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Abstract

The world’s population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of
agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends
estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models
have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been
evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability
to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of
the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed
equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages
over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The
results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated
rate of increase of wheat yield remained above 0.06 t ha21 year21 in several countries in Europe, Asia, Africa and America,
and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase
differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should
focus on a subnational scale.
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Introduction

Agriculture will be faced with major challenges in the next few

decades. The number of undernourished people was estimated at

868 million for the period 201022012 [1], indicating that food

demand has not yet been satisfied in some parts of the world. The

situation may worsen in the near future due to i) current

demographic trends, with the world population likely to reach

9.3 billion by 2050 [2], ii) increasing consumption of meat

products in several major developing countries, iii) the develop-

ment of biofuels, iv) limited possibilities for increasing the

cultivable area [2,4].

Several studies have recently shown that, after a period of strong

yield increase, yield levels are currently stagnating in several

countries. The average yield of cereal crops increased by more

than 98% worldwide, and by more than 187% in France from

1960 to 1990 [5]. There were several reasons for this positive

trend: genetic improvement of crop cultivars, increase in the use of

chemical inputs (fertilizers, insecticides, herbicides and fungicides),

mechanization, and irrigation. These improvements led to an

approximately linear increase in crop yields in many countries.

However, since the 1990s, yield increases for several major cereal

crops (wheat, maize, rice, barley or oat) have slowed down. In

some countries, yield levels have remained constant or have even

declined for some crops [3,4,6214]. This is the case for wheat, for

which several authors have recently shown much slower rates of

yield increase than the period prior to 1990s, with yield stagnation

in several countries, including France [3,8,14] and Switzerland

[6]. These results have raised significant concerns in the scientific

community about the ability of agriculture to feed the world in the

future.

Statistical analyses play a key role in current research studies on

food security [14,15] where yield time series analysis is used to

estimate past yield trends and to predict future yield trends.

Various types of statistical models have been used for the analysis

of yield time series. Linear regression has been used in many

studies [3,4,628,11,13,14,16,17]. Other regression models, such

as quadratic regression, bi-linear, tri-linear, and linear-plus-

plateau models, have been used in a smaller number of papers.

Several authors have shown that quadratic and linear-plus-plateau

models tend to perform better in cases of yield stagnation

[3,628,14,16].

Statistical methods other than regression models have been used

to predict future yield trends. Kumar (2000) [16] compared the

performances of linear and quadratic regression models with those

of exponential smoothing (also known as the Holt-Winters

method) and moving averages. Exponential smoothing has been

shown to perform well in a large range of applications [17,18], but

Kumar (2000) [16] showed that the lowest mean square error

(MSE) for yield predictions was obtained with the quadratic

regression model. However, this result was obtained with a small

dataset: yield predictions were assessed for three years at a specific
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location in Canada. It is, thus, difficult to draw general conclusions

from this study.

The dynamic linear model (DLM) is a recently developed

statistical method that can be used to estimate past trends and to

predict future trends in time series. It has been applied in diverse

domains, such as econometrics, signal processing, genetics and

population dynamics [19221]. This method is based on the

Kalman filter and the Kalman smoother. It is very flexible,

because the coefficients of the underlying linear model are

adjusted at each time step. Their values are, therefore, not fixed

as in classical linear regression; they vary from year to year and

could thus account for changes in yield trends (e.g., stagnation,

increase or decline in the rate of yield increase). This DLM

approach has not yet been applied to analyses of yield time series.

The aim of this study was to compare the performance of eight

statistical models, including DLM, for analyzing yield time series

and predicting yield trends. We chose wheat as the crop for this

analysis, because wheat is an important cereal crop (27% and 58%

of total cereal production worldwide and in France, respectively)

and because wheat yield time series show a great diversity of trends

(increasing, plateauing, decreasing). We used a large number of

wheat time series obtained at the national scale (in 120 countries),

and at the subnational scale (in 92 French départements) to compare

the statistical models.

Materials and Methods

Data
Three datasets including wheat yield time series were defined

for comparing the performances of the statistical methods. They

are described below.

Dataset 1: Global. The first dataset includes wheat yield time

series extracted from the FAOSTAT database [5] for 120

countries. This database has already been used in several studies

on yield time series [3,6,7,9,10]. For most countries, yield time

series began in 1961 and ended in 2010. The only exceptions were

eight countries created after 1961, for which time series were

shorter. In this dataset, bread wheat (Triticum aestivum L.) was not

distinguished from durum wheat (Triticum turgidum L.) and winter

wheat was not separated from spring wheat, because no distinction

between these crops was made in the FAOSTAT database.

Dataset 2: France. The second dataset included winter bread

wheat and winter durum wheat yield time series extracted from

the AGRESTE database (French Ministry of Agriculture) [22] and

from the printed reports of the SSP (Service de la Statistique et de la

Prospective du Ministère en Charge de l’Agriculture) for 92 (of 96) French

départements (NUTS-3 level according to the EU nomenclature).

The AGRESTE website was used to extract yields from 1989 to

2011 and the SSP reports were used to extract yield data from

1950 to 1988. Four French départements were excluded due to a lack

of data: Haute-Corse (2B), Corse-du-Sud (2A), Hauts-de-Seine (92)

and Paris (75). Note that yield data were available only from 1968

to 2011 for the départements located in the Ile-de-France region

(Paris area).

Dataset 3: France (restricted). The third dataset was a

restricted version of Dataset 2 including only the 56 French

départements for which we were able to fit the linear-plus-plateau

model (one of the statistical models tested in this paper, see below).

For the other départements, the fitting algorithm did not converge

toward a solution due to the lack of fit of the linear-plus-plateau

model to the data. These convergence problems resulted from the

absence of a plateau in the corresponding times series, making it

impossible for the algorithm to identify a start date for the plateau.

Dataset 3 was used only to compare the linear-plus-plateau model

with the other statistical models.

Models and statistical methods
We assessed the suitability of eight different statistical models for

analyzing yield time series. The models were first fitted to the time

series included in our datasets and their qualities of fit were

compared. The accuracy of the yield predictions obtained with the

models was then assessed by cross-validation.

Model description. The models considered in this study

were: linear, linear-plus-plateau, quadratic, cubic, dynamic linear

models (two variants), and Holt-Winters models (two variants).

The linear model (L) has frequently been used to analyze yield

trends in previous studies [3,4,628,11,13,14,16,17]. It assumes a

constant rate of yield increase over time and is defined as follows:

Yt~azb|Ttzet ð1Þ

Where Yt is the yield in year t, Tt is the year index (with Tt = 1

for the first year of the time series, i.e. for 1950 in Dataset 2 and 3,

and for 1961 in Dataset 1), a and b are the two parameters of the

linear trend, and et is the residual error equal to the difference

between Yt and the linear trend.

The quadratic model (Q) has been used to analyze yield time

series in several previous studies [6,7,14,16,17]. Unlike the linear

model, this model does not assume a constant rate of yield increase

and is defined as follows:

Yt~azb|Ttzc|T2
t zet ð2Þ

Where a, b and c are three parameters estimated by fitting the

model to the data.

The cubic model (C) is more flexible than Q [14] but includes

an additional parameter (d) and is defined by:

Yt~azb|Ttzc|T2
t zd|T3

t zet ð3Þ

The linear plus plateau model (LP) is characterized by a marked

stagnation [3]. According to this model, yield is assumed to

increase at a constant rate R before a date Tmax and is then

assumed to reach a plateau Ymax:

If Tt§Tmax, Yt~Ymaxzet ð4Þ

If Tt§Tmax, Yt~Ymaxzet ð5Þ

Tmax,Ymax, and R are three parameters.

In models L, Q and LP, we assume that the residual errors of

the model are normally distributed and independent, et~N(0,s2).

Autocorrelations were estimated as a function of time, to check the

assumption of independence for model errors.

Two types of Holt-Winter model [16,18] were considered in this

study. The first model (HWs) was used to predict future yield on

the basis of a linear trend. Unlike L, HWs does not assume that the

Wheat Yield Time Series
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parameter values of the linear trend (intercept and slope) are

constant over time, instead assuming that they may vary at each

time step. HWs yield predictions are calculated as follows:

ŶYtzk~atzbt|k ð6Þ

where ŶYtzkis the k year ahead yield prediction (yield prediction

k years after the last measurement), and at and bt are the two

parameters of the linear trend. The values of at and bt are updated

each time a new yield value Yt becomes available, as follows:

at~l0|Ytz 1{l0ð Þ|ŶYt ð7Þ

bt~l1| at{at{1ð Þz 1{l1ð Þ|bt{1 ð8Þ

The algorithm is initialized with a2~Y2 and b2~Y2{Y1.

HWs includes only two parameters (l0andl1) that must be

estimated from data, but it can nevertheless accommodate diverse

trends characterized by varying increases/decreases in the rate of

yield increase over time. The second Holt-Winter model (HW0)

considered in this study was a simplified version of HWs that did

not include a linear trend (i.e., bt~0). This model is often called

‘‘simple exponential smoothing’’ [16,18] and is defined by

ŶYtzk~at with at~l0|Ytz 1{l0ð Þ|ŶYt. It includes only one

parameter l0 that must be estimated from data. Holt-Winters

models generate forecasts of future yield values and are not used to

estimate past yield trends.

Two types of dynamic linear model (DLM) were considered

[19221]; a polynomial DLM (DLMs) and a random walk DLM

(DLM0). The yield predictions of DLMs can also be derived from

Eq.(6). However, the values of at and bt were not calculated with

Eqs.(728), but with the Kalman smoother algorithm [19,20]. The

parameters at and bt are defined as dynamic random variables and

their values are estimated by the conditional expected values of at

and bt given the available yield data, i.e., E atjY1,:::,YMð Þ and

E btjY1,:::,YMð Þ where Y1,:::,YM are the M yield data of the time

series. The Kalman smoother algorithm can also be used to

calculate the conditional variances and various quantiles of the

conditional probability distributions of at and bt (e.g., 1st and 3rd

quartiles). The expected values and variances are calculated

analytically with two equations; an observation equation relating

yield data toat, and a system equation describing the changes in at

and bt from year to year. The observation equation is defined by

Yt~atzet ð9Þ

where at is the yield level at time t, and et~N(0,s2
e ). The system

equation is defined by

Zt~GZt{1zgt{1 ð10Þ

with Zt~
at

bt

� �
, G~

1 1

0 1

� �
, gt{1~N(0,

X
), and

X
~

s2
a 0

0 s2
b

� �

In the DLMs model defined by Eqs.(9210), the state variables

are the time-varying level and slope describing the yield dynamic.

These two unobserved state variables are assumed to vary from

year to year according to a stochastic process defined by the system

equation. The slope bt is the local growth rate, the yearly increase

of the trend (i.e., the yield increase obtained in one year). The

observation equation relates the yield dataYt, t = 1, …, N, to the

yield level, and the system equation relates the values of the two

state variables at time t to the values at time t-1. The model

includes three unknown parameters: s2
e , s2

a, and s2
b. The variance

s2
e quantifies the variability of yield around the trend. The

variances s2
a, and s2

b quantify the variability of the level and slope

of the yield trend and define their change over time. The three

variances s2
e , s2

a, and s2
b must be estimated from data.

The DLM0 model is a simplified version of DLMs with bt~0

ands2
b~0. DLM0 corresponds to a random walk model [20] and

includes only two parameters that need to be estimated from data.

Parameter estimation. Model parameters were estimated

for each time series and for each geographical unit (country or

French département) included in Datasets 1, 2 and 3. The

parameters of models L, Q, C, and LP were estimated by

ordinary least squares, using the function lm (for L, Q, and C) and

nls (for LP) of R software. The model residuals obtained at

different dates were not correlated, according to the autocorrela-

tions calculated with the acf function of R. The parameters of the

HW0 and HWs models were estimated with the optimizer of the

HoltWinters function of R. The parameters of DLM0 and DLMs

were estimated by maximum likelihood, with the function

dlmMLE of the package dlm of R [19,20].

Evaluation. The models were evaluated in two different ways.

First, the goodness-of-fit to past data was assessed for each model

by calculating the root mean square error (RMSE), defined as

follows:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
t~1

Yt{ŶYt

� �2

vuut ð11Þ

where Yt is the yield at time t, and ŶYt the fitted yield value

obtained at the same time with the model adjusted for all available

data. RMSE was calculated for each time series from the M

available yield data (M = 49for Dataset 1, M = 61 for Dataset 2

and Dataset 3). RMSE values were then averaged over the

geographical units (countries or départements) of each dataset

(Dataset 1, Dataset 2, Dataset 3). RMSE was calculated for each

model in turn, with two exceptions, HW0 and HWs, because these

two models generate forecasts of future yield values only.

RMSE is useful for evaluating the goodness-of-fit of the models

but not for evaluating their prediction errors, because this criterion

is calculated by making use of the same data twice, for parameter

estimation and for comparing data and model predictions. We

evaluated the predictive capabilities of the models, by calculating

root mean square error of prediction (RMSEP) for each model in

turn. The k years ahead RMSEP of the N last available data was

defined as follows:

RMSEP kð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XM
t~M{Nz1

Yt{ŶYPt kð Þ
� �2

vuut ð12Þ

Wheat Yield Time Series

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e78615



where ŶYPt kð Þ is the yield value predicted at time t from the

measurements available up to time t-k. ŶYPt kð Þ was not calculated

in the same way as ŶYt. Yield prediction ŶYPt kð Þ was calculated by

fitting the model to the data available before and up to time t-k.

Yield k years ahead was then predicted with the fitted model. The

value of k was set to 1, 2,..., 10 successively, to evaluate short-term

and long-term predictions. The procedure was repeated N times,

by adding one additional data successively.

A RMSEP was calculated for each value of k, for Datasets 1 and

2. For Dataset 1, yield was predicted from 1991 to 2010 for each

time series, that is N = 20. For Dataset 2, yield was predicted from

1991 to 2010 for each time series as well. For example, with Dataset

2 and k = 1, yield in 1992 was predicted from all data available up to

1991, yield in 1993 was predicted from all data available up to 1992

and so on. For k+5, yield in 1992 was predicted from all data

available up to 1987, yield in 1993 was predicted from all data

available up to 1988 and so on. It was not possible to calculate

RMSEP for the LP model due to the convergence problem.

Results

Examples of fitted values
Examples of wheat yield time series obtained in France and

Brazil are shown in Figures 1 and 2, respectively. The two time

series shows very different trends. In France, yield was about 2.5 t

ha21 in 1961. It strongly increased from 1961 to the mid-1990s,

reaching a plateau thereafter at about 6.5 t ha21. Model L did not

fit the French data well; yield values were underestimated by this

model between 1985 and 2000, and were overestimated before

1975 and after 2000 (Fig.1A). The LP model fitted the data better.

Models Q and C also fitted the yield data correctly, but yield was

slightly underestimated by Q between 1990 and 2000 (Fig. 1B).

DLMs gave a much smoother yield trend than DLM0 (Fig.1C).

DLMs also gave a much smoother yield trend than was obtained

with LP, with no abrupt change of yield increase rate (Fig.1A, 1C);

the yield increase rates obtained with DLMs (i.e., the local slopes

of the fitted curve) tended to be constant from 1961 to 1990,

gradually decreasing thereafter. Fig.1D presents forecasted yield

values obtained with HW0 and HWs for 1991 to 2010. These

values are not fitted values, but predicted yields estimated from the

previous yield data. The forecasts obtained with HW0 and HWs

were very similar for France.

In Brazil, no plateau was observed in wheat yield time series

(Fig. 2). Yield was 0.5 t ha21 in 1961, gradually increasing

thereafter to reach almost 3 t ha21 in 2010. It was not possible to

fit the LP model to this time series due to the absence of a plateau.

The L model tended to overestimate yield between 1975 and

1985, and to underestimate yield between 1961 and 1972.

Figure 1. Wheat yield time series in France and fitted values obtained with different models. A: linear (L) and linear-plus-plateau (LP)
models. B: Quadratic (Q) and cubic (C) models. C: dynamic linear models with and without trend (DLMs, DLM0). D: Holt-Winters models with and
without trend (HWs, HW0).
doi:10.1371/journal.pone.0078615.g001

Wheat Yield Time Series
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Visually, the yield trends fitted by Q and C were almost

indistinguishable (Fig. 2B). With both models, the rate of yield

increase tended to increase with time, especially after 1990. The

yield trends obtained by fitting DLM0 and DLMs were very

similar, but that obtained with DLMs was smoother (Fig. 2C). The

differences between the yield values forecasted by HW0 and HWs

were larger for Brazil than for France; HWs predictions were

almost always higher than those obtained with HW0 (Fig. 2D), due

Figure 2. Wheat yield time series in Brazil and fitted values obtained with different models. A: linear (L) and linear-plus-plateau (LP)
models. B: Quadratic (Q) and cubic (C) models. C: dynamic linear models with and without trend (DLMs, DLM0). D: Holt-Winters model with and
without trend (HWs, HW0).
doi:10.1371/journal.pone.0078615.g002

Table 1. Root mean square errors (RMSE) obtained with three different datasets for several statistical models: linear regression (L),
quadratic regression (Q), cubic regression (C), dynamic linear models with and without trend (DLMs, DLM0), and linear-plus-plateau
(LP).

Models

Dataset Quantity Units L Q C DLMs DLM0 LP

France RMSE t ha21 0.60 0.54 0.50 0.47 0.38 NA

Differencea % 55.38 40.85 28.95 22.82 0.00 NA

France (restricted) RMSE t ha21 0.59 0.53 0.48 0.46 0.38 0.50

Differencea % 57.62 42.32 29.13 23.03 0.00 32.30

Global RMSE t ha21 0.40 0.35 0.32 0.23 0.20 NA

Differencea % 96.98 74.03 59.76 15.11 0.00 NA

aThe differences with respect to the lowest RMSE values are expressed as a percentage of the lowest RMSE values (RMSEmin); Difference = 100*(RMSE – RMSEmin)/
RMSEmin.
doi:10.1371/journal.pone.0078615.t001

Wheat Yield Time Series
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Figure 3. Wheat yield data versus fitted values for all countries and years of the Global dataset (dataset 1). A: Linear model. B: Cubic
model. C: DLM0. D: DLMs. E: Quadratic model.
doi:10.1371/journal.pone.0078615.g003

Figure 4. RMSEP of different statistical models as a function of time lag. A: France. B: Global.
doi:10.1371/journal.pone.0078615.g004

Wheat Yield Time Series
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to the high rate of yearly yield increase observed in Brazil after

1990. This increasing trend was taken into account by HWs but

not by HW0.

Goodness-of-fit
RMSE values are presented for all models and all datasets in

Table 1. Yield data and fitted yield values are graphically

compared in Figure 3, using Dataset 1 (similar results were

obtained with Datasets 2 and 3, not shown). DLM0 was the model

with the lowest RMSE values (and thus the best fit) for the three

datasets (Table 1). The model with the highest RMSE values (and

thus the poorest fit) was the linear model, L. The RMSE values

obtained with L were 55 to 97% higher than those obtained with

DLM0, depending on the dataset. Thus, DLM0 fitted the data

much better than L (Table 1, Fig.3A, 3C). DLM0 also fitted the

data better than the models including a larger number of

parameters, Q, C, LP, and DLMs (Table 1, Fig. 3). DLMs was

the second-best model according to the RMSE values reported in

Table 1. This model fitted the data better than the models

including the three parameters, i.e., C and LP (Table 1, Fig.3B,

3D). Note that, as mentioned above, it was possible to fit the LP

model to data for only a limited number of geographical areas

(Dataset 3).

Prediction accuracy
In Figure 4, RMSEP values are displayed as a function of time

lag (noted k in Eq.(12)) for the various models. RMSEP was found

to increase as a function of time lag for all models. Short-term

predictions were thus more accurate than long-term predictions,

for all models. However, RMSEP did not increase at the same rate

for all models. The rate of increase of RMSEP was greater for

model C than for the other models, particularly model L. The

RMSEP values of model C were close to those obtained for the

best models for time lags of one or two (i.e., for predictions one-

year ahead and two-year ahead), but the RMSEP values of model

C were much higher than those of the best models when the time

lag exceeded eight (Figure 4, Tables 2 and 3). Overall, greater

differences in predictive performance between models were

observed for long-term predictions than for short-term predictions

(Figure 4).

The models with the lowest RMSEP values were DLM0 and

HW0, for all time lags tested. The RMSEP curves (Fig. 4) of these

two models were visually indistinguishable, because the RMSEP

values of DLM0 and HW0 were almost identical (Tables 2 and 3).

For predictions 10-year ahead, the RMSEPs of DLM0 and HW0

for Datasets 1 and 2 were 74% and 37% lower, respectively, than

the RMSEP of model C (Table 3).

DLMs was ranked third (after DLM0 and HW0) for most of the

time lags considered, with a few exceptions. Several models (C,

DLMs, and HWs) gave similar RMSEP values for Dataset 2 for

time lags below 3 (Fig. 4A) and model L slightly outperformed

model DLMs for Dataset 1 for time lags greater than eight. In all

other cases, DLMs outperformed models C and HWs. In addition,

DLMs was systematically better than model Q (Fig.4, Tables 2 and

3). Thus, although Q and DLMs included the same number of

parameters (3), DLMs gave more accurate yield predictions.

Although yield predictions were more accurate in average with

DLM0 than with DLMs, Table 4 shows that, compared to DLM0,

the RMSEP of DLMs was lower in 21.7 to 32% of the considered

Table 3. Root mean square error of ten-year ahead predictions (RMSEP) obtained with two different datasets for several statistical
models: linear regression (L), quadratic regression (Q), cubic regression (C), dynamic linear models with and without trend (DLMs,
DLM0), and Holt-Winters with and without trend (HWs, HW0).

Models

Dataset Quantity Units L Q C DLMs DLM0 HWs HW0

France RMSEP t ha21 0.94 1.02 1.08 0.90 0.79 0.99 0.79

Differencea % 19.02 29.52 36.90 14.35 0.00 25.42 0.08

Global RMSEP t ha21 0.76 1.04 1.22 0.98 0.70 1.13 0.70

Differencea % 8.68 47.66 74.46 39.81 0.16 60.78 0.00

aThe differences with respect to the lowest RMSEP values are expressed as a percentage of the lowest RMSEP values (RMSEPmin); Difference = 100*(RMSEP – RMSEPmin)/
RMSEPmin.
doi:10.1371/journal.pone.0078615.t003

Table 2. Root mean square error of one-year ahead predictions (RMSEP) obtained with two different datasets for several statistical
models: linear regression (L), quadratic regression (Q), cubic regression (C), dynamic linear models with and without trend (DLMs,
DLM0), and Holt-Winters with and without trend (HWs, HW0).

Models

Dataset Quantity Units L Q C DLMs DLM0 HWs HW0

France RMSEP t ha21 0.82 0.76 0.70 0.71 0.68 0.71 0.68

Differencea % 18.73 10.49 1.77 3.40 0.09 3.98 0.00

Global RMSEP t ha21 0.52 0.48 0.47 0.43 0.42 0.44 0.42

Differencea % 24.45 14.24 12.54 3.43 0.02 5.55 0.00

aThe differences with respect to the lowest RMSEP values are expressed as a percentage of the lowest RMSEP values (RMSEPmin); Difference = 100*(RMSEP – RMSEPmin)/
RMSEPmin.
doi:10.1371/journal.pone.0078615.t002

Wheat Yield Time Series

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e78615



geographical areas (départements or countries) depending on the

dataset and the time lag. This result indicates that DLM0 was not

systematically the best model for all geographical areas, and that

DLMs performed better than DLM0 in about one-fifth to one-

third of the geographical areas. The percentages of cases where

DLMs was better than DLM0 were even higher when calculated

over a restricted dataset including geographical areas character-

ized by a high yearly yield increase rate (e.g., Brazil); DLMs

performed better than DLM0 in 30 to 50% of the geographical

areas showing a strong yield increase rate in 2010, i.e. a yield

increase rates higher than the median of the increase rates

estimated with DLMs in 2010 (Table 4).

Discussion

Model performance for estimating and predicting yields
DLM0 had the lowest RMSE and, thus, the best goodness-of-fit

to past data. HW0 and DLM0 had the lowest RMSEP and gave

the most accurate future yield predictions. As the RMSEP values

obtained with the HW0 and DLM0 models were very similar for

all the dataset 6 time lag combinations considered in this paper, it

is difficult to choose between these two models for the prediction of

future yields. The DLMs model was ranked second for RMSE and

third for RMSEP in most cases. In addition, compared to DLM0,

DLMs led to more accurate predictions in 30 to 50% of the

geographical areas characterized by a strong yield increase rate

(Table 4). The models with the least accurate predictions were the

linear model L for short-term predictions, and the model C for

long-term predictions (Fig. 4). HWs gave intermediate results.

This study did not cover all the existing techniques for analyzing

time series. In particular, we did not consider ARMA models in

this study because analyses of the residuals of regression models

revealed no significant autocorrelation. The use of such models

was, therefore, not really justified in this study. One limitation of

this study is that it was not possible to assess the performances of

the linear-plus-plateau model for all the available data, but we

Table 4. Percentages of geographical areas (départements for the dataset France, and countries for the global dataset) where the
model DLMs has a lower RMSEP than the model DLM0.

% of cases where DLMs is more accurate than DLM0 over

Dataset Time lag (Year)a all areasb areas with low yield increase ratesb areas with high yield increase ratesb

France 1 21.7% 13% 30.4%

France 10 32.6% 15.2% 50%

Global 1 28.4% 7.8% 49%

Global 10 29.4% 15.7% 43.1%

aRMSEP was computed for predictions one-year ahead and ten-year ahead.
bPercentages were computed over all geographical areas, over areas with low estimated increase rates (i.e., départements/countries showing an increase rate lower than
the median of the increase rates estimated with DLMs in 2010), and over areas with high estimated increase rates (i.e., départements/countries showing an increase rate
higher than the median of the increase rates estimated with DLMs in 2010).
doi:10.1371/journal.pone.0078615.t004

Figure 5. Estimated yield increase rates obtained with DLMs for wheat from 1960 to 2010 (continuous line), first and third quartiles
(dashed lines), and 95% confidence intervals (dotted lines). A: France. B: Brazil.
doi:10.1371/journal.pone.0078615.g005

Wheat Yield Time Series

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e78615



were able to calculate its RMSE values for a restricted dataset

including data from 56 French départements. It was not possible to fit

the LP model to the full dataset for France or to the global dataset,

due to convergence issues. It was also not possible to calculate

RMSEP values for this model. As many of our time series

displayed no clear plateau, it was not possible to fit the LP model

in many cases. However, the RMSE values obtained with the

restricted France dataset showed that, when convergence was

achieved, this model did not perform as well as DLM0, DLMs,

and C (Table 1). The LP model is, therefore, probably not a good

choice.

The performance of these models may be improved by

including explanatory variables related to climate and to farmers’

practices. Prost et al. [23] used linear regression models to predict

wheat yields in function of several variables such as sum of

temperature, frequency of low temperatures, radiation, water

balance, plant density, soil nitrogen, and disease severity.

However, these authors showed that it was difficult to select the

most relevant explanatory variables due to the lack of stability of

the results of classical statistical selection procedures. Moreover,

the use of such explanatory variables does not seem very suitable

for predicting yields one or several years ahead because inputs

related to climate and farmers’ practices are difficult to predict on

the long term.

Yield increase rate estimation
DLMs gave higher RMSE and RMSEP values than DLM0 and

HW0. On the basis of these criteria, this model cannot therefore

be considered the best choice. However, DLMs has an interesting

practical advantage, in that it can be used to estimate both yield

levels and yearly yield increase/decrease rates (noted at and bt in

Eq.(9)), whereas DLM0 and HW0 estimate only yield levels (i.e.,

only at). The estimation of yield increase rates is useful, because

the values obtained indicate whether yield is stagnating, decreasing

or increasing in the geographical areas of interest. When estimated

dynamically every year, yield increase rates reveal changes in yield

trends over time and provide useful information about trend

changes. Yearly yield increase/decrease rate is an important

parameter in foresight studies on food security, because it is used to

determine whether food and feed supplies fit food and feed

demands [8,14]. According to Ye et al. [24], yield increase rate is a

good indicator of food security. It is, therefore, useful to estimate

this parameter from yield time series, especially when the yield

increase rate is high.

Figure 6. Estimated yield increase rates (t ha21 year21) obtained with DLMs for wheat. A: France in 2011. B: World in 2010. Countries for
which wheat yield data are not available are indicated in white.
doi:10.1371/journal.pone.0078615.g006
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Models L, Q, C, LP, HWs and DLMs can all be used to

estimate yearly yield increase rates from yield time series. HW0

and DLM0 provide information about yield level, but not about

yield increase rate. Of the models estimating yield increase rate,

DLMs had the lowest RMSE and the lowest RMSEP values in

almost all cases (Table 1, Figure 4). Based on these results, it seems

logical to choose DLMs for the estimation of yield increase rates.

Another advantage of DLMs is that it can estimate yearly yield

increase rates for a great diversity of yield time series following

very different trends. This is because DLMs describes yield

dynamics by a stochastic process, without the requirement for a

strong deterministic assumption. This is an important advantage

for the estimation of yield increase rates and analysis of the

dynamics of these rates. With DLMs, it is possible to determine

whether yield is increasing, decreasing or stagnating, without

assuming that yield follows any given analytical trend, such as a

linear, quadratic, cubic or linear-plus-plateau pattern. Like DLMs,

HWs makes no strong assumption about yield trend and is thus

very flexible. However, the RMSEP values of HWs were

systematically higher than those of DLMs (Figure 4) and HWs

gave less accurate predictions. For these reasons, we believe that

DLMs should be preferred for estimating yearly yield increase

rates and their dynamics.

Our results demonstrate that dynamic linear models are

powerful tools for analyzing yield time series. Surprisingly, this

type of model has not yet been used for the analysis of yield time

series. This is probably because the packages implementing

dynamic linear models are recent [19]. Due to the availability of

powerful packages such as dlm in R [20], this type of model will

probably be more widely used in the future.

Is wheat yield stagnating in France and around the
world?

The practical value of DLMs is illustrated in Figures 5 and 6.

Figure 5 shows yearly wheat yield increase rates estimated by the

DLMs model for France and Brazil from 1961 to 2010. The 1st

and 3rd quartiles, and the 95% confidence interval are displayed

on the same figure to facilitate assessments of uncertainty. From

the 1960s to the mid-1970s, the estimated increase in rate of yield

was about 0.13 t ha21 year21 in France. This value increased

slightly, from 1975 to 1981 and decreased steadily thereafter until

2005. The estimated rate of yield increase was about zero in

France in 2010. The pattern of change in yield increase rate was

very different in Brazil (Fig. 5B). In 1961, yield increase rate was

about 0.025 t ha21 year21 and was, thus, much lower than that in

France at the same time. However, yield increase rate steadily rose

in Brazil from the 1970s to 2010, and was estimated at 0.045 t

ha21 year21 in 2010. The confidence intervals reveal that the

uncertainty associated with the estimated yield increase rate is high

in both France and Brazil.

The maps in Figure 6 show wheat yearly yield increase rates

estimated for French départements in 2011 and for the world in

2010. In France, the within-country variability of yield increase

rate was high. Wheat yield was found to have stagnated in most

French départements, but the yield increase rates estimated in 2011

ranged from negative values (yield decrease) to values of more than

0.11 t ha21 year21 (i.e., about as high as the highest yield increase

rate recorded in France at national level, shown in Fig. 5A).

Between-country variability was very high (Fig. 6B). Wheat yields

were found to be stagnating or even declining in many countries

(in France, but also in Norway, Sweden, Portugal, and several

Figure 7. Standard deviation of yield increase rate (t ha21 yr21) versus estimated yield increase rate (t ha21 yr21) obtained with
DLMs for the top 15 largest wheat producing countries. Countries above the red line and countries below the blue line show a coefficient of
variation (100*standard deviation/estimated value) higher than 100% and lower than 25% respectively.
doi:10.1371/journal.pone.0078615.g007
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countries in Eastern Europe, Africa and South America), but

estimated yield increase rates were above 0.06 t ha21 year21 in

several countries in Europe, Asia, Africa and America.

We will not discuss in detail here the reasons for these

differences. However, it may be of interest to identify the factors

potentially accounting for differences between the geographical

areas in which yield is stagnating or decreasing and those in which

it is continuing to increase. Three types of factor have been

identified in previous studies; a slowing of genetic improvement,

changes in agricultural practices and climate change. According to

Brisson et al. [3] and Oury et al. [25], genetic improvement has not

slowed down in the recent past and is therefore unlikely to account

for yield stagnation in France. According to several recent studies,

yield stagnation may partly reflect changes in agricultural practices

and climate change [3,11,25], but there is currently no consensus

in the scientific community about the causes of yield stagnation. In

addition, Figure 7 shows that the uncertainty associated with the

estimated yield increase rate is high for several major wheat

producing countries. The coefficient of variation of the estimates

was higher than 100% for four of the 15 top largest wheat-

producing countries (Australia, France, Germany, Ukraine), and

was lower than 25% for only four of these 15 countries. Due to this

high uncertainty, the identification of explanatory variables is

difficult. Yield increase rate values were found to differ consider-

ably between the different regions in France (Figure 6), suggesting

that efforts to identify the main causes of yield stagnation should

focus at local, rather than national scale.
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