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ABSTRACT. Heat and momentum transfer in a random generated porous media is investigated. 6 
different random porous media are generated using a Monte–Carlo (MC) procedure. The continuity, 
momentum and energy equations are solved for a row of cylinders with a square cross-section (i.e. 
rods)  representing the entire domain of a random porous medium. The microstructure properties of the 
random porous media such as the mean nearest neighbor distance and the standard deviations of 
Voronoi areas, nearest neighbor distance and neighbor orientation for each generated random porous 
medium are obtained and compared with each other. The velocity and temperature fields in the porous 
media are shown via isotherms and streamlines. The rods in the domain are classified into three groups 
as blocker, active and passive rods based on our observations from the temperature field and the 
variations of the Nusselt number of each rod. The preliminary obtained results show that it may be 
possible to predict the interfacial heat transfer coefficient in a random porous medium based on some 
microstructure properties. 
 

INTRODUCTION 
 
Coupled heat transfer and fluid flow through porous media occurs in nature and many industrial 
applications. The flow of air through a lung, water flow in soil, fluid flow through metal or ceramic 
foams, drying processes in food industry are some examples involving heat and fluid flow through 
porous media.  Microscopic or macroscopic approaches can be used to simulate heat and fluid flow in 
a porous medium. The macroscopic approach is widely used by many researchers and employed in 
many commercial codes. In order to perform a macroscopic analysis of heat transfer and flow in a 
porous medium, macroscopic properties such as permeability, interfacial heat transfer coefficient or 
thermal dispersion coefficient should be known. These macroscopic properties can be found 
experimentally. However, recent developments in computational methods facilitate the determination 
of these coefficient numerically. The velocity, pressure and temperature fields can be calculated at the 
microscale level and then macroscopic properties can be found from the obtained computational 
results.  
 
Several numerical studies related to the analysis of heat and fluid flow in a porous medium at the 
microscopic scale can be found in the literature. Nakayama et al. [2002] carried out a numerical study 
of heat and fluid flow in a two dimensional, periodic and anisotropic porous medium consisting of 
square rods. The effects of the vertical distance between the rods, the macroscopic flow angles and 
Reynolds number on the interfacial heat transfer coefficient were analyzed. Convective heat transfers 
in two dimensional periodic porous structures involving square bars were also analyzed by Lopez 
Penha et al. [2012]. It was shown that the interfacial Nusselt number does not change significantly for 
high ratios of solid-to-fluid thermal conductivity while it changes for low ratios. Another study on heat 
and fluid flow in periodic porous structures was conducted by Gamrat et al. [2008]. Correlations for the 
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determination of interfacial Nusselt number as a function of  porosity, Reynolds number and Prandtl 
number were proposed. 
 
Literature survey shows that the number of microscopic scale analyses of fluid flow in randomly 
generated porous media is less than those for periodic structures. Microscale fluid flow in different 
random arrays of cylindrical fibers were analyzed by Yazdchi et al. [2012]. The study indicated that 
there is a relationship between permeability and the nearest neighbor distances of fibers. Chen and 
Papathanasiouming [2007-2008] developed a model for permeability of randomly generated porous 
structures consisting of cylindrical fibers. A relation for determination of permeability based on the 
mean nearest inter-fiber spacing was proposed. Another pore level simulation for randomly generated 
porous media consisting of rectangular rods was carried out by Nabovati and Sousa [2007]. The study 
showed that the permeability of random porous media is lower than the permeability of regularly 
ordered media. Moreover, a correlation between the average tortuosity and the porosity of the 
considered porous medium was proposed in this study. A numerical study on heat and fluid flow for 
randomly distributed porous media was done by Rahimian et al. [2002]. The porous medium was two 
dimensional with square rods. The average and local Nusselt numbers were calculated and compared 
with the empirical data in this study. Non uniform flow and heat transfer due to the distribution of void 
fractions in random packed bed was discussed and analyzed by Guo and Dai [2010]. The analyses 
were made for Reynolds numbers between  4.6 – 56.2 which characteristic length was defined based 
on sphere diameters. The temperature field and wall effects were investigated in details. It was 
observed that the flow inhomogeneity increases with increasing inflow Reynolds number and higher 
temperature gradients were viewed for low void fractions.    
 
The aim of the present study is to investigate the effects of microstructural parameters on heat and fluid 
flow in randomly generated porous media consisting of square bars. Firstly, the random porous media 
are generated and their microstructure properties such as Voronoi area, nearest neighbor distance and 
neighbor orientation standard deviations (i.e., SD) and mean nearest neighbor distance are obtained and 
presented. The continuity, momentum and energy equations are solved for the randomly generated 
porous media and the velocity, pressure and temperature fields are obtained. These fields are shown via 
streamlines and isotherms contours. The interfacial heat transfer coefficients of different generated 
porous media are computed, numerically. Heat and fluid flow in periodic and random structures are 
compared. Rods are classified according to Nusselt number of each rod and their effects on heat and 
fluid flow. The obtained results show that overall Nusselt number of randomly generated porous media 
is generally greater than regular porous media composed of periodic inline arrangement of rods. 
However, a case for which the overall Nusselt numbers of random and  inline arrangements are almost 
equal is observed. The present study shows that it is possible to derive a relation between interfacial 
convective heat transfer coefficients and microstructure properties of a randomly generated porous 
medium.  
 

PHYSICAL MODEL 
 
The physical model considered in the present study is shown in Figure 1. A randomly generated two 
dimensional porous domain consisting of long solid bars is investigated in this study. In order to 
reduce the size of the computational domain and increase the length of the porous medium in the 
flow direction (i.e., x direction), the structure of the porous medium in the y direction is periodic; 
while the arrangement of bars in  the x direction is completely random, as seen from Figure 1. 
Hence, for our computational study, a Representative Elementary Volume (REV) which is a row of 
the considered porous medium is taken into consideration.  The height of the REV is considered as 
H while the length is 14H with a clear region without any bars at the outlet to apply the outlet 
boundary condition which is negligible gradients of all dependent variables in the flow direction. 
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The solid rods have a square cross-section with an edge of length h. In this study, the results are 
obtained for the porosity value of 0.75 and the edge of the solid rods is equal to the half of the 
height of the REV (h = H/2). The top and bottom of the REV are symmetrical and the inlet velocity 
and temperature distributions are uniform. The flow is laminar and the study is performed for air. 
The temperature of all solid rods is maintained at Tw which is higher than inlet temperature (i.e., Ti). 
The number of rods is sufficiently large to observe periodic heat and fluid flow through flow 
direction even at low Reynolds number. 
 

 
 

Figure 1. The studied random porous media and Representative Elementary Volume. 
 
 
METHOD OF GENERATION OF MICROSTRUCTURE IN THE CONSIDERED PHYSICAL 

MODEL 
 
The ‘random’ rods distribution for the studied REV is generated by using Monte–Carlo (MC) 
procedure.  Firstly, the centre locations of the square rods for a periodic, isotropic and regular porous 
structure with inline arrangement are generated. Then, the centre location of each rod is perturbed in a 
random direction with a random displacement. The maximum random displacement is fixed for all 
rods. This means that the perturbation of each rod is limited so that it cannot  enter the territory of the 
neighbouring rods. One round of perturbation is completed when all square rods are perturbed and 
have new centres. The perturbation continues until the number of perturbation round attains  the 
desired value. It should be mentioned that porosity, number of square rods, maximum allowable 
distance for rod center and number of perturbation rounds should be known before the generation of 
random distributions. In this study, the values of porosity, allowable distance, and number of 
perturbation are considered as 0.75, 0.25 and 106, respectively. 
 

GOVERNING EQUATIONS, BOUNDARY CONDITIONS AND SOLUTION METHODS 
 
The flow is two dimensional, steady and laminar while the fluid is incompressible and Newtonian. 
The thermo-physical properties of the fluid are assumed to be constant. The governing equations for 
the fluid flow are continuity and momentum equations which can be written in the following form:  
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where u and v are velocity components in x and y directions, and p represents pressure. Equations 1-
3 are solved for the fluid flow in the voids between the solid bars in order to determine the velocity 
and pressure distributions. Then, by using the obtained velocity field, the steady energy equation 
(Eq. 4) is solved to obtain fluid temperature distributions in the voids. 
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where αf is the thermal diffusivity of the fluid. Boundary conditions for the considered REV can be 
written as follows; 
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where ii Tandu  are inlet velocity and temperature, and sT  is the surface temperature. The heat flux 
at any point between the solid and fluid phases at the interface can be calculated by using Fourier 
law due to no slip boundary condition. The integral of heat flux over the total interface area yields 
heat transfer rate. Then, the interfacial heat transfer coefficient can be determined as follows:  
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where sfh is the interfacial convective heat transfer coefficient, kf is the thermal conductivity of 
fluid and ssA  the specific solid-fluid interface area which is the total solid-fluid interface area per 
unit volume of a porous medium. In this study, the interfacial convective heat transfer coefficient 
for each cell in the flow direction is calculated based on the difference between the bar surface 
temperature and the volume average of fluid temperature in its Voronoi polygon. Therefore, the 
intrinsic volume average of the fluid region <Tf>f is calculated by using Voronoi area of each solid 
bar. The interfacial Nusselt number for each rod can be defined as follows: 
 

f

sf
rod k

Hh
uN =  

(
(10) 

 
where H is the height of REV. The average Nusselt number of the porous media is the arithmetic 
average of the Nusselt number of the rods since the size of all rods are equal. 
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The above governing equations are solved using a commercial software based on finite volumes. 
The power law scheme is used to treat the discretization of convection terms (i.e., inertia terms) in 
Eqs. (2) and (3).Based on our numerical experience, the over-relaxation values for continuity, 
momentum and energy equations are 0.3, 0.7 and 1 respectively. The residual convergence for flow 
equations are 10-9 for continuity, momentum and energy equations. Our observation showed that it 
will be sufficient to discretize the channel height to 100 whereas the channel length is divided into 
1400 providing square meshes for the computational domain.   
 

CHARACTERIZATION OF MICROSTRUCTURE PROPERTIES 
 
In order to distinguish different random porous media from each other and to predict the important   
characteristic parameters which affect heat and fluid flow through the random porous media, some 
microstructural statistical descriptors are required. Literature survey shows that several statistical 
and structural descriptors can be used to characterize a random porous medium.  
 
Voronoi Tessellation and standard deviation of Voronoi areas 
 
A plane involving many points can be divided into sub-regions so that each point has a territory 
which is closer to that point than to other points. The combination of the territories results in a 
pattern of packed convex polygons covering the whole plane. This constructed pattern is known as 
the Dirichlet tessellation of the points and the sub-regions called as Voronoi cells [Bowyer, 1981]. 
A periodic and isotropic porous medium with inline arrangement may have Voronoi cell polygons 
with 4 sides and vertex angles of 90o while irregular Voronoi polygons are obtained for a non-
isotropic and non-periodical porous medium as shown in Figure 2. 
 

  
(a) (b) 

 
Figure 2. Voronoi polygons for a plane containing 100 points a) periodic and isotropic distributed 

points b) irregular and non-periodic distributed points 
 
Voronoi polygon areas of the studied domain may be used to have an idea on the distribution of the 
solid rods. The standard deviation of the areas of the Voronoi polygons can also be used to 
determine the periodicity level of a porous medium. In a periodic porous medium, all Voronoi 
polygon areas are equal; hence the standard deviation of the areas is zero. When the distribution of 
the rods diverges from a periodic structure, the standard deviation will be greater than zero. 
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Nearest Neighbour Concept  
 
When a side of a Voronoi polygon is shared by the territory of two rods, these rods are neighbors. 
The neighbor distances are center to center distances between neighboring rods. Figure 3 shows the 
distribution of the nearest neighbors of a randomly generated porous medium. The red lines 
indicated the Voronoi polygons while the black lines show the nearest neighbors for each rod. As it 
can be predicted from the Figure 3, the distribution of neighbor distances of different randomly 
generated porous media is different. Therefore, the distribution of the nearest neighboring can be 
used as microstructure properties of a random porous media. 
 
The standard deviation of the nearest neighbor distance of a periodic and isotropic porous medium 
with inline arrangement should be zero because of the fact that the distances between all square rods 
are identical. However, the nearest neighbor distance changes with the irregularity. Hence, the 
standard deviation of the nearest neighbor distance can also be used to specify a random porous 
medium. Moreover, the nearest neighbor orientation, which is the angle of nearest neighbor line 
with horizontal axis in clockwise direction, can also be used as a microstructural parameter for 
specification of a random porous media. The average of the nearest neighbor distance of the entire 
domain can also be used as a characteristic descriptor [Chen and Papathanasiouming 2007]. 
 

 
 

Figure 3. Nearest Neighbors in a random domain 
 
 

RESULT AND DISCUSSION 
 
In order to verify the obtained results, the interfacial Nusselt number for a periodic porous medium 
consisting of square rods with inline arrangement is obtained and compared with the available 
values in the literature (refs). The Figure 4 shows the comparison of the interfacial Nusselt number 
of the present study with the reported interfacial Nusselt numbers for a periodic porous medium 
consisting of an inline arrangement of square rods with a  porosity of 0.75. As can be seen, a good 
agreement exits between our results and the reported ones which validates the correctness of the 
present study.  
 
The microstructure properties of generated random porous media  
 
In this study, a periodic and 6 different random porous media consisting of square rods with a 
porosity value of 0.75 are studied. The Voronoi polygons along with the nearest neighbor 
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distributions for a sample of the studied random porous medium are shown in Figure 5. The blue 
lines around the black square rods indicate Voronoi polygons while the red lines between centers of 
the square rods indicate nearest neighbors’ distances for each rod.  
 

 
Figure 4. The comparison of interfacial Nusselt number obtained by the present study with the 

results reported in the literature.  
 

 

 
 

Figure 5. Voronoi polygons and nearest neighbor distances for each rod for a sample studied 
domain 

 
Four different characteristics parameters are used to characterize the microstructure of the generated 
porous media and to distinguish them. These microstructural properties are standard deviation of 
Voronoi areas, nearest neighbour distances, neighbour orientation and finally mean nearest 
neighbor distance. Table 1 shows the calculated values of the aforementioned statistical descriptors 
for 6 random porous media named as Case Random 1 (i.e., CR1) to Case Random 6 (i.e., CR6). As 
it can be seen from Table 1, SD Voronoi areas, nearest neighbour distance and mean nearest 
neighbour distance are zero for the periodic and isotropic structure with inline arrangement. 
However, they are all different from zero for random porous structures. The maximum standard 
deviation of Voronoi areas, nearest neighbor distances, neighbor orientation and mean nearest 
neighbor distance are 0.124 for CR3, 0.152 for CR5, 1.727 for CR6 and finally 0.831 for CR1, 
respectively. Based on the obtained results, there is no relation between values of microstructural 
properties of different random porous media. 
 
Thermal behaviour of the studied random porous media 
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As it was mentioned before, the velocity, pressure and temperature distributions are obtained for 6 
different random rod arrangement when Re H = 100 which characteristic length defined as the height of 
the REV. Figure 6 shows the streamlines for the considered two REVs which have periodic inline and 
random arrangements.  
 

Table 1 
Microstructural properties of Studied Random Geometries (CR) 

 
Characteristics Parameters Periodic CR1 CR2 CR3 CR4 CR5 CR6 

SD Voronoi Areas  0 0.098 0.072 0.124 0.077 0.043 0.063 
SD Nearest Neighbor Distance 0 0.107 0.121 0.127 0.131 0.152 0.101 

SD Nearest Neighbor Orientation 0.642 1.546 1.706 1.649 1.710 1.539 1.727 
Mean Nearest Neighbor Distance 1 0.831 0.795 0.791 0.731 0.770 0.780 

 
Figure 6 (a) shows that the streamlines in a periodic structure are almost horizontal for upper and lower 
channels of the rods. Moreover, symmetrical vortices appear between the left and right walls of solid 
rods. Figure 6 (b) shows the streamlines in CR1. As expected, streamlines are not regular and flow 
paths around the rods are different from each other. The vortices with different sizes occur between 
walls at different locations due to the random positions of the solid rods.  
 

 
(a) 

 
(b) 

 
Figure 6. Streamlines in two considered REV for Re =100 

a) Periodic porous media with inline arrangement b) Randomly generated porous media (CR1) 
 
Figure 7 shows the temperature distributions for 3 different random arrangements as CR1, CR2 and 
CR3. As it can be seen, the flow enters  the 2D random porous medium from the left side and leaves 
the domain at the right side. Our observations showed that it is possible to classify rods into three 
groups as blocker, active and passive rods according to their effects on penetration of heat through the 
porous media. Each group is explained below. 
 
Blocker rods: The blocker rods are those whose surfaces touch each other in the transverse direction of 
flow or they are very close to each other such that no or very small rate of fluid can flow between 
them. The blocker rods in Figure 7 are shown by black coloured rectangular boxes. If the gap between 
two rods behind the blocker rods is sufficiently large, fluid strikes the rods behind the blocker rods and 
then moves into the two channels behind the blocker rods perpendicular to the main flow direction. 
This causes the increase of heat transfer of the rods behind the blocker rods. Consequently, Nusselt 
number of the rods behind the block rods may  increase. Figure 8 shows Nusselt number of the rods for 
CR1. As can be seen, the Nusselt number of rod behind the blocker rod increases due to the change of 
flow direction. 
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Active rods:  Active rods are the rods with a small distance between them such that fluid can flow in 
between. Fluid flowing towards an active rod strikes with the front wall of the rod and a part of the 
fluid flows through the gap between the rods and the rest of fluid moves toward the edges. The active 
rods in Figure 7 are shown by black coloured hexagon boxes. As expected, Nusselt number of the 
active rods should be higher since fluid collides with the front wall and flows over top and bottom 
horizontal walls of the rod as can be seen in Figure 8. It should be mentioned that overall Nusselt 
number of random porous media increases with an increase of the number of active rods. 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 7. Temperature distribution and active rods (in a hexagon), passive rods (in an ellipse), blocker 

rods (in a rectangle) in random 2D porous media, a) CR1 b) CR2 c) CR3. 
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Figure 8. The effect of active, passive and blocker rods on average Nusselt number for CR1 
 

Passive rods:  Passive rods are the rods which are almost aligned behind a rod and they do not change 
the flow direction, effectively. The Nusselt number of a passive rod is considerably smaller than that of 
an active rod and this reduces the overall Nusselt number of the random porous media. Passive rods are 
shown by black colour ellipses in Figure 7. The comparison between Nusselt number of passive and 
active rods can be seen in Figure 8.  
 
The average Nusselt numbers of each rod for 6 different porous media are shown in Figure 9.  
Moreover the average Nusselt number of each rod of a periodic porous media with inline arrangement 
is shown in the same figure as a continuous line. As seen, the average Nusselt number of most rods in 
random porous media is greater than periodic inline arrangement. The Nusselt numbers of some rods in 
random porous media are around inline arrangement of rods. 

 
 

Figure 9. The average Nusselt number of each rod for the studied random porous media compared to 
the average Nusselts number for the inline arrangement of rods.   

 
The overall Nusselt number of generated random porous media and the periodic one are compared in 
Figure 10. The overall Nusselt number of random porous media is less than the periodic inline 
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arrangement for the most cases. The rate of decrease of overall Nusselt number is different for different 
random porous media. 
 

 
 

Figure 10. The overall Nusselt number for periodic inline arrangement and random structures  
 
 

 
CONCLUSION 

 
In this study 6 different random porous media involving 10 square rods are generated. The continuity, 
momentum and energy equations are solved for a row of rods representing the entire porous medium. 
The microstructure properties of each random porous medium which are standard deviations of 
Voronoi area, nearest neighbor distance and neighbor orientation and mean nearest neighbor distance 
are obtained to specify the generated domain. Nusselt numbers for each rod of the studied domain are 
determined based on the Voronoi area. The rods are classified into three groups as blocker, active and 
passive rods according to their effects on heat and fluid flow. There are rods in random porous media 
whose Nusselt number is greater than the inline periodic arrangement. However, the overall Nusselt 
number of random porous media is generally less than the one for the periodic one composed of an 
inline arrangement of rods. 
 
For future study, the relation between the overall and/or average Nusselt numbers of random rods and 
microstructure properties of random porous media should be examined. Criteria for classification of 
rods into blocker, active and passive types of rods can be found and then based on number of these 
rods a relation for prediction of overall and/or average Nusselt numbers according to geometrical 
parameters may be found. 
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