
HAL Id: hal-01174117
https://hal.science/hal-01174117v1

Submitted on 8 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FATuM -Fast Animated Transitions using Multi-Buffers
Alexandre Perrot, David Auber

To cite this version:
Alexandre Perrot, David Auber. FATuM -Fast Animated Transitions using Multi-Buffers. 19th Inter-
national Conference “Information Visualisation 2015”, Jul 2015, Barcelone, Spain. �hal-01174117�

https://hal.science/hal-01174117v1
https://hal.archives-ouvertes.fr


FATuM - Fast Animated Transitions using Multi-Buffers

Alexandre Perrot, David Auber
LaBRI, Université de Bordeaux
aperrot@labri.fr, auber@labri.fr

Abstract
The rise of Big Data and powerful mobile devices calls

for libraries able to render a large number of visual ele-
ments and make fast animations without loss of frame rate.
We introduce the FATuM library as a middleware for vi-
sualization. With a single abstraction for visual elements
based on the work of Bertin and adaptation of the dou-
ble buffering technique, we enable animated visualization
of large datasets in native applications and in the browser
using the same codebase.

Our system does not differentiate animated from static
rendering, thus reducing code complexity and guarantee-
ing smooth animation. We show that our system maintains
60fps for up to 200.000 visual elements in a native ap-
plication and 30fps for 100.000 visual elements in a web
browser.

Keywords—Animation, library, transitions.

1 Introduction
With the advent of HTML5 and the democratization of

mobile devices, web browsers are an increasingly popular
platform for data visualization. Many libraries have im-
plemented visualization interfaces using the web standard
client language, javascript. This has popularized data visu-
alization outside of the scientific community. With general
public, some new trends started to emerge, such as need
for animation to convey meaning.

Another current trend is the developement of Big Data.
It generates large datasets to be visualized and the great
dynamicity of data demands fast rendering libraries, able
to handle animation at large scales. Furthermore, the new
Big Data Infrastructures, consisting of several distributed
compute and storage nodes enable bigger datasets to be
processed and saved. Their distributed nature increases the
need for browser based visualization applications capable
of handling the massive data stored in those repositories.
Nowadays, most mobile devices are sufficiently powerful
to run GPU based applications, and WebGL also enables
GPU use in web browsers. This is the perfect combination
to enable large dataset browser based visualization.

Motivated by these evolutions in the data visualization
landscape, we describe in this paper a way to fill the gap

between fast and responsive GPU technologies and user-
friendly data visualization libraries. We implemented a
library leveraging the speed of OpenGL and WebGL. Its
interface is oriented toward data visualization rather than
simple drawing. Inspired by the double buffering tech-
nique used in computer graphics, we also enable fast an-
imated transitions between visualization states.

The paper is divided into two parts. First, we explain
why we chose to expose only a single flexible type of visual
element and its visual properties. Second, we develop the
technique we call ”double buffering for information visu-
alization”, which enables fast animation of large datasets.

2 Previous Work
In this section, we summarize previous works about ani-

mation and give an overview of the major existing libraries
for information visualization.
2.1 Animation in information visualization

Animation in information visualization is a well-studied
domain. Many publications have highlighted the benefits
and drawbacks of using animation for different kinds of
visualizations. Archambault et al. [1] compared the ef-
fects of animation and small multiples in the context of
dynamic graphs. Work about animation and mental map
also include work by Bederson and Boltman [2]. Heer and
Robertson [12] conducted an experiment to test the effect
of animated transitions in statistical data graphics. They
found that carefully designed transitions improve change
perception. The general consensus is that using animated
transitions can be beneficial to help track changes in the
visualization, but must be carefully designed to avoid in-
ducing unnecessary occlusion, distraction or ambiguity, as
described by Chevalier et al. [6].

Based on results of these studies, systems have been
designed with animation as a core feature. The Scat-
terDice [9] system uses animation to explore multi-
dimensional data. The data is represented as a 2D-
scatterplot, which undergoes a 3D rotation animation when
changing one of the dimensions. This usage of animation
enables to track data points across dimensions. The Dif-
fAni [16] system also uses animation in combination with
difference maps to visualize dynamic graphs.



(a) (b) (c) (d) (e)

Figure 1: Examples of visualizations built with FATuM : (a): node-link view of a graph. (b): histogram of the nodes’
degrees of the graph in (a). (c): image visualization of the popular ”Lenna” image. Each pixel of the image is represented
by a mark. (d): detail of the image. We can clearly see the marks representing the pixels, with a circular shape to distinguish
them. (e): the frequency histogram of the red component from the ”Lenna” image. Recreating work from Chevalier et
al.[7], the marks representing the pixels are moved to form the histogram.

2.2 Libraries for information visualization
Many libraries are available to build visualizations. De-

spite their diversity, they can be divided into two types :
low-level drawing libraries and high-level visualization li-
braries.

The low level drawing libraries only expose a way to
draw graphics, through specialized specifications. For ex-
ample the SVG1 language specifies elements to draw vec-
tor graphics. SVG renderers are now implemented into
web browsers, enabling its use for a wide variety of appli-
cations. Raphael2 is a javascript library aimed at provid-
ing a cross-browser interface for SVG graphics. OpenGL3

is a graphics library enabling the use of GPU. Drawing
anything with OpenGL requires many lines of code and
is difficult to get right. However, it ensures best perfor-
mance. A web implementation exists in the form of We-
bGL4, allowing for GPU based graphics rendering in web
browsers. Processing5 is a full programming language
aimed at artists and designers. Its API is very close to
OpenGL, and as such, suffers from the same drawbacks
regarding visualization design. A javascript implementa-
tion called Processing.js is available for web browsers. The
Three.js library6 is built on top of WebGL as a 3D graph-
ics library. While this eases the use of WebGL for a 3D
context, it does not help for data visualization.

All those libraries suffer from a common drawback :
lack of visual abstractions. They are designed for flexible
and efficient drawing primitives, but are not suited as in-
formation visualization libraries.

On the other hand, there exists a number of high-level

1http://www.w3.org/Graphics/SVG/
2http://raphaeljs.com/
3http://www.khronos.org/opengl/
4http://www.khronos.org/webgl/
5http://processing.org
6http://threejs.org

visualization libraries. The most widely used is Bostock’s
et al. D3 [5]. Implemented for web browsers in javascript,
this library uses the webpage’s Document Object Model
as a data backend. Its very simple and powerful API en-
sured its adoption outside of the InfoVis community. The
user only has to specify changes to the state of data and
not the entire visualization to produce a dynamic visualiza-
tion. However, the implementation of D3 prevents it from
handling a large number of visual elements. Since every
graphical object of the visualization is an element in the
DOM, the size of the visualization is inherently limited.
Other libraries have tried to overcome this difficulty by
adding WebGL hardware acceleration capabilities to D3,
but the major part of the visualization still uses the DOM.

Seeing the respective drawbacks and advantages of both
categories of library, we propose the FATuM library to fit
between those two categories.

3 The system
In this section we present the design of the system, its

goals, its interface and details of the implementation.
3.1 Library Philosophy

The library presented here is a 2D visualization render-
ing library, half-way between the low levels graphics li-
braries and the specialized visualization libraries. It only
focuses on the rendering process. We see it as a middle-
ware between the visualization designer and the graphics
capabilities of the computer, by analogy with web appli-
cations, where the middleware enables communication be-
tween the front-end user interface and the back-end stor-
age space. It will allow other libraries to provide another
interface more suitable for visual design, without worrying
about rendering speed.

Our system is totally detached from any data model.
Thus, we do not provide any data management layer in our
library, unlike D3. Managing the correspondence between



(a) Position (b) Size (c) Shape (d) Color (e) Texture

(f) Rotation (g) Border (h) Angular clipping (i) Internal clipping

Figure 2: Different values for the properties available for the marks.

data and the visual entities is the responsibility of the user.
While this approach can be considered a supplementary
burden for the user, we argue that it allows more flexible
data mapping, other than a simple one-to-one mapping.

The library handles the visual objects in a 3D world, us-
ing an orthographic projection to create a 2D visualization.
Thus, it handles model and screen coordinates spaces and
enables zoom and pan using matrices operations. Further-
more, a layer system enables to control the types of objects
rendered in the final visualization.
3.2 Visual primitives

Many visualization libraries propose a large selection of
graphical elements to represent data, ranging from circles
and squares to more exotic shapes like stars. They also
generally provide lines, polylines, arrows, curves, areas or
polygons. During an animated transition, a data point of-
ten has to change a number of its visual variables, such as
shape, size or position. When that happens, the datum rep-
resented by this point has not necessarily changed. Only
the representation of the datum has changed. We wanted to
reflect that in our library by providing a common abstrac-
tion on top of which it would be possible to build more
classical graphical elements. Since Bertin [3], such ele-
ments are called ”marks”, but visualization libraries tend
to differentiate them based on shape, possibly for imple-
mentation purposes. Following the work done on Proto-
vis [4], which already identifies marks as visual primitives,
we propose to go one step further by exposing only a single
type of entity for marks, allowing dynamic modification of
its visual properties, including its shape.

Additionaly, in many visualizations, marks can be con-
nected to one another. For instance, in a node-link
graph visualization, marks representing nodes are con-
nected through edges, in a line chart, a mark is connected
to the next one. To model this relationship between marks,
we introduce the connection visual entity.
3.3 Visual properties

Bertin [3] defined properties for the marks, which we
retain as follows:
• Position: X, Y and Z position of the center of the

mark. Thanks to the orthographic projection, the Z

coordinate enables to control which mark is rendered
on top of the others.
• Size: Width and height of the mark. No size is pro-

vided on the Z axis, since it would not be seen in the
visualization.
• Shape: The shape of the mark. All standard shapes

are possible, such as circle, square or diamond. More
complex shapes are also provided thanks to a distance
field. There is also a special shape called ”none”,
which makes the mark invisible.
• Color: The color of the mark, including the alpha

channel for transparency. This relates to the value and
color visual variables from Bertin.
• Rotation: This property enable to rotate the mark

around the Z axis. This is the ”orientation” variable
from Bertin.
• Texture: We enable the user to specify a texture for

the mark.
Additionaly, we introduce new properties for more flex-

ibiliy. First are the properties relative to the mark’s border
and second are clipping properties, useful for radial visual-
ization, as they enable to easily make radial charts, such as
pie charts and donut charts using marks as angular sectors:
• Border size: Size of the border in pixels. The border

size is defined in screen space, meaning that its appar-
ent size will remain constant, even upon zooming.
• Border color: The color of the border can be different

from the color of the mark.
• Radial clipping: Defines an angular portion of the

shape to render. This enables to use angle as an en-
coding variable, as suggested by Mackinlay in [13].
• Internal clipping: Defines a portion of the inside of

the shape that should not be rendered
Example values for the properties are diplayed in Figure 2.

As exposed previously, marks are the primary visual
primitives. Connections on the other hand encode relation-
ship. As such, they do not have their own visual properties.
Their aspect is derived from the aspect of the marks they
connect. The connections link the two marks at their po-
sition. Color and size of the connection are deduced from
those of the marks. They can be rendered as arrows or as



simple lines. The rendering defaults to line when connect-
ing to a mark with the ”none” shape.
3.4 Visualization using marks and connections

Here are ways to realize common visualizations using
marks and connections, examples can be seen in Figures 3
and 1 :
• A scatterplot can be implemented using only marks

for each point. A multivariate scatterplot can be de-
rived by using different shapes for the marks.

• In a barchart, each bar is a square mark. The bars can
be displayed horizontally or vertically.

• A linechart can be derived from the previous barchart
by changing the shape of marks to the special invisible
shape and adding connections. Each one will link two
consecutive marks. We can consider that in this vi-
sualization, connections encode temporal adjacency.
A variation of the linechart could be to use a visible
shape for the marks. Using the same design process,
parallel coordinates can also be displayed.

• A node-link view of a graph is straightforward to im-
plement : use marks for nodes and connections for
links. Another common representation of graphs is
the matrix view. It can also be realized using marks.
The vertices at the beginning of the columns and lines
of the matrix are made using marks, and the edges,
generally depicted by a point at the intersection of the
line of its source and the column of its target is also a
mark. This is a good exemple of the flexibility of our
library, since each vertex in the graph data model is
represented by two marks and each edge by a single
mark.

• A pie chart can be made by placing circular marks at
the same position and using the radial clipping prop-
erties to get wedges. The donut chart, a common vari-
ation of the pie chart, is realized with the help of the
internal clipping property. By correctly using a com-
bination of these two properties, it is also possible to
make a sunburst plot by stacking several donut charts.

3.5 API design
Designing an API for an information visualization li-

brary has been extensively studied by Heer and Bostock in
several publications [4, 5, 11]. We chose to follow their
major guidelines. As such, our API design is much in-
spired by D3.js’s API.

On a general level, we followed the intention of the Fa-
cade design pattern described by Gamma et al. [10]. The
entrypoint of the system is provided through a class called
Fatum. It enables to add a new mark to the system, get a
mark based on its id, connect two existing marks, and get
all the marks and connections currently registered.

The Mark object is the main visual primitive we expose.
For each visual property, we provide two functions named

after this property. The first is a getter, which returns the
value of the property, the second is a setter, which changes
the value of the property. For instance, the shape property
can be accessed using the function shape() and modified
using shape(Shape newshape). Several shorthands are also
provided, such as alpha, width and height to access spe-
cific parts of properties with multiple dimensions, such as
color, position and size. Every setter returns a reference to
the Mark itself, in order to allow method chaining. This
is strongly encouraged by [11] and proven successful by
the D3 API. We also think it allows for simpler visualiza-
tion declarations. In addition to the visual properties ac-
cess and modification, the Mark object can be connected to
another mark in an inline fashion using method chaining.
While this is redundant with the FATuM Facade interface,
it avoids breaking the declarative flow to add a connection.
Furthermore, dynamic visualizations often need to trans-
form a single existing entity into multiple new ones, for
instance when dynamicaly exploring a hierarchy. Thus, we
enable to clone() a Mark to have a copy of it freely modifi-
able.

The last object in our system is the connection. Its inter-
face only consists of source and target access and a deletion
operation.
3.6 Technologies used

As a rendering library, we want performance to be
highly scalable with the number of marks registered. We
used C++ and OpenGL to implement our system and the
rendering engine, as those technologies were the fastest
available. The interface we designed allows to harness the
performance of these technologies, while still using visu-
alization concepts.

The choice of these technologies directly enables Win-
dows, MacOS, and Linux native versions of our library.
Furthermore, using the Emscripten7 [17] compiler, we are
able to compile our library to a highly optimisable subset
of javascript called ASM.js and to WebGL. This enables
direct integration of our library in the browser.

4 Double buffering for Visualization
Double buffering is a technique widely used in com-

puter graphics to avoid graphical artifacts when updating
the display. It consists of maintaining two different buffers
to hold pixel values. One is called the ”front buffer” and
the other the ”back buffer”. The front buffer is the one
used when reading from the buffers to draw on the dis-
play. The back buffer is used when writing to the buffers
to change the displayed image. When an update operation
is finished, i.e. drawing a new image, the two buffers can
be exchanged. This operation is called ”swap”. This way,
the displayed image is not changed until the new one is

7http://emscripten.org/



(a) (b) (c)

(d) (e) (f)

Figure 3: Dynamic transitions of visualizations for the data {4,3,4,2,5} with FATuM. In order to transition between those
visualizations, the marks were not recreated, only their properties were changed. (a): A bar chart. Each bar is implemented
as a mark. The positions, size are data dependant and the shape is set to ”square”. (b): Transition to a dot chart [8]. The
shape, size and vertical position of each mark were modified. We can see the smooth shape deformation caused by the
modifcation of the shape and size properties. (c): The final dot chart state. (d): Connections between the marks were added
and are rendered as arrows. (e): Animated transition to a linechart by changing the shape of the mark to ”none”. Notice the
contraction of the marks toward their center. (f): Final linechart state.

complete. This has the advantage of changing the whole
image at once and not little by little during long and com-
plex updates. The swap can be implemented either as a
copy from the back buffer to the front buffer or only as a
role exchange, the back buffer becoming the front buffer
and vice-versa. This technique has been used by Munzner
et al. [14] to allow iterative rendering of large trees.

We took inspiration from this technique to design the
way animation is handled in our library. We also maintain
a front and back buffer, but instead of storing pixel val-
ues, they are used to store the marks’ properties. The front
buffer is the one displayed, and the next properties values
are stored in the back buffer. This effectively creates two
states for every Mark and Connection : the current and next
animation states.
4.1 Rendering double buffered marks

We use custom OpenGL shaders to render the marks.
A shader is a program running on the graphics hardware.
Using them permit to harness the parallel nature of GPU.

When rendering the visualization, the two states of
every visible element are sent to the OpenGL drawing
pipeline. In order to get an animated rendering, an in-
terpolation parameter is used. It varies from 0 at the be-
ginning of the animation to 1 at the end of the animation.
The current animation state is computed at the time of the
drawing, generaly using a linear interpolation with the for-
mula: current = front×(1.0−interpolation)+back×
interpolation. The variation of the interpolation parame-
ter enables to control the direction of the animation, mak-
ing it vary from 1 to 0 will generate the reverse anima-
tion. While the interpolation computation is made every
frame and for every visible element, it is inherently par-
allel. Deffering the animation calculation to the drawing

pipeline shifts the compute load from the CPU to the GPU.
This transfer also has the advantage that no animation com-
putation is made for elements that are not rendered. Thus it
is needed to render only elements that are visible. A CPU
clipping pass is performed for every frame rendered, tak-
ing animation into account to determine for each mark if
it is visible or not. This involves verifying if the mark in-
tersects the screen, if its shape is displayed (not ”none” at
both ends of the animation) and if it is not fully transparent
throughout the entire animation. This decomposes the ren-
dering into two phases : the clipping phase and the drawing
phase. The clipping phase runs on every mark, but is very
quick for each one, while the drawing phase involves more
work per mark, but only runs on visible marks. The combi-
nation of those phases enables to scale to a large number of
marks while retaining interactive framerates. Furthermore,
it allows animation on detailed views of huge datasets to
be smoothly animated even if the global view cannot be
rendered at satisfying framerates.

This technique allows animated rendering at a marginal
additional cost. Rendering a static visualization is iden-
tical to rendering an animated one, only the interpolation
parameter does not vary.
4.2 Implementing the buffer swap

Contrary to the computer graphics technique, where the
buffer swap is instantaneous, when dealing with animated
transition, the buffer swap is delayed during the anima-
tion. When the animation starts, the buffers are not yet
swapped, only the interpolation parameter is growing to-
ward 1. When the interpolation reaches 1, the state of the
front buffer is not displayed anymore, the back buffer state
has replaced it entirely. This marks the end of the anima-
tion. At this moment, we can finally swap the buffers and



set the interpolation parameter to 0 again. We are then in a
new static state.

The user can even specify a callback to execute when at
the end of an animation. By launching another animation
in it, it effectively enables staged animation.
4.3 The need for more buffers

The animation process uses only two buffers to hold the
starting and final states of the animation. However, if the
user modifies a property during the animation, it will be
written to the back buffer. This implies that the animation
of this property will now take place as if this new value has
been there from the start. This negates the transition effect
of the animation and might confuse the user.

To prevent this, properties are not directly written into
the back buffer, regardless of the animation state. We thus
add a third buffer to the system, called ”write buffer” (see
Figure 4). When a property is modified, it is written into
this write buffer. At the beginning of the animation, the
write buffer is copied into the back buffer. The animation
process can now take place with the front buffer contain-
ing the previous values and the back buffer containing the
updated values coming from the write buffer. At the end of
the animation, the front and back buffers are swap as de-
scribed previously. Using this 3-buffers implementation,
the user’s modifications are stored in a temporary buffer
and thus do not perturb animation. The modifications made
during the animation will be used for the next animation.

With this design arises the possibility to copy the write
buffer to store different states of the visualization. The
states saved could consequently be reused as back buffer
states. This enables to start a transition to an already exist-
ing state without having to redeclare it. This is in essence
the Memento design pattern by Gamma et al. [10].
4.4 Implementing properties animation

Thanks to the multi-buffered architecture of our system,
no additional computation is needed to set the current value
of a property when animating. The initial and final values
are transmitted to the OpenGL graphics pipeline. Then,
using shaders, we are able to compute the current value at
the time of rendering, benefiting from the parallelization
on the graphics hardware.

For most of the properties, a simple interpolation be-
tween the initial and final values is sufficient. This inter-
polation can be realized using an easing function to get
different animation behaviours, such as slow-in, slow-out,
bounce or elastic. We chose to use the same function for
the whole animation rather than a per-property value so
as not to make the animation confusing. However, the
”shape” property is harder to animate. Due to its discrete
nature, a simple interpolation of the value will not work.
For example, if the initial state is a circle represented by
2 and the final state a square represented by 4, at half

(a) When the animation starts, the back buffer is populated

(b) During rendering, no additional computation is needed

(c) When the animation is complete, the buffer swap can be com-
pleted

Figure 4: Steps of the buffer swap for 3-buffers animated
rendering.

the animation, the interpolation would give a value of 3,
which could correspond to a diamond. Such an interpola-
tion would be dependant on the order in which the shapes
are defined and would not give an understandable value
outside of the defined integer values.

In [12], Heer and Robertson also needed to animate
shapes. They used predefined polyhedral meshes to rep-
resent shapes and a vertex correspondance to animate the
mesh between two shapes. While this approach gives ex-
cellent results for arbitrary shapes, it requires a lot of ge-
ometry computations which we could not afford for scal-
ability reasons. Instead, we used signed distance fields to
implement the shapes provided in the library. A signed
distance field represents for each point the distance to the
isocurve of the shape. The distance is negative if inside
the shape and positive outside. Formulas to compute such
implicit distance fields can be found in [15]. Using the
information encoded in the distance field, we are able to
efficiently rasterize a shape without additional geometry.

In order to animate the shapes, we can now interpolate
the distance fields of the initial and final shapes. This re-
sults in a smooth morphing of the shape. The edge expands
or contracts toward the target shape. Using this technique,
even the shape animation is affected by the easing function
applied to the animation. We used implicit distance fields
for the shapes currently provided, i.e. distance fields cal-
culated using mathematical function on the fly. However,
our approach is completely valid for precomputed distance



fields, which could be used to easily extend the set of avail-
able shapes.
4.5 Handling Addition and Deletion of Marks

With the addition of multiple buffers to our system, we
need a new way of handling marks addition and deletion to
maintain coherence between buffers.

When a mark is added, an entry is added into each
buffer. The newly created set of visual properties is pop-
ulated with default values thanks to a default constructor.
This ensures that the system is in a coherent state after the
addition of a new mark. Once the mark has been added,
it is immediately ready to be displayed, since it exists in
the front buffer. That is why we carefuly chose the de-
fault property values to render the mark invisible through
alpha transparency. This way, the mark is displayed, but
cannot be seen and the visualization did not change. Ev-
ery subsequent property modification for a newly created
mark will affect the write buffer, as with any other mark.
However, this means that at the next animation, the inter-
polation will take place between the default values remain-
ing in the front buffer and the values specified by the user
in the write buffer. This is generally not suitable, since
the user might want a mark to appear a certain way in its
visualization. To enable finer control on the entrance ani-
mation for a mark, we chose to add the show() method to
the interface of Mark. This method copies the properties
of the mark from the write buffer to the front buffer, im-
mediately updating the visualization. This simple addition
to the system allows the user to specify the initial (prefer-
ably still invisible) state of the newly created mark, call
the show() method to copy this state into the front buffer
and then modify it normally in the write buffer. Thanks
to method chaining, this can be realized in a single line of
code. For instance, the following line will create a mark,
set its color to transparent blue in the front buffer and make
it opaque in the back buffer :

addMark().color(Blue).alpha(0)
.show().alpha(255);

Upon animation, this mark will progressively appear.
The usage of the show() method is not restricted to mark

creation. It is suited for every modification of the visual-
ization that does not need animation.

Handling mark deletion is simpler because the deletion
happens in the same direction as the animation, since its
effect is not immediately displayed. It can be implemented
by the users directly using the multi-buffers in a similar
manner to the entry. The user can modify a mark to make
it invisible, then animate the visualization. Additionally
we provide through the del() method a way to completely
remove the mark from the system. When the del() method
is called on a mark, it is tagged for deletion and will be

Figure 5: Frames per second versus number of marks dis-
played on a log/log scale, for both scatterplot and barchart
visualizations, on both native and web versions.

removed after the next animation. The user can include it
in its visual deletion process as well. For instance a fade-
out effect of the mark m can be achieved using :

m.alpha(0).del();

Those system capabilities directly enable brushing.
If the user can detect mouse enter on a mark and
mouse exit of the mark, he can implement brushing with
c=m.color();m.color(Red).show().color(c); on enter and
m.show(); on exit. This will change the mark’s color to
Red in the front buffer and immediately change it to the
previous color in the write buffer. Calling show() on exit
will set the front buffer color to the original mark’s color.

5 Benchmarks
In order to test the framerate of our library, we ren-

dered bar chart and scatterplot visualizations of random el-
ements. We measured the framerate of the visualization
with an increasing number of visual elements. This ex-
periment was conducted on a high-range laptop equiped
with an Intel Core i7-4710HQ CPU @ 2.50GHz and an
Nvidia GeForce GTX 970M graphics hardware. All tests
involved rendering a 800x800 pixels window. We mea-
sured the performance of both the native C++/OpenGL
version, compiled with gcc 4.8.2 and the -O3 optimisa-
tion level, and the ASM.js/WebGL version, compiled with
Emscripten 1.29.0, also with a -O3 optimisation level. We
used firefox 35 to display the web version. Results are dis-
played on Figure 5. A big gap can be seen between the two
versions. The native version is able to render up to 200.000
visual elements at 60fps. The web version maintains more
than 30fps with 100.000 elements in both visualizations.

6 Conclusion & Future Work
We showed how to realize a working library to fill

the gap between high-level and low-level visualization li-
braries. Using a common abstraction for the available vi-
sual primitives, it is possible to reduce the number of their



visual variables, following Bertin’s ideas. This in turn sim-
plifies the rendering code and enables to display a large
number of those marks. In order to animate that much vi-
sual elements, we inspired from the double buffering tech-
nique used in computer graphics. By storing two states
of the marks and deffering animation calculation to the
OpenGL graphics pipeline, only displayed elements need
to be animated, and no additional cost is generated for an
animated frame with respect to a static one.

In the future, we would like to integrate custom shapes
through precalculated distance fields, allow more user con-
trol on connections, text and axis. We would also like to
see high-level libraries use our work as a rendering and an-
imation back-end.

Acknowledgements
This work has been carried out as part of ”REQUEST”

project supported by the French ”Investissement d’Avenir”
Program (Big Data - Cloud Computing topic - PIA
O18062-645401).

References
[1] Daniel Archambault, Helen C Purchase, and Bruno

Pinaud. Animation, small multiples, and the effect of
mental map preservation in dynamic graphs. Visual-
ization and Computer Graphics, IEEE Transactions
on, 17(4):539–552, 2011.

[2] Benjamin Bederson and Angela Boltman. Does an-
imation help users build mental maps of spatial in-
formation? In Information Visualization, 1999 Pro-
ceedings, IEEE Symposium on, pages 28–35. IEEE,
1999.

[3] Jacques Bertin. Sémiologie graphique: les dia-
grammes, les réseaux, les cartes., 1967.

[4] Michael Bostock and Jeffrey Heer. Protovis: A
graphical toolkit for visualization. Visualization
and Computer Graphics, IEEE Transactions on,
15(6):1121–1128, 2009.

[5] Michael Bostock, Vadim Ogievetsky, and Jeffrey
Heer. D3 data-driven documents. Visualization
and Computer Graphics, IEEE Transactions on,
17(12):2301–2309, 2011.

[6] Fanny Chevalier, Pierre Dragicevic, and Steven Fran-
coneri. The not-so-staggering effect of staggered
animated transitions on visual tracking. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
20(12), 2014.

[7] Fanny Chevalier, Pierre Dragicevic, and Christophe
Hurter. Histomages: fully synchronized views for im-
age editing. In Proceedings of the 25th annual ACM

symposium on User interface software and technol-
ogy, pages 281–286. ACM, 2012.

[8] William S Cleveland and Robert McGill. Graphical
perception: Theory, experimentation, and application
to the development of graphical methods. Journal
of the American statistical association, 79(387):531–
554, 1984.

[9] Niklas Elmqvist, Pierre Dragicevic, and Jean-Daniel
Fekete. Rolling the dice: Multidimensional visual ex-
ploration using scatterplot matrix navigation. Visual-
ization and Computer Graphics, IEEE Transactions
on, 14(6):1539–1148, 2008.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: elements of reusable
object-oriented software. Pearson Education, 1994.

[11] Jeffrey Heer and Michael Bostock. Declarative lan-
guage design for interactive visualization. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
16(6):1149–1156, 2010.

[12] Jeffrey Heer and George G Robertson. Animated
transitions in statistical data graphics. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
13(6):1240–1247, 2007.

[13] Jock Mackinlay. Automating the design of graphical
presentations of relational information. Acm Trans-
actions On Graphics (Tog), 5(2):110–141, 1986.

[14] Tamara Munzner, François Guimbretière, Serdar
Tasiran, Li Zhang, and Yunhong Zhou. Treejuxta-
poser: scalable tree comparison using focus+ context
with guaranteed visibility. In ACM Transactions on
Graphics (TOG), volume 22, pages 453–462. ACM,
2003.

[15] Nicolas P Rougier. Antialiased 2d grid, marker, and
arrow shaders. Journal of Computer Graphics Tech-
niques, 3(4):52, 2014.

[16] Sébastien Rufiange and Michael J McGuffin. Diffani:
Visualizing dynamic graphs with a hybrid of differ-
ence maps and animation. Visualization and Com-
puter Graphics, IEEE Transactions on, 19(12):2556–
2565, 2013.

[17] Alon Zakai. Emscripten: an llvm-to-javascript com-
piler. In Proceedings of the ACM international
conference companion on Object oriented program-
ming systems languages and applications compan-
ion, pages 301–312. ACM, 2011.


