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The structure of a stratified boundary layer over a tilted bottom with a small streamwise undulation is studied theoretically and numerically. We show that the tilt of the boundary can induce strong density variations and wall-transverse velocities in the critical layer where the frequency of the forcing by the topography kU (z c ) is equal to the transverse Brunt-Väisälä frequency N sin α (N being the vertical Brunt-Väisälä frequency). The viscous solution in the critical layer, obtained and compared with direct numerical simulation results, are in good agreement for both the scaling and the spatial structure. The amplitude of the transverse velocity response is also shown to exhibit quasi-resonance peaks when the stratification strength is varied.

Introduction

Stratified boundary layer flows occur in both the ocean and the atmosphere when a tidal current or a nocturnal wind develops along a surface. The topology of these surfaces is generally complex and in the case of slopes, tilted with respect to the stratification. A natural approach to account for small amplitude topology is to consider a corrugated surface. For instance, these surfaces are representative of ocean bottoms such as seamounts where strong flow acceleration along the slopes has been reported in [START_REF] Passaggia | Corals on seamount peaks provide evidence of current acceleration over deep sea topography[END_REF]. Sand waves formation, merely found along shallow continental slopes, are also a representative configuration [START_REF] Besio | On the modeling of sand wave migration[END_REF]). In the present work, we show that a free stream in a stratified medium on a tilted corrugated surface generates a strong transverse flow by a subtle interplay of stratification and shear.

Stratified boundary layer flows have mainly been studied on flat horizontal surfaces. Numerous works exist in the atmospheric context (see [START_REF] Garratt | The Atmospheric Boundary Layer[END_REF]. More recently, [START_REF] Mahrt | Stably stratified atmospheric boundary layers[END_REF] reviewed the characteristics of the stably stratified atmospheric boundary layer. Corrugated surfaces have often been used to facilitate the boundary layer transition. There is an important piece of literature on the receptivity of boundary layers for its possible applications to aeronautics (see for instance [START_REF] Saric | Boundary-layer receptivity to freestream disturbances[END_REF]. In the atmospheric context, most works were motivated by understanding the effect of topography (e.g. [START_REF] Jackson | Turbulent wind flow over a low hill[END_REF][START_REF] Taylor | Boundary-layer flow over low hills[END_REF][START_REF] Gong | Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves[END_REF][START_REF] Athanassiadou | Neutral flow over a series of rough hills: a laboratory experiment[END_REF], and vegetation (e.g. [START_REF] Finnigan | Turbulence structure above a vegetation canopy[END_REF]) on the boundary layer turbulence characteristics. The influence of a stable stratification has also been considered in the experimental works of [START_REF] Ohya | Wind-tunnel study of atmospheric stable boundary layers over a rough surface[END_REF] and [START_REF] Ohya | Laboratory and numerical studies of the atmospheric stable boundary layers[END_REF]. On the theoretical side, [START_REF] Thorpe | The generation of internal waves by flow over the rough topography of a continental slope[END_REF] has derived the structure of the lee internal waves generated by an undulated topography over a sloping bottom, in the presence of stratification and rotation. This structure has been observed numerically by [START_REF] Maccready | Stratified flow along a rough slope: Separation drag and wave drag[END_REF] over a sinusoidal topography but also over a solitary hill. Finally, one can mention the recent works of Wu & Zhang (2008a,b) who analyzed the development of a viscous instability wave and its interaction with a bump in a stratified boundary layer using the triple-deck framework [START_REF] Sykes | Stratification effects in boundary layer flow over hills[END_REF]. The effect of a slope has also been considered in a few field studies [START_REF] Park | Effects of topographical slope angle and atmospheric stratification on surface-layer turbulence[END_REF][START_REF] Nadeau | Similarity scaling over a steep alpine slope[END_REF]) but we are not aware of any fundamental study in a controlled experimental framework.

When the surface is flat but inclined, we know that the deformation of the isopycnal near the boundary is the source of a flow along the slope which has been studied by [START_REF] Garrett | Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary[END_REF]. [START_REF] Candelier | Inviscid instability of a stably stratified compressible boundary layer on an inclined surface[END_REF] have recently shown that an inviscid instability, different from the inflectional instability, may also be active. This instability involves a phenomenon of over-reflection [START_REF] Acheson | On over-reflection[END_REF][START_REF] Lindzen | Instability and wave over-reflection in stably stratified shear flow[END_REF] between the boundary and a critical point where the phase velocity matches the meanflow velocity. It is very similar to the instability observed around a rotating cylinder [START_REF] Riedinger | Radiative instability of the flow around a rotating cylinder in a stratified fluid[END_REF]). In the present work, this instability, as well as the viscous boundary layer instability are not considered. We therefore assume that either the flow is stable (this will be the situation for our numerical simulations) or the forced response described below is not destroyed by these instabilities. We consider a small sinuous undulation with a fixed wavenumber. We are going to show that the wave generated by this undulation may exhibit a singular structure due to the presence of a critical point singularity.

This very thin structure is located within the boundary layer, with a large amplitude, even for small amplitudes undulations, which is very likely to be an important source of mixing and transport for ocean and atmospheric flows over slopes.

The paper is organized as follows. In §2, we introduce the framework with the flow configuration and the numerical procedure. In §3, we first provide numerical results. These results are then interpreted using an asymptotical analysis for large Reynolds numbers and small undulation amplitudes which leads to an expression for the maximum transverse velocity. The dependence of this expression with respect to the Froude number and the undulation wavenumber is further analyzed using a small Froude number description. Details of the analysis are given in an appendix. Section §4 provides a brief summary of the results and tentative applications to oceanic currents and atmospheric boundary layers.

Problem formulation

Flow configuration

We consider a boundary layer flow in a stratified fluid on a sinusoidally deformed tilted wall, as shown in Fig. 1. The wall is globally tilted in the cross-stream direction such that the z * -axis of the (x * , y * , z * ) frame attached to the wall makes an angle α with respect to the Z * -direction of stratification. The tilted frame of reference is obtained from the horizontal/vertical coordinates (X * , Y * , Z * ) using the change of variables:

The inlet flow is assumed to be a typical tanh boundary layer flow of thickness δ * and free stream velocity U * ∞ :

U * = U * ∞ tanh z * + z * 0 δ * e x .
(2.2)

A small penetration length z * 0 has been introduced to authorize the flow to slide on the boundary with a velocity U * 0 = U * ∞ tanh(z * 0 /δ * ). This boundary condition mimics the condition obtained on the top of a viscous sublayer where roughness or small scale inhomogeneities could be present. It is the simplest way to model the flow over a canopy.

The fluid is assumed stably stratified along the vertical Z * direction with a constant buoyancy frequency

N * = -(g/ρ * 0 )(∂ ρ * /∂Z * ), (2.3)
where g is gravity.

The boundary is defined by the 2D surface:

z * = η * (x * ) = h * sin(k * x * ) (2.4)
where h * and k * correspond to the amplitude and wavenumber of the topography, respectively.

The flow is governed by the Navier-Stokes equations under the Boussinesq approximation, the incompressibility condition and the advection-diffusion equation for the density

Du * Dt = - ∇p * ρ * 0 - ρ * ρ * 0 ge Z + ν∆u * (2.5a) ∇ • u * = 0 (2.5b) Dρ * Dt = κ∆ρ * , (2.5c)
where ν and κ are the kinematic viscosity and the thermal diffusivity respectively. It satisfies the following boundary conditions at the wall

u * | z * =η * = U * 0 t; ∇ρ • n| z * =η * = 0, (2.6)
where t and n are the wall tangent and normal vectors respectively. Far from the wall (z * → ∞), the velocity and density fields are assumed to satisfy

u * ∼ U * ∞ e x ; ρ * ∼ ρ * = ρ * 0 1 -(z * cos α + y * sin α)N * 2 /g . (2.7)
In the following, we non-dimensionalize all the variables using δ * , U * ∞ and ρ * 0 , and denote these variables without the star. The problem is characterized by 6 non-dimensional parameters

Re = U * ∞ δ * ν , F = U * ∞ N * δ * , α, h = h * /δ * , k = k * δ * , Pr = ν κ , U 0 = U * 0 U * ∞ . (2.8)
We are interested in the configurations where Re is large and h is small. We also implicitly assume that the boundary layer flow on the undeformed wall is stable. This means that the Reynolds number is below the critical Reynolds number for the appearance of unstable Tollmien-Schlichting modes and unstable radiative modes.

Numerical procedure

Since the inlet flow is two-dimensional, we can assume that the flow remains twodimensional downstream that is independent of the cross-stream variable y. For most P.-Y. Passaggia, P. Meunier & S. Le Dizès
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. Sketch of the flow geometry numerical simulations, the numerical computational domain is taken from x = -7.5 to 52.5 and from z = η(x) to H = 18. However, the boundary deformations only extend from x = 0 to x = 42.5, as shown in Fig. 2(b). The infinite flow domain is transformed into a Cartesian one using the mapping x = x, z = zη(x), the barred coordinates being the computational ones. The numerical procedure is detailed in [START_REF] Marquillie | Numerical simulation of a separating boundary-layer flow[END_REF] and proved to accurately predict transitional boundary-layers phenomenon [START_REF] Marquillie | On the onset of nonlinear oscillations in a separating boundary-layer flow[END_REF][START_REF] Passaggia | Transverse instability and lowfrequency flapping in separated boundary-layer flows: An experimental study[END_REF]. Since the mapping transformation requires η(x) to be twice differentiable, the lower boundary has been smoothed in the vicinity of x = 0 and x = 42.5 using regularization procedures based on convolution between the wall function η(x) and a third order polynomial kernel. The inlet boundary condition is given by the boundary layer profile (2.2) and ρ = ρ.

Following the numerical procedure of [START_REF] Marquillie | On the onset of nonlinear oscillations in a separating boundary-layer flow[END_REF], a convective condition has been implemented at the outflow for all velocity components u and the density ρ such that

∂u ∂t = U c ∂u ∂x , ∂ρ ∂t = U c ∂ρ ∂x , U c = 1 z † z † 0 u x (42.5, z)dz (2.9)
where z † was chosen for the streamwise velocity u x (42.5, z) to be equal to 0.5, which is the uniform flow at infinity [START_REF] Marquillie | Numerical simulation of a separating boundary-layer flow[END_REF].

When addressing the question of stratified incompressible flows in a finite computational domain, sponge layers appear to be mandatory to avoid spurious modes arising from a finite computational domain together with boundary conditions (2.9). In the present case, the sponge layers consist of hyperbolic tangent functions which smoothly cancel the advection term of the equation for the density ρ. In the present study, they are present close to the inlet for -7.5 < x < -4.5 and far from the wall for 15 < z < 18, which has proved to be appropriate to achieve convergence in all cases considered. The present calculations have been performed calculating first the vertical flow solution at α = 90°. Restarting from this solution, the tilted flow solution has been computed until convergence of the time marching algorithm up to 10 -6 of the solution vector.

Most numerical simulations are carried out in the computational domain defined above. The Reynolds number Re is varied from 60 to 1200, the Froude number F from 0.95 to 1.15, the tilt angle α from 15 to 75 degrees and the non-dimensional wavenumber k from 0.85 to 1.25. Different computational domains have also been considered in order to treat more extreme values of k and document the behabiour of the solution for small and large Froude numbers. In all the simulations, the sliding velocity is fixed to U 0 = 0.1 and the Prandtl number Pr is equal to 0.7 in order to simulate the thermal diffusion of air. 3. Structure of a stratified tilted boundary layer

Numerical results

In this section, we present the typical characteristics of the flow obtained in the numerical simulations. Figure 3 shows the transverse component of velocity in a plane normal to the bottom. The field contains a series of alternate lobes clearly separated from the bottom with the same wavelength as the undulated topography, but in phase quadrature. Above these lobes, the velocity presents almost vertical bands of weak amplitude, characteristic of lee waves created by an undulated topography.

Figure 4 shows the profile of velocity and density at the altitude of the lobes z c = 0.75. It is striking to see that the transverse velocity (dashed line) is 5 times larger than the normal velocity although the sliding velocity along the topography generates only a normal velocity. The density also exhibits large sinusoidal perturbations which are 10 times larger than the normal velocity. These oscillations start at the beginning of the undulated topography (x = 0), grow during a transient stage of about 3 to 4 undulations and then saturate.

The altitude z c of the divergence of v and ρ has been measured for various parameters. As shown in Fig. 5, it is independent of the height of the topography and very weakly dependent on the Reynolds number. However, it clearly depends on the Froude number, the tilt angle and the wavenumber. This critical altitude z c corresponds to the position where the normal component of the wavevector diverges. Indeed, in the tilted frame of reference (x, y, z), a lee wave with wavevector k = (k, 0, m) has a frequency given by the linear dispersion relation:

ω = kU ± 1 F k Hor. k = kU ± k 2 + m 2 sin 2 α F √ m 2 + k 2 (3.1)
The variation of U with the altitude bends the waves such that the normal wavenumber m varies with the altitude in order for the wave to be stationary.

Assuming ω = 0 in (3.1) leads to

m 2 = k 2 1 -k 2 U 2 F 2 k 2 U 2 F 2 -sin 2 α (3.2)
which diverges for

U (z c ) = sin α F k (3.3)
This criterion defines a critical altitude z c which is plotted in Fig. 5 as a solid line. It is reasonably close to the altitude where v and ρ diverge. This indicates that the strong variations of v and ρ come from the divergence of the wavenumber m. However, this analysis is only valid when the wavelength of the lee wave is much smaller than the thickness of the boundary layer. In the next section, the analysis is extended for any wavelength, but for the case of small undulation height h.

Expansion for small wall oscillations amplitudes

The structure of the boundary layer can be described asymptotically for a small amplitude h of the topography and a large Reynolds number. The solution is decomposed into a base flow (U b , ρ b , p b ) and a small perturbation (u, ρ, p) which is searched as a spatial Fourier mode of wavenumber k and amplitude h:

(u, ρ, p) = 1 2 hk(ũ, U 2 ∞ /(δg)ρ, p)e ikx + c.c. (3.4)
The base flow corresponds to the solution on a flat but inclined wall. In the limit of large Reynolds numbers, it remains close to the inlet flow as long as we consider streamwise location small compared to the viscous diffusion scale x v = O(Re). The normal flow correction induced by this weak diffusion process is O(1/Re). A weak cross flow is also present as soon as the wall is inclined. This flow is associated with density correction generated by the inclination of the isopycnals with respect to the boundary. To cancel the normal density gradient at the wall, a density correction and a weak cross flow is created very close to the wall. This boundary layer flow has been analyzed in details in [START_REF] Garrett | Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary[END_REF]. Neither the cross flow, nor the density correction have an impact far from the boundary. The equations satisfied by the amplitude of the Fourier mode can be obtained by linearizing the governing equations (2.5) around the base flow solution. We get at first order in h:

ikU ũ + wU = -ik p + 1 Re ∆ũ (3.5a) ikU ṽ = -sin αρ + 1 Re ∆ṽ (3.5b) ikU w = -cos αρ - ∂ p ∂z + 1 Re ∆ w (3.5c) ikU ρ = w cos α + ṽ sin α F 2 + 1 RePr ∆ρ (3.5d) ikũ + ∂ w ∂z = 0, (3.5e)
where ∆ = ∂ 2 z -k 2 . Note that we have artificially kept small diffusion terms but neglected the base flow corrections mentioned above. We will see below that the diffusion terms do become important close to the critical layer singularity while the base flow corrections remain negligible. The boundary conditions obtained from (2.6) are at leading order in h

ũ(z = 0) = i(1 -U 2 0 ); ṽ(z = 0) = 0; w(z = 0) = U 0 ; ∂ z ρ(z = 0) = 0. (3.6)
Far from the wall, as z goes to infinity, the perturbation should either vanish or be an outgoing wave.

In the inviscid regions where the diffusion terms are negligible, we get from (3.5) as
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(3.7)

Introducing these expressions into (3.5c) leads to a single differential equation for the wall-normal velocity

w - U U w -k 2 1 -k 2 U 2 F 2 sin 2 α -k 2 U 2 F 2 w = 0. (3.8)
This equation reduces to the well-known Taylor-Goldstein equation for the tilt angle α = 0. It is clear that the last term of this equation diverges at the point z c where kU (z c )F = sin α. Such a singularity corresponds to a so-called critical point.

Viscous effects have to be re-introduced to smooth the singularity. The singularity is weak as an expansion of the coefficients in powers of zz c indicates that w expands as w

∼ a ± + a ± κ(z -z c ) log |z -z c | + b ± (z -z c ) with κ = k cos 2 α/(2 sin αF U (z c
)) on either side of z c . This critical point singularity is the classical singularity found in the stability of homogeneous shear flows [START_REF] Lin | The theory of hydrodynamics stability[END_REF]. Note that it is different from that of stratified shear flows over horizontal walls. The viscous smoothing can be used to get the adequate jumps conditions across the critical point:

a + = a -= wc ; b + = b -+ iπκ wc . (3.9)
These jump conditions can also be obtained from the property that the inviscid solution remains asymptotically valid in any contour that avoids the critical point in the lower complex half plane, a condition which is derived from the asymptotic behavior of the viscous solutions near z c or from the condition of causality (see [START_REF] Lin | The theory of hydrodynamics stability[END_REF], for more explanations on this issue). These conditions tell us that the solution is continuous at z c but its derivative exhibits a jump. Using these jumps conditions, equation (3.8) with the boundary conditions prescribed above can easily be solved using classical integration softwares. We get the solution which has been plotted in Fig. 6(a). Note that the jump of w at z c is clearly visible on the real part of the signal. In this figure, the real part and the imaginary part of the solution are compared to the numerical signals of the normal velocity at the lee side (kx = 7π) and at the bottom (kx = 7.5π) of the undulation, respectively. We can note that except in the wall boundary layer there is a good qualitative agreement between the two results.

The inviscid approximation of the normal velocity is continuous at z c . By contrast, equations (3.7) and (3.5b) demonstrate that both the transverse velocity v and ρ diverge at z = z c . This behavior is in agreement with the very large amplitudes of the transverse velocity and of the density observed in the numerics. In order to determine the maximum amplitude of these two quantities, we have to solve the viscous critical layer. This is done in the next section.

Viscous critical layer analysis

The analysis of viscous critical layers is a classical problem which is described in several textbooks (see for instance [START_REF] Drazin | Hydrodynamic stability[END_REF]. A very similar analysis has also been done in the context of vortices in [START_REF] Boulanger | Structure of a tilted stratified vortex[END_REF]. We provide here the main steps of the analysis.

In the viscous critical layer, the structure of the solution is obtained by introducing a new local viscous scale ẑ = (zz c )Re 1/3 . The form of the solution can be obtained by expanding the non-viscous solution close to the critical point. We obtain that the solution has to be searched as Note that the log(Re) terms come from the special behavior of the normal velocity close to the critical point. Expanding the base flow velocity as (3.12)

ũ = û(ẑ) + log(Re)û s , (3.10a) ṽ = v(ẑ)Re 1/3 , (3.10b) 
U (z) ∼ U (z c ) + U (z c )(z -z c ) = sin α kF + U c ẑRe -1/3 , the system (3.5) reduces to ikU c (û + log(Re)û s ) + ŵc U c = ik(p + log(Re)p s ) (3.11a) ikU c wc = -cos αρRe 1/3 - ∂ p ∂ ẑ Re 1/3 (3.11b) i sin αvRe 1/3 F + ikU c ẑv = -sin αρRe 1/3 + v (3.11c) i sin αρRe 1/3 F + ikU c ẑ ρ = (v sin αRe 1/3 + cos α wc ) F 2 + 1 Pr ρ (3.11d) ik(û + log(Re)û s ) = - ∂ ŵ ∂ z -log(Re) ŵs . ( 3 
The function p(ẑ) can then be deduced from (3.11b), which then gives û(ẑ)

P.-Y. Passaggia, P. Meunier & S. Le Dizès from (3.11a) and ŵ(ẑ) from (3.11e) provided that ŵs = -ikû s = -ik ps /U c (such that the log terms disappear). The matching with the outer solution gives ŵs =wc κ/3. Equation (3.12) is an inhomogeneous Airy equation. In order to match an inviscid solution in the outer region, the solution must behave as ẑ-1 for large |ẑ|. As shown by [START_REF] Drazin | Hydrodynamic stability[END_REF], the solution which satisfies this condition is a generalized Airy function B k (K ẑ, 1). It can also be expressed in terms of the Scorer's function Hi(z) (Abramowitz & Stegun 1965, p. 448) 

which verifies Hi (z) -zHi(z) = 1/π as follows v(ẑ) = i wc π cos α ξ 2 F (1 + 1/Pr ) Hi(-iξ ẑ). (3.13) with ξ = ( 2kU c
1+1/Pr ) 1/3 . This expression is plotted in Fig. 6(b) as a solid line for the real part and a dashed line for the imaginary part. We can see that these two profiles are comparable to the numerical results obtained at the lee side and at the bottom of the undulation. A small shift is nevertheless observed which might come from higher order corrections.

The maximum of the transverse velocity v max over the whole field can now be predicted from the maximum of the Scorer's function Hi max = Hi(0) ≈ 0.41. In terms of the initial variables, we get

v max = hkU 0 Re 1/3 (1 + 1/P r) 1/3 V (F, k, α, U 0 ), (3.14)
where In the above expression, we have used the relation U c = 1sin 2 α/(kF ) 2 and the definition w0 = w(z = 0) = U 0 . The function v max is plotted and compared to the numerical results in Fig. 7. It clearly shows that the amplitude of the critical is linear in h with an excellent quantitative prediction of the amplitude. The amplitude also scales as Re 1/3 although the lowest Reynolds number is slightly above the theoretical prediction. This is possibly due to the modification of the mean profile by viscous effects in the numerics or to the fact that the critical layer becomes so large that it interacts with the near wall boundary layer flow.

V (F, k, α, U 0 ) = Hi max π cos α F (2k) 2/3 (1 -sin 2 α/(kF ) 2 ) 2/3 ∆ c , ( 3 
The thickness ζ of the critical layer has also been measured in the numerics as the distance between the maximum and the minimum of v in the shear profile (at kx = 7.5π). Note that each value of the thickness ζ was rescaled with the local thickness of the boundary layer, for each value of Re. The data is plotted in figure 8. We observe that the thickness does decrease as Re -1/3 and is in good agreement with the theory although it is 20% below the prediction.

Dependence with respect to the Froude number and the undulation wavenumber

In this section, we use the theory to discuss the dependence of v max with respect to the Froude number and the undulation wavenumber.

The contours of the function V (F, k, α, U 0 ) appearing in (3.14) are plotted in Fig. 9 for a small and a large tilt angle (α = π/60 and α = π/6). These plots show that V exhibits complex variations with respect to the parameters. Note in particular in figure 9 discontinuous behavior across the line kF = 1 and the peaky structure for small F close to the right frontier corresponding to kF = sin α/U 0 . Large values of V are reached in two limits which can be analyzed separately: (1) large F and kF close to sin α (top left corners of figure 9), (2) small F and kF close to sin α/U 0 (bottom right corner of figure 9). The first limit is the easier to analyze. For large F , the solution w has indeed a simple approximation in the bulk † w(z) ∼ U (z) so We can then deduce that

∆ c = wc w0 ∼ sin α kF U 0 , as F → ∞. ( 3 
V ∼ Hi max π cos α U 0 F 1/3 (2 sin α) 2/3 (1 -sin 2 α/(kF ) 2 ) 2/3 as F → ∞, (3.18) 
which tell us how v max varies with respect to kF for large F . Figure 10 demonstrates that (3.17) provides a very good estimate of ∆ c as soon as F is larger than a few tens.

In figure 10(b), we have also added values of ∆ c obtained from the direct numerical simulation for F = 10, Re = 593 and h = 0.12. We can see that they follow reasonably well the theoretical curve.

The second limit is more involved due to the singular structure of the normal velocity w(z) as F → 0. In the appendix, we show how an approximation of the function ∆ c can be obtained using a WKBJ analysis. It is first shown that, when F is small, ∆ c is in general exponentially small. Large values of ∆ c are only obtained when sin α/(kF ) is very close to U 0 , as expected from figure 9. This case corresponds to the limit (2). In this Response of a stratified boundary layer on a tilted wall to surface undulations 13 limit, a simple approximation is obtained for ∆ c as (3.19b) where I 1 and K 1 are modified Bessel functions and

∆ c = 1 X [K 1 (X)] 2 + π 2 [I 1 (X)] 2 when kF < 1 (3.19a) ∆ c = 1 X [K 1 (X) + π 2tanΦ I 1 (X)] 2 + π 2 4 [I 1 (X)] 2 when kF > 1,
Φ = k z∞ zc 1 -(kF ) 2 U 2 (z) (kF ) 2 U 2 (z) -sin 2 α dz, (3.20a) X = cos α (1 -U 2 0 )F 2 1 - kF U 0 sin α . (3.20b)
The approximation depends on the value of kF with respect to 1 because the structure of w changes when kF exceeds 1. When kF < 1, the solution is oscillating up to infinity, whereas, when kF > 1 it becomes evanescent after the turning point z ∞ where kF U (z ∞ ) = 1. The theoretical approximation is compared to the computed curve in figure 11. We can observe that it provides a good approximation even for F as large as unity. In figure 11(b), we have also plotted the values provided by the direct numerical simulation for kF = 4.96, Re = 596 and h = 0.12. Although the largest and smallest values of ∆ c are not recovered, we can observe that the oscillations of ∆ c as F varies are qualitatively reproduced. The behavior of ∆ c for kF > 1 is particularly interesting as it exhibits distinct peaks and valleys. A simple estimate of Φ can be obtained in the limit of small α:

Φ ∼ - log(α) F . (3.21)
The valleys correspond to the configurations where tan Φ = 0, that is Φ = nπ, n = 1, 2, 3.... For small α, they are therefore obtained for fixed values of F (whatever k and 

F (n) V = - log(α) nπ . (3.22)
Present between each valley is a peak, which is reached (for small α) for

F (n) P = - log(α) nπ -arctan π 2 I1(X) K1(X)
.

(3.23)

These peaks are the largest when X is the smallest, that is when kF is the closest to sin α/U 0 . Their amplitude decreases as X increases. This means that for a fixed value of kF , the amplitude of the peak decreases as F decreases, as observed in figure 11. In summary, when F is small, we have shown that ∆ c (and thus also v max ) reaches its largest values when kF is slightly below sin α/U 0 , that is when the critical point is close to the wall. When kF > 1, a phenomenon of resonance and anti-resonance is observed generating large fluctuations of ∆ c as F is varied. This phenomenon directly affects the maximum transverse velocity v max which is proportional to ∆ c [see (3.14) and (3.15)]. For large F , we have seen that the largest values of v max are obtained when kF is slightly above sin α, that is when the critical point is far away from the wall.

Note however that when F is of order 1, V remains O(1). In that case, all the corrugation wavenumbers k satisfying (sin α)/F < k < (sin α)/(U 0 F ) are thus expected to give a large transverse flow response.

Conclusion

In this paper, we have presented some numerical and theoretical results on the internal waves generated by a sinusoidal topography on an inclined bottom. The velocity profile U * (z * ) has been chosen as an hyperbolic tangent profile, with a sliding velocity at the bottom. The inclination of the bottom has been found to create a large transverse velocity at the distance to the wall where the frequency of the topographic forcing k * U * (z) is equal to the transverse buoyancy frequency N * sin α (in dimensional units). We have shown that this large amplitude is associated with a critical layer singularity of the inviscid solution. We have also shown that the solution can be regularized by performing a viscous critical layer analysis. An analytic solution has been obtained and found to be in good agreement with the numerical results. The maximum transverse velocity has been shown to be larger by a Re 1/3 factor -the normal velocity generated by the undulation at the wall. Interestingly, the transverse velocity has also been found to exhibit well-defined peaks associated with a quasi-resonance phenomenon for specific values of the Froude number when kF is larger than 1 and close to sin α/U 0 .

The analysis has been based on the hypothesis that the fluid slides on the boundary with a constant velocity. This sliding velocity guarantees that a non-negligible normal velocity is created by the undulations. This hypothesis implicitly assumes that the size of the undulations is larger than the viscous sublayer width. Note in particular that if the undulations were within the sublayer (h Re -1/3 ), the normal velocity would scale as O(Re -1/3 ) and the maximum transverse velocity would then not be that large.

The present study demonstrates that the interplay between undulation and tilting could have a strong impact on the dynamics of stratified boundary layer flow. A small deformation on a weakly inclined bottom can generate a large transverse flow. This transverse flow is O(Re 1/3 ) larger than the sliding velocity and localized in a O(Re -1/3 ) layer. For large Reynolds numbers, it therefore induces a strong transverse shear which Response of a stratified boundary layer on a tilted wall to surface undulations 15 may become unstable with respect to the Kelvin-Helmholtz instability. Such a mechanism has been observed in the dynamics of a tilted vortex [START_REF] Boulanger | Instability of a tilted vortex in stratified fluid[END_REF]. We suspect that it could be active in the boundary layer.

Note also that nonlinear effects are expected to arrive first in the critical layer. In particular, the critical layer is expected to become nonlinear as soon as the amplitude of the transverse velocity reaches Re -1/3 . It would therefore be interested to pursue the analysis in the nonlinear regime using the framework of the nonlinear critical layer theory [START_REF] Benney | A new class of nonlinear waves in parallel flows[END_REF][START_REF] Haberman | Critical layers in parallel flows[END_REF].

The present mechanism of mixing is expected to be in competition with the mixing induced by the boundary layer instabilities on a flat wall. At least, two types of instability are expected to be present on a tilted wall for large Reynolds numbers: the viscous boundary layer instability associated with Tollmien-Schlichting modes (Wu & Zhang 2008a), the radiative instability which is inviscid in nature and present only if the wall is inclined [START_REF] Candelier | Inviscid instability of a stably stratified compressible boundary layer on an inclined surface[END_REF]. The conditions of appearance of these two instabilities in the parameter space (α, F, Re) are only partially known [START_REF] Bai | Rayonnement d'une couche limite dans un milieu stratifié[END_REF]) but both instabilities are expected to be present for the large Reynolds numbers of geophysical flows. It would thus be interesting to simulate a configuration where one of these instabilities is also present.

For very high Reynolds numbers, we expect the boundary layer to become turbulent. Yet, it is possible that the present mechanism could still be active in this regime. Indeed, a similar analysis can a priori be performed with a mean turbulent boundary layer profile and a turbulent eddy viscosity and it would lead to the same conclusion.

The phenomenon could then be present in real geophysical flows. For instance, taking values from the continental slope in [START_REF] Besio | On the modeling of sand wave migration[END_REF], the mean current flows velocity is 0.07 cm/s, the boundary layer thickness estimated at 10 m, the mean Brunt-Väisälä at frequency measured at N = 0.024 (van Haren & Howarth 2004), we obtain F = 0.29. For U 0 = 0.1 and a tilt angle close to tilted with an angle α = π/90 the present results tell us that all the corrugation wavelengths larger than 73 m will generate a response with a critical layer and therefore will be a source of transverse flow. Note that the wavelength of sand waves studied in [START_REF] Besio | On the modeling of sand wave migration[END_REF] appear to have a threshold close to a 100m and height between 1 and 10 m, which is consistent with the present study.

For a stably stratified atmospheric boundary layer flow, if we take the values reported by [START_REF] Frehlich | Measurements of boundary layer profiles with in situ sensors and doppler lidar[END_REF], that is a nocturnal wind of velocity 10 m/s with a boundary layer thickness 100 m in a stable stratification with a Brunt-Väisälä frequency equal to 0.03 rad/s, we get F = 3. On a slope of 10 degrees (if U 0 is still equal to 0.1), we therefore expect all the corrugation wavelengths larger than 60 m to be active. For both cases, the Reynolds number is so large (Re = 10 6 and Re = 10 8 for the current and the wind respectively) that even small corrugation amplitudes (of the order of 10% of the boundary layer thickness) generate transverse flows of the order of the mean flow (assuming ∆ c of order unity). Moreover, these flows are present in a very thin layer, which leads to strong transverse shears 2 orders of magnitude larger than the mean shear of the boundary layer. These shear layers are probably unstable by the Kelvin-Helmholtz instability and a non negligible source of mixing in the boundary layer. for a value X max smaller than 0.73. This maximum is the largest when Φ is slightly below a multiple of π. In that case, X max is very close to 0. On the opposite, when Φ is exactly equal to a multiple of π, the function ∆ + c vanishes for all X > 0. The function ∆ c is plotted for both cases kF < 1 and kF > 1 in figure 12.
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 23 Figure 2. Inlet (solid line) and at the summit of an oscillation x = 30.3 (dashed line) velocity profiles (a) at Re = 593 and h = 0.06. Graph of the lower boundary η(x) (b) of the small computational domain at h = 0.06.

Figure 4 .

 4 Figure 4. Streamwise profile of the normal velocity w (solid line), transverse velocity v (dashed line) and density ρ (dotted line) at zc = 0.75. Re = 593, F = 1.046, k = 1.041, α = π/4 and h = 0.06

Figure 5 .

 5 Figure 5. Position of the critical layer zc measured at the maximum of v. In (a), zc is plotted as a function of h ( ) and as a function of Re ( ) for F = 1.046, α = π/4 and k = 1.041. In (b), zc is plotted as a function of sin α/kF for Re = 593 and h = 0.06. In (b), symbols correspond to variations of F ( ), k ( ) and α ( )and the solid line corresponds to the velocity profile U (zc).

Figure 6 .

 6 Figure 6. Normal profile of (a) normal velocity w and (b) transverse velocity v. The profiles are measured on the lee side of the undulations at x = 7π/k (•, solid line) and on the bottom of the undulation at x = 7.5π/k ( , dashed line). Symbols correspond to numerical simulations and lines to theoretical predictions. h = 0.03, F = 1.046, k = 1.041, Re = 1423 and α = π/4.

  w = wc + ŵ(ẑ)Re -1/3 + Re -1/3 log(Re) ŵs ẑ

  .11e) At leading order in Re -1/3 , Eqs. (3.11c) and (3.11d) both indicate that ρ = -iv/F . Introducing this result in (3.11c)-iF(3.11d) leads to a differential equation at first order for the transverse velocity v 2ikU c ẑv = (1 + 1 Pr )v + i wc cos α F .
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 78 Figure 7. Renormalised amplitude of the critical layer vmax/(hkU0) as a function of (a) the height of the hills h and (b) the Reynolds number. Numerical values ( ) obtained at x = 7.5π/k are compared with the theoretical prediction (solid line) given by (3.14). F = 1.046, k = 1.041 and α = π/4. In (a) Re = 593 and in (b) h = 0.03.
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 910 Figure 9. Contour levels of the function log 10 V in the (kF, F ) plane for U0 = 0.1 and (a) α = π/60 or (b) α = π/6. The function V is defined for sin α < kF < sin α/U0 only (condition of existence of a critical point).

Figure 11 .

 11 Figure 11. The function ∆c versus F for different values of kF for (a) α = π/60 and (b) α = π/6. Solid lines: numerically computed values; Dashed lines: expression (3.19a,b). The stars in (b) are estimates obtained from the direct numerical simulation for kF = 4.96, Re = 593 and h = 0.12.

Figure 12 .

 12 Figure12. Function ∆c = | w(zc)/ w(0)| versus X. The solid black line is ∆ - c (X), that is for kF < 1. The solid red line is ∆ + c max (X) (maximum value of ∆ + c over all Φ for kF > 1). The dotted lines are ∆ + c for Φ = π/2 (green), Φ = 2π/3 (blue) and Φ = 5π/6 (red).
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† This approximation is valid up to the (large) altitude where the second term in (3.8) becomes of same order as the third term.
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Appendix A. Small F analysis of the equation for w

In this section, we provide an asymptotic analysis in the limit of small F of the solution to equation (3.8). Our objective is to obtain an estimate of the ratio ∆ c = | wc / w0 | appearing in expression (3.15).

We assume that sin α/(kF ) = O(1) such that we can define the O(1) parameter α 1 = sin α/(kF ).

(A 1)

We also assume that there exists a critical point z c (different from the wall boundary) defined by

This equation is adequate for a resolution using WKBJ methods (see, for instance, [START_REF] Bender | Advanced mathematical methods for scientists and engineers[END_REF]. Far from the critical point, the solutions can be written at leading order as

where

Between 0 and z c , β is positive, so the solution is of exponential type. In this interval, the solution will then be dominated by one of the exponentials. It will be convenient to write it as w ∼ w(0)

By contrast, in the outer interval (z c , z ∞ ), the solution is oscillatory and can be written as

If kF < 1, the solution is oscillatory up to infinity (z ∞ = ∞): it must be an outgoing wave (as required by causality) which imposes B = 0. If kF > 1, z ∞ is a finite location defined by kF U (z ∞ ) = 1. The solution becomes evanescent again after the turning point z ∞ .
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The condition of matching of an oscillating solution and an evanescent solution across a turning point is classical (see [START_REF] Bender | Advanced mathematical methods for scientists and engineers[END_REF]. It gives the condition:

In the following, we write B = K ± A where K -and K + correspond to the constant when kF < 1 and kF > 1 respectively. We do not consider the special case kF = 1 for which the turning point is at infinity. The WKBJ approximations are not valid close to z c . If

) is far away from the critical layer. In this region, w is still given by (A 4) which now reduces at leading order to

This equation admits the general solutions

where

The matching with the WKBJ approximations requires

)

The solutions (A 11a,b) are not regular at z c . Close to z c , (A 11a,b) expand as

This critical layer singularity can only be smoothed by introducing viscous effects. However, this is not necessary for obtaining the relations between a -, b -and a + , b + . Indeed, when F 2 Re 1/3 1, the solution is expected to remain regular on a contour that avoids the singularity in the lower complex z-plane. This condition means that (A 14b) should correspond to (A 14a) where -z has been changed into ze -iπ in the logarithm. This yields the following conditions:

Note that these conditions could have been directly obtained by requiring (A 11a) to be valid for -π arg(z) 0. This would have implied that (A 11a) is valid for negative z 

where K o± is a constant independent of F : 

The local solution is then valid between 0 and z c and can be written for z < 0 as

where

The functions ∆ ± c can also be written as

When kF < 1, the maximum of ∆ - c is ∆ - c max ≈ 1.1, reached for X ≈ 0.42; when kF > 1, the maximum of ∆ c is not bounded. For a fixed X, its maximum value, reached when tan Φ max = -π 2 24) This maximum diverges as 4/(πX 2 ) for small X. For a fixed Φ, ∆ + c exhibits a maximum