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Abstract — Volume integral formulations for solving electromagnetic problems in the frequency domain are proposed. Firstly, it is 
based on a magnetic flux B and current density J facet interpolation for representing the electromagnetic problem through an 
equivalent circuit. Secondly, magnetic vector potentials A and electric vector potential T are considered thanks to discrete geometric 
approach. The formulations are particularly well adapted for solving electromagnetic problems with large air domains.  
 
Index Terms — volume integral formulation, equivalent circuit, facet and edge elements, vector potential, electromagnetism. 

 
 

I.  INTRODUCTION 

ifferent works have shown the interest of using Volume 
Integral Method (VIM) for 3D magnetic field analysis [1] 

the main advantage being that the air region does not need to 
be meshed. On the other hand, Whitney facet interpolation for 
current density J and magnetic flux density B is well suited for 
representing an electromagnetic problem through an 
equivalent circuit [2]. This approach provides a solution [3] 
that ensures the conservation of flux and current through the 
facets of the mesh. In this work we propose an alternative 
vector potential approach which is derived from the previous 
method thanks to the use of discrete geometric approach.  

II. EQUIVALENT CIRCUIT APPROACH THROUGH FACET 

ELEMENT AND VOLUME INTEGRAL FORMULATION 

Let us consider a problem with volume magnetic regions 
Ωm (presence of magnetization), volume conductive electrical 
regions Ωc (presence of current density) and coils (imposed 
current density J0). The two laws linking respectively the 
current density J to the electric field E (in Ωc) and the flux 
density B to the magnetic field H (in Ωm) are expressed as 
follow: 

 
B     H EJ =                       ν=σ  (1) 

 
In [3], the authors propose to solve electromagnetic 

problems through a volume integral formulation based on 
Withney first order facet finite elements discretization for B 
and J (the mesh is limited to Ωm for B and to Ωc for J) : 
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where wj and wg are facet shape functions and Ij, Ψg the fluxes 
across the facets. The problem can then be represented by two 
equivalent circuits (see Fig. 1), dual meshes of the primal 
meshes used for B (Ωm) and J (Ωc). For a low frequency 
problem we obtain the circuit equation system: 

 

 
 

Fig.1 Circuit representation for magnetic regions. A similar representation is 
obtained for electric regions (with ∆V and I) 
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where ω is the angular frequency and r is the distance 
between integration points in the cases of double integration 
with the Green kernel. Source terms produced by coils are 
expressed such as: 
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The system (3) can be solved thanks to the use of a circuit 

solver such as mesh current method. Circuit equations Mm 
{ ∆Φ}=0 and Mc {∆V}=0 [3], where Mc and Mm are the 
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branch-fundamental independent loop matrices,  strongly 
imposes the solenoidality of the magnetic flux B and current 
density J. In the next section we propose to solve equations 
(3) through an alternative vector potentials A-T  formulation 
thanks to discrete geometric approach [4] [5]. 

III.  A-T  DISCRETE GEOMETRIC APPROACH 

 
Let us consider usual connectivity matrices of a primal 

mesh: G between edges and nodes, C between faces and 
edges, and D between volumes and faces. Matrices of the dual 

complex are then defined byG
~

, C
~

, D
~

with tDG
~ = , tCC

~ = ,
tGD

~ −=  [4],[5].   
On the primal meshes on which B and J are interpolated, 

the connectivity matrices Cm and Cc link the integrals of 
magnetic and electric vector potential along the edges 
(denoted A and T), with Ψ and I, the magnetic fluxes and the 
currents through the facets: 
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On the dual meshes, which define the equivalent circuits, 

the connectivity gradient matricesmG
~

and cG
~

 link edges and 

nodes such as: 
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By considering that G
~

=Dt and D.C = 0 [4], we have: 
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From (3) and (7), we then obtain the system to be solved 

depending of the unknowns A and T: 
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IV.  APPLICATION AND DISCUSSION 

We have tested this A-T formulation on the problem 
proposed in [3] composed of a source coil, a magnetic region 
and a conducting region. A reference solution is obtained with 
a T-φ Finite Element Method (FEM) at any frequency (from 0 
to 1000 Hz). A mesh of 3,700 elements is used for volume 
integral A-T formulation, which allows obtaining a solution 
very closed to FEM (differences of less than 1.5% on the 
current losses, see Fig.2). 

 The A-T  solution is strictly the same as that obtained by 
the B-J formulation proposed in [3]. We can notice that for the 

B-J formulation, the matrix of the final system to be solved is 
 

 
Fig. 2 Comparison of eddy current losses computed by FEM and VIM 

obtained by replacing in (8) the matrices Cc and Cm by the 
independent loop matrices Mc and Mm, and is then very 
similar to A-T formulation. In practice, A-T  formulation has 
the advantage of not requiring the determination of 
independent loops, which can be time consuming. Moreover, 
since the system is compatible, an iterative solver provides a 
unique solution without gauge condition [6] and a better 
convergence is observed with A-T formulation. 

On the other hand B-J formulation allows to connect easily 
any external electrical circuit and to avoid any connectivity 
problem. In such cases, a coupling between the two 
approaches is then considered. It simply consists to uses mesh 
current (J formulation) instead of T in not simply connected 
conducting regions, and then determine independent loop 
matrix Mc instead of the use of connectivity matrix Cc. 

V. CONCLUSION 

Volume integral approaches combining A for magnetic 
region and T or J for electric regions are particularly well 
suited to model electromagnetic devices with large air domain. 
Moreover, in the case of simply connected conducting region, 
the formulation does not require the determination of 
independent loops and can be solved with an iterative solver 
without imposed a gauge condition. 
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FEM - with magnetic material
VIM - with magnetic material
FEM - without magnetic material
VIM - without magnetic material


