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Abstract 

The introduction of a living cover crop during a cash crop growth cycle (relay intercropping) 

and its maintenance after the cash crop harvest may help to preserve biodiversity, increase soil 

organic matter content and carbon sequestration and provide other ecosystem services, such 

as increasing useful biotic interactions within the agroecosystem. We studied the impact of 

various approaches to managing a red fescue cover crop in a winter wheat crop in terms of 

light, water and nitrogen competition, using the STICS crop model adapted for intercropping. 

The STICS model for wheat/fescue intercropping was first evaluated on two years of 

experimental data obtained in the field. It gave satisfactory statistical results for the prediction 

of dry matter, leaf area index (LAI) and nitrogen accumulation in the two species, and for 



nitrogen and water dynamics in the soil. By providing access to unmeasured variables, such as 

transpiration, the results of simulations with this model improve our understanding of the 

performance of the intercrop in the field. For example, we showed that the intercropping 

system was more efficient that the wheat crop grown as a monoculture in terms of nitrogen 

accumulation and decreasing soil nitrogen levels before the leaching period. However, it also 

resulted in lower wheat yields. We then used the STICS model to compare four intercropping 

management scenarios differing in terms of the date of red fescue emergence, over 35 climatic 

years. We found that, in most climatic scenarios, the emergence of the fescue crop during the 

late tillering phase of the wheat crop gave the best compromise between wheat yield overall 

nitrogen accumulation and radiation interception.  
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1. Introduction  

 

A cover crop, grown between two main crops, changes the physical (Zibilske and Makus, 

2009), chemical (Rinnofner et al., 2008) and biological (Isik et al., 2009) conditions of both 

the soil and the crop.  The use of cover crops in cropping systems therefore has interesting 

agronomic and environmental effects, including protecting the soil against erosion, 

contributing to the control of weeds and diseases, providing the next crop with nitrogen and 

preventing nitrate leaching (Hartwig and Ammon, 2002). Cover crops are frequently managed 

by sowing after the harvest of the main crop, with subsequent destruction by chemical or 



mechanical techniques. The introduction of a living cover crop during the cash crop growth 

cycle (intercropping) and its maintenance after the cash crop harvest are less frequently 

observed. However, this approach has several advantages, including the preservation of 

biodiversity, increasing soil organic matter content and carbon sequestration (Scopel et al., 

2005; Lahmar et al., 2006; Teasdale et al., 2007), and increasing biotic interactions within the 

agroecosystem (Hartwig and Ammon, 2002). Direct and indirect interactions between the 

cash crop and the cover crop generate opposing facilitative and competitive effects. A 

facilitative effect is a positive interspecific interaction between the intercropping species 

(Vandermeer, 1989). Such effects occur when one crop increases the availability of resources 

to the other crop. For example, a living cover crop can decrease weed growth in the cash crop 

(Brandsaeter et al., 1998; den Hollander et al., 2007), improve soil structure regeneration and 

provide nitrogen to the following cash crop (if the cover crop is a legume). However, when 

the cash crop and the cover crop are intercropped during the cash crop growth cycle, they 

generally have to compete for the same resources, which may decrease cash crop yields 

(Carof et al., 2007a, b). The success of the intercropping system, which may be combined 

with reduced or no-tillage systems (Holland, 2004), therefore depends on maximizing 

facilitation and minimizing competition between the two crops, in terms of light, water, and 

nutrients. Little is currently known about these aspects, particularly for temperate crops.  

 

Modeling can be used to simulate and to improve our understanding of the partitioning of 

resources in these complex systems. It is therefore a useful tool for identifying ways to 

increase facilitation or to curb competition. Most of the agronomic intercropping models 

studied to date are used as tools for achieving three main objectives. The first one of these 

objectives is the analysis of biotic interactions and resource partitioning in an intercropping 

system (Berntsen et al., 2004; Tsubo et al., 2005a; Corre-Hellou et al., 2007). In this case, 



modeling provides a straightforward quantification of the processes involved in facilitative 

and competitive relationships, through the explicit representation of fundamental physical and 

biological processes, such as photosynthesis, dry matter partitioning, leaf area growth, root 

growth, plant development, the nutrient cycle and energy balance. It is also possible to fine-

tune interactions between light, water, and nitrogen on the basis of analyses of the 

relationships between supply and demand and between related indicators, such as NNI or 

interception efficiency. The second objective of these models is to assess intercropping 

performances (Baumann et al., 2002a; Jensen, 2006; Whitmore and Schröder, 2007). In this 

case, modeling provides access to intermediate variables that are of considerable importance 

for assessment but difficult to measure, such as nitrogen and water fluxes between different 

compartments of the system. The third objective is to use modeling to explore scenarios 

defined in terms of climate or management strategy (Tsubo, 2005b; Baumann et al., 2002b). 

 

In this study, we used a modeling approach to investigate facilitation and competition for 

resources in terms of light, water and nitrogen, in a cropping system based on the 

intercropping of winter wheat and red fescue. We investigated the extent to which the STICS 

model (Brisson et al., 2009) accurately reflected the functioning of the intercropping system 

over a two-year period of experimentation (Picard et al., submitted), and used this model to 

test various cover crop management strategies in terms of competition for light, water and 

nitrogen, with the aim of enhancing the agronomic and environmental performances of the 

system. 

 

2. Materials and methods  

 

2.1.  Model overview  



 

The model used was an intercropping extension of the sole crop model STICS (Brisson et al., 

2009) considering the system to consist of two species rather than one (Brisson et al., 2004). 

This model is based on a daily time-step that integrates input variables related to climate, soil 

properties and cropping system, to calculate both agricultural and environmental variables 

(Brisson et al., 2009). STICS is a generic model that can readily be adapted to various crop 

types and is known to be robust, based on parameterizations in various soil and weather 

conditions; this model also has a high level of plasticity, based on options in terms of 

formalism for both physiology and management (Brisson et al., 2009). The crop is 

characterized by its aerial biomass and leaf area index and in terms of the number and 

biomass of harvested organs. The soil is divided into a succession of horizontal layers, each of 

which is characterized by its water and mineral N content. The soil environment is assumed to 

be identical for both crops in the intercropping system. Soil and crop interact through the 

roots, via the root density distribution in the soil profile. 

 

STICS simulates daily biomass accumulation in the canopy and the water and nitrogen 

balances of the system. Crop development is driven by thermal time and is used principally to 

calculate leaf area and to define the filling phase of the harvested organ. The corresponding 

phenological stages depend on the species and variety.  Crop growth is driven by plant carbon 

accumulation, through the interception of solar radiation by the canopy and its transformation 

into biomass. This biomass is thus the net result of the processes of photosynthesis, 

respiration, and root/shoot partitioning. The STICS intercropping model simulates the sharing 

of light between the two crops, by calculating radiation transfer as a function of the volume of 

the canopy (height and width) of each species (Brisson et al., 2004). The fraction of the 

photosynthetically active radiation (PAR) actually absorbed by the two crops depends greatly 



on their respective heights, which depend in turn on both the characteristics of the plants 

concerned and the growth conditions. Crop nitrogen content depends on carbon accumulation 

and soil nitrogen availability. The amount of nitrogen taken up by each species depends on 

root depth penetration, root distribution in the soil layers, and N demand. Daily absorption of 

N by each species is determined by the smaller of two quantities: the amount of N available 

through the soil-root system or crop N requirements. Crop requirements are calculated with 

the N concentration/biomass relationship established from the upper limit of N dilution 

curves. The possible existence of water stress and N stress is taken into account with indices 

decreasing leaf growth and biomass accumulation in conditions of water or nutrient limitation 

(Brisson et al., 2009). Water is transported downwards in the soil when water content exceeds 

field capacity in a particular layer. For nitrate, transport within the soil profile is simulated 

with the “mixing cells” concept, which accounts for convection and dispersion.  

 

2.2.  Experimental data   

 

The results used for model parameterization and evaluation were obtained in two field 

experiments carried out in the 1999-2000 (referred to as the 1999 experiment) and 2000-2001 

(referred to as 2000) growing seasons at the INRA Grignon experimental station, located in 

northern France (48°50’N, 1°56’E). The soil was an orthic luvisol (FAO-UNESCO, 1974) 

containing 281 g.kg-1 clay, 599 g.kg-1 silt, and 120 g.kg-1 sand in the 0-90 cm soil layer, in the 

1999 experiment, and 261 g.kg-1 clay, 649 g.kg-1 silt, and 90 g.kg-1 sand in the 0-90 cm soil 

layer, in the 2000 experiment. Weather conditions during the experimental period are shown 

in Fig.1. Cumulative daily mean temperature and cumulative solar radiation were similar in 

1999 and 2000 (4895 and 4891 degree days, respectively, for temperature and 4259 and 4319 

Mj.m-², respectively, for solar radiation), whereas cumulative rainfall was greater in 1999 than 



in 2000 (1164 and 867 mm, respectively; Fig.1). The preceding crop was barley in 1999 and 

rapeseed in 2000. The experimental treatments were winter wheat grown as a monoculture 

(Triticum aestivum, cv Isengrain), red fescue grown as a monoculture (Festuca rubra, cv 

Sunset) and winter wheat intercropped with red fescue. The intercropped crops and sole crops 

were sown at the same time and at the same sites. Plant densities were 18 kg seed.ha-1 for 

fescue and 150 plants.m-² for wheat. These crops were grown in mixtures with an additive 

design in 1999 and 2000 (identical sowing densities were used for wheat grown as a 

monoculture and for intercropped wheat). A split-plot design was used for both experiments, 

with four replicates in 1999 and six replicates in 2000. Nitrogen fertilizer applications were 

similar for all treatments of the two experiments, including red fescue grown as a 

monoculture. The total amount of N fertilizer applied was 166 kg N.ha-1 in 1999 and 160 kg 

N.ha-1 in 2000. These amounts were applied in two applications, between tillering and 

anthesis, in each year. Weeds, pests and diseases were controlled with appropriate pesticides. 

Wheat (both sole-crop and intercropped wheat) was harvested on 18 July 2000 for the 1999 

experiment and on 23 July 2001 for the 2000 experiment. 

 

In each year, measurements were taken during two periods: the intercropping period (referred 

to hereafter as ϕ 1) and after the harvest of the wheat crop, when the fescue was growing as a 

monoculture (ϕ 2), until the end of the year. For these two periods, we collected the following 

data: aerial dry matter, leaf area index (LAI) and nitrogen accumulation in crops, together 

with soil mineral nitrogen and soil water content. The experiments are described in detail 

elsewhere Picard et al. (submitted). 

 

2.3. Calibration and evaluation of the model  

 



The parameters of STICS defined by Brisson et al. (2009) were used to simulate the wheat-

fescue intercrops. Only varietal parameters, site-specific soil parameters and radiative transfer 

parameters for fescue (not available in the paper by Brisson et al., 2009) were calibrated, 

using experimental data for sole crops only (Table 1). The model was then evaluated with 

intercrop data.  

 

Varietal parameter calibration was carried out in two steps for wheat and fescue. We first 

forced leaf area index with the measured values and then calibrated the other modules closely 

related to this variable, such as aerial biomass and nitrogen accumulation. In the second step, 

we calibrated the parameters determining LAI, without forcing LAI, on the same data set. For 

site-specific soil parameters, we calibrated potential soil evaporation (q0), by optimizing 

water content dynamics for sole-crop data. Soil water content was estimated at field capacity 

(WC pF2.0) and at wilting point (WC pF4.2), together with bulk density, for each year, on the 

basis of observed soil data.  For fescue, we also calibrated the “radiative transfers” module in 

two steps, using data for fescue grown as a monoculture (1999, 2000). First, leaf area index 

(LAI) parameters used to simulate changes in LAI in STICS were optimized on the basis of 

observed LAI data. We then used observed LAI and biomass data for fescue grown as a 

monoculture to optimize the various parameters of the “radiative transfer” module (Table 1).  

 

We used several criteria to compare simulated and experimental results in intercrops (Wallach 

and Goffinet, 1987). The root mean square error (RMSE) was used to evaluate the prediction 

error of the model, by heavily weighting large errors. We assessed the predictive ability of the 

model by calculating the root mean square error of prediction (RMSEP) and model efficiency 

(EF). A detailed description of the estimation of these criteria was provided by Wallach et al. 

(2006). 



 

2.4.  The scenarios simulated 

 

Simulations were used to study several management scenarios, to analyze the impact of the 

timing of the fescue cycle on the agronomic and environmental performance of the system. 

These simulations were run over 35 years of climatic data (1970-2004) from Versailles 

(48°48’N, 2°04’E), which is situated close to the Grignon experimental station, to enable us to 

take climate variability into account in the scenario assessment (Fig. 1). We compared four 

management scenarios, assessing the performance of the system during the two phases 

considered (ϕ 1 and ϕ 2). We stopped the simulation on 31 December, because STICS cannot 

run simulations over more than two consecutive years. 

 

Scenario 0 simulated wheat grown as a sole crop and was treated as the reference scenario 

against which the performance of the other three scenarios was assessed. In scenario 1, we 

simulated fescue emergence one week after the harvest of the wheat crop (in July, precise date 

depending on wheat maturity), corresponding to a rotation: wheat monoculture followed by 

fescue monoculture. In scenario 2, we simulated fescue emergence in the spring (18 March), 

corresponding to relay intercropping: wheat grown as a monoculture from October to March 

and then intercropped with fescue. In scenario 3, we simulated the simultaneous emergence of 

wheat and fescue (10 October), corresponding to full intercropping. In scenarios 2 and 3, 

fescue was not destroyed after wheat harvest, therefore remaining alive during ϕ 2.  

 

Some of the other simulated cropping practices and initial data for state variables were similar 

over the 35 years for the four scenarios. Three applications of N fertilizer were carried out, on 

25 February, 25 March and 30 April. The amounts of N fertilizer applied during the first and 



third applications were fixed at 50 and 40 kg.ha-1, respectively. The amount of N fertilizer 

applied during the second application was estimated with the balance-sheet method (Rémy 

and Hébert, 1977), with a target yield of 9 t.ha-1 for each climatic year. 

 

3. Results  

 

 3.1. Evaluation of the model  

 

Good agreement was found between the observed and simulated data obtained for wheat-

fescue intercrops, for both years (Fig. 2 and 3), as indicated by the RMSE value and the 

efficiency (EF) of the model (Table 2). In both years of experimentation, the model 

reproduced the marked predominance of wheat over fescue. Dry matter levels were much 

lower for fescue than for wheat (Fig. 2a): at harvest, mean observed wheat dry matter content 

was about 17.6 t.ha-1 and mean observed fescue dry matter content was about 0.42 t.ha-1, in 

both years. The capacity of wheat to develop leaf area more quickly than fescue during ϕ 1 

(Figure 2b) probably played a key role in this predominance. Just before the wheat harvest, 

wheat LAI decreased due to senescence, leading to an increase in fescue LAI, which was 

overestimated by the model but with no effect on the simulation of dry matter and N 

accumulation. 

 

Wheat absorbed much more nitrogen than fescue during ϕ 1 (Fig. 2c). At harvest, the mean 

amount of nitrogen absorbed was 190.7 kg N.ha-1 for wheat and 6.5 kg N.ha-1 for fescue. 

However, the fescue absorbed the residual nitrogen just after wheat harvest. The simulations 

for this variable were of better quality for ϕ 1 than for ϕ 2. The model overestimated nitrogen 

accumulation by fescue during this period. However, the differences between the observed 



and simulated values remained small. The observed and simulated yield values were 8.47 and 

10.7 t.ha-1, respectively, in 1999 and 8.9 and 8.57 t.ha-1, respectively, in 2000, giving a 

RMSEP of 2.27 t.ha-1 (n =2).  

 

The agreement between the observed and simulated data for inorganic N in the soil (Fig. 3a) 

was less satisfactory than for the results presented above, as indicated by the RMSE and the 

EF of the model (Table 2). Nevertheless, the model reproduced the principal changes in soil 

inorganic N and water content well until the wheat harvest. The model simulated overall 

changes in soil water content well during the two contrasting experimental years (Fig. 3b). 

The model also simulated accurately a dry period observed at the end of the summer of 1999 

and at the end of the growth cycle in 2000. However, for 2000, the model tended to 

overestimate soil water content just after a dry period (beginning of June until October). 

However, the amount of water involved in this overestimate was not very large: the difference 

between observed and simulated soil water contents varied between 20 and 40 mm during this 

period. After the dry period, the model accurately simulated the reconstitution of soil water 

stores.  

 

3.2. Performance of wheat-fescue intercropping, as assessed by the model  

 

Simulation results showed that wheat yield was not overly affected by fescue development in 

the intercropping system (table 3): yield differences between sole-crop and intercropped 

wheat were about 0.43 t.ha-1 in 1999 and 0.39 t.ha-1 in 2000, corresponding to a difference of 

less than 5%. The modeling results provide an explanation for this difference, through 

analyses of the partitioning of resources between the two crops. The model provides insight 

into the contribution of each species to dry matter production, light interception, water 



consumption and N acquisition in the intercropping system. The comparison between 

simulated aerial dry matter for intercropped wheat and sole-crop wheat showed that dry 

matter levels were slightly lower (about 2%) for intercropped than for sole-crop wheat in both 

years. However, dry matter levels for wheat plus fescue were 11% and a 9% higher than for 

sole-crop wheat, in both 1999 and 2000, due to the growth of fescue during ϕ 1 and, 

particularly, ϕ 2. PAR interception by intercropped wheat was similar to that for sole-crop 

wheat in both years (Table 3). Nevertheless, over the complete cycle (ϕ 1 and ϕ 2), the model 

simulates 27% and a 21% higher levels of total absorbed radiation in 1999 and 2000, 

respectively, due to the greater LAI of the fescue. Indeed, fescue intercepted 51 and 35 Mj.m-² 

of light, respectively, in 1999 and 2000 during ϕ 1, and about 178 and 119 Mj.m-², 

respectively, in 1999 and 2000 during ϕ 2 (Fig. 4). Thus, 19% and 15% less radiation reached 

the soil in the intercropped system in 1999 and 2000. 

 

Simulation showed that the intercropped wheat absorbed 2% less nitrogen in 1999 and 2000 

than did sole-crop wheat (Table 3). However, overall nitrogen absorption by wheat plus 

fescue in the intercropped system was greater than nitrogen absorption by wheat grown as a 

monoculture. Indeed, an additional 43 and 46 kg of nitrogen per hectare was absorbed by the 

fescue in 1999 and 2000, respectively, during ϕ 1 and ϕ 2. The nitrogen absorbed by the two 

crops reduced residual soil nitrogen levels by 8 and 9 units after harvest in 1999 and 2000, 

respectively, and by 39 and 42 units by 31 December, in 1999 and 2000, respectively (Table 

3). This decrease in soil nitrogen stores before the end of December decreased  the amounts of 

nitrogen likely to be leached during January-April leaching period. 

 

The simulated transpiration for intercropped wheat was slightly lower (about 1%) than that 

for sole-crop wheat, in both years (Table 3). Nevertheless, the total water transpired by the 



two crops over the whole cycle (ϕ 1 and ϕ 2)  was 22% in 1999 and 15% higher in 2000 than 

that transpired by sole-crop wheat. This had a direct effect on evaporation from the soil: in 

both years, intercropping wheat and fescue resulted in 12% less evaporation from the soil than 

growing wheat as a sole crop. This difference results mostly from the presence of the fescue 

during ϕ 2, which limits water loss by evaporation from the soil (Table 3). Τhe simulated 

amount of below-ground water drainage differed considerably between the two experimental 

years (Table 3), due to climatic differences. Drainage levels were 11% lower in 1999 and 

about 4% lower in 2000 in intercropped wheat and fescue than in wheat grown as a 

monoculture. 

 

Soil water content was slightly lower at harvest (5 mm) in 2000 and complete replenishment 

occurred by the end of December in both years (Table 3). Overall, the intercropping of fescue 

with wheat did not decrease the availability of water resources for the following crop. 

 

 

 

3.3. Analysis of four simulated scenarios for emergence dates over 35 climatic years  

 

The simulated yield for wheat grown as a monoculture (scenario 0) varied from 7.60 to 10.9 

t.ha-1, (Fig. 5a), and simulated aerial dry matter varied from 18.0 to 22.5 t.ha-1 (Fig. 5b), 

depending on the year considered. Yield (5.70 t.ha-1) and dry matter (15.8 t.ha-1) levels were 

exceptionally low in 1975, due to the occurrence of a very dry season with mean rainfall 

levels of 277 mm over the simulated period, whereas mean rainfall over the 35 years was 540 

mm. Over the 35 years considered, intercropping fescue with wheat was predicted to result in 

a 0.52 t.ha-1 lower wheat yield, on average, in scenario 3 than obtained for wheat as a sole 



crop (scenario 0), with a high level of variability between years (Fig. 5a). If the fescue 

emerged in spring (scenario 2), wheat yield losses did not exceed 0.5 t.ha-1 (0.18 t.ha-1 on 

average). No difference in wheat yield was predicted for scenario 1, in which the fescue was 

sown after wheat harvest and could therefore not affect wheat growth. Yield variability over 

time was similar for all four scenarios. Aerial dry matter levels for intercropped wheat were 

systematically lower in scenarios 2 and 3 than for scenario 0: with a 0.5 to 1.75 t.ha-1 yield 

loss in scenario 3 and a loss of no more than 1 t.ha-1 in scenario 2 (results not shown). By 

contrast, overall dry matter production (wheat plus fescue) was greater than for wheat as a 

monoculture, by 1.26, 1.84 and 2.19 t.ha-1 on average for scenarios 1, 2 and 3, respectively 

(Fig. 5b), due to the production of 1.26, 2.30, 3.36 t.ha-1 dry matter, on average, by fescue for 

scenarios 1, 2 and 3, respectively (results not shown). The variability of dry matter production 

over time was slightly higher for earlier fescue emergence dates. 

 

The difference between the scenarios is linked to differences in the timing of fescue dry 

matter production, which varied from 0.8 to 1.9 t.ha-1 in scenario 1, from 0.5 to 1 t.ha-1 in 

scenario 2 and from 1.5 to 2.5 t.ha-1 in scenario 3, depending on the year (results not shown). 

Analyses of intermediate variables related to resource capture (indices of nitrogen and water 

stress, radiation interception efficiency) identified no single major factor explaining the effect 

of intercropping with fescue on wheat growth and yield. This effect resulted from complex 

interactions between competition for light, water and nitrogen, which differed from year to 

year over the 35-year period.  

 

The simulated PAR intercepted by wheat grown as a sole crop varied from 636 to 892 Mj.m-², 

as a function of the year considered. Regardless of the year considered, intercropping fescue 

with wheat had no effect on the capacity of wheat to intercept light radiation (data not 



shown), but increased light interception by the whole canopy over the two phases considered 

(ϕ 1 and ϕ 2), with only low levels of variability over the 35 years (Fig. 5c). Overall light 

interception was a mean of 101, 234 and 398 Mj.m-² higher, on average in scenarios 1, 2 and 

3, respectively. Mean PAR interception over the 35 years was 13%, 31% and 52% higher in 

scenarios 1, 2 and 3, respectively, than for wheat grown as a monoculture. The simulated 

PAR reaching ground level over the entire simulated period varied with the year, from 2339 

to 3119 Mj.m-² for wheat grown as a monoculture. Adding fescue to the system decreased 

radiation transmission by a mean of 201, 497 and 839 Mj.m-², for scenarios 1, 2 and 3, 

respectively, corresponding to decreases of 7%, 18% and 31% of radiation available for weed 

growth, respectively (Fig. 5d). 

 

Simulated transpiration levels from sole-crop wheat (scenario 0) varied over time, from 189 to 

265 mm (Fig. 5e). When wheat was intercropped with fescue (scenarios 2 and 3), the wheat 

crop transpired less water than did wheat grown as a monoculture:  from 0 to 15 mm in 

scenario 2 and from 15 to 35 mm in scenario 3 (results not shown). However, overall canopy 

transpiration was higher when fescue was also sown, by 17, 50 and 55 mm on average in 

scenarios 1, 2 and 3, respectively (Fig. 5e). The calculation of water uptake per tone of dry 

matter for the two crops showed that in scenarios 2 and 3  this variable was similar, for all 

years, over the 35-year period (11.35 to 13.75 mm/t of dry matter). The longer fescue growth 

cycle in scenario 3 did not affect this variable. However, in scenario 1, in which fescue 

emerged after the wheat harvest, this ratio was smaller and varied less (9.92 to 12.91 mm/t of 

dry matter).  The simulated water evaporation from the ground varied between years, from 

222 to 400 mm for wheat grown as a monoculture (Fig. 5f). Intercropping with fescue 

decreased evaporation, by a mean of 13, 68 and 89 mm in scenarios 1, 2 and 3, respectively.  



Simulated below-ground water drainage varied from 108 to 652 mm over time for wheat 

grown as a monoculture (scenario 0). Intercropping with fescue had a very slight effect on 

water drainage, which decreased in half the situations, and increased in the others (result not 

shown). In 95% of cases, the impact of intercropping was limited, corresponding to less than 

10% of total water drainage in the soil profile. The balance between a higher level of 

transpiration, a lower level of evaporation and similar levels of drainage when fescue was 

sown had only a very small effect on water stores at the end of the two phases  (ϕ 1 and ϕ 

2) in these three scenarios, as shown by comparisons with wheat grown as a monoculture: the 

differences simulated were less than 10 mm in 90% of cases (results not shown). 

 

Simulated N acquisition by wheat grown as a monoculture varied over time, from 200 to 242 

kg N.ha-1, except for 1975, when it was exceptionally low, at 160 kg N.ha-1. Intercropping 

wheat and fescue (scenarios 2 and 3) decreased N acquisition by the wheat crop, by 10 to 35 

kg N.ha-1 in scenario 2 and by 40 to 75 kg N.ha-1 in scenario 3 (data not shown). The 

difference in N acquisition between scenarios 2 and 3 resulted from the greater nitrogen stress 

in scenario 3. Over the 35-year period, an increase in N acquisition by both crops was 

possible only in scenarios 1 and 2 (Fig. 5g), for which intercropping increased total N 

acquisition by a mean of 30.5 and 21.6 kg N.ha-1, respectively. In scenario 3, intercropping 

did not systematically increase N acquisition, and the increases observed never exceeded 

18 kg N.ha-1. Results showed that, in 50% of cases, N acquisition even decreased, by up to 

20 kg N.ha-1. At the end of the simulated period (31 December), regardless of the scenario 

considered, intercropping with fescue resulted in lower soil inorganic N content than leaving 

the soil bare after the wheat harvest (Fig. 5h). Mean soil inorganic N content on 31 December 

was 40.2 kg N.ha-1 for wheat grown as a monoculture (scenario 0) and varied considerably 



over the years, reaching a mean of 7.7, 13.1 and 18.9 kg N.ha-1 in scenarios 1, 2 and 3, with 

lower levels of variability for scenario 3. 

 

 

 

4. Discussion 

 

4.1) Model performance 

 

Our approach, based on parameterization of the model with experimental data obtained for 

monocultures and evaluation of the model with an intercropping system, has been adopted in 

various studies modeling intercropping (Baumann et al., 2002b; Berntsen et al., 2004; Corre-

Hellou et al., 2007). This approach gave good results in our study, showing that the model 

essentially used the same processes to describe the functioning of the system for both 

monocultures and intercropping systems. The changes in state variables observed for the 

intercropping system in this study therefore resulted essentially from resource sharing and 

changes in growth conditions (simulated by STICS) rather than processes occurring 

specifically in the intercropping system and relating to architectural plasticity or specific 

biotic constraints. Baumann et al. (2002b) showed that, in certain cases, the model makes 

errors, due to different leaf morphology responses in mixtures and in monocultures. In such 

cases, models parameterized for monocultures cannot take into account adaptations occurring 

in mixtures. In our conditions, any morphological adaptations occurring in intercropped plants 

probably had only a very small effect on the simulated processes, due to the very strong 

dominance of wheat over fescue. For example, the etiolation of fescue plants would probably 

have been insufficient to increase their access to radiation. 



 

Evaluation of the STICS model during the cropping cycle (ϕ1) indicated that this model 

accurately simulated biomass production, changes in leaf area and nitrogen accumulation for 

the two species. It also accurately simulated nitrogen and water fluxes. In other modeling 

studies based on the use of STICS and focusing on pea/barley intercropping systems (Jensen, 

2006; Corre-Hellou et al., 2007), the model accurately reproduced the state variables of the 

intercropped species, but gave RMSE values slightly lower than those obtained here (Launay 

et al., 2009). These previous results were obtained for production levels well below ours (7 

t.ha-1 total biomass, versus 24 t ha-1 in our study), indicating that our results were better. 

Corre-Hellou et al. (2007) attributed the differences between observed and simulated data to 

poor simulation of the partitioning of radiation between the two species in cases in which the 

dominance relationship between the species was inversed at the end of the cropping cycle. For 

our intercropping system, no such inversion occurred, with wheat continuing to dominate over 

fescue from sowing until harvest. Nitrogen and biotic stresses were also weaker in our 

experimental conditions, which were not subject to the constraints of organic farming. This 

may account for the differences in the level of production and the better performance of the 

model (as STICS models cannot take biotic stresses into account) in our study. 

 

During the intercropping period, the model tended to overestimate the amount of mineral 

nitrogen taken up by the fescue after the wheat had been harvested (ϕ2). This decreases the 

quality of the model’s predictions for the variable “plant nitrogen” for fescue during this 

period. It also implies a possible underestimation of the amount of mineral nitrogen remaining 

in the soil during the winter period and therefore likely to be leached. The results obtained for 

simulations with the model indicate that the model allowed the uptake of nitrogen by fescue 

roots when nitrogen levels in the soil were very low. Dorsainvil (2002) modeled intermediate 



crops and attributed the overestimation of nitrogen uptake by crops in the STICS model 

during the intercropping period to this factor, which is a generic parameter of the model that 

we did not modify (we modified only site-specific parameters). The performance of the 

STICS model could be improved by more complete parameterization, but we feel that the 

error in the estimation of nitrogen absorption by fescue inherent to the STICS model is 

acceptable given the intended use of this model. 

  

4.2. Effects of intercropping on plant growth 

 

Although we simulated a strong domination of wheat over fescue, intercropping decreased 

wheat yields by about 5%. This yield-decreasing effect of intercropping on wheat has been 

reported in studies of other types of mixed cultures involving wheat and legumes, or on 

competition between wheat and weeds. In studies of competition between wheat and weeds, 

particularly for grass weeds, decreases in wheat yields of more than 20% have been 

systematically reported, with yield loss even reaching 90% in some cases, due to competition 

for environmental resources (Lemerle et al., 2004; Vandeleur and Gill, 2004; Blackshaw et 

al., 2005). In studies of wheat-legume intercropping, yield losses generally vary between 10 

and 30% with respect to wheat sown as a monoculture at the same density (Bulson et al., 

1997; Haymes and Lee, 1999; Banik et al., 2006; Thorsted et al., 2006 b; Carof et al., 2007a), 

but may reach 70% in some cases in which there is intense competition for resources 

(Haymes and Lee, 1999; Hiltbrunner et al., 2007). This variability may be accounted for 

principally by the intensity of competition between wheat, the leguminous crop and weeds. In 

studies in which wheat yields were little affected by intercropping, the authors generally 

attributed this result to a difference in the use of environmental resource niches by the two 

crops (Anil et al., 1998) or to the complementary use of these resources by the two species 



(Willey, 1979). For our intercropping system involving two members of the grass family, the 

small decrease in wheat yields under intercropping cannot be attributed to the use of different 

niches. Instead, it is due to the strong dominance of wheat over fescue, resulting from an 

earlier onset of the growth cycle, with fescue emerging four months later than wheat. This 

difference in emergence times allowed the wheat crop to outcompete the fescue, particularly 

for the interception of solar radiation. 

 

Intercropping may facilitate the better use of environmental resources, thereby increasing 

productivity (Vandermeer, 1989; Willey, 1990). In the situation studied here, intercropping 

did not increase total yields because the fescue was not harvested. By contrast, intercropping 

did increase the total amount of biomass produced, consistent with the results of various 

studies on intercropping (Hauggaard-Nielsen et al., 2001a; Thorsted et al., 2006c). Teasdale et 

al. (2007), in a long-term study of the functioning of an intercropping system involving a 

living cover crop, showed that the biomass produced accumulated in the soil, helping to 

increase the organic matter content of the soil. We showed that this increase in primary 

productivity resulted essentially from improvements in radiation interception when crops 

were grown together, particularly after the wheat harvest, consistent with the results obtained 

for other combinations of crops (Tsubo et al., 2001; Carof et al., 2007b). Some of these 

authors suggested that their results were due to the complementary nature of the aerial 

architecture of the two species. In our case, this complementarity results primarily from the 

vertical distribution of the leaves, with the taller wheat crop shading the shorter fescue 

(simulated data not shown). 

 

The dominance of wheat over fescue results from its genetic characteristics rather than from 

an adaptation of its aerial architecture during intercropping. The simulation results, confirmed 



by experimental observations (Picard et al., submitted), demonstrate that the LAI and height 

of wheat are similar in monoculture and in the intercropping system. This complementarity is 

also achieved through the offset of the growth cycles of the two crops, enabling the fescue to 

intercept solar radiation during wheat senescence and after the wheat harvest (Fig. 4). This 

greater radiation interception efficiency after the wheat harvest may result in the suppression 

of weed populations (Bulson et al., 1997; Hauggaard-Nielsen et al., 2001a; Thorsted et al., 

2006c; den Hollander et al., 2007; Hilbrunner et al., 2007). However, some studies have 

attributed this decrease in weed populations to an allelopathic effect observed in some crop 

combinations (White et al., 1989 cited by Banik et al., 2006). 

 

4.3. Effect of intercropping on water and nitrogen fluxes 

 

The presence of a second crop may also affect water balance, by increasing transpiration by 

the canopy, as shown by several authors (Thorsted et al., 2006c). Morris and Garrity (1993) 

showed that intercropping slightly modified water uptake, which varied between -6 and +7% 

of the levels recorded for monocultures, whereas the intercropping system used water much 

more efficiently than monocultures. In our intercropping system, the water stress indices 

obtained with the STICS model showed that, in the trial conditions, neither of the two crops 

experienced water stress during the intercropping trial. This finding may be accounted for in 

part by the low levels of biomass production by the fescue during ϕ1. Fescue contributed 

2.5% of the total biomass produced during intercropping. It may also be accounted for by the 

decrease in evaporation and drainage due to the presence of the fescue, resulting in an absence 

of water deficiency in the climatic conditions occurring during the experiments. Consistent 

with this finding, Carof et al. (2007b) showed that intercropping did not affect water 

availability to cultures in this type of climate. 



 

The dominance of wheat at the start of the growth cycle limited both nitrogen availability to 

the fescue and the fescue’s nitrogen demand. Corre-Hellou (2005) showed, for the pea-barley 

combination, that a species with a rapid growth rate at the start of the cycle could rapidly 

come to dominate in competition for this resource. This is due to a difference in access to 

nitrogen, due to the difference in rooting patterns between the two species. In our situation, 

the dominance of wheat over fescue was also due to a difference in root architecture. 

Simulation results showed that the wheat roots penetrated the soil to a depth of 120 cm, 

whereas the fescue roots remained in the first 30 cm of soil. Hauggaard-Nielsen et al. (2001b) 

also observed, for a combination of pea and barley, that the barley root system penetrated to 

greater depths in intercropping conditions than in monocultures. This difference in rooting 

pattern allows the barley crop to use resources more effectively, by exploring the soil more 

efficiently than barley grown as a monoculture. In our conditions, the simulation data, 

confirmed by experimentation (not shown) showed no difference in root length between 

intercropped wheat and wheat monocultures. Maintenance of the living fescue crop 

immediately after the wheat harvest significantly decreased nitrogen levels in the soil on 

December 31 (Table 4). Fescue is thus an effective catch crop during this period, like other 

members of the grass family (Dorsainvil, 2002; Känkänen and Eriksson, 2007).  

 

4.4. Impact of the timing of the fescue growth cycle on the performance of the system 

 

Simulation results demonstrated that the system was highly sensitive to the timing of the 

fescue growth cycle, particularly in terms of dry matter production, the interception of 

radiation and nitrogen capture (Fig. 7). Effects on yield were more limited and there was 

almost no effect on water balance in this study. These results are consistent with studies on 



the impact of the sowing date of a cover crop after the main crop (Vos and van der Putten, 

1997; Dorsainvil, 2002) or of an intercrop (Whitmore and Schöder, 2007; Launay et al., 

2009). In the case of a cover crop introduced into the rotation (our scenario 1), Dorsainvil 

(2002) showed that the establishment of grasses (ryegrass in the studied concerned) was very 

slow if they were sown just after the cereal harvest, resulting in low levels of biomass 

production, principally due to water stress. We may have overestimated the emergence rate of 

fescue sown after the wheat harvest (scenario 1). Indeed, the simulation conditions for the 

emergence of a spring- or summer-sown crop are poorly described in the model: STICS takes 

into account only the mean water content of the soil layer containing the seeds, but large 

gradients in water content are often observed in the first few centimeters of the soil in 

summer. This might lead to the overestimation of fescue growth and resource uptake. In 

intercropping situations (our scenarios 2 and 3) Launay et al. (2009) obtained results similar 

to ours for a pea-barley system, in which barley yields were 30% higher if barley was sown 

two weeks before pea. 

 

Advancing the sowing date of the fescue increases both competition effects (decreasing wheat 

biomass and yield) and facilitation effects (increasing total biomass and soil cover, decreasing 

the amount of solar radiation reaching the soil).  It also increases the efficiency of radiation 

and nitrogen use. The sowing date for the fescue is therefore a key technical choice 

determining the balance between competition and facilitation. Other canopy management 

techniques can also be used to adjust this balance. These techniques include the mechanical 

(Thorsted et al., 2006a) or chemical (Carof et al., 2007a) control of the cover crop during the 

growth cycle. We studied this balance over only one cropping and intercropping cycle. 

However, certain facilitation processes may occur more slowly. For example, the nitrogen 

absorbed by the fescue during the intercropping period may be supplied to the next crop, 



thereby reducing its nitrogen fertilizer requirements. Similarly, the increase in biomass 

production due to the fescue may increase the organic matter content of the soil in the 

medium term, thereby improving its fertility. Longer term experimental and modeling studies 

are required to determine the consequences of these processes for agronomic and 

environmental performance.  

 

5. Conclusion 

 

The inclusion of a fescue as a cover crop in a wheat intercropping system may therefore favor 

certain biotic processes, such as the production of primary biomass, the interception of 

radiation that might otherwise reach weeds and the recycling of nutrient elements. A 

comparison of the simulated and observed results showed that the “STICS intercropping” 

model accurately simulated these processes and could be used to evaluate their impact on the 

agronomic and environmental performance of the system for different climatic and technical 

scenarios. The simulated results show that the use of fescue as a cover crop increases the 

efficiency of radiation interception by up to 50%, thereby resulting in higher levels of 

biomass production and a decrease, by up to 30%, in the amount of radiation reaching the 

ground and available to weeds. This makes it possible to recycle mineral nitrogen efficiently 

during the intercropping period, with no effect on water balance in the climatic conditions of 

the Parisian Basin. Despite the strong dominance of wheat over fescue, the simulation data 

nonetheless showed mean yield losses of 2 to 6%, depending on the sowing date for the 

fescue. The timing of the fescue growth cycle is thus a key technical choice for control of the 

balance between competition and facilitation and for improving the agronomic and 

environmental performance of the system. 

 



Acknowledgments 

We would like to thank Didier Picard, Mouna Ghiloufi and Patrick Saulas for providing 

experimental data. We are grateful to S. Tanis-Plant for fruitful discussions and editorial 

advice in English. The government of Tunisia and the Institut National de la Recherche 

Agronomique (INRA, France) funded the scholarship of I. Shili-Touzi. This work was partly 

funded by the Agence Nationale de la Recherche under the Systera Program: ANR-08-STRA-

10 (Ecological, technical and social innovation processes in Conservation Agriculture). 

 

 

 

 



References 

 

Anil, L., Park, J., Phipps, R.H., Miller, F.A., 1998. Temperate intercropping of cereals for forage: a 

review of the potential for growth and utilization with particular reference to the UK. Grass and 

Forage Science 53, 301-317. 

Banik, P., Midya, A., Sarkar, B.K., Ghose, S.S., 2006. Wheat and chickpea intercropping systems in 

an additive series experiment: advantages and weed smothering. European Journal of Agronomy 24, 

325-332. 

Baumann, D.T., Bastiaans, L., Goudriaan, J., van Laar, H.H., Kropff, M.J., 2002a. Analysing crop 

yield and plant quality in an intercropping system using an eco-physiological model for interplant 

competition. Agricultural Systems 73, 173-203. 

Baumann, D.T., Bastiaans, L., Kropff, M.J., 2002b. Intercropping system optimization for yield, 

quality, and weed suppression combining mechanistic and descriptive models. Agronomy Journal 94, 

734-742. 

Berntsen, J., Hauggard-Nielsen, H., Olesen, J.E., Petersen, B.M., Jensen, E.S., Thomsen, A., 2004. 

Modelling dry matter production and resource use in intercrops of pea and barley. Field Crops 

Research 88, 69-83. 

Blackshaw, R.E., Moyer, J.R., Huang, H.C., 2005. Beneficial effects of cover crops on soil health and 

crop management. 

Brandsaeter, L.O., Netland, J., Meadow, R., 1998. Yields, weeds, pests and soil nitrogen in a white 

cabbage living mulch system. Biological Agriculture & Horticulture 16, 291-309. 

Brisson, N., Bussiere, F., Ozier-Lafontaine, H., Tournebize, R., Sinoquet, H., 2004. Adaptation of the 

crop model STICS to intercropping. Theoretical basis and parameterisation. Agronomie 24, 409-421. 

Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2009. Conceptual basis, formalisations and 

parameterization of the STICS crop model. Quae, Paris. 



Bulson, H.A., Snaydon, R.W., Stopes, C.E., 1997. Effects of plant density on intercropped wheat and 

field beans in an organic farming system. Journal of Agricultural Science 128, 59-71. 

Carof, M., de Tourdonnet, S., Saulas, P., Le Floch, D., Roger-Estrade, J., 2007a. Undersowing wheat 

with different living mulches in a no-till system: yield analysis. Agronomy for Sustainable 

Development 27, 347-356. 

Carof, M., de Tourdonnet, S., Saulas, P., Le Floch, D., Roger-Estrade, J., 2007b. Undersowing wheat 

with different living mulches in a no-till system: competition for light and nitrogen. Agronomy for 

Sustainable Development 27, 357-365. 

Corre-Hellou, G., 2005. Acquisition de l’azote dans des associations Pois-orge en relation avec le 

fonctionnement du peuplement.Ph.D. Thesis, university of Angers, France. 

Corre-Hellou, G., Brisson, N., Launay, M., Fustec, J., Crozat, Y., 2007. Effect of root depth 

penetration on soil nitrogen competitive interactions and dry matter production in pea-barley 

intercrops given different soil nitrogen supplies. Field Crops Research 103, 76-85. 

den Hollander, N.G., Bastiaans, L., Kropff, M.J., 2007. Clover as a cover crop for weed suppression in 

an intercropping design: I. Characteristics of several clover species. European Journal of Agronomy 

26, 92-103. 

Dorsainvil, F., 2002. Evaluation, par modélisation, de l’impact environnemental des modes de 

conduite des cultures intermediaires sur les bilans d’eau et d’azote dans les systèmes de culture.Ph.D. 

Thesis, university of AgroparisTech, France. 

Hartwig, N.L., Ammon, H.U., 2002. Cover crops and living mulches. Weed Sciences 50, 688-699. 

Hauggaard-Nielsen, H., Ambus, P., Jensen, E.S., 2001a. Interspecific competition, N use and 

interference with weeds in pea-barley intercropping. Field Crops Research 70, 101-109. 

Hauggaard-Nielsen, H., Jensen, E.S., 2001b. Evaluating pea and barley cultivars for complementarity 

in intercropping at different levels of soil N availability. Field Crops Research 72, 185-196. 



Haymes, R., Lee, H.C., 1999. Competition between autumn and spring planted grain intercrops of 

wheat (Triticum aestivum) and field bean (Vicia faba). Field Crops Research 62, 167-176. 

Hiltbrunner, J., Liedgens, M., Bloch, L., Stamp, P., Streit, B., 2007. Legume cover crops as living 

mulches for winter wheat: components of biomass and the control of weeds. European Journal of 

Agronomy 26, 21-29. 

Holland, J.M., 2004. The environmental consequences of adopting conservation tillage in Europe: 

reviewing the evidence. Agriculture Ecosystems & Environment 103, 1-25. 

Isik, D., Kaya, E., Ngouajio, M., Mennan, H., 2009. Weed suppression in organic pepper (Capsicum 

annuum L.) with winter cover crops. Crop Protection 28, 356-363. 

Jensen, E. S., 2006. Intercropping of cereals and grain legumes for increased for increased production, 

weed control, improved production quality and precention og N-losses in European organic farming 

systems. INTERCROP Report. [on line] www.intercrop.dk 

Lahmar, R., de Tourdonnet, S., Barz, P., Düring, R.A., Frielinghaus, M., Kolli, R., Kubat, J., 

Medvedev, V., Netland, J., Picard, D., 2006. Prospect for conservation agriculture in northern and 

eastern European countries. Lessons of KASSA. In: ESA (Ed.), Proceedings of the ninth ESA 

Congress, Warsaw (Poland), pp. 77-88. 

Launay, M., Brisson, N., Satger, S., Hauggaard-Nielsen, H., Corre-Hellou, G., Kasynova, E., Ruske, 

R., Jensen, E.S., Gooding, M., 2009. Exploring options for managing strategies for pea-barley 

intercropping using a modeling approach. European Journal of Agronomy, in press. 

Lemerle, D., Cousens, R.D., Gill, G.S., Peltzer, S.J., Moerkerk, M., Murphy, C.E., Collins, D., Cullis, 

B.R., 2004. Reliability of higher seeding rates of wheat for increased competitiveness with weeds in 

low rainfall environments. J. Agric. Sci. 142, 395-409. 

Morris, R.A., Garrity, D.P., 1993. Resource capture and utilization in intercropping: water. Field 

Crops Research 34, 303-317. 



Rémy, J.C., Hébert, J., 1977. Le devenir des engrais azotés dans le sol. Comptes-rendus de l'Académie 

d'Agriculture Française 63, 700-710. 

Rinnofner, T., Friedel, J.K., Kruijff, R.d., Pietsch, G., Freyer, B., 2008. Effect of catch crops on N 

dynamics and following crops in organic farming. Agronomy for Sustainable Development 28, 551-

558. 

Scopel, E., Findeling, A., Chavez Guerra, E., Corbeels, M., 2005. Impact of direct sowing mulch-

based cropping systems on soil carbon, soil erosion and maize yield. Agronomy for Sustainable 

Development 25, 425-432. 

Teasdale, J.R., Coffman, C.B., Mangum, R.W., 2007. Potential long-term benefits of no-tillage and 

organic cropping systems for grain production and soil improvement. Agronomy Journal 99, 1297-

1305. 

Thorsted, M.D., Olesen, J., Weiner, J., 2006a. Mechanical control of clover improves nitrogen supply 

and growth of wheat in winter wheat/white clover intercropping. European Journal of Agronomy 24, 

149-155. 

Thorsted, M.D., Olesen, J.E., Weiner, J., 2006b. Width of clover strips and wheat rows influence grain 

yield in winter wheat/white clover intercropping. Field Crops Research 95, 280-290. 

Thorsted, M.D., Weiner, J., Olesen, J.E., 2006c. Above- and below-ground competition between 

intercropped winter wheat Triticum aestivum and white clover Trifolium repens. Journal of Applied 

Ecology 43, 237-245. 

Tsubo, M., Walker, S., Mukhala, E., 2001. Comparisons of radiation use efficiency of mono-/inter-

cropping systems with different row orientations. Field Crops Research 71, 17-29. 

Tsubo, M., Walker, S., Ogindo, H.O., 2005a . A simulation model of cereal-legume intercropping 

systems for semi-arid regions I. Model development. Field Crops Research 93, 10-22. 

Tsubo, M., Walker, S., Ogindo, H.O., 2005b. A simulation model of cereal-legume intercropping 

systems for semi-arid regions: II. Model application. Field Crops Research 93, 23-33. 



Vandermeer, J.H., 1989. The ecology of intercropping. Cambridge University Press, Cambridge (UK). 

Vos, J., Van der Putten, P.E.L., 1997. Field observations on nitrogen catch crops. I. Potential and 

actual growth and nitrogen accumulation in relation to sowing date and crop species. Plant and Soil 

195, 299-309. 

Wallach, D., Goffinet, B., 1987. Mean Squared Error of Prediction in models for studying ecological 

and agronomic systems. Biometrics 43, 561-573. 

Wallach, D., Makowski, D., Jones, J.W., 2006. Working with dynamic crop models: Evaluation, 

analysis, parametrization and applications. ELSEVIER, Netherlands. 

Whitmore, A.P., Schroder, J.J., 2007. Intercropping reduces nitrate leaching from under field crops 

without loss of yield: a modelling study. European Journal of Agronomy 27, 81-88. 

Willey, R., 1979. Intercropping-Its importance and research needs. Part 1. Competition and yield 

advantages. Field crop abstracts 32, 1-10. 

Willey, R.W., 1990. Resource use in intercropping systems. Agricultural Water Management 17, 215-

231. 

Zibilske, L.M., Makus, D.J., 2009. Black oat cover crop management effects on soil temperature and 

biological properties on a Mollisol in Texas, USA. Geoderma 149, 379-385. 











 

 







 


