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Abstract
Recent food crises have highlighted the need to better understand the between-year variability of
agricultural production. Although increasing future production seems necessary, the
globalization of commodity markets suggests that the food system would also benefit from
enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop
an analytical expression decomposing global crop yield interannual variability into three
informative components that quantify how evenly are croplands distributed in the world, the
proportion of cultivated areas allocated to regions of above or below average variability and the
covariation between yields in distinct world regions. This decomposition is used to identify
drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat)
over the period 1961–2012. We show that maize production is fairly spread but marked by one
prominent region with high levels of crop yield interannual variability (which encompasses the
North American corn belt in the USA, and Canada). In contrast, global rice yields have a small
variability because, although spatially concentrated, much of the production is located in regions
of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these
contrasted land use allocations, an even cultivated land distribution across regions would reduce
global maize yield variance, but increase the variance of global yield rice. Intermediate results
are obtained for soybean and wheat for which croplands are mainly located in regions with close-
to-average variability. At the scale of large world regions, we find that covariances of regional
yields have a negligible contribution to global yield variance. The proposed decomposition could
be applied at any spatial and time scales, including the yearly time step. By addressing global
crop production stability (or lack thereof) our results contribute to the understanding of a key
aspect of global food availability.

S Online supplementary data available from stacks.iop.org/ERL/9/114011/mmedia
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1. Introduction

Adequately feeding the world growing population is the
global food system foremost function [1]. Since the beginning
of the green revolution, increase rates of agricultural output
outpacing global population growth rates have fueled the idea
that increasing average production is the answer to global
food insecurity. Persistence of endemic hunger however
challenges the view that profusion of food is sufficient to
ensure worldwide stable access to food [2]. Available global

assessments further suggest that undernourishment can affect
an additional fraction of the population because of interannual
variability of production or during crises (e.g., in 2008). In
fact, definitions of global food security have evolved to
integrate a stability pillar [3].

The challenge of feeding nine billion people at the 2050
horizon has led many recent studies to focus on long-term
trends in productivity [4–6] e.g., by estimating average crop
yield increase rates [7, 8]. The emphasis placed on the need to
increase productivity trends may however tend to overshadow
the importance of also considering accompanying interannual
variability. This is despite the latter having been recognized as
an important factor influencing price volatility [9, 10].
Accounting for interannual variability of future crop yields in
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equilibrium models and food balance sheets is likely to
increase the reliability of food security studies conclusions
[11–13].

Several factors may influence yield interannual varia-
bility (hereafter YIV), e.g., climate variability [14–16],
farmers’ practices [14], or economic incentives [9, 10]. Evi-
dently, the level of temporal variability varies greatly
depending on the spatial scales at which it is considered [18].
As a first step, this study describes and analyzes YIV at the
subcontinental (geographical world regions) and global scale
while leaving aside the issue of the underlying explanatory
factors. We focus on three key staple crops and one oil crop
i.e., maize, wheat, rice (roughly 92% of total cereal produc-
tion and 661 million hectares in 2012) and soybean.

Specifically, we address two main questions: how dif-
ferent are world regions in terms of YIV; how does the dis-
tribution of cultivated areas among world regions affect
global YIV?

To make progress, we define a practical measure of YIV
(as the variance of yield residuals) and propose a mathema-
tical decomposition that analytically connects global to
regional YIV using three information-rich components
(section 2). These are (i) a term proportional to the Simpson
diversity index (adapted to measure the relative spatial con-
centration of production in time), (ii) a term depending on the
proportions of cultivated areas allocated to regions of above
or below average variability and (iii) a weighted sum of the
co-variation between regional yield residuals.

Definitions and the analytical development are presented
in section 2 along with the dataset. We apply the decom-
position in section 3 and uncover the various underlying
trade-offs between components of global YIV. In the dis-
cussion (section 4) we expose the contrasts between maize,
rice, soybean and wheat yield variability and identify the way
global yields would be impacted by changes in land use
distribution.

2. Material and methods

2.1. Data

Our dataset includes yield and area time series extracted from
the FAOSTAT database [19] for four crops species (maize,
rice, soybean and wheat) in all FAOSTAT world regions
excluding Melanesia, Micronesia, Polynesia and the Car-
ibbean. We thus consider 17 regions for maize, rice and
soybean and 18 for wheat (adding Northern Europe). For
most regions the time series extend from 1961 to 2012, except
in Central Asia (1992–2012).

We define a yield residual rit at year t in a region i as

μ= −r Y , (1)it it it

where Yit is the observed yield (t/ha) and μit is the expected
yield value (t/ha) at year t for a given crop in the ith region.
Values of μit are estimated using linear, quadratic or cubic
regression models. These models are fitted by ordinary least
squares, using the R function lm for each yield time series for

each crop species at each geographical unit. The model
showing the lowest Akaike Criteria (AIC) is selected to
detrend yield time series for each crop and each region. We
check for absence of autocorrelation in residuals.

For simplicity, we use the word yield ‘anomaly’ instead
of yield ‘residual’ to characterize detrended yield time series.

We estimate regional yield interannual variability Vi for a
given crop from the variance of regional yield anomalies as
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where ri is time-average of anomalies (equal to zero by con-
struction). Note that we also compute a standard deviation for
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2 (figure 1.)

2.2. Analytical decomposition of global yield anomalies

We define below a mathematical expression (equation (5))
connecting regional yield anomalies (equation (1)) to global
yield anomalies. We calculate the variance of global yield in a
second step (equation (6)). Two limit cases are presented at
the end of the section.

Let Rt be the global anomaly (i.e., the difference between
global yield and global expected yield value at the world level
at time t) for a given crop, μ= −R Ȳ ¯t t t, with ω= ∑ =Y Yt̄ i
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the proportion of the world

cultivated area allocated to the ith region at year t, and N the
total number of regions where the considered crop is grown.

The squared value of Rt is defined by:
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with μ= −( )r Yit it it
2 2

(squared regional yield anomaly in
t2/ha2), cijt , the product of regional yield anomalies in regions

i and j, i.e., μ μ= − −( )( )c Y Yijt it it jt jt in t2/ha2.

We introduce δit as the difference between squared yield
anomaly in the ith region rit

2 and the mean of squared regional
yield anomalies over all regions at each time step (i.e., the
interregional yield variance = ∑ =v rt N i

N
it

1
1

2), further noted

δ = −r vit it t
2 (t2/ha2). This difference can be negative (or

positive) if the squared residual in a given region is higher
(smaller) than the average over all regions.
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Figure 1. (a)–(h). (a)–(d). Box plot of yield anomalies (t/ha). Yield anomalies calculated each year between 1961 and 2012 in all producing
regions for maize (a), rice (b), soybean (c) and wheat (d). Box plot range corresponds to the 25th, 50th and 75th percentile and arms extend to
minimum and maximum values. Regions are ordered according to decreasing variance (calculated as time-average squared anomalies). (e)–
(h). Barplot of yield anomaly standard deviation (t/ha) (equation (2) for 1961–2012. 95% Confidence intervals are calculated from 1000
bootstrap iterations. Dotted line is the average standard deviation for all regions.
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We then get from equation (3)
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As the Simpson diversity index can be defined by
ω= ∑ =St i

N
it1

2 , we finally get from (4)
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Equation (5) decomposes squared global yield anomalies
at a given year as a sum of three terms (in t2/ha2): Γ = v St t t1 ,

Γ ω δ= ∑ =t i
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Equation (6) relates global yield variance V to three
additive components Γ Γ Γ, ,1• 2• 3•. Each of these components
depends on yield anomalies and on the proportions of culti-
vated areas and are all expressed in t2/ha2. Note that although
none of the individual components actually corresponds to a
variance, their sum does. The three components can be esti-
mated independently using regional yield anomalies and
proportion of cultivated areas derived from FAOSTAT data.
Importantly we also compute values of Γ ω δ=it it it2

2 , i= 1,…,
N, i.e., the regional contributions to component 2, for each
region, but only present area proportions for the most
important regions in figure 3.

There are a few limit cases of equation (5) that can be
explored. In particular we investigate two extreme situations
in terms of land allocation. In the first limit case, all cultivated
areas are allocated in one region only (region k):
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In this case, the global yield variance is simply equal to
the yield variance in the region where all the cultivated area is
allocated (region k).

In the second limit case, all cultivated areas are evenly
distributed among the N world regions:
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ω Γ Γ

Γ ω δ

= = … = = = ∑

= ∑ = ∑ − = ∑ − ∑

>

= = = =( )
i S c

r v r v

, 1 , , , , 2 ,

.

it N t N t
v

N t
N j i ijt

t i
N

it it i
N

N it t
N i

N
it N i

N
t

1 1
1 3

1

2 1
2

1
1 2 1

1
2 1

1

tt

2

2 2 2

As

= ∑ =v r ,t N i
N

it
1

1
2

we get

Γ = ∑ − ∑

= − =
= =r v

Nv Nv 0

t
N i

N
it N i

N
t

N
t

N
t

2
1

1
2 1

1

1 1

2 2

2 2

In this second limit case, we thus get
= + ∑ >R c2t

v

N N j i ijt
2 1t

2
and = ∑ + ∑ ∑= > =V c2

T t
T v

N N j i t
T

ijt
1

1
1

1
t

2
.

The value of V thus depends on the mean of squared regional
yield anomalies and on co-variation between yield anomalies
in distinct regions. If the covariance between rit and rjt is

negligible across time, then = ∑ =V
T t

T v

N

1
1

t .
Regional yield anomalies and proportions of cultivated

areas are calculated from FAOSTAT data for the period
1961–2012. This enables us to calculate regional yield var-
ianceVi (equation (2)) for each crop, and global yield variance
V (equation (6)) with its three components, for each crop over
the entire time period (see result section) and over shorter
time windows (see SI). Note that a comparison of the results
obtained for different time periods shows that the respective
values of each components are fairly stable in time.

3. Results

3.1. Levels of yield variability are regionally contrasted

Figure 1 shows the time distribution of regional yield
anomalies (equation (1)) for maize, rice, soybean, and wheat
(panels a to d). These distributions differ among crop species;
differences between minimum to maximum yield anomalies
range from 2 (t/ha) for soybean to 6 (t/ha) for rice. Maize and
rice regional yield anomaly distributions are asymmetrical
towards negative values in the topmost region (i.e., North
America and Oceania respectively). Soybean yield anomaly
distributions are more similar among regions and wheat
asymmetry is linked to one region only with highest yield
positive anomaly (i.e., Northern Europe).

Standard deviations of yield anomalies calculated per
region per crop over the totality of the time period are also
displayed (figures 1(e)–(h)). We find large inter-regional
differences especially for rice (yield anomaly standard
deviation ranging from 0.073–1.094 t/ha) but also for maize
(0.047–0.638 t/ha). Standard deviation confidence intervals
(calculated from 1000 bootstrap samples) indicate that regions
with highest standard deviation are significantly different
from the average standard deviation calculated over all
regions (dotted line in figures 1(e)–(h)). Groups of regions
that are significantly above average are clearly distinct from
the ones that are below average with a third group of regions
not being significantly different from average (this is one
region for maize, four for rice and soybean and six for wheat).
Although some regions do not significantly differ in terms of
standard deviation, at least two groups of regions with low
and high standard deviations can be identified for each crop.
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3.2. Concentration of production higher for soybean and rice
than for wheat and maize

Figure 2 illustrates the evolution of cultivated area propor-
tions for regions totalizing at least 75% of global cultivated
areas over the study period. The Simpson diversity index
which was first developed to characterize species diversity
[20] is here used to reflect the evolution of the spatial
repartition of cultivated areas among world regions (see
inserts in figure 2). The index indicates heterogeneity for high
values (i.e., a concentration of production in a few regions)
and homogeneity at low values (i.e., a more even distribution

of hectares among regions). Highest values of the Simpson
index are obtained for soybean and to a lesser extent, rice. It
indicates that soybean production is the most spatially con-
centrated followed by rice with maize and wheat exhibiting
comparable levels of heterogeneity in particular at the end the
time period. While maize and rice Simpson indices remained
somewhat constant during the study period, wheat and most
notably soybean Simpson indices show a decreasing trend
with some differences. Wheat index shows a monotonous
decreasing trend followed by a stabilizing period. On the
other hand, the spatial spread of soybean production appears
to be marked by three consecutive periods.

Figure 2. (a)–(d). Spatial repartition of cultivated areas among regions. Time series of area proportions for cultivated land for regions
totalizing at least an average of 75% of total cultivated areas during the study period. This is six regions in total for maize (a), 5 for wheat (d)
and 3 for rice (b) and soybean (c). Insert: Simpson index time series for each species (1961–2012).
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These patterns can be explained by the dynamics of area
proportions (figures 2(a)–(d)). A close look at the Simpson
index for soybean reveals a short increase until 1968
(reflecting an increase in the concentration of production in
North America) followed by an overall decrease of the index
during 1968–1993. The trend observed in 1968–1993 is due
to the accession of South America to significant proportions
of total cultivated areas (i.e., from less than 2% in 1960 to
almost 30% in 1993, see figure 2(c)). After 1993, proportions
of soybean areas allocated to Eastern Asia and to North
America still follow a decreasing trend, and the soybean
production becomes more and more concentrated in South
America (about 45% of the total soybean area in 2010). But,
although the replacement of Eastern Asia and North America
by South American areas initiated a concentration of pro-
duction, soybean production is less concentrated in 2012 than
it was in 1961 when only two regions totalized above 90% of
total areas (i.e., Eastern Asia and North America for about one
fourth of actual surfaces).

American maize production occupies more than 20% of
global maize areas over the totality of the time period.
Towards the end of the period, Eastern Asia maize areas
(China among three other countries) also reach about 20% of
world maize areas and, together with Eastern Africa areas
(ranging from Ethiopia to Madagascar) replacing South and
Central America and Eastern Europe areas (figure 2(a)). The
actual repartition of land among regions is fairly spread out
with a total of seven regions producing 84% of global maize
production on 78% of total areas, on average over the study
period. Note that maize Simpson index has the lowest values
of all crop species (i.e., values ranging between 0.11 and
0.13), suggesting that maize production is less spatially
aggregated than the other crops.

Rice is predominantly produced in Asia; in Eastern Asia
(about 40% of total production on average over the study
period), Southern Asia (∼29%) and Southeastern Asia
(∼23%). Rice production is spatially concentrated as revealed
by the relatively high Simpson index (about 0.3 over the time
period); on average, the three above-mentioned regions tota-
lized above 90% of the production on above 90% of global
cultivated areas (figure 2(b)). The most important region in
terms of cultivated areas and production is Southern Asia
covering a stable 40% of global areas throughout the period.
A notable development is the increase -in particular after the
1990 s- in total and in proportion of South Eastern Asia rice
areas (especially Thailand and Indonesia, among 11 coun-
tries). Eastern Asia areas remained somewhat constant but
decreased in proportion (figure 2(b)).

Five regions totalize about 76% of global wheat areas
over the study period. Wheat Simpson index decreases from
about 0.2 to about 0.13 over the time period. Wheat pro-
duction is thus more spread out than rice and soybean and
about equivalent to maize. Wheat prominent feature is the
collapse of Eastern Europe areas in 1992. Area proportions
show an increase followed by a decrease in both North
America and Eastern Asia. Southern Asia (India and eight
other countries) is the only major producing region with a
sharp increase of its cultivated area during the study period,

representing about 23% of global surfaces at the end of the
time period.

3.3. Key components of global yield variability differ among
crops

The order and values of global YIV components differ among
crop species (figures 3(a)–(d)). In particular, maize YIV
decomposition is very different from that of rice, soybean and
wheat. In the following we focus on maize and rice because of
their contrasted variance decomposition.

Component 1,Γ1• (equation (6)), is bigger for rice (0.042)
than maize (0.014). This is because of higher Simpson index
values for rice compared to maize (i.e., rice is more than twice
as spatially concentrated as maize). Also, average squared
anomalies over all producing regions, vt is slightly bigger on
average for rice than maize (mainly because of the 2008 rice
yield anomaly in Oceania).

Component 2 describes how regional yield anomalies
compare to the inter-regional average. This component is
positive and small for maize and strongly negative for rice
(figures 3(a)–(b)). Component 2 is negative (positive) when
regions with large proportions of cultivated area show small
(high) squared regional yield anomalies. For rice, the three
major producing regions are located in Asia and all show a
negative regional component Γ̄ i2 (figure 3(b)) meaning that
these three regions have smaller squared anomalies than
average. For maize, North America is both the largest and the
most variable producing region (figure 1(e)). Consequently,
the value of the regional component Γ̄ i2 (equation (5)) cal-
culated for North America is positive and much higher that
the regional components calculated for the other maize pro-
ducing regions (figure 3(a)).

Component 3 Γ3•, equal to the weighted sum of all yield
regional covariances, is negative for maize (i.e., on average
negative yield anomalies tend to be compensated by positive
anomalies in other maize producing regions) and positive and
small for rice.

Soybean and wheat yield variance components are
similar (figures 3(c), (d)). Global variances V are lower than
those of maize and rice. Component 2 is negative for both
crops indicating that the majority of the production is located
in regions with below-average squared anomalies, in parti-
cular North America for soybean (the most important region
on average although outpaced by South America post 2000,
see figure 2) and Southern Asia for wheat. Soybean regional
yield anomalies tend to be negatively correlated thus
decreasing global yield variance. Wheat component 3 values
are very close to zero. Note that the relative importance of
each component within the decomposition is unchanged when
varying the time window of the classification (figure S1).

3.4. Effect of a uniform repartition of cultivated areas on global
yield variance

Figure 4 shows values of global variance and of its compo-
nents in case of a uniform repartition of cultivated areas
among regions. These results correspond to the second limit
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case described in section 2.2. In this case, the same proportion
of cultivated area is allocated to each region, Simpson index
is equal to its minimum value (i.e., 1/N), and component 2 is
equal to zero. This limit case is theoretical as proportions of
cultivated area in all regions cannot be equal in reality. Our
underlying hypothesis is that a more even distribution of land
will decrease global yield variance by distributing risk over a
large number of regions. We use this limit case to determine
how much global yield variance could be reduced or

increased by using an even repartition of cultivated areas at
the world scale.

Results show that an even distribution of cultivated land
decreases maize and soybean global variance to roughly half
and a third of its original value respectively. It also decreases,
but to a lesser extent, global wheat variance. On the contrary,
rice global yield variance is increased in case of a uniform
land use distribution (figure 4). These contrasted results are
due to the fact that an allocation of 1/Nth of the total areas to

Figure 3. (a)–(d). Decomposition of global yield variability. Time series of global yield anomalies are calculated from equation (1) as the
yearly difference between observed global yield value and the weighted sum of regional yield expected values. Using equation (5) we
decompose squared values of global anomalies into three components. Component 1 is the product of average squared yield anomalies over
all region and the Simpson index applied to area proportions; Component 2 is the weighted sum of the difference between squared anomalies
in a single region and the average over all regions and Component 3 is the weighted average of yield anomaly covariance between regions.
Time-average values of the three components are plotted here (in t2/ha2). Component 1 is positive by construction but components 2 and 3
can display negative values (if most production is occurring in regions of above average variability and if regional yield anomalies are
negatively correlated respectively). Rectangle insert: we show regional values of component 2 for the most important regions (the color
density of plotted regions reflects decreasing area proportions). The decomposition is applied to maize (a), rice (b), soybean (c) and wheat (d).

Figure 4. (a)–(d). Limit case: equipartition of cultivated areas among all world regions. Decomposition of global yield variability for a
theoretical uniform distribution of cultivated areas among world regions (i.e., Simpson index takes its lowest possible value: 1/N, with N the
total number of regions). The theoretical decomposition is presented in hatched whereas the actual decomposition is presented in colored bars
for maize (a), rice (b), soybean(c) and wheat (d). Note that a uniform cultivated area distribution automatically sets component 2 to 0 (as
developed in limit case 2, see methods section). Global yield variance is decreased for maize, soybean and wheat but increased for rice.
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all N regions has two effects on the decomposition. First,
component 2 is automatically brought to zero (see methods
section, limit case 2). Second, component 1 automatically
decreases, because the Simpson index is at its lowest value.
Component 1 is then proportional to inter-regional yield

variance Γ = ν( )t N1,
t .

Component 2 was initially highly negative for rice, and
this negative value is set to zero when using of a uniform
distribution of cultivated area. The use of a null value for
component 2 instead of a negative one is only partially
compensated by a decrease of component 1, and the global
yield variance for rice is thus higher compared to its original
value (figure 4(b)). For maize, component 2 was originally
highly positive, and this positive value is set to zero when
using of a uniform distribution of cultivated area. For this
crop, the use of a null value for component 2 instead of a
positive one leads to a strong decrease of the global maize
yield variance (figure 4(a)). Although component 2 was
initially negative for soybean and wheat, an even repartition
of cultivated lands leads to a smaller global yield variance for
these two crops. This is due to the fact that the reduction of
component 1 is able to compensate the increase of component
2 for these two crops, resulting in an overall variance decrease
(figures 4(c)–(d)).

4. Discussion and conclusion

Our results fill an important gap in the large-scale analysis of
yields by identifying, for the time, key drivers of global yield
anomalies. We show that a global yield anomaly can be
expressed as a sum of three components describing spatial
spread of global production, allocation of cultivated areas in
regions of strong versus weak variability, and covariance of
local yield anomalies in distinct regions. Our decomposition
exposes several trade-offs underlying global crop yield
variability. We show for instance that a high degree of con-
centration of rice-cultivated lands can be offset by lower than
average regional yield variability. On the contrary, for maize,
the allocation of a high proportion of cropland to a region
with above-than-average variability leads to high yield
variability at the world level. Covariance of regional yield
anomalies can compensate (e.g., as displayed by component 3
for maize) or add up (e.g., component 3 positive value in
soybean decomposition) to increase or decrease global yield
variance.

We show that much of the global variance in maize yield
anomalies can be attributed to North America. North America
alone totalizes between 35 and 45% of the world maize
production on 21% of the total maize surfaces on average.
North America is also the region with highest maize yields
with expected values around ten tons per hectare in 2012, i.e.,
north America is the single most important maize-producing
region since 1961. But North America is also the region with
highest standard deviation of maize yield anomalies. Several
factors may be involved. Three climatic events particularly
standout in North America yield anomaly time series: 1983,

1988 and 2012 i.e., three major corn belt drought [21] asso-
ciated with roughly 27, 32 and 25% yield loss respectively.
These events explain approximately one-fourth North Amer-
ican residual standard deviation. High instability of yields in
this region explains why maize is the only crop species
showing a positive value for component 2. This result has an
important consequence; because of the high and positive
value of component 2 in North America, a—theoretical—
even allocation of surfaces would roughly half global yield
variance of maize.

Rice production on the other hand is in a situation of low
risks. The three largest rice-producing regions are Eastern,
Southeastern and Southern Asia, and all three regions are
characterized by relatively low yield standard deviations. The
decomposition of global rice yield anomalies shows that the
positive value of component 1 is almost fully canceled by the
strongly negative value of component 2. This reflects the fact
that rice is production is highly aggregated spatially (leading
to a high value of component 1) but, produced in regions
where yields anomalies are lower than average (leading to a
strongly negative value of component 2). This result explains
why a theoretical even distribution of land among world
regions would actually increase rice global yield variance
(figure 4). Note though, that if one of the three main rice-
producing regions were to increase in variance, the decom-
position would suggest that the overall variability could
sharply increase because of the strong concentration of rice
production.

South America, North America and Eastern Asia are the
three main soybean-producing regions since 1961, with a
significant decrease of cultivated areas in the latter over the
study period. North and South America show very similar
levels of regional yield variability (for all risk measures, see
table S1). In comparison, yield standard deviation is slightly
lower in Eastern Asia. In all three regions, yield standard
deviations are close to average (figure 2) and, for this reason,
value of component 2 is small.

The results obtained for wheat are to close to those
obtained for soybean; main producing regions show smaller
squared anomalies than average, leading to negative value of
component 2. Among the major producing regions, Southern
Asia shows the smallest yield standard deviation (the same
ranking is obtained with other risk measures, see SI). If wheat
area proportion continues increasing in Southern Asia for
example at the level of Eastern Europe at the beginning of the
time period, this could contribute decreasing global yield
variance providing that it is not compensated by increased
spatial concentration of production.

The proposed decomposition is valid at any time scale,
for long or short period of time or at the yearly time step. In
our calculations we average the components over 1961–2012
(equation (6)). In this study we operate at the scale of large
FAO world regions. Although the expression of our decom-
position is valid at any spatial scale (e.g., countries), the
relative weights of the three components are likely to change
depending on the considered scale, with smaller scale
decomposition assuredly heightening the contribution of
regional yield correlations [10, 18].
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Our study also reveals that all FAO regions have con-
trasted yield standard deviation. Standard deviation is a
popular measure of yield instability [22], but other risk
metrics can be used as well, such as percentiles or expected
shortfall [23]. The robustness of our regional ranking to the
chosen risk metric is analyzed in the supplementary materials
(table S1(a)–(d)). Note that our results (i.e., the classification
of regions according risk levels) are consistent for all risk
measures.

A series of factors can be invoked to explain differences
in regional yield variability. Fluctuating environment are
know to impact crop yield year-to-year variability, in parti-
cular regional climate [14–17, 22, 24–26]. Crop management
[17] and agronomic practices such as irrigation [25], changes
in varieties [25, 27, 28], increased use of inputs can also affect
the range of interannual yield variations. It may be hypothe-
sized that abiotic or biotic stress on crop growth can be offset
by the large range of responses available to farmers in eco-
nomically developed regions. No clear evidence of lower
variance in such regions is found here. Also, there is little
evidence that highest variance are significantly determined by
higher yield levels. A significant relation can be found for
maize and rice to a lesser extent. Average yields explain a
significant portion of total deviance in maize but a very small
fraction of the between region differences for rice, soybean
and wheat (figure S2). No significant relation is found
between yield standard deviation and average area propor-
tions. Key studies have focused on characterizing the tem-
poral variation of yield variability (see for example [29–31]).
Our decomposition can be used to understand the dynamics of
crop yield variability but the evolution in time of regional
yield variance is beyond the scope of this study.

This paper focuses on the effect of the distribution of
cultivated area on yield variability, but land use obviously
also has an effect on global yield and production average.
From a production standpoint it may seem optimal to allocate
areas to the most productive regions. Some of our results
suggest a possible antagonism between yield variability and
average production, at least for some crop species (e.g.,
maize). Analyzing tradeoffs between production levels, land
use and yield stability is of interest to policy makers because
it helps defining land use scenarios offering interesting
compromises between high production and low risk. In the
future, our decomposition could be applied at various scales
to identify situations where global crop yield variance could
be reduced by using a more even geographical distribution of
cultivated areas.
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