un entier pair ≥ 4, alors m = p j -p i avec 2 ≤ p i ≤ p j , et, p i et p j sont des nombres premiers. Preuve : La preuve est similaire sauf qu'il faut s'assurer de l'existence de nombres premiers dans l'intervalle T m [0, m] = [m, 2m], or ceci est assuré par le Postulat de Bertrand (ou théorème de Tchebychev) : Postulat de Bertrand (ou théorème de Tchebychev démontré en 1850 ) : Si n est un entier naturel supérieur ou égal à 1, alors il existe toujours au moins un nombre premier p tel que : n p 2n Commentaire : Ainsi, avec ce corollaire 3.1, on voit que l'idée de représenter les niveaux d'énergie des particules élémentaires par des nombres premiers puis d'appliquer la Théorie de la relativité est bien solide et plausible.

Théorème 4 . 1 (

 41 L'hypothèse de Riemann) Tous les zéros non triviaux s de ζ satisfont à la condition Re(s) = 1 2 . L'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien Bernhard Riemann. Elle dit que les zéros non triviaux de la fonction zêta ζ de Riemann ont tous pour partie réelle 1/2. La fonction ζ de Riemann est une fonction analytique complexe méromorphe et définie, pour Re(s) > 1, par la série de Dirichlet : ζ(s) = ∞ n=1 1 n s La fonction ζ admet un prolongement analytique à tout le plan complexe, sauf 1. Il existe plusieurs démonstrations, faisant appel à différentes représentations de la fonction ζ. Parmi elles :

2 avec

 2 Or d'après l'égalité : ζ(s) = 2 s π s-1 sin πs 2 Γ(1 -s)ζ(1 -s), les racines sont symétriques par rapport à 1 2 , donc si il exite une racine z + 1 2 de ζ avec Re(z + 1 2 ) = 1 2 , alors il existe une racine z de ζ1 Re(z) 0. Posons s = λRe(z) + iIm(z), alors s = λRe(z) + iIm(z) est une racine de ζ qui doit vérifier (comme connu) 0 ≤ λRe(z) ≤ 1 pout tout λ assez grand, donc Re(z) = 0, ce qui est absurde.

on a : 5 Existence et formes de certains nombres premiers Théorème 5 . 1

 551 ∀k ∈ N * , k ≥ 2, ∀n ∈ N * on a : i-L'intervalle ]n k , (n + 1) k [ contient des nombres premiers. ii-Etant donnés deux entiers relatifs M et S avec M+S pair, un entier k ≥ 2, alors il existe un entier m(M, S, k) = m assez grand , tels que pour n ≥ m, il existe toujours un premier p de [n k , (n + 1) k ], tels que (n + M ) k -n k + S + p est premier.

  au sens de niveau d'énergie), et en résonnant comme dans la preuve de De Polignac, de Goldbach, et du corollaire 3.1, on voit que ]n k , (n + 1) k [ contient des nombres premiers.Si l'actionx → (n + 1) k -n k -1 + x envoie le niveau d'énergie n k sur n k : Comme les actions x → (n + 1) k -n k -1 + x et x → (n + 1) k -n k + 1 + x sur la particule n k sont opposées par rapport à (n + 1) k , alors on prend T m la M. Sghiar <hal-01174146> translation de N -→ N : x -→ x + (n + 1) k -n k + 1, où m = (n + 1) k -n k + 1 et le résultat s'en déduit. Si maintenant m = (n + M ) k -n k -S,et n assez grand (ceci équivaut à dire que la particule n est lourde ), alors T m (n k ) = (n + M ) k , et en résonnant comme dans la preuve de De Polignac, de Goldbach, et du corollaire 3.1, on déduit le point ii-(le test sur ordinateur confirme ce résultat pour N = 10 18 , M = S = 1, .. et k = 2, 3, 4, 5, 6, ... Avec n ≥ 138 si k = 2 et n ≥ 1 si k = 3, 4, 5, 6)

Théorème 7 . 1 Lemme 7 . 1 2 duSi α 2 :

 717122 ∀α ∈ R + * , α ≥ 2 , ∀n ∈ N * assez grand, l'intervalle ]n α , (n+ 1) α [ contient des nombres premiers. On a π(x) = x ln u + O( √ x ln x) Preuve : Ceci est connue comme une conséquence de la preuve de l'Hypothèse de Riemann. Preuve du Théorème 7.1 : Si α = 2, le résultat est démontré dans le Théorème 5.1 ci-dessus. Du lemme 7.1 ci-dessus, on déduit :

8 Meilleur localisation des nombres premiers Théorème 8 . 1 (

 81 n+1) -C pour n N . Or ce dernier terme tend vers +∞, donc π((n + 1) α ) -π(n α ) 1. pour n N . D'où le Théorème . Remarque : Pour vérifier le résultat ii-du Théorème 5.1, voici un code en langage C++ que j'ai utilisé pour un test allant jusqu'au N = 10 18 avec k = 2, 3, 4, 5,.... Ce qui montre l'importance des techniques relativistes utilisées : /* Code simple é cris et am é lior é par M. Sghiar Le mardi jeudi 4 juin 2009 à 10:47 Meilleur localisation des nombres premiers) Si m est un entier pair, et k un entier ≥ 2, alors il existe un entier N(m,k), tel que ∀n ≥ N (m, k), il existe un premier p ∈ [n k , (n + 1) k -m] tel que m+p est premier. Preuve : D'abord du i-du Théorème 3.1, l'intervalle ]n k , (n + 1) k [ contient des nombres premiers. Si T m est l'action sur les niveaux d'énergies, en raisonnant comme précédemment, sachant que T m (n k ) = n k au sens de niveaux d'énergie, on aura : T m (n k ) = n k si n est assez grand (particule lourde) et T m ((n + 1) k -m) = (n + 1) k . Le résultat s'en déduit.

un 2 si 2 si 1 √ 1 -( v c ) 2 1 √ 1 -( v c ) 2

 22112112 u n est pair 3u n + 1 si u n est impair Théorème 11.1 (Conjecture de Syracuse) Pour tout entier N > 0, il existe un indice n tel que u n = 1. Définition : Si a et b sont deux entiers de N * tels que a + b est pair, alors la suite de Syracuse S a,b d'un nombre entier N est définie par récurrence de la manière suivante : u 0 = N , et pour tout entier n ≥ 0, u n+1 = u n est pair au n + b si u n est impair Dans la suite je noterai u n = S n a,b . Théorème 11.2 Soient a et b deux entiers de N * tels que a + b est pair, et soit c la vitesse de la lumière ( c= 299 792 458 (m/s) ). Si ∀n ∈ [1, c], ∃k = k(n) tel que S k a,b (n) = 1 , alors ∀n ∈ N * , ∃k = k(n) tel que S k a,b (n) En considérant n comme une particule de masse n, et l'application x -→ x+b comme une translation agissante sur les particules et s'effectuant à une vitesse v, alors, d'après le Théorème 1.1 -ou la théorie de la relativité restreinte -, on doit avoir an + b = λan (Transformation de la particule sous l'action de la translation) où λ = ou λ = (v), et l'application x -→ ax + b résulte d'une translation T + sur les particules. De la même façon, on peut considérer que l'application x -→ x 2 résulte d'une une translation T -négative (opposée de celle de l'application x -→ 2x) . Pour λ tel que λa = 2 k où k ∈ N * . ∃l tel que S l a,b (n) = n, ∀n ∈ N * , et par suite tout point de N est invariant sous l'action résultante de T + + T -.Si maintenant, on fait varier la vitesse v de sorte que la portée de T + soit inférieure, alors l'action de T + + T -sera une translation gauche (négative),et du coup si ∀n ∈ [1, c], ∃k = k(n) tel que S k a,b (n) = 1 , alors ∀n ∈ N * , ∃k = k(n) tel que S k a,b (n) =1 Deuxième démonstration Pour tout n, on a : an + b ≤ (a + b)n n2 l où l ∈ N * , et l'application n -→ n2 l résulte d'une translation T + sur les particules, et comme dans la fin de la preuve ci-dessus, on déduit le résultat. Théorème 11.3 (Conjecture de Syracuse bis) Pour tout entier N > 0, il existe un indice n tel que u n = S n a,b = 1 où (a, b) = (3, 1) ou (a, b) = (1, 1) Preuve : Se déduit du Théorème 11.2, et du fait que la conjecture de syracuse est vérifiée dans l'intervalle [1, c] pour (a, b) = (3, 1) et (a, b) = (1, 1).12 Problème des nombres de Fermat Théorème 12.1 Soit E l'équation en (n, p) n ∈ N et p un nombre premier :1 + 2 2 n = p (E) Si il existe un intervalle [k, k + c] contenant des premiers , k ∈ N,et c est la vitesse de la lumière telle que l'équation (E) n'a pas de solution pour tout p ∈ [k, k + c], alors E n'admet pas de solutions pour p premier ≥ k Preuve du Théorème 12.1 : Soient T -1 la translation n -→ n -1 et T +1 la translation n -→ n + 1 agissantes sur les particules n. T -1 et T +1 ont des actions opposées sur la particule n. Soit T 2 la translation n -→ n + 2 On peut supposer que la translation T 2 s'effectue à une vitesse v de sorte que T 2 (2) = λ2 = 2 2 où λ = ou λ = (v). Or dans la preuve du problème de Syracuse, on a vu que l'application x -→ x 2 résulte d'une une translation T -négative (opposée de celle de l'application x -→ 2x) . Ainsi T 2 sera une translation opposée à la translation T - Donc pour ladite vitesse -comme dans la preuve de la conjecture de Syracuse -les particules seront invariantes sous l'action résultante des T -et de T +1 . Il en sera donc de même des T 2 et de T -1 . Supposons qu'il existe un premier p ≥ c + k tel que E admet une solution pour p : on a donc : 1 + 2 2 n = p. Comme ∃i ∈ N tel que T i -1 (p) = p -1 avec p ∈ [k, k + c] et p' un premier, si T i

1 (

 1 Problème des nombres premiers de Mersenne [3]) L'équation (E) : -1 + 2 n = p où n est un entier et p un nombre premier a une infinité de solutions.

1 √ 1 -( v c ) 2

 112 ou λ = (v) v étant la vitesse de la translation T.Si la vitesse est choisie de sorte que λ = 2, on aura :-1 + 2 i+1 = q i Et le résultat s'en déduit.14 Un nombre infini de premiers de la forme 2 + n k Théorème 14.1 Soient j et k deux entiers avec k ≥ 1.Soit (E) l'équation : j + n k = p où n est un entier et p un nombre premier.Et soit (E') l'équation : j + 2 + n k = p où n est un entier et p un nombre premier.Alors au moins (E) ou (E') a une infinité de solutions.Preuve :Soit T = T 2 la translation de N -→ N : x -→ x + 2.Il est clair qu'il existe n un entier fixe et une infinité d'entiers i tels queT i (n k ) = p i -j. Soit : T i (kE n ) = T -j (E p i ). (car n k est de niveau d'énergie kE n ) . Or T i (kE n ) = kT i (E n ) = kE n i , donc T i (kE n ) est le niveau d'énergie de n k i . De même on a T i (kE n ) = T (T i-1 (kE n )) = T (kE n i ), donc T i (kE n ) estle niveau d'énergie de 2 + n k i . On en déduit, -par unicité du niveau d'énergie-que soit T i (kE n ) est le niveau d'énergie de n k i , soit T i (kE n ) est le niveau d'énergie de 2 + n k i , le résultat s'en déduit. Théorème 14.2 Pour tout entier k non nul, l'équation : 2 + n k = p où n est un entier et p un nombre premier a une infinité de solutions. Preuve : On prend j=0 dans le Théorème 14.1.

FIN DE LA PREUVE DE L'HYPOTHÈSE DE RIEMANN

Et comme on ne peut pas avoir y k = 1+p i , avec p i premier, alors y k = -1+q i .

où y est l'entier (ou la particule ) de niveau d'énergie T i (E n ), d'où le résultat.

Les résultats iii-et iv-sont testés par le code suivant : 

Preuve : L'idée de démonstration est similaire au ii-du Théorème 5.1 et utilise une récurrence. Si l'action x → (n + 1) k -n k -1 + x envoie le niveau d'énergie n k sur (n + 1) k , on a le résultat de la même façon, ceci est le cas où n est assez grand. 

Or pour les petites valeurs, les actions

Deuxième démonstration :

Par absurde, si c'est pas le cas, l'équation E'(n, p) :

Où n est un entier et p premier n'aura qu'un nombre fini de solutions.

Donc l'équation :

a au plus un nombre fini de solutions.

Si la vitesse est choisie de sorte que λ = 2, on a vu dans la preuve du Théorème 13.1, que l'équation :

a une infinité de solutions. Si on choisit p = q i et n tel que kE n = T i (E 2 ), ie : n k = 2 i+1 , On aura une infinité de solutions, ce qui est absurde. [START_REF] Hassab-Elnaby | A new astronomical quranic method for the determination of the greatest speed c[END_REF]