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A 3-D inductive coupling problem in a transmission line right-of-way is analysed with the generalized Partial Element Equivalent
Circuit (PEEC) method. This new approach does not rely on the parallelism with the transmission line and permits the determination
of the induced current density in underground objects at arbitrary positions and orientations.

Index Terms—Eddy Currents, electromagnetic coupling, generalized partial element equivalent circuit (PEEC) method, integral

equation, transmission lines.

I. INTRODUCTION

HE inductive coupling between high voltage transmission

lines and other structures sharing a common right-of-
way is unavoidable. The numerical techniques used for the
modelling of this class of problems frequently take advantage
of the parallelism between the transmission line and elongated
structures, as in the case of buried pipelines or transportation
rails placed in a transmission line right-of-way [1] [2].

This paper analyses the modelling of an inductive coupling
situation in which the referred hypothesis of parallelism be-
tween the transmission line and the object of interest is not
required. The generalized Partial Element Equivalent Circuit
(PEEC) integral method [3] is employed to determine the
induced current density in an object beneath the soil surface
and in the vicinities of a three-phase transmission line.

II. PEEC ANALYSIS OF AN INDUCTIVE COUPLING

A schematic view of the right-of-way under analysis is
available in Fig. 1. The buried object under investigation has
a prismatic and elongated shape and is much more conductive
than the surrounding soil, which is supposed to have a uniform
and isotropic resistivity. The PEEC approach arises from an
application of the Galerkin Residual method to the integral
equation
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which states the frequency domain relationship between the
current density J and the electrical potential V' in a three
dimensional domain ) [3]. The media in ) are supposed
to be non-magnetic, non-dielectric and with conductivity o.
The procedure requires a finite element approximation for J.
Its particular choice and the assembly of the corresponding
system of equations are detailed in the sequence.
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Fig. 1. The right-of-way (a) and the conductive object underground (b).

A. Current density discretization and external circuit

Fig. 2 shows the delimitation of the domain 2 and its
decomposition into two subregions. A sufficiently large soil
volume €y bounded by the earth surface and containing
the embedded underground object is defined. In Qy, J is
approximated by vector facet elements [4]. The transmission
line Qp is represented by line elements, each one carrying
a constant complex current and with one long element per
phase conductor. This corresponds to the choice of zero-
order interpolation functions with a pre-defined direction,
limiting the number of additional degrees of freedom. After
the Galerkin projection, this interpolation scheme yields the
following system of equations:

([R] +jw[L]) 7] = [AV], 2

in which [R] and [L] may be regarded as equivalent resistance
and inductance matrices. This system gives an equivalent
circuit interpretation of (1) in terms of both the facet and line
currents in [I], and as a consequence (2) may be coupled to
an external network and analysed with an electrical circuit
solver [3]. Fig. 2 also shows the required external circuit
connections to provide current excitation and to establish
an underground path for the flow of zero-sequence current
components (if an unbalanced operation condition was to be
considered).
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Fig. 2. The computational domain and its connections to the external circuit.

B. Block integration and assembly of the system of equations

Matrices [R] and [L] have a 2X2 block structure due to the
interpolation scheme adopted for J. While [R] is sparse, [L]
is densely populated and two of its blocks are dealt with in
a particular way. The block corresponding to the Qy x Qy
interaction is compressed using the 7{-matrix representation
and treated with the HCA technique [5]. The block associated
to the 2 x ) interaction is equivalent to the inductance
matrix of the transmission line. This block is substituted by an-
alytical computations of the conductor’s self inductances and
of the mutual inductances between phases. The two remaining
blocks correspond to the inductive coupling between 2, and
Qy. Only one of these blocks needs to be computed since the
other may be obtained by matrix transposition.

III. APPLICATION AND RESULTS

Two relative positions between the line and the object are
considered. For each one of them, the complete equivalent
network arising from the numerical scheme has approximately
15000 branches and 9500 independent current loops.

First, the longest dimension of the object is placed in par-
allel to the line, in a configuration that permits the validation
of the PEEC numerical scheme by comparison with the 2-D
FEM solution of a related problem. In this latter approach
the buried object is supposed to have an infinite length and
J has a single component in the direction parallel to the
transmission line. Due to a symmetry argument, this solution
may be compared with the PEEC solution obtained in the mid-
section of the buried object, which is highlighted in Fig. 1(b).
A very good agreement between the two solutions is verified.
For instance, if the mean current density is computed on a
0.256 x 0.250 patch in the upper corner of the referred mid-
section, an error lower than 2.15% is verified between both
solutions (l J PEEC | = 17.39 A/m2, IJFEMZ_D | = 17.77A/m2,
0 = skin depth ~ 0.205 m).

In a second analysis, the object is rotated and positioned
with its largest dimension along a direction orthogonal to
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Fig. 3. Current density in the horizontal mid-section of the buried object.

the transmission line. The resulting configuration cannot be
accurately modeled by a 2-D approach as previously. It can be
nevertheless handled by the PEEC technique as before, and the
current density distribution inside the object was once again
determined by this procedure. Fig. 3 provides a sample of this
distribution by showing the absolute value of each component
of J on the horizontal mid-section of the object (z = —0.3 m).

IV. CONCLUSION

A PEEC approach for the analysis of an inductive coupling
problem involving a three-phase line and an underground
object was presented. Arbitrary relative positions between the
transmission line and the object could be considered, and the
method also avoids the discretization of inactive air regions.

The current density distribution information obtained pro-
vides base data for the study of AC corrosion phenomena.
Additionally, the electric potential solution obtained with the
equivalent circuit interpretation may also be employed for the
evaluation of dangerous induced overvoltages.

The previously discussed applications considered only the
case of a balanced system of three-phase currents flowing in
the phase conductors of the transmission line. Future work
on this subject intend to investigate the case of unbalanced
operation and the consequent superposition of conductive
coupling phenomena, resulting from the flow of zero-sequence
current components in the soil.
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