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On the stationary macroscopic inertial effects for one phase flow
in ordered and disordered porous media

D. Lasseux,a) A. A. Abbasian Arani, and A. Ahmadi
Université Bordeaux I, Transferts, Ecoulements, Fluides, Energétique (UMR CNRS 8508), Esplanade
des Arts et Métiers, 33405 Talence Cedex, France

We report on the controversial dependence of the inertial correction to Darcy’s law upon the

filtration velocity (or Reynolds number) for one-phase Newtonian incompressible flow in model

porous media. Our analysis is performed on the basis of an upscaled form of the Navier-Stokes

equation requiring the solution of both the micro-scale flow and the associated closure problem. It

is carried out with a special focus on the different regimes of inertia (weak and strong inertia) and

the crossover between these regimes versus flow orientation and structural parameters, namely

porosity and disorder. For ordered structures, it is shown that (i) the tensor involved in the

expression of the correction is generally not symmetric, despite the isotropic feature of the

permeability tensor. This is in accordance with the fact that the extra force due to inertia exerted on

the structure is not pure drag in the general case; (ii) the Forchheimer type of correction (which

strictly depends on the square of the filtration velocity) is an approximation that does not hold at all

for particular orientations of the pressure gradient with respect to the axes of the structure; and (iii)

the weak inertia regime always exists as predicted by theoretical developments. When structural

disorder is introduced, this work shows that (i) the quadratic dependence of the correction upon the

filtration velocity is very robust over a wide range of the Reynolds number in the strong inertia

regime; (ii) the Reynolds number interval corresponding to weak inertia, that is always present, is

strongly reduced in comparison to ordered structures. In conjunction with its relatively small

magnitude, it explains why this weak inertia regime is most of the time overlooked during

experiments on natural media. In all cases, the Forchheimer correction implies that the

permeability is different from the intrinsic one. VC 2011 American Institute of Physics.

[doi:10.1063/1.3615514]

I. INTRODUCTION

It is now well established that the classical Darcy’s law

used to describe incompressible one phase Newtonian flow

of a fluid b in a homogeneous non-deformable porous

medium and given by

hvbi ¼ �
K

lb
� r pb

� �b�qbg
� �

; (1)

vb
� �

being the seepage or Darcy velocity, r pb
� �b

the mac-

roscopic pressure gradient, g the gravitational acceleration,

and K the permeability tensor, only holds when the pore-

scale flow occurs in the creeping regime. The equivalent

macroscopic constraint is that the Reynolds number, usually

defined as

Red ¼
qb hvbi
�� ��d
lb

; (2)

d being a typical grain size of the porous medium, remains

small compared to unity. Here we have used lb and qb to

represent the dynamic viscosity and density of the b-phase

and g for the gravitational acceleration. Originally obtained

from experiments1 and later formalized using upscaling tech-

niques,2,3 Eq. (1) must be reconsidered when inertial effects

become significant. Active research has been dedicated to

derive adequate corrections to the linear relationship in

Eq. (1) from numerical, theoretical, and experimental points

of view since the early work of Forchheimer4 where ad hoc
1D relationships of the form,

@ pb
� �b
@x

¼ �ahvbi � qbbhvbim (3)

or

@ pb
� �b
@x

¼ �ahvbi � qbbhvbi2 � q2
bchvbi3; (4)

obtained on an empirical basis were proposed.5 While a, b,

and c were considered as parameters intrinsic to the medium,

the exponent m was identified to a value close to 2 confirm-

ing the popular Forchheimer form for Eq. (3).6–8 This

popular form has been considered as a valid one, either

from comparison to experimental data,9–13 theoretical deri-

vation,14–21 or computational results.22–28 It was considered

as a relevant local model for numerical upscaling in hetero-

geneous media.29 It has been extensively used in petroleum

and chemical engineering applications for several deca-

des.30–32 Deviation from Eq. (1), starting at Red between 1

and 15 as observed by almost all authors,33–35 has been

attributed to turbulence36 until the late 1960s. The physicala)Electronic mail: didier.lasseux@ensam.eu.
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justification of the quadratic nature of the correction was

supported either by intuition or by dimensional analysis and

the analogous turbulent kinetic energy loss in straight tubes.

After a classification of flow regimes indicating that turbu-

lence was not the origin of the deviation from the linearity of

Eq. (1),37 experimental and unsteady numerical simulation

evidence of the onset of turbulence for Red on the order of

100 was demonstrated.35,38,39

During the early 1990s, a careful attention to the onset

of deviation from Eq. (1) was reported in both numerical and

theoretical works, questioning the quadratic dependence of

the correction. Numerical simulation results obtained on

model structures made of ordered arrays of cylinders of cir-

cular cross section lead to m¼ 3 in (3).40 This result was

confirmed independently from a theoretical point of view

using double scale homogenization41–45 for Reynolds num-

bers (based on the characteristic pore dimension) in the range

[d1=2,1] where d is the scale separation parameter, i.e., the ra-

tio of the microscopic to macroscopic characteristic scales.

This so-called weak inertia regime was first obtained in the

case of periodic homogeneous and isotropic media but was

extended to the case of anisotropic ones with the restriction

of invariance while reversing the flow direction,46,47

although this last constraint was further relaxed shortly af-

ter.48 This regime was also evidenced for flow in a rough

fracture.49 Further numerical simulations confirmed this

result39,50–52 and lead to a classification of the non-linear

deviation from Darcy’s law involving, at least, three differ-

ent regimes separated by transitions:48 (i) the weak inertia
regime which appears at the onset of non-linearity and where

the correction term scales as vb
� �3

for Reynolds numbers

based on the characteristic pore dimension in the interval

[d1=2, 1], (ii) a strong inertia regime where the correction is

quadratic in vb
� �

, i.e., a Forchheimer type of correction, for

the Reynolds number &1 to 10, and (iii) turbulence which,

will not be discussed further in the present work, for the

Reynolds number &100.

Precise physical justification of these cubic and quad-

ratic dependences are still a matter of questioning.44 Since

macroscopic inertial forces are clearly weak compared to

viscous ones,18,23,53 non-linearity in the drag-velocity rela-

tionship must originate from microscopic inertial and vis-

cous forces. Invoking the former as the dominant effect54,55

is justified by (i) streamlines deformation resulting from

bends in flow paths (i.e., tortuosity)56 and in constrictions

and enlargements, (ii) backflow as well as flow separation

yielding form drag, (iii) fluid flow channeling which gradu-

ally disappears with increasing velocity leading to a strong

modification of kinetic energy loss distribution within the

medium.57 Non-linearity resulting from viscous drag can be

justified by the development of boundary layers at pore walls

as observed experimentally35 giving rise to inertial core flow

at the pore scale. Due to boundary layers growing with

increasing Reynolds numbers, local velocity in the cores

increases non-linearly. Coupling between inertial and vis-

cous effects must also be considered with the dissipation in

recirculation zones.24 This coupling has recently led to

propose a correction to Eq. (1) in a complex empirical expo-

nential form rather than a polynomial one.58

Even if the flow classification under the Darcy, weak

and strong inertia regimes have been widely admitted, the

dependence of the transition between these different

regimes, when they can be identified, upon structural proper-

ties of the medium such as porosity, disorder, and anisotropy

has not been yet documented. Moreover, as shown in many

theoretical developments,18,20,41,42,53,59 the non-linear cor-

rection to Eq. (1) involves a correction tensor. Nevertheless,

all reported numerical (and experimental) analyses of this

correction are performed on the velocity magnitude using a

scalar only. Our purpose in this work is to shed light on

these two aspects of the problem that are of practical major

importance. On the one hand, inspecting the tensorial form

of the macroscopic inertial resistance is not only useful to

analyze the anisotropic character of the non-Darcy part of

the flow but is required in the perspective of a second

upscaling over a heterogeneous medium involving different

regions, each of them being characterized by its non-Darcy

correction (and permeability) tensors. On the other hand,

analyzing the dependence of the different regimes, when

they can be reasonably distinguished, as well as the transi-

tion between them upon structural parameters of the medium

is also necessary to help understanding the physical origin

of these regimes and refine the macroscopic description of

the flow. This opens the way for many other investigations

on anisotropic and heterogeneous media as well as on iner-

tial two-phase flow as already explored in preliminary

works.60,61

Since analytical solutions to the Navier-Stokes problem

are restricted to simple geometries, at asymptotically small

Reynolds numbers and for ordered structures having very

large or exceedingly small porosities, most of the time mak-

ing use of the Oseen’s approximation, we chose to perform

comprehensive direct numerical simulations. They were per-

formed in the Reynolds ranges 0–150 (ordered arrays) and

0–30 (disordered arrays) and for porosities between 0.3 and

0.75. The analysis is performed on the basis of a theoretical

derivation of the macroscopic mass and momentum equa-

tions obtained by volume averaging the incompressible one-

phase Navier-Stokes problem.53 Ordered media are of major

interest for these synthetic structures are specifically

designed for many microfluidics devices whereas disorder is

inherent to natural porous structures like geological

materials.

The paper is organized as follows. In Sec. II, the macro-

scopic model and the associated closure problems yielding

both the permeability and correction tensors are reported. Af-

ter presenting the numerical method used to compute the two

tensors (its validation is provided in Appendix A), results are

discussed in Sec. III. Computations were carried out with

special attention to high accuracy in order to investigate the

existence of the different regimes, the scaling laws in these

regimes as well as the transition (or crossover) between them

versus flow orientation and structural parameters, namely

porosity and disorder. This was performed on 2D model

structures of a porous medium corresponding to ordered,

weakly and strongly disordered arrays of parallel cylinders

of square cross sections. Important concluding remarks are

reported in Sec. IV.



II. GOVERNING EQUATIONS AND SOLUTION

A. Microscopic boundary value problem and
macroscopic model

The single-phase flow of an incompressible Newtonian

fluid b is considered in a macroscopic region of a rigid po-

rous medium. The boundary value problem describing the

process at the microscopic (pore) scale is given by the classi-

cal mass and momentum (Navier-Stokes) balance equations,

qbð
@vb

@t
þ vb � rvbÞ ¼ �rpb þ qbgþ lbr2vb; (5)

r � vb ¼ 0; (6)

with the boundary conditions,

vb ¼ 0 at Abr; (7)

vb ¼ /ðr; tÞ at Abe: (8)

In these equations vb and pb are, respectively, the veloc-

ity and pressure of the b-phase; Abr represents the interface

area between the b-phase and the solid phase r contained

within the macroscopic region, while Abe represents the b-

phase entrances and exits of the macroscopic region on

which the velocity is defined by / r; tð Þ.
Upscaling of this problem was proposed using double

scale homogenization41,42 under the restriction of very small

Reynolds numbers based on the characteristic pore size.

More recently, it was developed using the volume averaging

method.53 In this latter work, it was demonstrated that the

macroscopic model is given by

r � hvbi ¼ 0; (9)

hvbi ¼
�K

lb
� rhpbib � qbg
� �

� F � hvbi; (10)

where K (having the dimension of m2) and F (dimensionless)

are the permeability and Darcy’s law correction tensors,

respectively, and in which the following definitions of the su-

perficial and intrinsic phase averages of any quantity wb

associated to the b-phase are respectively given by

hwbi ¼
1

V

ð
Vb

wbdV (11)

and

hwbi
b ¼ e�1hwbi ¼

1

Vb

ð
Vb

wbdV: (12)

In these two last relationships, Vb represents the volume of

the b-phase contained within the averaging volume, V at

least as large as the Representative Elementary Volume

(REV) of the structure and

e ¼ Vb

V
(13)

is the porosity of the medium.

The macroscopic model in Eqs. (9) and (10) remains

valid provided two constraints are satisfied. First, scale hier-

archy must be such that

lb � r0 � L; (14)

where lb is the characteristic length-scale in the b-phase

(pore diameter), r0 is the radius of the averaging volume, and

L is the macroscopic length-scale. Second the characteristic

time t� at which the process is observed must satisfy

lbt�

qbl2
b

� 1 (15)

or equivalently

qb hvbib
��� ���lb

lb
ðlb=LÞ � 1; (16)

for the quasi-steady nature of the macroscopic flow to hold.

Under these circumstances and within the framework of a

spatially periodic model of a porous medium, K and F can

be explicitly determined from the solution over the unit cell

of the periodic structure (period li, i¼ 1, 2, 3) of two closure

problems respectively given by53,62,63

0 ¼ �rdþr2Dþ I

r � D ¼ 0

D ¼ 0 at Abr

dðrþ liÞ ¼ dðrÞ Dðrþ liÞ ¼ DðrÞ i ¼ 1; 2; 3

8>><
>>: (17)

hDi ¼ K (18)

qbvb

lb
� rM ¼ �rmþr2Mþ I

r �M ¼ 0

M ¼ 0 at Abr

mðrþ liÞ ¼ mðrÞ Mðrþ liÞ ¼MðrÞ i ¼ 1; 2; 3

8>><
>>: (19)

hMi ¼ H (20)

while

F ¼ K �H�1 � I: (21)

Here, H is a flow-dependent tensor and corresponds to the

apparent permeability64 allowing an alternate form of

Eq. (10),

hvbi ¼
�H

lb
� rhpbib � qbg
� �

: (22)

Important remarks must be made at this point. First, it

must be emphasized that under the assumptions of well

separated scales (relation (14)), steady flow (relation (15))

and for a spatially periodic medium, the determination of

F obtained from the solution of Eqs. (17) through (21) is

exact regardless of the Reynolds number value.53 In addi-

tion, while K can be shown to be symmetric (and positive

definite),65 F and H are not, as will be proved further with

our numerical results. Finally, it must be stressed that,

while K is a quantity intrinsic to the structure, F and H



depend not only on the medium but also on both the

Reynolds number and pressure gradient orientation. As a

consequence, the macroscopic force resulting from flow in

an isotropic unit cell is no longer pure drag as it would be

in the Darcy regime for any orientation of the flow. Excep-

tion is when the isotropic unit cell possesses at least one

symmetry axis and flow is aligned with this axis. Evidence

of these features is shown below.

B. Determination of the macroscopic properties

Without losing generality, gravity is not considered in

the rest of this work. While K can be determined either

directly from the solution of the creeping flow over a peri-

odic unit cell or equivalently from the closure problem (17),

the determination of H (or F) requires the solution of the

stationary Navier-Stokes flow problem over the unit cell.

Once dimensionless variables denoted by the superscript �

given by

x� ¼ x

l
y� ¼ y

l
z� ¼ z

l
; (23)

v�b ¼
vb

vref
p�b ¼

pb

pref
(24)

are used along with the decomposition,66,67

pb ¼ hpbib þ ~pb; (25)

the cellular flow problem can be written as (for simplicity,

the superscript * is omitted on the r operator),

Re�v�b � rv�b þr~p�b �r2v�b ¼ �rhp�bi
b; (26)

r � v�b ¼ 0; (27)

v�b ¼ 0 at Abr; (28)

v�bðr� þ l�i Þ ¼ v�bðr�Þ ~p�bðr� þ l�i Þ ¼ ~p�bðr�Þ i ¼ 1; 2; 3: (29)

In Eq. (23), l represents one of the edge sizes of either the

periodic unit cell in the ordered case or the random cell

when disorder is introduced (see Figures 1(b) and 14) while

in Eq. (26), Re* is a Reynolds number defined by

Re� ¼
qbvref l

lb
: (30)

A suitable choice of the reference velocity, vref, and pressure,

pref, is

vref ¼
l2

lb
rhpbib
��� ��� pref ¼ l rhpbib

��� ���: (31)

Since
��r�p�b�b�� ¼ 1, the original choice of the intensity and

orientation of the external force per unit volume, r pb
� �b

,

applied on the periodic structure is now done by selecting a

Re* and the orientation of r
�
p�b
�b

. As indicated above, solv-

ing the problem (26) through (29) for Re*¼ 0 and r
�
p�b
�b

successively along the three directions (ex, ey, ez) of perio-

dicity axes of the unit cell is equivalent to solving the closure

problem (17) and yields K*¼K=l2 since in this flow regime,

hv�bi ¼ �K� � rhp�bi
b: (32)

For a given Re*= 0 and orientation of r
�
p�b
�b

, the

determination of H*¼H=l2 (or F*¼F) is more computa-

tional time consuming. It is performed by solving first the

periodic stationary Navier-Stokes problem (26) through (29)

to obtain v�b. In a second step, this result is inserted in the

dimensionless form of the closure problem (19), namely

Re�v�b � rM� þ rm� � r2M� ¼ I

r �M� ¼ 0

M� ¼ 0 at Abr

m�ðr� þ l�i Þ ¼ m�ðr�ÞM�ðr� þ l�i Þ ¼ M�ðr�Þ i ¼ 1; 2; 3

8>><
>>: ;

(33)

yielding H* and F according to

hM�i ¼ H�; (34)

F ¼ K� �H��1 � I: (35)

This problem has again a Navier-Stokes structure and can be

solved with the same procedure as the one used to solve the

flow. With all these considerations, the same Navier-Stokes

solver can in fact be used to determine both K* and F.

In order to investigate the deviation from Darcy’s law,

we consider the macroscopic force per unit volume f exerted

on the structure f ¼ �lbH�1 � vb
� �� �

and decompose this

force into the Darcy part fd ¼ �lbK�1 � vb
� �� �

and the con-

tribution fi from inertia fi ¼ �lbK�1 � F � vb
� �� �

. Classi-

cally, in many references as in Koch and Ladd,39 analysis is

based on the modulus of l2

lb vbh ij jf ¼
�K��1� FþIð Þ� v�b

� �
v�b

� ��� �� , i.e., on

1

hv�bi
�� ��. An alternative is to focus on a normalized form, fc, of

fi using lb vb
� ��� ��K�1 as the scaling factor which yields a unit

normalized vector for fd. Hence, in the sequel of this work,

flow regimes are analyzed in terms of the dimensionless

correction vector fc given by

FIG. 1. Unit cell (a) used for validation tests and b) of the ordered structure

used to compute F.
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fc ¼
K

lb hvbi
�� �� � fi ¼

�F � hvbi
hvbi
�� �� ¼ �F � hv�bi

hv�bi
��� ��� ; (36)

while v�b

D E
¼ �H� � r p�b

D Eb
¼ �K� � r p�b

D Eb
�F � v�b

D E
.

Indeed, this form is more sensitive to the Reynolds number

variations than the traditional one proposed in the literature.

It should be noted that, if one is only interested in analyzing

the correction, the resolution of the closure problem for H

(or F) is not required. In fact, one can solve the flow (Eqs.

(26) through (29)) and compute
�
v�b
�

to get fc from an equiv-

alent form of Eq. (36),

fc ¼
hv�bi þK� � rhp�bi

b

hv�bi
��� ��� : (37)

Since the correction is analyzed through its dependence upon

the Reynolds number, attention must also be dedicated to the

definition of this number. In the following, we shall use two

forms different from Re*, namely Red (see Eq. (2)) and Rek,

respectively given by26,39,51

Red ¼ hv�bi
��� ���d�Re� ¼

qb hvbi
�� ��d
lb

; (38)

where d*¼ d=l is the dimensionless grain size of the porous

structure and

Rek ¼ hv�bi
��� ��� ffiffiffiffiffik�

p
Re� ¼

qb hvbi
�� �� ffiffiffikp

lb
: (39)

When the structure is isotropic, i.e. K*¼ k*I, (K¼ kI), the

latter definition is preferable to the former and this is moti-

vated by the fact that, from a practical point of view, d is not

necessarily well defined for all kinds of porous media and

most of the time unknown a priori whereas k is accessible by

rather simple experiments. Moreover, Rek is scale-consistent

since it involves macroscopic quantities only. As evidenced

by Eqs. (36) and (39), a vb
� ��� ��3 and vb

� ��� ��2 dependence of fi

in a weak and strong inertia regime respectively implies a

corresponding Re2
k and Rek dependence of fi.

The closure problem (33) is solved using the numerical

procedure described in the following section. The inertial

correction is then analyzed using Eqs. (34) to (36) in the case

of ordered, weakly and strongly disordered structures and is

discussed in Sec. III.

C. Method of resolution and validation

To determine the two tensors K* and F and the correc-

tion vector fc, a 3D numerical procedure was developed on

the basis of a finite volume formulation over a Marker And

Cell (staggered) Cartesian regular grid.68 This technique is

known to be both accurate and easy to implement leading to

very conservative schemes. The viscous diffusive term was

discretized with a second order centered scheme while the

inertial convective term was discretized with a Quadratic

Upwind Interpolation for Convective Kinematics (QUICK)

scheme. This scheme, initially proposed by Leonard69

reveals to be very stable, fast converging and highly accurate

avoiding significant numerical diffusion in comparison to

hybrid schemes.70,71 Alternative forms of the QUICK discre-

tization procedure were proposed in the literature72,73 and, in

the present work, we used an improved version of this

scheme.74 Velocity and pressure fields were sought itera-

tively following an artificial compressibility algorithm.75

Starting from a guessed pressure field, this algorithm consists

in computing the momentum equation separately from the

continuity equation, this latter being substituted by a per-

turbed divergence equation. At each iteration of this algo-

rithm, the linear non-symmetric system was solved using a

bi-conjugate gradient (or conjugate gradient when Re� ¼ 0 to

compute K�) routine. Under- (or inertial) relaxation was

used to improve convergence especially for the larger Reyn-

olds numbers investigated in this study.

Since our goal is to analyze the correction tensor F in a

quantitative manner, it is important to first check the validity

and the accuracy of the numerical procedure described

above. To do so, the unit cell of an ordered array of parallel

solid cylinders of circular cross section having the same di-

ameter and arranged on a square centered lattice was used

(see Figure 1(a)). The case r p�b

D Eb
¼ ex was considered

which, for evident reasons of isotropy and symmetry about

ex, leads to v�b

D E
� ey ¼ 0, a diagonal F tensor and a zero y

component of fc. Consequently, this unique pressure gradient

orientation yields k* (K*¼ k*I) when Re*¼ 0 and provides

the normalized correction fcx to the velocity given in Eq. (36)

which reduces to the first diagonal term fxx of F. For compar-

ison purposes, flow computations were performed with pa-

rameters used elsewhere,27 i.e., with e¼ 0.386 yielding

d� ffi 0:62521. Details of the comparison are provided in

Appendix A. The excellent agreement of our results with this

reference and some data obtained with a Boundary Element

Method validates the numerical method. Considering, how-

ever, that accuracy of the finite volume method might suffer

from geometrical representation of curved objects with Car-

tesian grids as well as from pure grid size effect, we choose,

in the rest of this work, to analyze the behaviour of fc and F

on 2D configurations involving square objects.

III. RESULTS AND DISCUSSION

In this section, the inertial correction to Darcy’s law is

investigated through extensive numerical simulations on 2D

ordered and disordered structures.

A. Ordered structure

We start the analysis with the case of a 2D isotropic po-

rous medium for which the unit cell is represented in Figure

1(b). Accuracy was first investigated in the case

r p�b

D Eb
¼ ex with e¼ 0.75. As in the test case used for vali-

dation, this choice of the orientation of r
�
p�b
�b

allows the

computation of k* and the non-Darcy correction which

reduces again to fcx¼ fxx. Permeability was computed vary-

ing the number of grid blocks from 400 to 250 000 with the



same convergence criteria as those employed for the valida-

tion (see Appendix A). Results on k* along with the corre-

sponding relative errors, using k* obtained with 250 000 grid

blocks as the reference value, are reported in Table I. They

clearly show the excellent accuracy achieved even with rela-

tively coarse grids.

On this basis, fcx(¼ fxx) was computed on the same unit

cell using four different grid sizes. The convergence criterion

on the overall algorithm was taken as max (10�7� fxx, 10�12)

on the L2 norm of r � v�b

D E
over all grid blocks at each value

of the Reynolds number. The convergence criterion for the lin-

ear system solver was 103 times smaller. Computations were

performed for 10�3	Re*	 104 (i.e., 1.5� 10�6	Red	 60

or 6.5� 10�6	Rek	 13.6) assuming that the stationary lami-

nar solution is still physically valid in the upper range of these

Reynolds numbers. An example of pressure and velocity fields

is depicted in Figure 2 and results on the variation of fcx versus

Rek are represented in Figure 3.

For the two coarser grids investigated here, the dimen-

sionless inertial correction, fc, seems to vary linearly with

Rek at the onset of deviation from Darcy’s law which means

that the dimensional correction, fi, would have a quadratic

dependence on the velocity (see Figure 3(b)). Excessive

attention must be paid, however, to this phenomenon which

is a pure grid size effect. In fact, when macroscopic proper-

ties are computed using 200� 200 grid blocks, one clearly

observes a weak inertia regime 7:4� 10�4
.Rek. 0:3;ð

3:2� 10�3
.Red . 1:3Þ where fcx scales as Re2

k (see Figures

3 and 4(a)) and a strong inertia regime 0:9.Rek. 2:2;ð
3:9.Red . 9:6Þ where fcx varies linearly with Rek (see

Figure 4(b)). In this particular configuration where the mean

flow is basically 1D, this last regime would allow a relation-

ship between the pressure gradient and seepage velocity of

the form reported in Eq. (3) where b is the inertial resistance

factor. The two regimes are separated by a transition (or

crossover) region 0:3.Rek. 0:9ð Þ the extent of which will

be shortly discussed below. At sufficiently low Reynolds

numbers Rek. 7� 10�6; Red . 3� 10�5
� �

and for a finer

grid size (i.e., 400� 400), the Darcy regime is obviously

recovered asymptotically. This leads to a classification of the

different regimes (Darcy, weak, and strong inertia) in ac-

cordance with that proposed in the literature.48,51 For larger

Reynolds numbers, assuming that the stationary Navier-

Stokes model is still physically meaningful, another regime

appears where fcx varies again with Re2
k (see Figure 4(c)).

However, this last regime is beyond the scope of this paper

TABLE I. Permeability variation with the number of grid blocks. Unit cell

of Figure 1(b) with e¼ 0.75.

No. of grid blocks k* Dk*=k* %

20� 20 0.0130765 0.4089

40� 40 0.0130355 0.0941

120� 120 0.0130242 0.0074

200� 200 0.0130235 0.0018

400� 400 0.0130233 7.8 10�5

500� 500 0.0130232 —

FIG. 2. (Color) Numerical results obtained on the unit cell of figure 1(b),

e¼ 0.75, r p�b

D Eb
¼ ex, Rek¼ 13.6 (Red¼ 59.6), a) ~p�b (see Eq. (25)) and (b)

v�b:ex, c) v�b:ey.

FIG. 3. Variation of fcx¼ fxx with Rek, (a) for 4 different grid sizes. A power

law fitted on points corresponding to 7:4� 10�4
.Rek . 0:3 gives an expo-

nent 1.97 for 200� 200 or 400� 400 grid blocks; (b) the two coarser grids

20� 20 and 40� 40 reproduce an artificial linear variation of fcx with Rek at

low Reynolds numbers. Unit cell of figure 1(b), e¼ 0.75, r p�b

D Eb
¼ ex.



and will not be further investigated (a few results were

reported elsewhere39).

Although these fits provide excellent estimates in re-

stricted ranges of the Reynolds number, it must be kept in

mind, as discussed in the introduction, that this approach is

based on approximations. This will be more clearly demon-

strated with the dependence of the correction on the pressure

gradient orientation as well as on disorder later investigated

in this paper.

1. Permeability and non-Darcy correction versus

porosity: $ p�b

D Eb

¼ ex

As a consequence of the accuracy test described above,

all our computations on the model configuration of Figure

1(b) were performed with 150� 150 grid blocks which is

dense enough to analyze the values of the non-Darcy correc-

tion. The case r
�
p�b
�b ¼ ex is first considered yielding a

macroscale flow in the x direction that is investigated for

0:3. e 	 0:75 and Rek up to around 14 (Red up to 70).

Results on fcx¼ fxx versus Re2
k and Rek in the weak and strong

inertia regimes are represented in Figure 5.

For the porosity range investigated here, these two

regimes are well identified in restricted Reynolds number

ranges. It must be pointed out that, for instance, for e¼ 0.29,

fcx remains linear versus Rek only in the range

0:14.Rek. 0:33. The distinction between the regimes was

overlooked by Amaral Souto and Moyne50 in the same con-

figuration with e¼ 0.64 because these authors analyzed the

quantity e3 1
Redk� 1þ fxxð Þ. This quantity, proportional to the

drag coefficient (or friction factor), is not sensitive enough to

exhibit the expected non-linearity which remains small in

this situation. As a consequence we further analyze the weak

and strong inertia regimes by using the following linear rep-

resentations for fcx

fcx ¼ A Re2
k þ B ðweak inertiaÞ; (40)

fcx ¼ C Rek þ D ðstrong inertiaÞ: (41)

The corresponding values of the permeabilities k* along with

the coefficients A, B, C and D are reported in Table II.

A short discussion on the k* – e and b – e correlations is

provided in Appendix B. As expected, for the whole range of

porosity, B is almost 0 clearly confirming a pure quadratic

dependence of fcx upon Rek (i.e., a cubic dependence on ve-

locity magnitude for fix) at the onset of the deviation from

Darcy’s law. In the strong inertia regime, where the correc-

tion fix to Darcy’s law has a quadratic dependence on

FIG. 4. Correction to Darcy’s law. (a) Weak inertia regime; fcx scales as Re2
k

(i.e., fix scales as vb
� �

:ex

� �3
), 1:5� 10�4

.Rek . 0:3; (b) Strong inertia re-

gime; fcx scales as Rek (i.e., fix scales as vb
� �

:ex

� �2
), 0:9.Rek . 2:2; (c) Re-

gime above strong inertia, fcx scales as Re2
k , Rek & 2. Unit cell of figure 1(b),

e¼ 0.75, r p�b

D Eb
¼ ex.

FIG. 5. Variation of fcx with (a) Re2
k in the weak inertia regime, (b) Rek in

the strong inertia regime, for e ranging from 0.29 to 0.75. Unit cell of figure

1(b),r p�b

D Eb
¼ ex.



velocity, a comparison between the inertial resistance factor

b in Eq. (3) and the coefficient C obtained from our results

can be easily performed. In fact, the classical Forchheimer

model implicitly assumes no weak inertia regime and D¼ 0

in Eq. (41). For this approximation to hold, a modified per-

meability—referred to as the Forchheimer permeability—

which differs from the true Darcy permeability, is generally

introduced.44,48 Under such circumstances, the relation

between C and b would be

Cffiffiffi
k
p ¼ b: (42)

For a given Rek, the intensity of inertia increases when e
decreases. Moreover, the slopes of fcx Re2

k

� �
and fcx(Rek)

decrease when e increases and this is much more significant

in the weak inertia regime (see A in Table II). Here it must

be strongly emphasized that an analysis of this correction as

a function of Re2
d and Red would lead to exactly inverse con-

clusions on both intensity and slopes. The choice of the

Reynolds number definition is therefore crucial. It must also

be emphasized that, for this particular cell and pressure gra-

dient configuration, the values of fcx in the weak inertia re-

gime represent a quasi insignificant correction to Darcy’s

law.

A convenient way to describe the transition between the

weak and strong inertia regimes is by defining a crossover

Reynolds number Rekc as the value below and above which

the best approximation is from Eqs. (40) and (41), respec-

tively. This value is the one minimizing the difference

between the weak and strong inertia models and is hence

given by

Rekc ¼
C

2A
: (43)

In order to analyze the range of Rek on which the rela-

tion (41) is a relevant approximation, an interval DRek is

defined for all the situations investigated in the sequel of this

work. It is delimited by Rekc and an upper bound for which

numerical data are correlated by Eq. (41) within a 5% error.

Similarly, the transition region between weak and strong

inertia is identified by dRek. The bounds of dRek correspond

to the values of Rek at which a 5% deviation from the corre-

lations (40) and (41) is obtained.

Results on Rekc and the corresponding values of Redc

that is simply given by

Redc ¼
1� e

k�


 �0:5

Rekc (44)

are represented versus e in Figure 6(a). Clearly, these

results show that the larger the porosity, the larger (respec-

tively the smaller) the value of Rek (respectively Red)

above which the correction, fcx, depends linearly upon the

Reynolds number. Moreover, as indicated in Figure 6(b),

the range of Reynolds numbers DRek where this correction

is a relevant approximation is increasing with e while the

corresponding range DRed decreases. The correlations

between each of the three quantities Rekc, Redc and DRek

and e are presented in Appendix B.

In Figure 6(b), we have also reported the Reynolds num-

ber interval dRek of the transition region between the weak

and strong inertia regimes versus e. Although 4 to 5 times

smaller than DRek, dRek remains of significant extent.

In the next paragraph, pressure gradients not aligned

with one of the periodicity axis of the unit cell are investi-

gated for e¼ 0.75.

TABLE II. Permeabilities and coefficients in Eqs. (40) and (41) obtained

from least square linear fits. Unit cell of Figure 1(b). Porosity range:

0:3. e 	 0:75.

e k* A B C D

0.2944 0.0003651 0.1027 4.� 10�7 0.0251 �1.8� 10�3

0.36 0.0007255 0.0649 2.0� 10�6 0.0228 �2.3� 10�3

0.402 0.001068 0.0506 3.� 10�7 0.0215 �2.7� 10�3

0.4425 0.001509 0.0397 7.� 10�7 0.0201 �2.9� 10�3

0.5006 0.002386 0.0297 8.� 10�7 0.0190 �3.5� 10�3

0.5466 0.003346 0.0241 1.0� 10�6 0.0180 �3.8� 10�3

0.6073 0.005104 0.0187 3.� 10�7 0.0172 �4.6� 10�3

0.6558 0.007059 0.0155 1.� 10�7 0.0165 �5.2� 10�3

0.7012 0.009492 0.0125 3.� 10�7 0.0157 �5.7� 10�3

0.75 0.013023 0.0103 1.3� 10�6 0.0153 �6.7� 10�3

FIG. 6. (a) Variation of the crossover Reynolds number versus e. Continu-

ous lines are correlations of equations (B4) and (B5) provided in Appendix

B. (b) Variation of the Reynolds number intervals DRek and DRed over

which fcx varies linearly with Rek (or Red) versus e. Continuous line corre-

sponds to the correlation of equation (B6) given in Appendix B. dRek is the

Reynolds number interval of the transition between the weak and strong

inertia regimes. Unit cell of figure 1(b); r p�b

D Eb
¼ ex.



2. Non-Darcy correction versus $ p�b

D Eb

orientation:
e 5 0.75

When r
�
p�b
�b

is not aligned with ex or ey, the computa-

tion of the tensor F requires the use of the full algorithm

described in Sec. II B. This was performed for e¼ 0.75 in

the range 0 	 Red 	 30 (Rek up to 10) and 0 	 h 	 45
,
where h designates the angle r

�
p�b
�b

makes with ex. Results

in the range 45
 	 h 	 90
 can be inferred from evident

symmetry considerations according to fxx 90
 � hð Þ ¼ fyy hð Þ,
fxy 90
 � hð Þ ¼ fyx hð Þ and similarly fcy hð Þ ¼ fcx 90
 � hð Þ,
fc hð Þ ¼j jfc 90
 � hð Þj j, 0
 	 h 	 90
.

a. F tensor analysis. The components of F versus h and Rek

are represented in Figure 7(a). As expected, F is not sym-

metric (see Figure 7(b) representing fxy� fyx versus h and

Rek) except for h¼ 0
, h¼ 90
 and h¼ 45
 all the three

corresponding to a symmetry axis while, additionally,

fxx¼ fyy for the latter value. This last feature can be stated

in the following general manner. When, for an isotropic

structure, the pressure gradient is along a symmetry axis

of the cell and leads to a flow for which the principal axes

of H and F are not the periodicity axes ex and ey, then H

and F are symmetric with hxx¼ hyy and fxx¼ fyy. The non-

symmetric character of F increases with Rek. At very low

Reynolds numbers, the fxy� fyx extrema are obtained for

the two remarkable values 22.5
 and 67.5
 of h.

These results suggest that, except when the flow is

along one of the symmetry axes, the mean velocity
�
v�b
�

is not in the direction of r
�
p�b
�b

, i.e., that the macro-

scopic force exerted on the structure is not pure drag. This

is confirmed by the results on the angle
�
v�b
�

makes with

r
�
p�b
�b

discussed below. It must be noted that this prop-

erty might be inherent to the ordered structure of the me-

dium as mentioned elsewhere.64

b. Mean flow versus r
�
p�b
�b

orientation. In Figure 7(c), we

have represented the variation of hv versus h and Rek, hv

being the angle
�
v�b
�

makes with r
�
p�b
�b

. This angle fea-

tures complex dependence on h and Rek. From Figure 7(c)

it can be observed that, globally, for 0< h< 45
, the flow

tends to be more aligned with the x direction than r
�
p�b
�b

(hv is positive), whereas for 45
< h< 90
,
�
v�b
�

tends to

FIG. 7. (Color online) Properties of the

F tensor and mean flow versus h and

Rek. (a) Components of F. (b) Differ-

ence between the off-diagonal terms of

F. (c) Angle hv between v�b

D E
and

r p�b

D Eb
. Pure drag only exists for

h¼ 0
, 45
, and 90
. hv(h)¼�hv(90–h)

for 0
 	 h 	 90
. Unit cell of figure

1(b); e¼ 0.75.



align with the y direction. The maximum value of hv

always increases with Rek. The value of h for which hv is

maximum is equal to 22.5
 at small Rek, decreases

slightly for Rek up to �3 and increases again for larger

Rek.We shall now examine the consequences on the non-

Darcy correction.

c. Non-Darcy correction versus r
�
p�b
�b

orientation.

Because of symmetry, our conclusions will only be drawn

on fcx and jfcj in the rest of this paragraph. In Figures 8(a)

and 8(b), we have reported the variation of these two

quantities, respectively, versus h and Rek. Due to symme-

try, the maximum of jfcj is for h¼ 45
 whatever the value

of Rek. However, this is not the case for fcx since the ori-

entation of r
�
p�b
�b

leading to the maximum value of this

component depends on the Reynolds number. For

instance, the value of h corresponding to the maximum of

fcx decreases (for Rek up to roughly 3.3, see inset of Figure

8(a)) and increases (asymptotically) to h¼ 45
 at large

Rek. The correction is always minimum for h¼ 0
 (or

h¼ 90
) whatever the Reynolds number.

Clearly, fcx scales as Re2
k for small enough values of Rek

at any orientation h of r
�
p�b
�b

as shown in Figure 9 (a simi-

lar behaviour is obtained for jfcj). The excellent linear de-

pendence confirms the existence of the weak inertia regime.

However, inspecting the behavior of fcx and jfcj for

larger Reynolds numbers indicates that the existence of a lin-

ear dependence on Rek in a strong inertia regime, when it

can be identified, is only an approximation. This is obvious

when the derivatives of these quantities are represented ver-

sus Rek as reported in Figures 10(a) and 10(b) respectively.

Evidently, the relationship between fcx (or jfcj) and Rek is

reasonably linear over a restricted Reynolds number interval

centered on the inflexion point of this relationship.

The case h¼ 45
 is a singular situation for which no

inflexion point is obtained for Rek up to �7 (Red� 30)

whereas a quadratic law fits very well the data in the

whole range of Reynolds numbers investigated here as

FIG. 8. (Color online) Variation of (a) the x component, fcx, of fc and (b) the

modulus of fc with Rek for different values of h. Insets: same quantities ver-

sus h and Rek. Unit cell of figure 1(b); e¼ 0.75.

FIG. 9. Variation of the x component, fcx, of fc with Re2
k for different values

of h. Unit cell of figure 1(b); e¼ 0.75.

FIG. 10. (Color online) Variation of (a) @fcx

@Rek
and (b)

@ fcj j
@Rek

with Rek for differ-

ent values of h. Insets: same quantities versus h and Rek. Unit cell of Figure

1(b); e¼ 0.75.



demonstrated in Figure 11. The existence of a linear depend-

ence of the correction on Rek for higher values of the Reyn-

olds number, although plausible, is however questionable

regarding the non-stationary character of the flow that may

occur in a higher velocity range.

For both fcx and jfcj, the inflexion zone shifts to higher

Reynolds numbers (see Figure 10(a) and 10(b) when h
increases from 0
 to values close to 45
. On the contrary,

when h increases from 45
 to 90
, the inflexion zone shifts to

lower Reynolds numbers.

Identification of weak and strong inertia regimes for both

fcx and jfcj and all angles (except for strong inertia at h¼ 45
)
allows the determination of the coefficients A, B, C and D in

correlations (40) and (41). These coefficients are represented

in Figures 12(a) and 12(b). As expected, they are symmetric

about h¼ 45
 when estimated on jfcj; they are not when esti-

mated on fcx. Results in the weak inertia regime indicate that

(i) B is always extremely small (less than 10�5) confirm-

ing that the onset of deviation from Darcy’s law

scales as Re2
k for fc (i.e., as jhvbij3 for fi).

(ii) Intensity of inertial effects strongly depends on h
since A varies over one order of magnitude for both

fcx and jfcj. The correction can be significant since the

drag due to weak inertia can be up to 20% of the drag

in the Darcy regime.

In the strong inertia regime, it can be concluded that

(i) D in the correlation (41) is not negligible, in particular

when h approaches 45
. This confirms that the For-

chheimer type of correction is an approximation for

this ordered structure (see the above discussion while

introducing the relationship (42)). In fact the use of a

pure quadratic velocity correction for fi requires the

contribution of D to be lumped in a Forchheimer per-

meability different from the intrinsic one.

(ii) Inertial effects strongly increase with h up to 45
 and

then decrease. The ratio of the maximum to minimum

values of C for fcx and jfcj is about 10 and 20, respec-

tively (see Figure 12(a)).

Crossover Reynolds numbers Rekc determined from A
and C (see Eq. (43)) are represented in Figure 13(a). Clearly,

the pressure gradient orientation influences very significantly

Rekc that is larger when h is close to 45
 (respectively 30
)
considering jfcj (respectively fcx). The variation of DRek with

h is represented in Figure 13(b) where we have also reported

the intervals dRek corresponding to the transition between

this regime and weak inertia.

Both DRek and dRek increase for h up to 45
 and then

decrease but are not defined for h¼ 45
 in accordance with

the result in Figure 11. Emphasis must be put on the ratio of

DRek to dRek which can vary from� 2 to� 4 for different

values of h considering either fcx or jfcj. This indicates that

the transition zone between weak and strong inertia regimes

is generally not negligible.

A further study on two-dimensional disordered struc-

tures is carried out in the next section.

B. Structural disorder

In this section, results on fc when disorder is introduced

both on position and size of solid inclusions are compared to

those in the ordered case for a given porosity (e¼ 0.75). The

case h¼ 0
, i.e., r p�b

D Eb
¼ ex, is only considered.

1. Structure generation

Weakly and strongly disordered structures were gener-

ated on the basis of the ordered unit cell used so far.

a. Weak Disorder (WD). Weak structural disorder is under-

stood here as the result of random placement of the center

of the square solid inclusion in the cell of Figure 1(b)

FIG. 11. Variation of fcx as a function of Rek for h¼ 45
 and 0 	 Rek 	 7.

Unit cell of figure 1(b); e¼ 0.75. Symbols: numerical results. Continuous

line: quadratic correlation fcx ¼ 0:0192Re2
k þ 0:0545Rek � 0:0056; R2¼

0.9997.

FIG. 12. Coefficients (a) A, C and (b) D of correlations (40) and (41) versus

r
�
p�b
�b

orientation h. Unit cell of Figure 1(b); e¼ 0.75.



according to a uniform distribution. All dimensions (l and

d) were kept the same. To avoid extremely narrow chan-

nels requiring a large number of grid blocks, random

placement was constrained within a centered sub-domain

of size 0.85l in each cell. The unit cell of the periodic

weakly disordered porous structure was obtained by

reassembling n� n random cells of edge size l resulting

from this process. An example with n¼ 10 is depicted in

Figure 14(a).

b. Strong Disorder (SD). Strong disorder was obtained by a

random choice of the size of the solid square inclusions

superimposed to their random placement in the cell of

size l as described above. The same random generator

was used for both random processes and the porosity was

constrained to the fixed value of 0.75. The inclusion edge

size was chosen in the range [0.125l, 0.75l] again to avoid

narrow fluid channels. The final periodic unit cell was

obtained as before by reassembling n� n random cells. A

realization with n¼ 10 is represented in Figure 14(b).

When representative, WD and SD unit cells should

reproduce the expected isotropic character of the infinite

porous structure having the same random properties as the

realization since the random generator is direction independ-

ent. To meet this feature, ergodicity hypothesis can be

invoked so that the expected values of K* and F are those

obtained by averaging the corresponding quantities obtained

on a large enough number of unit cells smaller than a repre-

sentative one. Hence, K* and F were computed over ten dif-

ferent realizations for both WD and SD structures. Unit cells

with n¼ 10 and 400� 400 grid blocks were used, allowing a

good compromise between computational resources and ac-

curacy requirements. Tests were also performed on WD unit

cells with n¼ 10 and 800� 800 grid blocks to check accu-

racy as well as n¼ 20 and 800� 800 grid blocks to check

ergodicity. Accuracy criteria were those afore mentioned.

Simulations were carried out for Rek up to� 7 (i.e. Red up

to� 31). For each SD realization, Red was calculated from

the average value of d. An example of a velocity magnitude

contour map obtained on a WD structure is depicted in

Figure 15 which clearly highlights channeling through less

resistance flow paths resulting from disorder.

2. Permeability

Average values of the diagonal ðk� ¼ 0:5ðk�xx þ k�yyÞÞ
and off diagonal ðk�xyÞ terms computed on the ten realizations

of each structure as well as corresponding standard

FIG. 13. Dependence upon r
�
p�b
�b

orientation, h, of (a) the crossover

Reynolds number Rekc (it is not defined for h¼ 45
), b) the Reynolds number

interval DRek over which fcx and jfcj variations with Rek are linearly approxi-

mated. dRek is the Reynolds number interval of the transition between the

weak and strong inertia regimes. Unit cell of figure 1(b); e¼ 0.75.

FIG. 14. Unit cell containing 10� 10 square solid inclusions. e¼ 0.75. (a)

Weakly disordered (WD) structure with random placement of solid inclu-

sions. (b) Strongly disordered (SD) structure with random placement of solid

inclusions of random size.

FIG. 15. Velocity magnitude contour map obtained on unit cell of Figure

14(a).r p�b

D Eb
¼ ex, Rek¼ 2.48, (Red¼ 10.80).



deviations, r, are gathered in Table III. For both WD and SD
cases, k� is very close to the value obtained on the ordered

structure for the same grid size with a slight increase while

increasing disorder. In comparison, the standard deviations

are very small showing the narrow distribution of k�xx and k�yy.

The off-diagonal term k�xy has almost the same standard devi-

ation but a mean value k�xy roughly two orders of magnitude

smaller than k� indicating that the set of realizations reason-

ably restores isotropy. The accuracy test performed on the

same WD unit cells with n¼ 10 and 400� 400 grid blocks

on the one hand and 800� 800 grid blocks on the other hand

leads to a relative error of� 6� 10�2% and� 7� 10�2% on

the diagonal and off-diagonal terms respectively. Moreover,

the permeability tensor computed on WD unit cells with

n¼ 20 and 800� 800 grid blocks yields average values of

1.319� 10�2 on the diagonal terms (i.e., a relative error of

0.8%) and 7.83� 10�5 on the off-diagonal terms. This con-

firms the expected isotropic character of the cell in the Darcy

TABLE III. Average values of the components of K* obtained on ten dif-

ferent unit cell realizations of WD and SD structures (see Figures 14(a) and

14(b)). e¼ 0.75, rhp�bi b¼ ex, n¼ 10, 400� 400 grid blocks.

Structure k�ðrÞ k�xyðrÞ

WD 0.01308 (3.82� 10�4) �1.01� 10�4 (4.75� 10�4)

SD 0.01350 (7.72� 10�4) �3.43� 10�4 (6.69� 10�4)

Ordered 0.01304 –

FIG. 17. Variation of the components of F with Rek for ten different realiza-

tions of (a) the WD unit cell and (b) the SD unit cell. e¼ 0.75,r p�b

D Eb
¼ ex:

FIG. 18. Variation with Rek of the standard deviations, r, on the compo-

nents of H* and F tensors calculated from ten different realizations of (a)

the WD unit cell and (b) the SD unit cell. e¼ 0.75, r p�b

D Eb
¼ ex:

FIG. 16. Angle hv between hv�bi and r p�b

D Eb
and average value of hv versus

Rek for ten different realizations with n¼ 10 of (a) the WD unit cell, results

for two realizations with 20� 20 inclusions are also reported and (b) the SD

unit cell. e¼ 0.75, r p�b

D Eb
¼ ex.



regime and validates the ensemble average approach used

here.

3. Non-Darcy correction

Due to disorder and since solid inclusions are kept ori-

ented, the angle hv that hv�bi makes with r p�b

D Eb
¼ ex is

expected to be zero for an infinite structure, whatever the

Reynolds number, i.e., H* and F are expected to be diagonal

tensors. Numerical results on K*, above mentioned, show

that this behavior is recovered on the average in the Darcy

regime. Note that since r p�b

D Eb
¼ ex, tanðhvÞ ¼

h�yx

h�xx
(h�ij is the

ij component of the H* tensor) whereas H*! K* when

Rek ! 0. However, for each realization, this behavior is

directly conditioned by the representative character of the

periodic unit cell. When the Reynolds number increases, the

amplitude of hv (i.e., the magnitude of the velocity compo-

nent orthogonal to r
�
p�b
�b

relative to that along r
�
p�b
�b

) is

expected to decrease as a result of the modification of the

flow structure within the medium. In fact, increasing the

Reynolds number leads to an increasing channeling effect

coupled to an increasing number of vortices that cancel out

the average y velocity component. This behavior suggested

by Edwards et al.64 is confirmed for both WD and SD struc-

tures as shown in Figures 16(a) and 16(b) where the corre-

sponding values of hv are reported versus Rek. It can be

clearly seen that hv is decreasing in magnitude for increasing

Rek for all the realizations. Here, Rek was estimated withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxx þ kyy

� �
=2

q
as the characteristic dimension.

As expected, fxx (and fyy) are increasing with Rek (see

Figures 17(a) and 17(b)). It must be noted, however, that off-

diagonal terms of F are also significantly increasing in

magnitude with Rek and this suggests to investigate more

thoroughly the variation of the standard deviations, r, of the

H* and F components with Rek represented in Figures 18(a)

and 18(b).

The dispersion on the two components h�xx and h�yx of in-

terest decreases with Rek, except that for h�xx for the WD
structure which remains quasi constant. However, the stand-

ard deviation on all the components of F are strongly

increasing with Rek. The latter behavior can be understood

recalling the direct dependence of F upon H*�1 (see

Eq. (35)) and the fact that components of H* decrease with

Rek, along with the dispersion on K*. The important conse-

quence of this is a decreasing (respectively increasing) size

of the REV with respect to H* (respectively F) when Rek

increases.

All the results observed on the average over the ten real-

izations are fully consistent with those obtained on two WD
unit cells with n¼ 20 and the same grid size (i.e., 800� 800

grid blocks) (see Figures 16(a), 19(a), and 19(b)) corroborat-

ing again the validity of the ensemble average approach.

FIG. 19. Variation with Rek of the average values over ten realizations with

n¼ 10 and values of the same components for two realizations with n¼ 20

of (a) the components of F and (b) h�xx and h�yx. WD unit cell, e¼ 0.75,

r p�b

D Eb
¼ ex:

FIG. 20. Variation of the components of fc with Rek for ten different realiza-

tions with n¼ 10 and average of these values for (a) the WD unit cell; results

for two realizations with n¼ 20 are also reported and (b) the SD unit cell.

e¼ 0.75,r p�b

D Eb
¼ ex:



Tests performed on one WD structure with n¼ 10 and

800� 800 grid blocks indicate that the maximum relative

error on fxx or fyy is less than 0.7% over the whole range of

Rek confirming the very good accuracy of our results.

Because off-diagonal terms of F cancel over the investi-

gated range of Reynolds numbers and since hv�bi � ey is much

smaller than hv�bi � ex (at least 30 and 300 times for the SD
and WD structures, respectively), the non-Darcy correction

is investigated only while analyzing the dependence of fcx

ð’ fxxÞ on Rek. A further justification of that is obvious from

Figures 20(a) and 20(b) where the two components of fc are

represented versus Rek for the WD and SD realizations.

Clearly, the correction fcx scales again as Re2
k at the

onset of deviation from Darcy’s law in the weak inertia re-

gime that is followed by a transition regime. For larger

Reynolds numbers, strong inertia regimes corresponding to

excellent linear correlations with Rek are obtained. The range

over which this correlation holds are very wide indicating

that this approximation becomes much more precise and

robust when disorder is introduced. This is illustrated in

Figure 21 where dfcx

dRek
, normalized by its respective maximum

value, is represented versus Rek for WD and SD structures

and compared to dfcx

dRek
obtained for the ordered structure with

h¼ 0
 and e¼ 0.75. This figure shows that dfcx

dRek
tends to a

constant plateau for disordered media.

Coefficients A, B, C and D (see Eqs. (40) and (41)) as

well as the crossover Reynolds numbers Rekc and Redc

defined in Eqs. (43) and (44) were determined on each real-

ization. When possible (see discussion below), the Reynolds

number ranges DRek (and DRed) where the linear relation-

ship fcx(Rek) remains valid as well as the intervals dRek of

the transition between weak and strong inertia were also

determined (see Sec. III A 1 for the definitions of both DRek

and dRek). Averaged values of all these quantities (denoted

with an over line) along with their corresponding standard

deviations, r, are reported in Table IV in which the same

results for the ordered structure were recalled. These results

call upon the following important conclusions. On all the

realizations, B is less than 10�5 confirming again the pure

velocity cubic dependence of fi at the onset of deviation

from Darcy’s law. Values of D are much larger in magnitude

when disorder is introduced, leading to Forchheimer perme-

abilities markedly different from the intrinsic ones if a pure

quadratic velocity dependence of fi is to be used in the strong

inertia regime.

Moreover, intensity of inertial effects increases with dis-

order as indicated by the variations of A and C both being

roughly one order of magnitude greater for the SD structure in

comparison to the ordered one. As in the ordered case for

h¼ 0
, the non-Darcy correction remains extremely small

compared to unity (around 0.03 at the crossover on the SD
structure) in the weak inertia regime. The decreasing value of

Rekc (and Redc) with increasing disorder must also be empha-

sized. This effect is much more significant when strong disor-

der is introduced. One should note that for the SD structure,

Redc is close to unity which is the usual admitted value at

which Darcy regime is lost on real porous media. The Reyn-

olds number ranges DRek and DRed corresponding to strong

inertia increase significantly when disorder is introduced. In

particular, for the SD structure, DRek and DRed could not be

estimated. Indeed, for the whole range of Rek over which com-

putations were carried out (up to Rek� 6, Red� 24), the linear

relationship persists with less than 5% error. These results are

a strong indication that the robustness of the quadratic depend-

ence of the correction upon the velocity can be attributed to

the disorder while dealing with natural porous structures. This

sheds light on some observation recently made on numerical

results obtained from pore-scale network modelling.76 This

FIG. 21. Variation of dfcx

dRek
normalized by its maximum value versus Rek for

the WD and SD structures. Comparison to dfcx

dRek
obtained for the ordered struc-

ture with h¼ 0
 and e¼ 0.75.

TABLE IV. Average values and standard deviations of the coefficients in correlations (40) and (41), crossover Reynolds numbers and Reynolds number inter-

vals corresponding to strong inertia (DRek, DRed) and to the transition between weak and strong inertia (dRek). Ordered, WD and SD structures. e¼ 0.75,

r p�b

D Eb
¼ ex.

Structure Ordered WD SD

�AðrAÞ 1.03� 10�2 7.0� 10�2 (6.4� 10�3) 0.20 (4.9� 10�2)
�BðrBÞ 1.3� 10�6 7.1� 10�6 (2.1� 10�6) 6.8� 10�6 (1.6� 10�6)
�CðrCÞ 1.54� 10�2 0.10 (8.0� 10�3) 0.15 (1.2� 10�2)
�DðrDÞ � 6.7� 10�3 � 4.8� 10�2 (5.9� 10�3) � 4.1� 10�2 (6.6� 10�3)

RekcðrRekc
Þ 0.74 0.73 (6.6� 10�2) 0.40 (6.8� 10�2)

RedcðrRedc
Þ 3.25 3.19 (0.28) 1.57 (0.27)

DRekðrDRek
Þ 2.31 5.34 (0.66) —

DRedðrDRed
Þ 10.11 23.37 (2.98) —

dRekðrdRek
Þ 0.59 0.96 (0.03) 0.52 (0.13)



also moderates and completes a conclusion put forth in the lit-

erature according to which the validity of the Forchheimer

correction might be attributed to the 3D nature of the flow.27

Finally, we shall remark that the extent of the transition zone,

dRek, between the weak and strong inertia regimes is not

noticeably modified by the introduction of disorder.

IV. CONCLUSIONS

Deviation from Darcy’s law for one-phase incompressi-

ble flow in homogeneous porous media, when significant in-

ertial effects are to be taken into account, was investigated.

Our analysis is based on a macroscopic model valid in the

framework of stationary flow over periodic structures. It

includes a correction vector to Darcy’s law involving a ve-

locity dependent tensor F. In the general case, F is given by

an exact closure problem, the solution of which requires that

of the microscopic flow. Both solutions can be obtained from

the same Navier-Stokes solver.

Through comprehensive results obtained from extensive

computations performed on model 2D structures, the differ-

ent mean flow regimes have been analyzed versus the Reyn-

olds number, pressure gradient orientation, and structural

parameters such as porosity and disorder. These regimes

were examined making use of a dimensionless form of the

excess macroscopic force exerted on the structure relative to

the flow in the Darcy regime. Major conclusions emerge

from these results and can be listed as follows.

For ordered structures, in general, the correction tensor

F is a dense non-symmetric tensor even if the structure is

macroscopically isotropic in the Darcy regime. This is in ac-

cordance with the fact that the force is not pure drag, i.e., is

not aligned with the mean flow. The exception is when the

applied pressure gradient is along a symmetry axis of the

representative unit cell. For disordered isotropic media, F

should be diagonal when estimated over a Representative El-

ementary Volume, the size of which increases with increas-

ing Reynolds numbers.

Intensity of inertial effects always increases with increas-

ing Reynolds numbers. Special attention must be however

dedicated to the definition of the Reynolds number. For an iso-

tropic ordered structure, intensity of inertial effects is a

decreasing function of the porosity when the Reynolds number

is defined with the square root of the permeability. The oppo-

site holds when the Reynolds number is defined in the classical

manner using the grain size as the characteristic length.

In all cases studied here, a weak inertia regime charac-

terized by a square dependence of the correction on the

Reynolds number, i.e., a cubic dependence on the velocity, is

always recovered at the onset of deviation from Darcy’s law

in accordance with theoretical results reported in the litera-

ture. In most cases under study, the intensity of the correc-

tion in this regime is insignificant, except on ordered

structures with particular pressure gradient orientations. This

last situation is however a realistic one for many applications

where synthetic highly ordered structures are of particular in-

terest like for instance in MEMS, micro heat exchangers, etc.

For higher Reynolds numbers, the strong inertia regime

where the dimensionless correction is expected to linearly

depend upon the Reynolds number (i.e., a quadratic depend-

ence of its dimensional form on the velocity) is a more or

less robust approximation. For ordered structures, it only

holds on an interval of Reynolds numbers of variable re-

stricted extent centered on an inflexion point of the correc-

tion as a function of the Reynolds number. Moreover, since

it is not purely quadratic, this would lead to the introduction

of a so-called ”Forchheimer permeability” distinct from the

intrinsic one if a Forchheimer correction is to be used

instead. For our ordered model structure, the strong inertia

regime is never observed for a pressure gradient orientation

of 45
 with respect to the axes of the structure.

A crossover Reynolds number, minimizing the differ-

ence between the weak and strong inertia models, was intro-

duced. When based on the square root of the permeability,

the crossover Reynolds number is an increasing function of

the porosity while the opposite holds when the definition of

the Reynolds number is based on the grain size. This cross-

over Reynolds number significantly decreases when strong

disorder is introduced. The extent of the transition zone is

not markedly affected by disorder.

On disordered structures, the velocity quadratic depend-

ence of the correction is a robust approximation in a very

large interval of Reynolds numbers. However, the permeabil-

ity significantly differs from the intrinsic one if a For-

chheimer correction is used. In addition, the crossover

Reynolds number and the magnitude of the weak inertia cor-

rection are both small explaining why this regime is gener-

ally overlooked during experiments. Finally, it should be

noticed that preliminary calculations carried out on one real-

ization of the SD structure for h¼ 30
 and Rek up to 8 indi-

cate that fxy� fyx, that measures the dissymmetry of the F

tensor, is always smaller than fxy� fyx for the ordered struc-

ture. The contrast reaches one order of magnitude at Rek� 8.

Similarly, hv is also very significantly reduced (by a

factor� 3 at this particular value of Rek) while introducing

disorder. More results are required to thoroughly investigate

this behavior that was beyond the scope of the present work.

Although disorder was investigated in two dimensions,

these results provide indications that the same conclusions

might be safely extended to 3D real porous structures with

even intensified expected effects in that case. Further work

can now be planned on anisotropic media and, on the basis

of a second upscaling, on heterogeneous structures.

APPENDIX A: VALIDATION

The objective of this appendix is to compare our numer-

ical results on the permeability and non-Darcy correction

with existing data reported in the literature and with results

obtained with a Boundary Element Method (BEM). The

comparison is performed using the model configuration of

Figure 1(a) for which the characteristics are given in Sec. II C.

1. Permeability

Although some relatively precise estimates of k* are

available in this case, at least at large values of the poros-

ity,77 no exact analytical results for the flow are available on



such a structure and comparison can only be performed with

other numerical results. The Stokes flow was computed with

the finite volume (FV) method detailed in Sec. II C. The con-

vergence criterion of the overall algorithm was 10�12 on the

L2 norm of the divergence of the velocity over all grid blocks

while the relative error criterion for the linear system solver

was 10�15. The problem was also solved with a BEM using

constant elements which reveals to be very precise for

this type of problem.78 All the results on k* are gathered in

Table V.

Although the numerical method of the present work

seems to very slightly underestimate the permeability in this

particular configuration, results are in very good agreement

since the maximum relative error between all these values is

less than 3.6%, taking the result obtained with the BEM as

the reference value.

2. Non-Darcy correction

The dependence of fcx¼ fxx on Rek corresponding to Red

ranging from 0 to 60 is compared to results reported in Ref.

27 and is represented in Figure 22.

The agreement is excellent leading to a relative differ-

ence always less than 0.5% over the whole range of Rek

which validates the present numerical method. Truncations

on either e or d=l are probably not identical in the present

work and in the cited reference and this can possibly be part

of the explanation of this small difference.

APPENDIX B: CORRELATIONS WITH POROSITY

In this appendix, correlations between the porosity e and

different characteristics (k*, b, Rekc, Redc, and DRek)

deduced from our numerical results obtained on the ordered

structure of Sec. III B are discussed.

1. k* 2 e correlation

To account for the dependence of k* on e over the whole

range of porosity, it is convenient to use a relationship of the

form.9

aea1 1� eð Þa2 ; (B1)

rather than employing estimates from approximated solu-

tions to the flow that are asymptotically valid at exceedingly

small or large porosities. A least square fit of the form (B1)

performed on k* yields

k� ’ 0:015 e3:23

1�eð Þ0:57 0:3. e. 0:75

Err ’ 510�11

(
; (B2)

where Err is the mean square error of the estimator of k*.

In Eq. (B2), exponents are slightly different from those

in the Kozeny relationship originally derived for sphere

packs but extensively used for a wide variety of unconsoli-

dated structures9,13,50 and in which exponents would be

a1¼ 3 and a2¼�1. The pre-factor a¼ 0.015 in equation

(B2) is also different from the value 0.00667 proposed by

Ergun or the value 0.00556 deduced from fits on experimen-

tal data by MacDonald et al.13 over a wide variety of media

and used later by Amaral Souto and Moyne.50 However, as

already pointed out, sensitivity to errors on coefficients

appearing in the drag coefficient to Reynolds number rela-

tionship is weak to precisely estimates these coefficients.

One of the conclusions from MacDonald et al.13 is that their

proposed fit would be precise to within 6 50%.

2. b 2 e correlation

If the strong inertia regime is assumed to be described

by a Forchheimer model, implying no weak inertia regime

and D¼ 0 in the relationship (41), the inertial resistance fac-

tor b (see Equation (3)) is related to C by Cffiffi
k
p ¼ b, i.e.,

Cffiffiffiffi
k�
p ¼ bl. Carrying out a least square fit of the form (B1) on

the values of Cffiffiffiffi
k�
p obtained on the ordered structure under

study yields

Cffiffiffiffi
k�
p ’ 0:12

1�eð Þ0:38

e2:04 0:3. e. 0:75

Err ’ 1:110�5

(
; (B3)

where Err is again the mean square error of the estimator of
Cffiffiffiffi
k�
p . Exponents and pre-factor obtained from this fit are also

slightly different from those appearing in widely used corre-

lations proposed by Ergun9 based on an implicit model of

packed spheres where a1¼�3, a2¼ 0.5, a¼ 1.75 or by Mac-

Donald et al.13 and used by Amaral Souto and Moyne50

where a1¼�3, a2¼ 0.5, a¼ 1.8. Discrepancy of these rela-

tionships with computed results obtained on square and hex-

agonal arrays of uniform and non uniform cylinders of

circular cross section was examined by Papathanasiou

TABLE V. Permeability results obtained with the finite volumes method

(FV) developed in this work. Comparison to BEM and existing results.27

Unit cell of Figure 1(a), e¼ 0.386.

Method (#of grid blocks) k*

FEMLAB27 (unknown) 2.3111� 10�4

BEM (14 700 elements) 2.2952� 10�4

FV (500� 500) 2.2130� 10�4

FV (1000� 1000) 2.2505� 10�4

FV (1500� 1500) 2.2663� 10�4

FIG. 22. Variation of fcx versus Rek for the unit cell of the model configura-

tion in Figure 1(a). Comparison with existing results.27



et al.26 through the analysis again of the relationship between

the drag coefficient and the Reynolds number. Using Rek in

the expression of the drag coefficient to advantageously

avoid an implicit relationship between k and any other struc-

tural dimension, they concluded to a relationship implying,

with our notations, C ’ 0:08 1�e
e . Although the discrepancy

of this relation with our results must be found in the differ-

ence of cylinder shape, special attention must be paid to the

accuracy of such a correlation when extracted from the drag

coefficient to Reynolds number relationship.

3. Rekc-e, Redc-e and DRek-e correlations

As for k* and C, it is appealing to correlate Rekc, Redc

and DRek to e in the form reported in Eq. (B1) where porosity

limits are involved. For the structure under concern and the

range of porosity investigated here, we find

Rekc ’ 0:69 e1:49

1�eð Þ0:36 0:3. e. 0:75

Err ’ 1:010�5

(
; (B4)

Redc ’ 6:96e0:05 1� eð Þ0:55
0:3. e. 0:75

Err ’ 1:410�3

�
; (B5)

and

DRek ’ 4:09e1:94 1� eð Þ0:01
0:3. e. 0:75

Err ’ 1:610�4

�
: (B6)

As shown in Eqs. (B5) and (B6), Redc has a quasi square-

root dependence on (1� e) while DRek mainly depends on

the square of e.
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Perte de charge non linéaire,” Ph.D. thesis (University of Toulouse, 1965).
6L. Green and P. Duwez, “Fluid flow through porous metals,” J. Appl.

Mech. 18, 39 (1951).
7D. Cornell and L. K. Katz, “Flow of gases through consolidated porous

media,” Ind. Eng. Chem. 45, 2145 (1953).
8G. Schneebeli, “Expériences sur la limite de validité de la loi de Darcy et
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Darcy’s law at low Reynolds numbers,” J. Fluid Mech. 343, 331 (1997).
48E. Skjetne and J. L. Auriault, “New insights on steady, non-linear flow in

porous media,” Eur. J. Mech. B=Fluids 18, 131 (1999b).
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