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Abstract The diversity of growing conditions and the de-
velopment of new outlets for agricultural products favour a
diversity of crop management systems requiring various
cultivars, with specific characteristics. Genotype perfor-
mance is usually assessed through multi-environment trials
comparing a variable number of genotypes grown in a wide
range of soils, climatic conditions and cropping systems.
Field experiments show empirical evidence for the interac-
tions between genotype, environment and cropping system.
However, such interactions are rarely taken into account to
design ideotypes or for cultivar assessment, or in the defini-
tion of crop management plans adapted to cultivars. Agro-
nomic models, built to simulate the dynamic response of
crops to their environment, and thus to techniques which
modify it, appear to be appropriate tools to evaluate and
predict these interactions. This paper reviews the three main
uses of model-based predictions of the interactions between
genotype, environment and cropping system: definition of
breeding targets, characterisation of the environments in
cultivar experiments and support for the choice of the best
cultivar to grow in a given situation. Models specifically
allow understanding the influence of one or a combination

of specific traits on performances and long-term ecological
impacts. We show that a diversity of models is required, from
physiologically based crop models to agroecology-based
cropping system or landscape models, able to account well
for farmers’ practices. Away of taking cultivars into account
in crop models is proposed, based on three main steps: the
choice of the model, the identification and estimation of its
cultivar parameters, and testing the model for decision sup-
port. Finally, the analysis of the limitations for wider use of
crop models in variety breeding and assessment addresses
some major questions for future research.
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1 Introduction

The diversity of environmental conditions among loca-
tions and the development of new outlets for agricultural
products (various quality targets, non-food channels etc.)
favour a diversity of crop management systems requiring
different cultivar choices. In the future, as mentioned by
Meynard and Jeuffroy (2002), genetic progress will be
measured less by an increase in the average performance
of the cultivar, as currently (e.g. Vear et al. 2003), than
by an improvement of the adaptation of cultivars to the
diversity of cropping environments, market requirements
and type of agriculture. Lecomte et al. (2010) suggested
that breeders and distributors of new cultivars are aware
of the need to improve their ability to evaluate new varieties
for these conditions, in order to forecast, as early as the
breeding phase, their response to various environments and
crop management.

The assessment and the prediction of the response of
genotypes is generally done through networks of multi-
environment trials comparing several genotypes (Fig. 1)
grown in a wide range of soils, climatic conditions and
cropping systems. In these networks, a large interaction
between genotypes and growing conditions is often ob-
served, representing 10–25 % of the total yield variance,

and similar in size to the main effect of the genotype (e.g.
wheat: Baril 1992, Brancourt-Hulmel et al. 1997; pea:
Biarnès-Dumoulin et al. 1996; soybean: Desclaux 1996;
corn: Argillier et al. 1994; van Eeuwijk et al. 1995; Epinat-
Le Signor et al. 2001; sunflower: Foucteau et al. 2001). As
shown by Brancourt-Hulmel et al. (1999), this genotype–
environment interaction can also be explained by numerous
variables related to the crop management (sowing date,
nitrogen fertilisation, crop protection and irrigation). Various
statistical methods have been proposed to analyse and pre-
dict the genotype–environment interaction (Brancourt-
Hulmel et al. 1997). They are generally used to forecast the
effect of climatic variables on the cultivar response, but
rarely to predict their performance in various crop manage-
ment conditions, and never to predict the consequences of
various crop sequences, cultivar frequencies or spatial loca-
tion of cultivars on genotype performance. Thus, it is diffi-
cult to use the results of multi-environment trials to choose
cultivars which are the best suited to a particular crop man-
agement system, crop sequence or geographical location; nor
do they provide useful information to design the crop man-
agement system best suited to a given genotype, which is
known to differ from cultivar to cultivar (Loyce et al. 2008).
Finally, they have a low predictive capacity, particularly for
environments and cropping systems not represented in the
trials, for instance low-input conditions or drought-prone
environments.

Crop models, built to simulate the dynamic response of
crops to their environment and hence to techniques which
modify it, have now matured to the point where they can be
used for numerous applications. Using them for the evalua-
tion of genotypes was proposed some time ago (Whisler
et al. 1986), but it is only in the last 15–20 years that several

Fig. 1 An example of cultivar trial for pea: several genotypes are
grown in a same environment. Multi-environment trials, located in
various sites, are the main tool of breeders to assess the performances
of genotypes under breeding
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studies have been carried out in this field (e.g. Shorter et al.
1991; Boote et al. 1996; Cooper and Hammer 1996; Hammer
et al. 2010). Several papers have reviewed the possible uses
of dynamic crop models for breeding and, in a less informa-
tive way, for cultivar advice (Boote et al. 2001; Matthews
2002; Hammer et al. 2003; Jeuffroy et al. 2006; Messina
et al. 2006). More recently, other models, such as spatially
explicit models simulating gene flow, have been used to
guide breeding and cultivar evaluation (Fargue et al. 2005,
2006). Models appear as new tools supporting or replacing
experiments (they are used to do ‘virtual’ experiments) to
evaluate and predict the interaction between genotype, envi-
ronment and cropping system interaction (Shorter et al.
1991; Cooper and Hammer 1996; Jeuffroy et al. 2006).

This paper reviews the actual and potential uses of agro-
nomic models to predict cultivar performance in various
environments and cropping systems. In the first part we will
identify the different types of uses and related questions.
Then we will describe the specific steps when developing
and using an agronomic model with cultivar-specific param-
eters in order to analyse and predict the genotype’s behaviour
in various environments and cropping systems and for var-
ious objectives.

2 Diversity in using model-based predictions
of the interaction between genotype, environment
and cropping system

Three main types of uses of model-based predictions of the
interaction between genotype, environment and cropping
system can be identified in the literature (Fig. 2):
– Refining the definition of breeding targets, i.e. identify-

ing the phenological, morphological and physiological
traits to breed for a given aim and environment/cropping
system (ideotyping)

– Refining the analysis of multi-environment cultivar trials,
by characterising the environments in order to optimise

networks, and understand the interactions between geno-
type, environment and cropping system that are observed
in networks (agronomic diagnosis)

– Helping in the use of new cultivars, by supporting the
choice of the best cultivar to grow in a given
cropping system, and/or a given environment (cultivar
choice)

2.1 The use of model-based predictions for defining breeding
targets

2.1.1 The limits of breeding without models

Because of the low heritability of yield, breeders use indirect
criteria, such as morphological or physiological traits, con-
sidered as good predictors for yield. However, these criteria
are not always chosen with respect to their importance for
crop behaviour, which can sometimes lead to targeting er-
rors. For example, among the numerous physiological
criteria proposed to improve drought resistance, few ben-
efit yield in dry conditions. Richards (1996) proposed
several hypotheses to explain this lack of success: (1) the
criteria may be more linked to survival than to produc-
tivity under drought, (2) they may have significant ef-
fects only during short periods of drought or for isolated
plants, but few on crop growth and final yield, (3) these
criteria may be useful only in particular weather condi-
tions or cropping systems, but not over the whole range
of target environments.

Agronomic models, making possible a rapid and multi-
criteria evaluation of genotypic traits in interaction with
various environmental conditions, can reduce these prob-
lems. Varying the value of one trait (while keeping the others
constant) amounts to a virtual comparison of isogenic lines,
yet with far fewer methodological difficulties than are en-
countered in field experiments (Reymond 2001; Matthews
2002). Sensitivity analysis of the model to the studied trait
makes it possible to quantify its particular influence on crop
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performance in various environments and cropping systems.
Models thus allow (1) traits (or combinations of traits) to be
identified which are interesting to breed for, that is the
definition of ideotypes (Donald 1968; Sedgley 1991) and
(2) virtual cultivars to be designed and assessed, based on
interesting characteristics combinations outside the range of
values available in the genetic resources (Fargue et al. 2005,
2006).

2.1.2 Use of crop models to simulate the impact of a cultivar
character (or trait) on production

The literature contains numerous examples of the use of crop
models for analysing the effect of various physiological traits
on crop yield. For example, with the model ORYZA1,
Aggarwal et al. (1997) evaluated the influence of several
genotypic traits in maximising rice yield in a dry tropical
season. They conclude that when nitrogen nutrition can be
improved without increasing lodging or diseases, the best
ideotype for these conditions would combine a large repro-
ductive sink, high nitrogen concentrations in the leaves and a
long seed-filling period. For rainfed maize and sorghum,
Muchow et al. (1991) analysed the consequences for yield
of a higher water uptake by the root system vs a higher water
use efficiency (WUE). Their simulations showed that the
earlier water uptake leads to yield loss because the soil water
reservoir does not refill in 20–25 % of the situations. The
effect of aWUE increase appeared dependent on its link with
the radiation use efficiency (RUE): if the WUE increase is
accompanied by a RUE decrease, the risk of yield loss is
30 %; if the RUE is stable or increases, a yield increase is
observed every year. Another example concerns the use of
the OILCROP-SUN model to assess the importance of early
vigour on sunflower as a function of sowing date, cultivar
earliness and soil depth (Agüera et al. 1997).

Different authors (Asseng et al. 2002 and Semenov et al.
2009 for wheat; Casadebaig et al. 2008 for sunflower) used
crop models to simulate the potential interest of a range of
morpho-physiological traits in different climatic environ-
ments. As an example, Casadebaig et al. (2008) used the
SUNFLO crop model to assess the effect of three phenotypic
traits (length of maturation phase, potential leaf area and
stomatal regulation) on yield at three sites in France over a
range of 35 annual weather patterns. The model confirmed
that early-maturing genotypes with early stomatal closure
should be grown in drought-prone environments, whereas a
large leaf area and a late maturity date should be more
beneficial in low-stress environments. Weather variability
would have a big effect on the impact of a trait on yield:
for example, the effect of early stomatal closure is always
beneficial, but weather variability might eliminate or double
its mean effect on yield.

However, yield differences between lines often result
from several traits that interact. It is thus interesting, for
breeding support, to evaluate the consequences of a simulta-
neous change in several traits: crop models may be used to
design crop ideotypes (a collection of traits) for target envi-
ronments as was illustrated by Casadebaig et al. (2011) on
sunflower, Jeuffroy et al. (2012) on pea or Suriharn et al.
(2011) on peanut.

2.1.3 Limitations of crop models as breeding support tools

The limitations of the use of crop models to identify breeding
targets are linked to some of their weak points:
– A crude representation of environments and cropping

systems. Numerous environmental conditions known to
have effects on yield are not represented in crop
models, such as airborne diseases, excess water, soil
compaction or weather factors inducing pollen steril-
ity. These last factors have frequently been identified
by Lecomte (2005) as limiting yield for small grain
cereals and explaining part of the genotype–environ-
ment interaction. Some models take them into ac-
count. For example, BETHA (Loyce et al. 2002a)
simulates the effects of the main airborne diseases of
wheat. In this model, parameters representing varietal
resistance to the various diseases allow the interaction
between genotype and disease pressure to be simulat-
ed, thus giving a good representation of the various
responses of cultivars to crop management systems
using more or less fertiliser and pesticide (Loyce et al.
2002b). Models taking into account the effects of the
cultivar on disease development (Le May et al. 2005)
or weed competition (Olesen et al. 2004) and the
resulting yield loss are also scarce. Concerning the
soil structure, the AFISOL model simulates the effects
of soil compaction on pea yield, which is one of the
main factors explaining the various performances of
different pea genotypes (Jeuffroy et al. 2012). Com-
pared to the most frequently used spring genotypes,
winter genotypes highly sensitive to photoperiod have
recently been bred, that can be sown very early in the
autumn, in much better soil conditions than the tradi-
tional winter peas, sown later in the autumn, or than
spring peas. Including the soil structure effect in the
AFISOL model thus gave a good account of the
performance of various pea genotypes. Yet most crop
models cover a limited range of techniques (sowing,
harvest, nitrogen fertilisation and irrigation) and can-
not cope with others (soil tillage, crop protection and
intercropping), which limits their ability to compre-
hensively represent the interactions between geno-
type, environment and cropping system.
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– A small number of assessment criteria: in most cases,
yield is the only criterion for evaluating the progress
due to a genetic trait. Some studies concern crop
quality (e.g. Piper and Boote 1993) but they rarely
account for genotype–environment interaction. One
exception is given by Barbottin et al. (2006), show-
ing the value of using the crop model Azodyn to
support wheat cultivar choice both for yield and grain
protein content.

– The hypothesis of independent genetic traits: simula-
tions are generally managed by combining various
model parameters, representing genotypic traits con-
sidered as independent, without taking into account
possible correlations between them (Makowski et al.
2006a). This is often justified by the limited knowl-
edge of the links existing between the traits, and
also by the difficulty in representing these links
through mathematical relationships in the simula-
tions, even when a link between two traits is
known. Thus, Boote et al. (2003) mentioned inverse
relationships between leaf thickness and leaf area
index (LAI), limiting the value of breeding cultivars
with thick leaves: the increase in leaf photosynthesis
associated with the increase in leaf thickness is
offset by the reduction in intercepted radiation,
linked to the decrease in LAI, leading to a stability
of yield. Genetic correlations between traits may
thus hamper the creation of an ideotype (Yin et al.
2003) or slow progress in breeding efforts as in
barley (Jackson et al. 1996). Knowledge of the links
between genetic parameters and yield is thus neces-
sary for a successful breeding program (Yin et al.
2003; Jackson et al. 1996).

2.1.4 Use of cropping system models to simulate the effects
of cultivar traits on medium- and long-term ecological
impacts

The evaluation of a genotypic trait or a cultivar type has also
been applied, although less frequently in the literature, on the
environmental impacts of agriculture (e.g. on water use,
biodiversity or soil structure). Quantifying these impacts
requires spatial and multi-year processes to be represented
on a scale larger than the field and over a period longer than
one crop cycle. Leenhardt et al. (2004) simulated the conse-
quences of using various maize cultivars (varying in their
earliness) on the water requirement on a regional scale, using
a spatial representation of the crop model MODERATO.
With the spatially explicit model of gene flow GeneSys-
rape, Fargue et al. (2005, 2006) simulated the consequences
of genotypic characters involved in competition (plant
height) or in reproduction biology (male sterility, cleistoga-
my) on the gene flow between fields and on the multi-year

evolution of the genetic structure of the volunteer popula-
tions in a landscape. Thus they analysed the relative efficien-
cy of various breeding strategies for limiting the risks of
genetic contamination of harvests and for optimising the
co-existence of various crops within a given crop species in
an agricultural landscape. Until now, the effect of cultivars
on biodiversity has seldom been analysed, as few models
link agronomic and ecological processes on the landscape
scale.

2.2 The use of agronomic models for analysing
multi-environment variety trials

Cultivars are usually tested in multi-environment trials. The
analysis of the data obtained from these networks is often
based on the use of statistical models which break down the
phenotypic effects into genotype, environment and geno-
type–environment interaction components but also analyse
this interaction effect (Brancourt-Hulmel et al. 1997;
Lecomte et al. 2010). In the literature, the use of crop models
for analysing data from multi-environment trials has three
main goals: (1) a better characterisation of the environments
for a possible change in the configuration of the networks,
(2) the enrichment of the genotype–environment interaction
decomposition by diagnosing limiting factors for probe ge-
notypes, (3) the carrying out of virtual experiments or the
adjustment of experimental results (e.g. for earliness, plant
density).

2.2.1 Characterisation and typology of the field
environments over an experimental network

Crop models can help in characterising the environmental
conditions encountered in the cultivar trials by probe geno-
types or even by each cultivar. According to Chapman et al.
(2002), people involved in cultivar assessment could find
four advantages from model simulations:
– A better knowledge and typology of the site-specific

field environments
– An evaluation of the relevance of the site sampling: do

the trial network give a good and unbiased representa-
tion of the target population of environments?

– Help to calculate the corrections to apply to take account
of bias in environment sampling

– Help to analyse the results of a given trial in a
characterised environment

Different studies show that crop models are very useful to
characterise the field environments in METs. By their capac-
ity to simulate the evolution of varying soil resources (usu-
ally water and nitrogen) and plant growth and nutrient status,
which are difficult to measure continuously, they can identify
the timing and intensity of water stress or nitrogen deficien-
cy, which are important variables for explaining the various
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responses of genotypes. Chapman et al. (2000), for example,
distinguished three types of environment, varying in the
intensity and duration of water shortage experienced by
sorghum. Based on crop simulations and a breeding model,
they showed that a weighted use of these environments to
define an experimental network succeeded in selecting suit-
able genotypes more efficiently than without choosing the
environments. A similar approach was carried out by Chenu
et al. (2011) on wheat in Australia: using the APSIM model
on 100 years of historical weather data, the authors showed
that the drought pattern types varied greatly across regions,
years and crop management systems. Barbottin et al. (2005)
showed that the genotypic variability of nitrogen
remobilisation varied greatly according to the limiting fac-
tors observed in the environments of the experiments.

Banziger et al. (2006) stated that it is better, although not
common, to choose breeding environments similar to the
target ones. For example, to minimise experimental error,
phenotyping trials are often sown on deep uniform soils,
often more fertile than those encountered on commercial
farms. In France, no wheat trial for cultivar assessment is
grown after a wheat crop, due to the high risk of take-all

disease, although 30 % of the wheat crops in the South Paris
basin follow wheat. The characterisation of the environments
in the cultivar trials could allow to optimise the networks,
either by omitting inappropriate environments or by
searching for specific environments not yet represented in
the networks, or by modifying the proportion of each type of
environment in the final analysis according to their relative
contribution to the target population of environments
(Lecomte 2005).

Crop models could be involved for diagnosing the inten-
sity of stresses experienced by each genotype in each exper-
iment of a cultivar-trial network. For example, by using a
crop model Casadebaig et al. (2011) evaluated the number of
water stress days in each of the three growing periods (veg-
etative, flowering and maturation), for five cultivars grown
in four different soil/environments (Fig. 3). The model
discriminated the environments fairly well; some were
characterised by low stress during vegetative and maturation
periods, while others had high stress levels throughout the
season. The simulations indicated that cultivars suffered
differently from water stress in each environment. Simulated
genotypic values of water stress days could explain 42 % of

Fig. 3 Use of a sunflower crop
model to diagnose water stress
over three periods in the
cropping season. The figure
presents the number of water
stress days (y-axis) simulated for
five genotypes (x-axis) in three
environments (horizontally) and
three periods of the crop cycle
(vertically). Grain yield (GY, t/
ha) and leaf area index (LAI)
measured on field trials are
indicated for reference, for each
environment. Water stress days
were computed as the cumulative
number of days when the plant
transpiration was significantly
affected in the crop model
(ratio actual/maximal
evapotranspiration lower than
0.6). Simulation allowed
identification of water stress
patterns (colored headings)
based on the position and
intensity of the simulated
indicator. These stress patterns
were consistent with observed
crop variables (LAI, gain yield).
Simulated indicators can later be
used to characterise
environments and to improve
genotype assessment in multi-
environment trials analysis
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total observed yield variance: a stress in the vegetative period
favoured high yields, whereas stress during flowering or
especially during maturity was detrimental.

However, there are several main limitations to the use of
crop models for characterising environments. Firstly, some
data for this characterisation are not always available at field
level (e.g. weather data or soil depth) or may require time-
consuming protocols (nutrient and water status of the crop).
Secondly, the field experimenters are not concerned directly
by the use of the collected information (Lecomte et al. 2010),
and are thus reluctant to spend time acquiring it. Thirdly,
time is required to analyse these data and use the results for
the following experiment, which is not always available in
the very short period between two crop cycles (Lecomte et al.
2010). Finally, as mentioned above, models generally do not
take account of the wide range of limiting factors observed in
farmers’ fields, which results in an incomplete environmen-
tal characterisation.

2.2.2 Breaking down the genotype–environment interaction

Statistical models have been developed extensively in the
past to gather the information coming from trials comparing
genotypes, separating the effects of the genotype, the
environment and the genotype–environment interaction
(Brancourt-Hulmel et al. 1997). In order to identify the
factors explaining the variability of genotype responses in
various environments, the genotype–environment interac-
tion can be split into environmental covariates (Brancourt-
Hulmel et al. 2000; Foucteau et al. 2001) and genotypic
covariates (Voltas et al. 1999a, b). As the measurement of
environmental variables is scarce in cultivar trials, it has been
shown that the use of crop simulation models to generate
covariates could be efficient for analysing differential re-
sponses of genotypes to environmental factors (Saulescu
and Kronstad 1995; Chapman 2008; Asseng and Turner
2007).

2.2.3 Carrying out virtual experiments

Models facilitate the enlargement of the range of conditions
in which the response of the cultivars can be tested. Limited
by cost constraints, the experimental networks generally do
not allow the exploration of all the variability encountered in
farmers’ fields. New cultivars are generally tested for rela-
tively few years before their release to farmers. The large
number of weather patterns that models can explore should
allow the user to better identify the situations in which a
varietal type is promising or should be avoided. This method
allows virtual experiments to be carried out and the contri-
butions of genotype, environment and genotype–environ-
ment interaction to the total variance of the analysed variable
to be calculated (Casadebaig et al. 2011). Using a crop

model, Hammer et al. (1996) evaluated the contributions of
the phenology, the stay-green character and the transpiration
efficiency at 4, 75 and 15 % respectively of the total variation
in the sorghum yield, which was close to the experimental
results. They also showed that most of the genotype–envi-
ronment interaction was explained by phenology (crop
lifespan). For the grain protein content of winter wheat,
Makowski et al. (2006b) showed that most of the variance
is explained by the efficiency of nitrogen remobilisation to
the grain, the shoot–root ratio for nitrogen partitioning, and
the maximum yield, these three parameters differing between
winter wheat genotypes.

Moreover, models could be useful to correct the observed
results from the experimental bias. Indeed, in cultivar trials,
crop techniques such as nitrogen fertilisation or fungicide
treatments are generally applied on a particular date, and not
at the optimal stage for each cultivar, thus leading to possible
bias. For example, the response of the wheat grain protein
content to the last N fertiliser application depends on the
delay between this application and the flowering date. In a
cultivar trial, as fertilisation is applied at the same date for all
cultivars, this delay may differ considerably (by as much as
3 weeks) between genotypes, resulting in cultivar differences
in grain protein content which are attributable to the man-
agement and not directly due to intrinsic genetic traits. Sim-
ilarly, choosing a single sowing date (because of experimen-
tal constraints) to compare varieties with different optimal
sowing dates may be unfair to some cultivars. In some
variety trials, plant density also may differ slightly between
cultivars under comparison.

By virtually applying the crop techniques at various dates
according to phenology (for instance by triggering decision
rules) or by normalising plant population, the model could
help to quantify the gap between the observed results and the
results that should be reached in optimal conditions. To our
knowledge, there is no published example of such correction
methods used in cultivar assessment.

2.3 The use of agronomic models to support the choice
of the cultivar according to the crop management
and the environment

Lecomte et al. (2010) showed that most people involved in
cultivar evaluation (marketing sections of breeding firms,
seed multipliers, technical advisors, agrochemical salesmen
etc.) aim, through their cultivar-trial networks, to define the
suitability of new cultivars to various production areas, soil
types and crop management techniques (sowing date and
density, nitrogen fertilisation, crop protection strategies and
irrigation). This requires the analysis and prediction of the
interactions between genotype, environment and cropping
system, namely to understand how crop management inter-
acts with cultivars in various soil–weather conditions. The
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crop techniques most often considered in crop models are the
sowing date, density, irrigation and nitrogen management
which are consistent with the abiotic processes generally
considered by the models.

2.3.1 Choice of the cultivar for given conditions of soil
and weather

Numerous studies based on simulations aim at defining the
best type of cultivar (rarely the best actual cultivar) for a
given soil and climate. Most studies concern arid or semi-
arid zones characterised by very variable amounts and dis-
tribution of rainfall, for which simulation is recommended
because experiments cannot cover the whole range of weath-
er variability (e.g. Stapper and Harris 1989; Singels and de
Jager 1991; Muchow et al. 1994; Goyne et al. 1996; Debaeke
2004). The method is then to calculate, with crop models, the
cumulative yield probability associated with each cultivar for
a given set of weather patterns. Batchelor et al. (2003)
analysed, for example, the value of sowing several soybean
cultivars in the same field faced with soil and weather vari-
ability. Jeuffroy et al. (2012) combined three models to
analyse the value of different types of pea cultivar: spring
cultivars (sown in February–March), winter cultivars (sown
in mid-November) and new winter cultivars highly sensitive
to photoperiod (sown in October). A crop model simulated
pea yield depending on the soil structure, the sowing date
and the weather. A model of the evolution of soil structure
simulated the risks of compacted soil, depending on sowing
date, the type of soil tillage and the weather. Finally, a model
of work organisation on the farm simulated the sowing dates
for pea crops according to weather conditions and to farmers’
priorities between field operations. The results showed that
the new winter cultivars had more stable yields, and this
advantage was greater when considering the constraints in
real farms than in factorial experiments, where a delay in the
sowing date, and thus soil compaction, were less frequent.

2.3.2 Choice of the combination of cultivar and crop
management system

The use of crop models to choose the cultivar and the crop
management system together is still rare. The genotypic
characteristics that are the most frequently included in crop
models concern crop phenology, which explains much of the
yield variability when water is the main factor limiting yield.
This may explain why models have mostly been used in
Australia to identify the best choice of cultivar and crop
management (Hammer et al. 1996; Chapman et al. 2002).
For the same reasons, there have been several studies on crop
management for sorghum in various water availability situ-
ations (Baumhardt and Howell 2006; Debaeke and Nolot
2006). In western European conditions, yield is more often

limited by diseases, which are rarely simulated by models.
The use of crop models to identify the best cultivar–crop
management choice is thus less common. Yet an example is
given in the study of Loyce et al. (2002b) who suggest using
the BETHAmodel (Loyce et al. 2002a) to choose the variety,
plant density, N fertilisation and pest management for bio-
ethanol wheat production.

Finally, while the use of crop models to help breeding by
integrating information on genetic determinism of morpho-
physiological traits and by coupling them with quantitative
genetic models is rapidly developing (Chapman et al. 2003;
Hoogenboom et al. 2004; Messina et al. 2006), there are still
few examples where crop models are used within decision
support systems for guiding cultivar choice (Debaeke et al.
2011).

3 A method to take into account the cultivar in crop
models

The use of crop models to analyse and predict the
performance of cultivars requires the models to describe
the contrasting behaviour of varieties in various envi-
ronments. Taking the cultivar into account explicitly in
models is generally achieved by varying certain model
parameters, possibly after adaptation of the model struc-
ture. This requires three main methodological questions
to be answered:
– What characteristics must the crop model have to give a

good prediction of the interactions between genotype,
environment and cropping system?

– How does one identify and estimate the cultivar parameters?
– How should one evaluate the model for such uses?

3.1 Which models give a good account of the interaction
between genotype, environment and cropping system?

3.1.1 Complexity level of the models

The analysis and prediction of the interactions between ge-
notype, environment and cropping system can be based on
various models: from mechanistic models describing some
fine processes at the plant level in physiological modelling
approaches (Yin and van Laar 2005; Yin and Struik 2010) to
more empirical models involving a wide range of environ-
mental and agronomic conditions. The question of the re-
quired level of complexity in a model to give a good predic-
tion of the differences between genotypes is still debated by
modellers:
– Some consider that it is necessary to describe in detail

the elementary processes for which the control by genes
can be simulated (e.g. Yin et al. 2000; Hoogenboom
et al. 2004). However, in order to give a good account
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of the whole crop cycle in its environment, this
would require the description of a very large number
of relationships between genes and phenotypes to be
included in these models, and relationships simulat-
ing the effect of the environment on the multiple
gene expressions.

– Others argue that simpler models are needed, because
they are more consistent with the breeders’ activity and
thus can be more easily used, and are based on more
robust relationships (Shorter et al. 1991; Sinclair and
Muchow 2001; Zhang et al. 2006). Genotypic differ-
ences can sometimes be represented with basic models.
For example for sorghum, the cultivar differences in
phenology and in radiation use efficiency are sufficient
to differentiate old and modern cultivars in situations
where water is the main limiting factor (Sinclair and
Muchow 2001).

The two methods are not mutually exclusive: Shorter
et al. (1991) suggest beginning with a simple model and
elaborating it if necessary by introducing new traits. Yet,
the method for justifying the elaboration of the model was
not suggested. We assume that models for breeding and
models for defining the conditions of use of the cultivars
should be different. To favour the link between model and
breeding, the first ones could be more efficient if they
involve relationships between parameters and genes or
groups of genes, while representing the effects of crop
techniques on the whole crop cycle (e.g. in GeneSys
where the gene for cleistogamy is represented by two
parameters, the rate of pollen release and the autogamy
rate, Fargue et al. 2006). To define the conditions of use
of cultivars, the model should include a simple method for
quickly parameterising each new cultivar.

In order to estimate the model parameters for the large
number of new varieties registered each year and be able to

predict their performance in the target population of envi-
ronments, it is necessary to develop quick, easy and accurate
phenotyping methods, as described by Barbottin (2004) for
wheat (Table 1) and by Debaeke et al. (2011) for sunflower.
These methods are based on the measurement of a limited
number of traits (in field or greenhouse conditions) which are
directly used as model parameters. In order to favour the link
between high throughput phenotyping and model
parameterisation, Jeuffroy et al. (2006) affirm the need to
use formalisms, including easily measured parameters
representing characters on which the cultivar selection can
be based.

Whatever the model’s complexity, the interactions
between genotypic traits are scarcely considered in present
models. For example, Chapman et al. (2003), unlike
Hammer et al. (1996), do not consider the relationship be-
tween the transpiration efficiency and the crop radiation use
efficiency. The physiologically based models that incorpo-
rate the effect of genes or gene groups do not adequately take
into account the interactions between physiological charac-
ters, because their effects on the parameter values are addi-
tive (Hoogenboom et al. 1997; Hunt et al. 2003; White and
Hoogenboom 1996). While these models seem appropriate
to address genotype–phenotype relationships (Yin and van
Laar 2005; Yin and Struik 2010), their use raises three
problems. First their genotypic-dependent parameters should
be easily estimated and should not vary with environmental
conditions, which is not always the case (Reymond et al.
2003). Second, these models generally do not take into
account the complex range of environmental conditions en-
countered in a farmer’s field, as they focus on a small number
of limiting factors (Reymond et al. 2003 for instance), which
limits the prediction of the interactions between genotype,
environment and cropping system. Finally, their complexity
often limits these models to a small part of the agrosystem

Table 1 Cultivar parameters of the Azodyn model, their values for ten cultivars and the method for their estimation

Name of
the
parameter

Signification of the parameter in the model Range of the parameter
values for the studied
genotypes

Method for the estimation of the parameter values

YLDx Maximum yield 8.61–11.37 Mg/ha Maximum yield measured on a large database from a range
of pedo-climatic conditions

TGWx Maximum thousand grain weight 87.49–136.08 g/1,000
grains

Estimation of the parameters of the plateau-plus-linear
boundary curve linking thousand grain weights and grain
number per square meter, on a large database (Makowski
et al. 2007)

alphaGN Ratio of the maximum grain number allowing
to reach TGWx between the cultivar and a
reference cultivar (Soissons)

0.62–1.13 Ratio of the grain number thresholds, between a cultivar and
the reference Soissons, between the plateau and the linear
parts of the plateau-plus-linear boundary curve linking
thousand grain weights and grain number per square
meter, on a large database (Makowski et al. 2007)
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(an organ, as in Reymond et al. 2003) and do not allow
linking the gene effect with the cropping systems, which
limits their use for two of the three aims developed in part
2. The processes described in the model are more important
than the complexity level of the model in its capacity to
predict the interactions between genotype, environment and
cropping system.

3.1.2 Processes involved in the model

In the previous examples, various models were concerned:
dynamic crop models with a daily time step (in most models),
physiologically based models, cropping system models with
various time steps, models at the scale of the plot or the
landscape, sometimes spatially explicit. The model chosen
depends heavily on the processes required in the simulation
to give a correct representation of the interactions between
genotype, environment and cropping system. Therefore the
formalism should follow the hierarchy of limiting factors
occurring in the study area and the importance of genotypic
susceptibility to these factors. For example, a model used to
simulate the varietal performances in low-input conditions
needs to represent the varietal response to low plant densities,
nitrogen deficiencies, water stress, weed competition, disease
pressure etc. The BETHA wheat model (Loyce et al. 2002a)
was built to design new crop management systems for various
levels of inputs and various production goals. It does not
include a weed module, as weed control should be planned
at the rotation level, but it considers the application of insec-
ticides, growth regulators and fungicides, which is rarely the
case in crop models. The disease module is based on a simple
formalism (a combination of linear static models fitted to field
data) including the combined effects of cropping systems and
varietal resistance on the yield loss due to disease (Zhang et al.
2007). Finally, all of the BETHA cultivar parameters are
easily available, mainly from the usual disease scoring done
by the French registration organisation (GEVES), which is to
be expected from a model aimed at designing crop manage-
ment plans and cultivar choice.

In other cases, the processes required in the simulation
lead to more sophisticated formalisms. For example in sun-
flower, genotypes differ significantly in their leaf area
growth and senescence pattern (number of leaves, vertical
distribution of leaf area, total plant leaf area etc.) but also in
the sensitivity of leaf expansion to water stress. For a given
variety, there is a wide range of leaf area index (from 2 to 5),
depending on the relative timing of leaf growth and water
stress, with consequences for canopy radiation interception,
water use and disease development. In a model aimed at
evaluating the escape and avoidance strategies for water
stress (crop management systems or cultivars), it was more
efficient to represent leaf growth at the leaf scale rather than
at the plant scale, in order to capture the dynamic effects of

water stress without increasing the number of parameters
(Casadebaig et al. 2011).

3.2 How to identify and estimate the cultivar parameters?

3.2.1 Which parameters vary among genotypes?

While the use of genotypic traits in models is common,
the criteria whereby a parameter is considered as geno-
typic are seldom described in the literature. However,
crop models generally include a large number of param-
eters (up to 300 in some cases) and it would be inappro-
priate and illusory to try to adapt all of them to the range
of genotypes studied.

Boote et al. (2003) proposed to analyse the sensitivity of
the model to its parameters, in order to identify those to
modify as they have a clear effect on the outputs. In dynamic
crop models, which usually contain many parameters, this
analysis can be achieved only after selecting a small number
of those for which genotypic variability has already been
observed or assumed, even if not yet assessed. This method
has been used for the adaptation of the Azodyn crop model to
various wheat cultivars (Barbottin 2004; Makowski et al.
2006b) and to build the SUNFLO model for sunflower
(Casadebaig et al. 2011). The model sensitivity to parameters
appears highly dependent on the output considered and on
the growing conditions assumed for the simulations. More-
over, the results of the sensitivity analysis are closely linked
with the range of each parameter, either observed or assumed.
For example, the parameter representing N remobilisation
from vegetative parts to the grain is assumed to vary among
genotypes (Cox et al. 1986), and was shown to have a big
effect on the grain protein content (Makowski et al. 2006b).
Yet no significant variation was observed among varieties in
disease-free trials (Barbottin et al. 2005). Because the sensi-
tivity analysis on one parameter depends on the weight of the
other parameters in the model outputs, the large effect of the
remobilisation parameter, treated as a variable in the sensitiv-
ity analysis, could have hidden the effect of other parameters.

Practically, the selection between the parameters varying
with genotypes and those whose value is stable takes into
account (1) the existing knowledge on the effect of the traits
represented by the parameters on crop behaviour, (2) the
significant effect of the parameters on the variables simulat-
ed by the model, and (3) the expected use of the model. In
most cases, the chosen parameters are included in the mod-
ules simulating (1) crop leaf area and growth (Asseng et al.
2003; Agüera et al. 1997; Colson et al. 1995), (2) crop
development (Brisson et al. 2002; Hammer et al. 1982;
Villalobos et al. 1996; Boote et al. 2001) and (3) yield
formation, with the values of its components (Boote et al.
2003; Bannayan et al. 2003; Travasso and Magrin 1998;
Barbottin et al. 2006). More rarely, parameters linked with
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other physiological processes have been analysed, such as
the evapotranspiration efficiency, the osmotic adjustment,
the crop’s ability to maintain a high photosynthetic activity
during grain filling, called the « stay green character »
(Chapman et al. 2003), or the growth vigour during the
young stages (Agüera et al. 1997). Some models also include
the effect of genotypic characters on the interactions between
genotype and pest (through the resistance scores, Zhang et al.
2006), on the lodging risk (Yin et al. 2000) or on genotypic
characteristics with an effect on the risks of genetic contam-
ination such as the morphology of reproductive organs
(Fargue et al. 2006). Ease of measurement of these parame-
ters in breeding or advisory trials may be necessary to guar-
antee their use (Brisson et al. 2002; Barbottin et al. 2006).

3.2.2 Estimation of the genotype-dependent parameters

Two main methods are found in the literature to estimate
the parameter values for a given range of genotypes in
the case of deterministic models: (1) the optimisation of
the parameters by fitting one or several variables simu-
lated by the model to their observed values, or (2) the direct
measurement of the parameter values independently from
the model.

Estimating parameters by minimising errors in model
outputs The estimation of parameters by optimising model
outputs aims at identifying the parameter values that minimise
the differences between the simulated and observed values of
outputs (Irmak et al. 2000). For example, Mavromatis et al.
(2001) proposed to estimate the values of eight genotypic
parameters from information collected in soybean trials on
flowering and maturity dates, yield and mean weight per seed.
Mavromatis et al. (2002) applied this method in two regions
with the same genotypes, which resulted in stable values for
some parameters (e.g. the critical daylength sensitivity), but
led to unstable values of others (the duration of the grain-
filling period and the photosynthetic efficiency differed be-
tween sites for a given genotype). Wallach et al. (2001)
proposed to use a method combining (1) one criterion for
selecting the parameters to estimate (maximum likelihood),
and (2) one criterion for the estimation of the parameter value
by fitting simulated data to observed data (mean squared error
of prediction). The results show that, according to the number
of parameters estimated simultaneously, the parameter values
can be very different, indicating compensation between them
(Jeuffroy et al. 2006).

The biological meaning of the parameters estimated by
fitting outputs is thus questionable, as the values are directly
dependent on the model structure and the values of the other
parameters. For a given parameter, the variability of fitted
values between environments (Mavromatis et al. 2002) indi-
cates that some processes are not taken into account in the

model, whereas they have an effect on the variables on which
the optimisation is based. The parameter values can thus
compensate for errors in the model equations. One method
to limit this problem is to optimise intermediate variables
(and not just outputs), closer in the model structure to the
parameters to be evaluated, providing that these variables
can be measured. Moreover, the estimated values depend
strongly on the data available for calibration. For users who
only have 1 year of experimental data and demand the best
possible initial guess for the coefficients of their specific
cultivar, Bannayan and Hoogenboom (2009) developed a
pattern recognition approach for maize, based on similarity
measures, to estimate cultivar coefficients from a base of
hypothetical cultivar features built with a crop simulation
model.

Estimating parameters independently from the model The
other way used in the literature is based on the direct mea-
surement of parameters. In order to use this method, the
model formalism needs to be adapted. The ease of parameter
estimation should be taken into account early in the model’s
design. The parameters estimated from direct measurement
by Liu (1989) or Barbottin (2004) are those describing the
phenological stages (duration of the periods between sowing
and flowering and between flowering and maturity) and
yield components (potential grain number and mean weight
per grain). In the sunflower model developed by Casadebaig
et al. (2011), the genotype was described by 12 parameters
measured in evaluation trials (phenology, architecture, bio-
mass and oil allocation) or in the greenhouse (expansion and
transpiration response to water stress) using defined environ-
ments in order to control the environment effects.

This method often requires specific trials and measure-
ments, sometimes difficult and expensive to apply to a large
number of genotypes (Reymond 2001; Casadebaig et al.
2008). In some cases it is possible to estimate parameters
via indirect variables regularly measured in the trials (for
example, in sunflower, the grain moisture content at harvest
can be used to estimate the time from flowering to maturity).
As parameters sometimes vary according to the trial condi-
tions, it is often possible to estimate relative values calculat-
ed according to reference genotypes (for example, the rela-
tive potential yield used in BETHA, Loyce et al. 2002a),
which are often more stable among environments.

Finally, the estimation of parameter values should also
take into account the measurement errors. For example,
the estimation of potential values for yield or yield com-
ponents, often used in crop models, should be based on
rigorous statistical methods (Brancourt-Hulmel et al. 1999;
Makowski et al. 2007).

Whatever the method used for parameter estimation, the
choice of identifying genotypic parameters in crop models
should result from a cost–benefit analysis comparing the
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gain in model predictive quality and the effort in parameter
measurement or database collection, which is rarely men-
tioned in the literature. It makes sense to pool cultivars with
similar characteristics into classes, as proposed by Zhang
et al. (2006) and Loyce et al. (2008) on disease resistance
and lodging scores. Such a classification should facilitate the
quick identification of the group to which a new variety
belongs and hence the prediction of its response in various
environments. However, concerning the response to abiotic
stresses (water, nitrogen and temperature), the characterisa-
tion of genotypic differences is more difficult to achieve in
regular field trials as likely environmental conditions (e.g.
soil water or nutrient content) are difficult to record at variety
level because of intra-specific differences in soil resource use
with time.

3.3 Evaluation of the model quality for decision support
in cultivar and crop management choices

Besides the classical evaluation of the errors of prediction of
crop models, it appears essential to assess their ability to
make good decisions, i.e. to achieve the goals of the potential
users. For models adapted to cultivars, three main uses have
been partly described (1) definition of breeding targets, (2)
agronomic diagnosis in cultivar trials and (3) choice of the
best use of cultivars. As Lecomte et al. (2010) showed, the
information required on cultivars differs according to the
stakeholder considered (breeder, farmer, advisor etc.) and
the stage in the cultivar’s development (breeding, pre-
registration and post-registration). Thus we propose two
steps to evaluate the decisional quality of models: (1) the
identification of the questions which the model should an-
swer from the targeted uses, (2) the identification of the
evaluation criteria showing whether the model can address
these questions. These criteria can be calculated by compar-
ing the simulated results with the experimental data (inde-
pendently of those used for model parameterisation) or with
the results of another model. Not much research has been
carried out on this question. Two examples, corresponding to
different uses of the model, are given below.

3.3.1 Predicting cultivar performance in various
environments with the same management

The first example concerns the Azodyn crop model (Jeuffroy
et al. 2000; Barbottin 2004), simulating the effect of cultivar
and wheat crop management (nitrogen fertilisation, stubble
management, sowing date and density) on yield, grain pro-
tein content and the amount of mineral nitrogen in the soil at
harvest, for various soil/weather environments. The model
was evaluated on its ability to identify wheat ideotypes more

stable for yield and grain protein content (Barbottin et al.
2006). An analysis of the users’ requirements (breeders and
other stakeholders) showed that cultivar behaviour should be
analysed through the genotype’s stability of performance in
various environments (use 1), and also through its ranking
for yield and grain protein content in various growing con-
ditions (use 2). Thus, two criteria were proposed to evaluate
the decisional quality of the model: (1) the environmental
variance used to forecast the stability level of a genotype (use
1), as defined by Becker and Leon (1988), and (2) the result
of Spearman’s ranking test, based on a correlation coefficient
between observed and simulated ranking, that aims at eval-
uating the model’s ability to rank genotypes on their perfor-
mance in a given environment (use 2). The results indicate a
tendency of the Azodyn model to under-estimate the values
of environmental variance (use 1), but with a good prediction
of the relative stability of genotypes (use 2). To test the
accuracy of the model for the genotype ranking, the results
from Azodyn were compared to experimental data and to the
cultivar yield and average grain protein (Barbottin et al.
2006). This choice was based on the activities of the users,
who generally compare genotypes on the average ranking on
all environments (Lecomte et al. 2010).

3.3.2 Predicting cultivar performances in various crop
management systems

The second example concerns the BETHA model (Loyce
et al. 2002a), simulating the combined effects of a crop man-
agement plan and cultivar on yield, grain protein content and
gross margin. The decisional quality of the BETHA model
was assessed through the ability of the model to identify, for a
given price–environment situation, the best cultivar–crop
management combination and, for a given cultivar, the best
cropmanagement (Zhang 2005). This was done by comparing
the simulated and observed rankings with the Spearman rank
test on a multi-site and multi-year trial network (19 trials),
where 12 cultivar–crop management pairs were tested. The
model gives a good prediction of the ranking for yield in all 19
trials, but only in six trials for grain protein content, nine trials
for gross margin with a high wheat price and 11 trials for gross
margin with a low wheat price (Zhang 2005). The capacity of
the model to identify the best crop management plan for a
given cultivar was assessed by comparing those giving most
often the best gross margin in observed and in simulated
conditions for a given cultivar (Fig. 4).

3.3.3 Value of the evaluation of decisional quality

As shown by the two examples, the usual evaluation of
predictive quality of a model is not the best way for assessing
its decisional quality in decision support. Houlès et al. (2004)
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mentioned that crop models have generally a low predictive
quality for yield (the root mean square error varies for wheat
between 0.4 and 1.4 t ha−1 in the literature) and for grain
protein content (root mean square error ranging between 1.5
and 1.7 %). But as regards the model development and its use
by advisors or stakeholders, it is generally more interesting
to demonstrate that the model can help in ranking cultivars,
in spite of its low predictive quality for yield or grain com-
position. Estimating all cultivar parameters in the model
should be unnecessary if genotype ranking is well predicted
with only a small number of them. Very few studies describe
assessment of the ranking of genotypes: Mavromatis et al.
(2001) compared the mean genotype ranking between the
CROPGRO-soybean model and experimental data. Howev-
er, ranking varieties is not always the main objective, and a
previous study of the stakeholders’ requirements in the way
they use the model may be necessary. This could be support-
ed by design ergonomists (Lecomte et al. 2010). Moreover, it
is often difficult to identify the assessment criteria most
suited to the target use, while for the assessment of the
predictive quality, the criterion MSEP is now widely used
(Wallach and Goffinet 1987, 1989).

4 Conclusion

The use of agronomic models for analysing and predicting
the genotypic response in various cropping systems and
environments is increasing in the literature, although they
are not yet widely used by plant breeders and their
associates. For these stakeholders, experimentation (re-
quiring considerable expertise for data interpretation) is
still the main way of testing cultivars. As has been frequent-
ly shown in the literature, models can be a complementary
tool to:
– Analyse the experimental field data, through additional

agronomic diagnosis
– Extrapolate the experimental results, by simulating sit-

uations not encountered in the experiments because of
limited time, shortage of resources or because certain
phenomena did not occur during the years of the exper-
iments. For example disease pressure may have been
low, making it difficult to assess cultivar resistance to
diseases. This is often the case for the models predicting
the interactions between genotype, environment and
cropping system
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Fig. 4 Comparison of the number of sites (observed and simulated by
the BETHA model) in which the cultivar–crop management plan pair
resulted in the highest value of gross margin for two winter wheat grain
prices (a=76€ t−1 and b=137€ t−1): three cultivars (Isengrain, Oratorio,
Trémie) and four crop management plans (CM1 = high sowing density,
three N applications, non-limiting N rate, three fungicides and two
growth regulators; CM2 = high sowing density, three N applications,
N rate calculated for a possible yield target, two fungicides and one
growth regulator; CM3 = low sowing density, two N applications, N

rate lower than the recommended in CM2, one fungicide, no growth
regulator; and CM4 = low sowing density, two N applications, lower N
rate than CM3, no fungicide and no growth regulator). This comparison
allows us to assess the capacity of the BETHAmodel to identify the best
CMP for a given cultivar. In half of the cases (three upon six), the
BETHA model identified the best CMP (as observed in the trials). It
also identified the two CMP reaching the highest gross margin in five
cases upon six
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– Define the size and the nature of the experimental net-
work, by suggesting reduction or enlargement of the
range of genotypes and soil–weather combinations to
explore

Thus, in the method described in part 3 the experimenta-
tion and the modelling approach are strongly linked: the
experiments are useful to estimate the cultivar parameters
to take into account in the model and to evaluate the model,
and the model is used to extrapolate the results over envi-
ronmental and management ranges not encountered in the
experiments.

However, the use of models will always have limitations:
the evaluation of a variety with a model does not take into
account its insertion in the cropping system and the conclu-
sions may be biased or partial. For example, the cultivars of
oilseed rape which are adapted to early sowing (favouring
rapid soil N uptake and thus low nitrate losses through
leaching) need to be resistant to phoma stem canker because
a high crop nitrogen status leads to a higher risk of this
disease (Aubertot et al. 2004). Varieties intended for organic
farming need to be more competitive against weeds as weed
competition is the main limiting factor for yield in this
system. They should also be adapted to late sowing, neces-
sary to control weeds with the “false seedbed” technique
(soil tillage before sowing) (Meynard and Jeuffroy 2002).
In these cases, models cannot be used to identify the traits for
a given target or given growing conditions to breed for,
because they do not simulate all the effects of cropping
systems. Moreover, breeding according to criteria suggested
by simulations is still questionable: even if useful ranges for
the most influential parameters of crop models exist in gene
banks, it is not always easy to link these parameters to criteria
usable by breeders.

The limitations to the wider use of models in variety
breeding and evaluation involve numerous avenues of re-
search. Thus, the inability of models to give a good predic-
tion of cultivar differences, which are sometimes small
among varieties from the same breeding generation, could
be improved by using methods combining model and exper-
imental data, through data assimilation techniques, as shown
by Naud et al. (2007). Moreover, on-going progress in sen-
sitivity analysis methods could benefit the determination of
genotype-dependent parameters in models. Few methods are
available nowadays to run sensitivity analysis on complex
models by taking account of correlations between parame-
ters or by using dynamic variables (Lamboni et al. 2009).
When genotype-dependent parameters can be easily recorded
by people choosing cultivars, it will be necessary to create a
method for building cultivar typology in order to identify
those best suited to given environments and crop manage-
ment systems.

With the dissemination of models among decision-makers
in cultivar breeding and assessment, these new tools could

supplement the traditional use of experimentation. With this
aim, we should involve future model users at the design stage
in order to encourage their learning and to consider the future
use of the model.

Acknowledgements The authors thank Alan Scaife for the English
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