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Abstract

Nitrous oxide (NO) is the main biogenic greenhouse gas contributing to tbbajlwarming
potential (GWP) of agro-ecosystems. Evaluating the impécigriculture on climate there-
fore requires a capacity to predict the net exchanges ofgassin relation to environmental
conditions and crop management. The biophysical crop mOE&ES-EGC is designed to pre-
dict the productivity and GWP of agro-ecosystems by sinmda€ and N dynamics, including
N,O emissions from soils, on a daily time step, as driven by itréication and denitrification
pathways. These two microbiological processes are matialehe product of a potential rate
with three dimensionless factors related to soil water eotytnitrogen content and temperature,
of which a fixed site-specific proportion is evolved agN These equations form the,® sub-
model of CERES-EGC, and involve a total set of 15 parametesar of those are site-specific
and should be measured on site, while the other 11 are coadigbal, i.e. fixed over time and
space. Accurate estimates of the global parameters shewdught prior to extrapolating the
model to make predictions in new situations. Here, we usage8&an calibration to that purpose
using a database of;:® flux measurements including seven different field-sitdsrance. First,
we gathered prior information on the model parameters basditierature review, and assigned
them uniform probability distributions. A Bayesian methioalsed on the Metropolis-Hastings
algorithm was subsequently used to update the parametabdi®ns for each field site. Three
parallel Markov chains were run to ensure a convergenceeddltporithm. This site-specific cal-
ibration significantly reduces the model prediction errcnoss the field sites, along with its over-
all uncertainty, compared to the initial parameter settifige root mean square error (RMSE) of
predictions computed with posterior parameters valuesttuas reduced by 73% on average in
comparison with the prior estimates. The RMSE declined f88to 6 g NO-N ha ! day! on

average. The Bayesian calibration was also applied to @lllfta sets simultaneously, to obtain



better global estimates for the parameters initially deston@versal. This made it possible to
reduce the RMSE by 33% on average, compared to the uncalibnaddel. These global param-
eter values may be used to obtain more realistic estimatis@femissions from arable soils at

regional or continental scales.

Keywords

Bayesian calibration, Parameter uncertainty, CERES-BGyus oxide, Markov Chain Monte

Carlo, NitroEurope
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1 Introduction

While food supply for increasing population is becoming afi¢he alarming question world-
wide, we are faced with the growing environmental footpoftagriculture due to land use
change and management intensification (Kiers et al., 2088jessing the contribution of agri-
culture to climate change is one of the key question adddessenvironmental scientists who
should help to identify measures to reduce the burden otaltuire in global warming. Soils
are the main source of nitrous oxide,®)) in the atmosphere due to microbial processes of ni-
trification and denitrification. By intensively using N-féisers, agriculture amplifies these two
processes and hence, agro-ecosystems contribute 55-ab# glbbal anthropogenic emissions
of N,O and are the most responsible for the increase £ ldtmospheric concentration com-
pared to other ecosystems or activity sectors (Smith e@0y). The use of agro-ecosystem
models facilitates predictions of,J emissions from arable soils at the plot scale and offers the
unique mean to upscale the predictions at regional andreamttal scales (Butterbach-Bahl et al.,
2004). Predictions of process-based models such as agsystem models are highly depen-
dant on model parameters and uncertainty about their valeggably induces uncertainty about
model outputs. To facilitate decisions based on modelgiires first to estimate the parameter
values and then to quantify the risk of error of predictiore da parameter estimates. Although
model parameterisation and uncertainty analysis of pgbased models are widely developed
in the literature, they rarely are considered simultanBoayesian calibration makes the com-
bination of this two goals possible by providing estimateparameters values under the form
of probability density functions (pdfs) which are propaghto model outputs that can also be
expressed as pdfs (Gallagher and Doherty, 2007). Protyatddnsity functions are initially the
expression of current imprecise knowledge about modelpatar values, this prior probability

is then updated with the measured observations into postaobability distribution by means
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of Bayes’ theorem.

In ecological and environmental sciences, Bayesian edldr has been applied for various dif-
ferent models and is actively developing for many types oflete. For example, Hong et al.
(2005) applied a Bayesian estimation to input parametessrofrogen cycle model that simu-
lates N cycle at the watershed scale, Larssen et al. (20@6) ai8ayesian approach for model
calibration and uncertainty analysis of a hydrogeochehnicalel that simulates acidification ef-
fects on trout population health and Ricciuto et al. (20@8)developed a technique performing
both calibration of all the parameters of a simple model ofidation of net ecosystem G@x-
changes and assimilation of hourly observations into thdeh\ll these techniques were based
on Markov Chain Monte Carlo (MCMC), a Bayesian techniqu¢ izs demonstrated its superi-
ority compared to other methods of parameter estimatioan@t al. (2003) and Gallagher and
Doherty (2007) demonstrated that MCMC methods are the nagepgul methods compared to
other Bayesian and frequentist methods of uncertaintyyaiglin the same way, Makowski et al.
(2002) demonstrated that the Metropolis-Hastings givegianean squared error of prediction
than the Generalized Likelihood Uncertainty Estimatiorttme (GLUE) in the case of parame-
ter estimation of an agronomic model. The Bayesian metlogyadiescribed by Van Oijen et al.
(2005) has been applied to dynamic process-based forestlsnoih the goal to calibrate model
parameters with multiple observed data from forested expartal sites (Svensson et al., 2008;
Klemedtsson et al., 2007). The technique is based on theoptdis-Hastings algorithm that
generates samples from high dimensional distributiongutige form of Markov Chains Monte
Carlo (MCMC) which approximate the posterior parametetrifigtions.

Although a large literature is developing about applicated Bayesian techniques in environ-
mental sciences, Bayesian approach has never been appligddess-based model of soll
N,O emission models. These models have been developed firgtgads the expensive and

time-consuming direct measurements glNemissions on field and then to extrapolate emis-
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sions over space and time. Indeed, models gDNmissions are definitely indispensable to
facilitate simulation and interpretation of specific maasy sites, to make tests of different
management and mitigation strategies possible for fareredgo carry out spatially-explicit in-
ventories of NO emissions from agriculture. Predicting® emissions from agro-ecosystems
requires taking into account complex processes and intterscwhich originate from both en-
vironmental conditions and agricultural practises (Fiadket al., 1998). Several process-based
models have been developed to simulai®@Mmissions from arable soils, including DAYCENT
(Parton et al., 2001), DNDC (Li, 2000), FASSET (Chatskikhakf 2005) and CERES-EGC
(Gabrielle et al., 2006b). As recommended by IPCC, the traethodology allows the countries
of Annex 1 to use these more complex models to quantify the® Hudgets from agriculture
in order to improve the accuracy of national inventoriesQ@; 2006). However these models
have still high uncertainties coming from parameter valdesing variables and model structure
(Gabrielle et al., 2006a).

The overall purpose of this study was to calibrate the patars@f the NO emissions module
of the CERES-EGC agro-ecosystem model and to quantify taingr of model predictions by
using a Bayesian calibration technique and a sophistiqgatsckdure for analysis and diagnos-
tics of MCMC chains. Measured observations were from sewad-§ites in Northern France
which represent major soil types, crops and crop managemiewd additional specific objec-
tives were to apply our Bayesian procedure both to the medstata sets successively and to
the data sets simultaneously in order to find respectivél;specific and universal parameter
values with their uncertainty quantified. Our results wal lsseful in using the site-specific cali-
brated parameters to develop mitigation strategies in th@soring sites and the universal values
of calibrated parameters to extrapolate the model at redj@mmd continental scales. In addition,
our study allows us to partly reach the objectives of the Btmtle Modelling Component of the

NitroEurope Integrated project (Sutton et al., 2007) inelthive are actively involved and thus
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to give a little advance to the question addressed by thegrojWhat is the effect of reactive

nitrogen supply on the direction and magnitude of net greasé gas budgets for Europe?”

2 Material and Methods

We used a Bayesian calibration technique based on the Myisdpastings algorithm to esti-
mate the parameter probability density functions of th®MNmissions module of the CERES-
EGC model. The equations of the ® emissions module involve a total set of 15 parameters of
which 11 were estimated by our procedure based on runnieg tharallel Markov Chains Monte
Carlo to ensure a convergence of the algorithm. We used aaksgaof NO flux measurements
including seven different field-sites in France in the gdaither to apply our procedure for each
data sample successively and find the site-specific paraesisates or to apply our calibra-
tion procedure to all the data samples simultaneously andomameters estimates considered

as universal.

2.1 The Bayesian approach

Bayesian methods are used to estimate model parametersriyréog two sources of informa-
tion: the prior information about parameter values and tleasarements of output data. The
prior information is based on expert knowledge, literat@aew or by measuring them directly
on field or in laboratory and observations are generallyathfield measurements which as-
sess the different fluxes between soil-crop-atmospherg@adments. Using the Bayes’ theorem
makes it possible to combine these two sources of informaticorder to calibrate the model
parameters whereas most statistical methods only use thatalata and does not provide prob-
ability distributions of the parameters. The uncertairepagters are random variables for which
we assigned them a prior probability distribution. This lpability distribution constitutes the

prior uncertainty about parameter values and what we wawgeslto reduce this uncertainty



10

11

12

13

14

15

16

17

18

19

20

by using the measured data. In our case, we specified lowengper bounds of the parame-
ters’ uncertainty which define the prior parameter disttidns as uniform. In addition, using this
approach allowed us to analyse the uncertainty of modelgreds by running the model with
different parameter settings sampled from the calibratdmeter distributions and to quantify
cross-correlations between parameters. Bayesian cédibrgenerates the posterior parameter

distribution which is given by Bayes’ theorem:

p(Y|0)p(0)

p(0Y) = oY)

(1)

where we denote the parametersfasnd the vector of measurementslas p(6) is the prior
parameter distribution faf, p(A|Y) is the posterior parameter distributigr{}”) is a constant of
proportionality that is not explicitly computed, apdY"|0) is the likelihood function fof. The
likelihood is the probability of the dat& given the parameter® and is determined from the
probability distribution of errors between observationsl @redictions. In our case, we assume
that the errors are normally distributed with mean 0 and wetated, and as probability den-
sities may be very small numbers and to avoid rounding em@sassumed calculations using

logarithms. The logarithm of the data likelihood is thusigets follows:

logL = Z <—0.5 (w) — 0.5log(27) — log(ai)> (2)

0;

wherey; is the j y value in the data sét, w; is the vector of model input data associated
with y;, f(w;:0) is the model prediction of;, and K is the total number of observations in
the data sets. The data séfsare times-series of {0 emission measurements andis the
standard deviation of theJd measurements. We assumed that the model error can betitkib
to additive measurement errors following Van Oijen et aDQ®) and in the same fashion as

Svensson et al. (2008) and Klemedtsson et al. (2007).
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2.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a Markov Chain Montarld (MCMC) technique that
generates a sample of parameter vectors from the postéstabdtionp(Y'|0) (Metropolis et al.,
1953). First of all, the starting vectdy of the Markov chain in the parameter space is chosen
within the prior parameter space and then the next candidattorsd; are generated for =

1, ..., N iterations as follows:

;Step 1. Randomly generate a proposal parameter vector waandidate parameter vector

0" = 0,1+ (3)

whered is a random vector generated using a multivariate normadiloligion;

«Step 2. Calculate the ratio of the posterior probability lné new candidate over the posterior

10

11

12

13

probability of the previous candidate:

_ p0Y) _ p(v16)p(6") "
p(ei—1|y) p(Y|0i—1)p(0i—1>

In our case, since calculations are made using logarithrmgompute the log o as the

difference between the log of the posterior probability ofrent point minus the log of

posterior probability of the previous point.

1uStep 3. Accept* if loga > u wherew is an uniform random variable from an uniform distribution

15

16

17
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19

20

on the interval (0,1), else reject afd= 6;_;.

The new point* is always accepted if its posterior value is no lower thanpibsterior value of
0;,_1. Once the chain has attained tNeiterations, the chain must have converged to the target
distribution which is the posterior parameter distribatjgf|Y"). Before running the algorithm,
the chain lengthV (total number of iterations) and the proposal distributidar generating new

candidates must have been pre-defined as well a&/thember of first iterations that should be

8
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discarded. The first iterations at the beginning of the chaid to be discarded while the MCMC
“burns-in”. In our case, we discard 10% of the total numbeitefations at the beginning of the
chain (Van Qijen et al., 2005). The chain lengthis fixed betweeri0* and10° iterations and
depends on the convergence point of the Markov chains. Tdyogal distribution used for
generating new candidate vectors is a Gaussian distribbutith a mean of zero. In our case, we
tuned the variance matrix of § so that the Markov chains explore the space of possible salue
for 6. We subsequently followed the procedure of Van Oijen etZ2006) and we defined the
variances equal to the square of 1 to 5 % of the prior parameateye §,.;, — 0,...) and zero
covariances. The variancesX®fvere tuned so that the fraction of accepted points was caegbri

between 20 to 30% during the test performed in the step 2 d¥fétteopolis-Hastings algorithm.

2.3 The CERES-EGC model

CERES-EGC was adapted from the CERES suite of soil-crop mddenes and Kiniry, 1986),
with a focus on the simulation of environmental outputs sasmitrate leaching, emissions of
N,O and nitrogen oxides (Gabrielle et al., 2006a). CERES-E®GG on a daily time step, and
requires daily rain, mean air temperature and Penman pak@&vapo-transpiration as forcing
variables. The CERES models are available for a large nummberop species, which share
the same soil components (Jones and Kiniry, 1986). CEREG-E@nprises sub-models for
the major processes governing the cycles of water, carbdmgrogen in soil-crop systems. A
physical sub-model simulates the transfer of heat, watgngnate down the soil profile, as well
as soil evaporation, plant water uptake and transpiratiorelation to climatic demand. Water
infiltrates down the soil profile following a tipping-buckapproach, and may be redistributed
upwards after evapo-transpiration has dried some soitsaye both of these equations, the gen-
eralised Darcy'’s law has subsequently been introducediierdo better simulate water dynamics

in fine-textured soils (Gabrielle et al., 1995).
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A biological sub-model simulates the growth and phenoldghe crops. Crop net photosynthe-
sisis a linear function of intercepted radiation accordmthe Monteith approach, with intercep-
tion depending on leaf are index based on Beer’s law of ddfus turbid media. Photosynthates
are partitioned on a daily basis to currently growing org@osts, leaves, stems, fruits) accord-
ing to crop development stage. The latter is driven by theiaedation of growing degree days,
as well as cold temperature and day-length for crops seasiivernalisation and photoperiod.
Lastly, crop N uptake is computed through a supply/demahdrse, with soil supply depending
on soil nitrate and ammonium concentrations and root ledgttsity.

A micro-biological sub-model simulates the turnover ofamg matter in the plough layer. De-
composition, mineralisation and N-immobilisation are ralbed with three pools of organic mat-
ter (OM): the labil OM, the microbial biomass and the humdgisetic rate constants define the
C and N flows between the different pools.

Direct field emissions of C§) N,O, NO and NH into the atmosphere are simulated with differ-
ent trace gas modules. Here, we focus on the nitrous oxidesemns module which is adapted
from the semi-empirical model NOE (Hénault et al., 2005)donulating the NO production
in the soil through both the nitrification and the denitrifioa pathways. Denitrification compo-
nent is derived from the NEMIS model (Hénault and Germor@Qhat calculates the actual
denitrification (Da) as the product of a potential rat€® D R) with three unitless factors related

to soil water contentfyy ), nitrate contentk’y) and temperaturef{;), as follows:

Da = PDR.Fy.Fy.Fr (5)

In a similar fashion, nitrification is modelled as the protlo€ a maximum nitrification rate
(M N R) with three unitless factors related to water-filled porasp(Vy), ammonium concen-
tration (V) and temperature\r) and expressed as follows:

Ni= MNR.Ny.Ny.Nr (6)

10
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Nitrous oxide emissions resulting from the two processessail-specific proportions of total

denitrification and nitrification pathways and are calcedbaccording to:
N>O =r.Da + c.Ni (7)

wherer is the fraction of denitrified N and c is the fraction of niteifi N that both evolve asJ®.
The N,O sub-model of CERES-EGC involves a total set of 15 parammetiarvhich four of them
are site-specific and must be measured on site, while the a@thare considered global, i.e.
fixed over time and space. The local parameters are the padtdanitrification rate (PDR), the
maximum nitrification rate (MNR) and the fractions of niteidi (c) and denitrified (r) N that
evolve as NO. They were all measured with the same protocol as sumnddrisélénault et al.
(2005). For each test site, the PDR were measured by acetplecking of undisturbed soil
cores taken from the top 20 cm of soil, satured with water acdbated with an ample supply of
nitrate (Hénault and Germon, 2000). The fraction of déiett nitrate that evolves as.® was
determined as the difference between th®Nroduction rates of soil cores incubated with and
without acetylene and the fraction of nitrification evolvesiN,O was measured on sieved soil
samples incubated with increasing soil moisture contedtraon-limiting NH; supply. Lastly,
the maximum nitrification rate (MNR) and the fraction (c) weneasured by using laboratory
soil incubations and following the protocol of Garrido et @002). The 11 global parameters
are the constants of the,® module equations which are fixed from site to another andi ficxe
time. In the original model, the calibration of the globatgaeters of the denitrification process
was carried out by Hénault and Germon (2000) whereas thmbpmarameters of the nitrification
pathway were calibrated by Garrido et al. (2002) and Laeitlal. (2005). The different response
functions computed with the default parameter values andtsans presented below are shown
in Figure 3 (as the dotted lines). The response functions@itess and are calculated as:

_ [NO; ]
Kmdemt + [NO:;}

Fy (8)

11



1 whereF) is the denitrification response factor to soil nitrate cnm{éVOg ] inmg N kg™! sail
> and Kmygeni id the nitrate N content (mg N kg soil) whereFy = 0.5.
Fy = 0, WFPS < Trwrps

(9)

POW
Fy = {WFPS Trwrrs , WFPS > Trwrps
1 —Trwrps

s WhereFyy is the denitrification response factor to soil WFESyy pg is a threshold value below

+which no denitrification occurs anblOW is the exponent of the power function.

Fr =-exp {( Pdenit) I (Q Oldo t1) n (@10, t72)} s T < TTrgenst
(10)
T —20)1 10geni
Fr =exp {( ) ﬂle)Q a tﬂq , T > TTr gena

s WherefFr is the denitrification response function to soil tempemriii). £ is derived from two

s biological reactions that occur either below a threshohdgerature€l " 7'r 4.,,;; Or aboOVET T'r 4ot -

7 Both reactions present a different Q1Q104eni:1 and Q104,:,2) Which are both an increase
s factor fora 10 °Cincrease in T.

[NH/]

Ny = Ky + Hy + [NH/]

(11)

s Where Ny is the nitrification response factor to soil ammonium conteNH;|. The half-

10 saturation constamt'm,,;; is calculated at each soil water conteffy(in w/w).

WEFPS — MINwpps

Noy —
Y OPTwrps — MINwrps

, MINwypps < WFPS < OPTWFPS

(12)
MAXwpps — WEFPS

~ MAXyrps — OPTywrps
else Ny =0

NW , OPTWFPS < WFPS < MAXWFPS

u  where Ny, is the nitrification response function to soil water coniéMitrification is assumed to

12 increase linearly from a minimum WFP3/(I Ny, rps) up to an optimal valuel§ PTy, rps) and

12
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then to linearly decrease down to a maximum WFRBAXy rps) (Rolland et al., 2008).

(T — 20)In(Q10,:)
10

Np = exp (13)

where Nt is the response factor to soil temperatur§ and 10,,;; is the Q10 factor for this
reaction.

Once we had gathered prior information on likely ranges ofateon for each parameter, based
on literature review, we assigned them uniform and nonetated probability distributions be-
tween the minimum and maximum bounds. Table 1 describesataeters on which we ap-

plied our procedure described below.

2.4 The database of NO measurements

The nitrous oxide measurements were carried out on sevesrimgnt sites which are located
in Northern France (Table 2). The experiments were conduatemajor arable crop types and
soils types representative of the area. For some sitegréliff treatments were conducted with
various N-fertiliser amounts supplied to the crop. Nitraxsde emissions were monitored by
the static chamber method with eight replicates for all tiess except for the site of Grignon
where measurements were monitored with three automatiolobes during 31 successive days
from 13 May 2005 to 12 June 2005. Uncertainty about measuresweas the standard deviation
of fluxes measured with the different chambers on field. Irgata required to run the model
were also collected on each site. Daily weather data redjose CERES-EGC (rainfall, air
temperature, solar radiation) were collected from locatiler stations and detailed information
concerning soil parameters and crop management were canipido input files for CERES-

EGC. Uncertainty on these input data is not considered irapproach.

13
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2.5 Our Procedure

The procedure described below was applied for two main ¢l (i) calibrate the parameters
site-by-site and (ii) obtain better global estimates fa parameters initially deemed universal.
The first objective was obtained by applying our Bayesiarcg@dore for each data sample which

is called thesample-by-sample procedure, i.e. the calibration was successively implemented for
each data sample, the likelihood between the measuremmohtha predictions was computed
using only one site-specific data set 0§\ measurements and using the associated specific
model input data. The universal values of the global pararsetere calibrated by running our
procedure with the 11 data sets simultaneously, which iedahemultisample procedure, i.e.

by calculating the posterior distribution as:

p(0Y1, ... Yi1) o< p(Y1, ..., Y1110) p(6) (14)

whereY; is thei'" data sample in our data base. Thus, data log-likelihoodrhescequal to
the sum of the log-likelihoods calculated between obsematand predictions for all the data
sets. The procedure of the Bayesian method we set up wasubunfj the Metropolis-Hastings
algorithm and based on running three parallel Markov chigloate Carlo ofV iterations which
were started with three different parameter poidt3.(The three starting points were defined in
the prior parameter space as the default parameter valdagbatwo lower and upper parameter
bounds ¢,.;, andd,,...). Before running the chains, we pre-defined the chain ledgttthe
variances matrix. for the proposal distributiod and the starting pointg,. After that, we
checked to obtain a satisfactory acceptance rate (20-3D€andidate vectors and that the chains
had converged. If these two conditions were not fulfilled,resarted new chains with different
tuning values:N and¥.. Once we had run the three parallel chains, we applied theecgence
diagnostic proposed by Gelman and Rubin which is based arothg@arison of within-chain and

between-chain variances, and is similar to a classicalyarsabf variance (Gelman and Rubin,

14
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1992). The convergence is diagnosticed when variance ettie multiple chains is no larger
than the variance within each individual chain. Running tleist facilitates both the testing of
the convergence and the identification of the convergenod.p@/e considered that the chains
had converged when the ratio of within-chains variances theebetween chains variances (the
Gelman and Rubin’s shrink factor) approached 1. On the aontwalues substantially above
1 indicated lack of convergence. The Markov chains resglfrom the random walk of the
Metropolis-Hastings algorithm are highly auto-correthtie time because each iteration depends
on the previous one and this is a problem to approximate te&egor pdf. In fact, the time serie
with the maximum of posterior information is such as eachatien should be an independent
sample from the posterior distribution (Plummer et al., @00For obtaining such chains less
auto-correlated, the chains must be made thinner to extrdependent iterations. The process
of thinning was made in two steps: the auto-correlation wasdomputed for increasing lags and
then the posterior chain was extracted by keeping the itgrstlefined by the thinning interval.
We defined this one as the number of iterations between cotgesamples in a chain for
which the auto-correlation was less than 60%. We also exttlabe final subset of iterations by
removing the burn in period, i.e. 10% of the iterations atlibginning of the chain. This sample
can be used to summarise the posterior pdf by calculatingden vector, the variance matrix
and the 90% credible interval for each parameter. In additibe posterior pdf facilitates the
calculation of cross-correlations between parameterstlaadlistribution of model predictions
directly computed with the posterior parameter sample.

The generation of the Markov chains and the chain analysre warried out by using the R
software devices (R Development Core Team, 2008). The CHRES model coded in Fortran
was compiled as a R-library and called from the R softward wit different parameter values
generated in the loop of the Metropolis-Hastings algoritiimch was coded as a R function.

The chains analysis and diagnostics were carried out wéledtla R package (Plummer et al.,
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2.6 Evaluation of model predictions

The performance of the calibration procedures was asségsealculating the root mean square
error (RMSE) of predictions computed with the simulatigi{g) for which the vecto® either
was drawn from the prior parameter pdfs, or was the post®tiGMC chains from sample-by-
sample or multisample calibration procedure. Otherwfsejas either a single value equal to
the default parameter vectdt,( ...;), or in both following cases, three parameter vectors, equa
either to the mean of calibrated paramet@y for the 3 parallel chains or to the maximum a
posteriori estimate of (0,,4p). 01 ap IS the single best value of the parameter vector in each
MCMC chain, at which the posterior probability distributice maximal (Van Oijen et al., 2005).

RMSE was defined as follows:

1/2

RMSE = (E [(0; - $))%]) (15)

whereO; and S; are the time series of the observed and the simulated dat#& atehotes the
expectancy (Smith et al., 1996). Simulatiotiswere achieved with a single run of the model
in the case of the single value 6§.;..:. Simulations were achieved with the 3 valuesfof
andd,;4p corresponding to the results from the 3 three parallel MCM@igs, then, in these
cases,S; was the expectancy of the 3 simulated time-series. In the o&grior parameter
pdfs, S; was defined as the expectancy of the simulations computédl®@@ parameter vectors
generated as random deviates in the prior uniform distioingt In the case of MCMC chains of
parametersS; was the expectancy of the simulations with the thinned chaiiparameters from

both sample-by-sample and multisample calibration procesi
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3 Results

3.1 Posterior parameter distributions

Figure 1 portrays, in the form of boxplots, the posteriorgmaeter distributions obtained with the
application of our procedure performed sample-by-samptevaith the multisample procedure.
In both cases, three Markov chains were run to assure theeggence of the algorithm, then,
the chains were thinned with the method described in Se&idrand, finally, the boxplots are
the distributions of the combination of the three thinnedhéa& chains for each calibration. The
boxplots depict the parameter distribution through the following numbers: the median, the
lower quartile (Q1), the upper quartile (Q3) and the largdxstervations (without outliers). This
representation allows us to display differences betweeanpeater calibration in relation to field-
site and the shape of the boxplot portrays the dispersiorsgmunetry of the distribution. The
y-axis is limited with the minimum and maximum bounds of thiepparameter distribution.
Our Bayesian procedure generally generated uni-modalkaisbns, clearly suggesting that the
MCMC chains converged towards a unique convergence polis résult was clearly corrobo-
rated by the convergence test that we systematically apfwiéhe three parallel Markov chains.
Figure 2 displays the 50 and 97.5% quantiles of the samplistglaltion for the Gelman-Rubin
shrink factor for the 11 parameters specifically calibrateth the data set of La Saussaye and
indicates that the shrink factor approached 1 for all thepaaters after 30 000 iterations which
supports the convergence of the three chains for all theypetexs.

Figure 1 shows that the posterior distributions becomeomaer compared to the uniform prior
distributions which is undoubtedly due to the efficiency af procedure. From prior uniform
distribution function, the posterior parameter distribntwas converging into normal or log
normal distribution functions as already observed by Ssen<t al. (2008) for the Bayesian

calibration of a process-based forest model with a simitac@dure. For example, the distribu-
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tions of parametef(1) which is the WFPS threshold for denitrification activatiqpear tight
on a specific value for each data sample, suggesting thaatineation have clearly reduced the
uncertainty about the value of this parameter. On contthe/parameterg(8) and#(9) which
respectively correspond to the minimum and maximum walledfpore space for which nitrifi-
cation is activated in the topsoil layer are relatively sjtén the prior range of variation and the
median is rather centred in the distribution.

Figure 1 also shows that some parameter distributions atterfled on the limits of the prior
bounds. We therefore should reconsider the prior rangeth&se parameters, particularly the
distribution of the parameterg10), the half-saturation constant of the ammonium function, an
6(11), the Q10 factor for nitrification, which are flattened on thenimum limit of the prior
range for the data samples of Champnoél AN, La Saussaye iaguio@.

The last boxplot in the 11 graphs of Figure 1 displays theribistion obtained with the multi-
sample procedure. The shape of this boxplot and its mediae eppear to be more constrained
by certain data samples than others which can be explainédebfact that both data samples
with a larger number of observations and individual obsegove with higher precision have
substantially more weight in the log-likelihood functiofor example, the boxplots of the mul-
tisample procedure show a similarity with the boxplots &f fite La Saussaye, particularly for
the parameterg(1), 6(3) andf(6).

Data samples acquired in the same sites, i.e. sites with idetitical climate and soil type
but with differentiated crop management, may generatelainshapes of distribution. The
three treatments Rafidin NO, Rafidin N1, Rafidin N2, the twatmmeents Champnoél CT and
Champnoeél AN, and the two treatments Le Rheu CT and Le Rheum@y present similar
distributions for some parameters which could support thechlusion that the parameters are
site-specific. The uncertainty on the parameters compuiiidtiae multisample procedure is the

synthesis of the various observations and the best compeomirelation to our current obser-
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vations. The posterior pdfs computed with this procedurdabe useful to simulate XD emis-
sions in new locations where no measurement is availablpdameter calibration, whereas it
could be more interesting to use site-specific calibratadrpaters in the case of simulations
with similar characteristics of soil to the soil types of alatabase.

Figure 3 demonstrates that the calibration procedure wa@giesponse functions with different
shapes that result from the functions plotted with the wegioalibrated parameter sets. Differ-
ence between the individual functions may be quite conalier The response functiongy
(Fig. 3.a) are very different between each other and refleetvalue off(10). The function
calibrated with the multisample procedure (dashed lineign B.a) is below the function com-
puted with default parameter values, which means that thierated function reduces more the
potential of nitrification rate than the function by defaulhe water functionsvy, (Fig. 3.b)
shows that the minimum WFPS for activation of the nitrifioati¢/(8)) is centred on the de-
fault value, that the optimum WFPS for nitrificatiof{)) is lower for the calibration with data
sets Le Rheu AN and La Saussaye, and that the value from amajpie procedure is similar to
the default parameter value. The calibrated maximum WFP8ifofication (/(9)) are always
higher than the default value and are centred on 90% WFPShwheans that the nitrification
could occur for higher WFPS than initially. The shapes ofrégponse functiow; (Fig. 3.c)
are similar to the initial shape for the sites La Saussaye@mghon, and for the other sites,
the shapes are equivalent between each other at least d@5rf €@ The response functiois,
(Fig. 3.d) are clearly below the function by default what gests that the default value 6f2)
was apparently too low. The functiaf,, which reflects the effect of WFPS on denitrification
presents a large variety of shapes depending on the panaf(elethe threshold of WFPS from
which denitrification starts to occur, arg6), the exponent of the function. Hénault and Ger-
mon (2000) and Heinen (2006) showed that denitrificatiorc@ss was highly sensitive #g1)

and that this parameter was really dependant on soil type.v@tue ofd(1) calibrated with the
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multisample procedure is higher than the default value wheans that the denitrification could
start to occur with higher WFPS than with the default valus.pfoposed by Parton et al. (1996)
to differentiateFy,, with soil texture and as recommended by Hénault and Ger@2@0Q), it will

be preferable to recalibrate the parametergpffor each new soil with new experimental data.
The shape of the functions; is quite similar, down to 25 °C, for each parameter set wheeldl
us to believe that the function calibrated with the multipéerprocedure could be universally
used in the future.

Bayesian calibration facilitates quantification of coatedns between the calibrated parameters.
All of them were cross-correlated to others and 6 of them stbwaorrelation higher than 0.4
(Table 1), which we interpreted to mean that the differespoase functions of the JO mod-
ule of CERES-EGC are coupled between each other and thatfteeedt parameters might be
imagined as clusters of parameters such as suggested bgsdwest al. (2008). The parameters
6(1) andd(2) are positively correlated and are both negatively coreeldad?(6) which suggests

a coupling between the nitraté’(;) and water {7;’) functions.

3.2 Error of prediction of the calibrated model

Table 3 summarises the RMSEs of prediction obtained witlouamparameters sets. Simulations
were carried out as explained in Section 2.6 for each of thdatd samples. RMSE computa-
tion facilitates comparison of model performance betwdendifferent sites and the different
parameter values. RMSE based on posterior pdf is alwayg lthvee RMSE based on prior pdf
excepted for the data sample of the Arrou site. RMSE was ingatdy 73% on average for all
the data samples and the higher efficiency was observeddaitinof La Saussaye with a RMSE
declining by 98% when comparing simulations based on pmaok @osterior pdfs. Calibrations
with the data samples: Grignon, Le Rheu CT, Le Rheu AN, Cha@p@&T, Champnoél AN,

Rafidin NO, Rafidin N1 and Rafidin N2 also were significantlyadfint inducing the reduction of

20



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

RMSE between 79 and 96% by comparing predictions based ongnd posterior pdfs. Mean
of RMSE for all the data samples dropped from 39 down to 6,M ha' d—!. In the same
way, RMSE declined by 41% on average when comparing sinamatbased on default param-
eter set and posterior pdf, mean of RMSE decreasing from ¥ do 6 g NO-N ha?! d!.
RMSE of prediction with posterior pdf was only higher than B of prediction with default
parameter values for the data sample of Champnoél CT factWlRMSE slightly rose from 0.9
upto 1.4 gNO-N ha' d!.

RMSE comparison between simulations based on mean vecparameters chains, prior pdf
and default parameter values gave similar results to thiegmeance of the posterior-pdf-based
simulations. RMSE with predictions based ®mwas equal to 6 g ND-N ha ! d~! on average
for all the sites, i.e. the same as posterior-pdf-basedgired. Hence, this result proved that the
mean parameters could reasonably be used for future silomsatf the sites of our database or
for sites with similar soil types. The RMSE value based onusations withd,,; ,p was logically
the lowest value of RMSE for the predictions based on theouarparameter sets.

RMSE based on parameter sets of the multisample procedereaded on average by 33%
compared to RMSE based on simulations with prior pdfs and ¢détpared to simulations with
default parameter values which would lead us to believetti@parameter set summarised in
Table 1 could be a good compromise when the model will be &foplg new site.

In addition, Table 3 shows that the calibration did not reatfiproved the prediction for the two
data samples of Villamblain and Arrou which may be explaintfe first site by an uncertainty
of prediction which was perhaps not due to parameter uriogytand for the second site by an
inaptitude of the model to simulate such hydromorphic slmilfact, this result is in agreement
with Hénault et al. (2005), Gabrielle et al. (2006a) andrdei (2006) who also demonstrated
that the NO module and particularly the sub-module of denitrificat{&gs. 5, 8, 9, 10) was

not able to reproduce fitting dynamic of denitrification rateN,O emissions for soil with high
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degree of water saturation.

3.3 Model prediction uncertainty

Simulations of NO emissions based on MCMC chains of parameters were gedersitgtatis-
tical distributions around a mean value which is traced iguFeé 4 and displays the averaged
temporal dynamic of daily MO emissions for every sites (Fig. 4.ato 4.k). This is a largiedbit

of the Bayesian approach because it facilitates analysiseomodel output uncertainty due to
the uncertainty about parameters values.

Model predictions were not still in agreement with all measoents which was due to uncer-
tainty in both the measurements and the model. Measuremertsvith high uncertainty have
less weight in the log likelihood function and then in theteo®r probability, therefore, parame-
ter sets that may give good agreement between measuremensaglictions might not induced
a such high log-likelihood. For example, the two higheONflux measurements of the site of
Villamblain (Fig. 4.a) have a large uncertainty which did mauce a strong constraint for the
calibration, whereas various lowerQ fluxes with lower uncertainty were more constraining
in the calibration. The same remark is supported for thedit&rrou (Fig. 4.b). For the data
sample of Champnoél AN (Fig. 4.e), a high peak flux gNwas observed in autumn that the
model could not predict whereas fluxes lower than 16N ha ' d~! were all well predicted.
For the site of Grignon (Fig. 4.h), the observation pointgemMeoncentrated on successive 31
daily measurements from 13 May 2005 to 12 June 2005 and rapeddca high peak flux of f}D.
Model with default parameter set,( ,..:) Simulated three peaks of,® that were not observed
in the field (results not shown, see Lehuger et al. (2007)k fifst peak flux of NO occurred
four days after the application of N fertiliser, in respotseainfall and high soil N content in the
0-30 cm topsoil layer. Two additional peak fluxes were sirtedaby the model during the mea-

surement period as a consequence of two rainfall events,riitate content in soil and WFPS
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predicted by the model greater than the WFPS threshold fatrifecation (¢(1)) which had been
fixed to 62%. The Bayesian procedure applied on the Grigneretiminates the simulation of
the two additional peak fluxes simulated with the defaulbpseter set what may be explained
by the fact that the WFPS threshold for denitrificatié(il() rose up to 73% which is the highest
value in all the calibrations (Fig. 1.a). The calibratiom@edure for this specific data sample
produced calibrated parameter values that eliminatechellother possible peak fluxes in the
year (Fig. 4.h). For the data sample of Rafidin NO (Fig. 4lservations also were concentrated
on two short periods but with few observation points and iisely to Grignon, the calibration
of this site highly constrained the model during this petd was less constraining out of the
period of measurement.

Table 4 summarises the annualMemissions for the different sites and treatments. The-emis
sions were integrated over one year-period and the unogrtai N,O predictions was expressed
as the 0.90 credible interval. Mean annual simulated fluxeseweomprised between 88 and
3672 g NO-N ha! y=! through the different sites and treatments and uncertaibout model
prediction was quite large, notably for the sites where tregljgtions were high. The conver-
sion factor is equal to the ratio of the integrated flux over khfertiliser amount, whereas the
emission factor for the application of N fertiliser is releg to “background” emissions, i.e. it is
calculated as the difference between the mean cumulati@eMemissions (g MO-N ha ! y—!)

of fertilised and unfertilised predictions, over the ambahtotal N-fertiliser applied over one
year. The emission factors were comprised between 0.05 da&¥4l and the mean emission
factor was 0.26%. This value is four times lower than the diefzalue recommended by the
IPCC tier 1 methodology which presents an uncertainty rasfgariation comprised between

0.3 and 3% (IPCC, 2006).
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4 Discussion

4.1 Bayesian calibration

Our principal goal was to demonstrate the potential of a Bayestyle calibration procedure to
guantify parameter uncertainty and to reduce the unceraiabout the model. Our procedure
sought to calibrate model parameters either successiaetyke-by-sample in order to improve
model prediction for the specific sites of our database oukameously with all the data sam-
ples in order to find universal parameter values which coeldpply for new soil conditions and
spatial extrapolation of the model. This paper also aimesinatilating NO emissions with un-
certainty quantification for different sites in NortherraRce which represent major soil, climate
and crop management conditions. It has already been segigbsit simple process-based mod-
els such as the )0 module of CERES-EGC needs to be parameterised for eachauatvdn
(Heinen, 2006). The application of our Bayesian procedurggs that is the case but our multi-
sample procedure also demonstrates that it makes possifihel tuniversal parameter values by
encompassing all our current observations.

Our procedure which implies running three MCMC chains toueasonvergence of the algo-
rithm for each data sample demonstrates that the paramétemgere considerably narrowed
in comparison with the prior pdfs and proves that the unaateabout parameters strongly
decreased. The application of the sample-by-sample puoeetlso shows that the values of
parameters could differ for each location (Fig. 1) inductifferentiated response functions
according to the site (Fig. 3). Our results are in agreemetit those of Heinen (2006) that
revealed it seemed impossible to formulate universal reoludunctions for the denitrification
sub-module (Egs. 5, 8, 9, 10) for the major soil types sarainland peat because the functions
differed considerably within the soil types. We supportshene conclusion but furthermore, our

multisample procedure allows us to find the best universapromise for parameter values.
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The RMSE of prediction calculated with calibrated model wamificantly reduced in com-
parison with prediction based on prior parameter value$o T8duction on average with the
sample-by-sample procedure and 33% reduction on averafjetg multisample procedure.
These results clearly suggest that our calibration prosebas dramatically reduced the model
uncertainty. In addition, the parameter vector equal tantlean of the thinned MCMC chains of
parameters can easily be used to apply the model in similec@aditions.

The parameterisation does not induce a perfect match betpredictions and measurements for
the temporal dynamics of dailyJ® fluxes. Measured data with high uncertainty were in partic-
ular less well predicted because they presented a highagpatiability and consequently were
less constraining in the calculation of the log-likelihcahction. Heinen (2006) also showed
with a different calibration method that the optimised defncation sub-module did not result
in perfect prediction at the point scale.

Since the work of Van Oijen et al. (2005), it has been assurhatiBayesian calibration can
be applied to process-based forest models and to specifimedel (Svensson et al., 2008;
Klemedtsson et al., 2007) and that the Metropolis-Hasttgsrithm is particularly well adapted
for calibration of ecosystem models with high number of paeters (Makowski et al., 2002).
As we have just seen, our Bayesian calibration can be apfurealgro-ecosystem models and
for its specific modules by using data sets of measurememtsdiifferent locations. Indeed, we
have shown that uncertainty about parameters was conblgeezluced and model performance
was improved. Furthermore, our procedure to analyse theutsifor MCMC chains clearly ad-
vances the diagnostic on the parameter calibration. Cgenee test on the three parallel chains
of parameters and thinning for dealing with high auto-datien in MCMC chains have been
applied for each data set of our database and we are now caavihat this procedure improves
the quality of parameterisation. We have also establisttadabase of NO emissions for North-

ern France and in the future, it will be interesting to use thme to parameterise other models
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or to compare the performance of differenf®lemissions process-based module integrated in
CERES-EGC. Another direction could also be to use other kinoutput data to parameterise
specific module, for example the use of NO emission measurester calibration of the nitrifi-

cation sub-module (Egs. 6, 11, 12, 13) of CERES-EGC.

4.2 Improvement of the model performance after integratingN,O mea-
surements
Heinen (2006) showed that the denitrification module (Ed,9, 10) needs to be parameterised
for each location where the model would be used. In view ofresults based on the sample-by-
sample procedure for the completg®Imodule of CERES-EGC, we assume the same conclu-
sion because the calibrated response functions diffens ite to another which would lead us to
believe that the model would not be universally applicablsitnulate NO emissions by using
the default parameters values without parameterisation. @& the basis of the results from the
application of the multisample procedure, we have seeritthatomes possible to find universal
parameter values which integrate all our current obsesmati With the information contained in
the parameter pdfs, there is now a higher likelihood to ussdtparameters in comparison with
the prior pdfs or the default parameter values when the moelsds to be applied for a new site.
The power of a model is that it is able to predict variables dvee and space but prior to its ap-
plication, we must ensure that parameterisation is aceuhatfact, we would now point out that
when the model will be applied to a new site without any avddaN,O measurements, firstly
we should check if the parameters will have already beempeterised for the same soil type, if
yes, we could use the parameters specifically-calibratethi® soil type, else, it will be possible
to use the parameters values which will have been calibratddthe multisample procedure.
Indeed, it becomes possible to imagine that the parametgesv&om our both procedures could

be used for spatial extrapolation of the model at the rediscale. In the future, as soon as a
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new data set will be available we could assimilate the neveasions points with the multi-
sample procedure in order to reduce uncertainty about thieagparameters and to increase the

universality of the model.

4.3 Prediction of N,O fluxes from agro-ecosystems

CERES-EGC and its specific,® module have widely been used in many soil conditions (Hi&na
et al., 2005; Dambreville et al., 2008; Heinen, 2006) andntieelel uncertainty has only been
really quantified once by Gabrielle et al. (2006a) by usingfeent uncertain parameters. Like-
wise, uncertainty analysis about parameters is rarelyiethiwut for process-based ecosystem
models that simulate J)O emissions. As we have just seen our Bayesian calibratsaritesl in
probabilistic simulation of temporal dynamic o emissions over cropping seasons including
the information about the probability of parameters. Thécated model could predict temporal
dynamic of daily instantaneous, fluxes rather well, except for the highest peaks with high
uncertainty for which the model did not perform to well pretthem. In addition, the procedure
makes it possible to quantify model output uncertainty feayy N,O budget and emission fac-
tors (EFs). Model prediction of yearly cumulative® fluxes were comprised between 88 and
3672 g NO-N ha'y—! over the different sites and EFs ranged from 0.05 to 1.12%th@mbasis

of these results alongside those of Gabrielle et al. (2Q06apw appears that the IPCC EF is
not suitable for the sites that we have studied because #giderably overestimates the annual
emissions (Table 4). Beheydt et al. (2007) used the DNDC htodalculate EF corresponding
to various scenarios of simulations with high N input levasl N surplus, and they found EF
predicted by DNDC equal to 6.49% a value 25 times higher tharpcediction and EF derived
from the measurements equal to 3.16%. In the future, we &lsold assimilate data sets with
higher level of NO emissions such as those used by Beheydt et al. (2007) intordalibrate the

model with annual emissions higher than 10 kgoNN ha ! y—!. Furthermore, our results sug-
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gest that the annualJ® emissions were not strictly proportional to the applicatf N fertiliser
which is in agreement with the results of Barton et al. (200&peed, they have showed that,
in a semi-arid climate, in spite of the application of N fisgr the annual MO emissions were
not significantly increased in comparison with backgroumilssions and demonstrated that the
N>,O emissions from arable soils can not be directly derivethftbe application of N fertiliser.

In light of these results, we are now of the opinion that ouydan procedure is highly infor-
mative about model uncertainty quantification and can bg weeful for taking into account risk

in model-based GWP quantification of agro-ecosystemsy@mwiental balance assessment of
cropping systems and decision-making. Nevertheless, ealdladvice, for an efficient calibra-
tion of N,O emissions models, that;®@ measurements with the static chamber method should
be carried out with a regular recurrence at the yearly sedligast one observation per month,
and with a higher frequency during the peak fluxes that ocftar A-fertiliser inputs and events
that activate mineralisation of crop residues during autum

In the future, it would be very interesting to compare parfance of various agro-ecosystem
models for their aptitude to predict;® emissions on the same data sets in the fashion of Frol-
king et al. (1998); Li et al. (2005). Furthermore, Bayesianddl Comparison (Van Oijen et al.,
2005; Kass and Raftery, 1995) could be applied to examingipteimodels and to quantify
their relative likelihood, i.e. by determining which modslmost probable in view of the data

and prior information.

4.4 Limits and developments of CERES-EGC to predict NO emissions

Our uncertainty analysis was performed without taking iaécount for uncertainty about the
input variables of the MO sub-model which are the soil temperature, the soil niaatkammo-
nium concentrations and the soil water content. Theselagare daily calculated by the model

and are dependant of numerous process (crop N uptake enig@thing, evapo-transpiration,
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drainage, N gas emissions, soil organic matter turnovet)tans of a large number of parame-
ters and variables interacting over time. The Bayesiattion could be expanded to multiple
other parameters by using measured data which might be arapalss, soil N concentration, soil
water content, soil temperature and other gas emissionfctnthe Bayesian technique could
be used in a more holistic way because the method gives tretblitg of calibrating various
parameters by using different kind of output data (Klemsalset al., 2007).

We have seen that the 11 global parameters we studied depesalldype and hence they are
variable over space, as a consequence, they seem themsebeselied on other parameters
that contain a prior inherent variability. In the future, Welieve that it could be very pecu-
liar to define these new hyperparameters which control tla@aprariability of our parameters
(Clark, 2005) and very interesting to deal with this spataiability by developing a hierarchical
Bayesian approach. Hence, the use of our plot-scale measaote could allow us to properly
extrapolate our model at the regional scale.

Another future development of the;® module of CERES-EGC, indispensable for model ex-
trapolation and already mentioned by Hénault et al. (206§#&9uld be to render the model inde-
pendent of the four local parameters which still need to basueed for new soil conditions. It
will require to define the key controls of these parametersrder to model them in relation to

soil type characteristics.

5 Conclusion

We have shown that Bayesian calibration was successfuplieabto the CERES-EGC agro-
ecosystem model in order to parameterise g®Mmissions module. We have demonstrated that
both the Bayesian calibration and our procedure of anafysisdiagnostic for MCMC chains of
parameters can be applied to our process-based model intordalibrate parameters either (i)

by using successively data samples or (ii) by using all thia samples simultaneously, to satisfy
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our objectives which were, respectively, to improve modebiiction at the field scale and to find
universal values of parameters in order to spatially extiae the model. In addition, Bayesian
calibration has given us the possibility of quantifying Ibggarameter and model uncertainty.
Furthermore, it appears reasonable to assume that whenatiel should be applied at a larger
scale than the plot-scale, the parameter values resulbed thhe multisample procedure could
then be used for soil types which will have never been paransed. In fact, the posterior

parameter distributions encompass all our current obsensand give us the possibility of

guantifying their uncertainty. To this end we recommendltfer research into modern Bayesian

method which could help us to deal with the spatial varigpof the parameters.
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ov

Parameter vectdr = [0(1)...0(11)] Prior probability Posterior probability

distribution distribution
0(7) Symbol Description Unit Default 0,,;,() 0,.4.(i) References Mean SD Correlated
value {0(1)}
0(1) Trwres WFPS threshold for denitrification % 0.62 0.40 0.80 Gabei¢l006); Henault et al. (2005) 0.689 0.0072,6}
Hénault and Germon (2000); Johnsson et al. (2004)
0(2)  KMgenie Half-saturation constant (denit) mg Nkgsoil 22.00 5.00 120.00 Gabirielle (2006); Ding et al. (2007) 6.94 2247 {16}

Parton et al. (2001); Del Grosso et al. (2000)
Parton et al. (1996); Bateman and Baggs (2005)
Johnsson et al. (2004)

03)  TTraenit Temperature threshold °C 11.00 10.00 15.00 Gabrielle (RQ@Hinsson et al. (2004) 10.27 0.17
Renault et al. (1994)

0(4)  QL10uenit1 Q10 factor for low temperature Unitless 89.00 60.00 120.0@anfdrd et al. (1975); Maag and Vinther (1999) 89.46 18.28}

0(5)  Q10init2 Q10 factor for high temperature Unitless 2.10 1.00 4.80 @#br(2006); Stanford et al. (1975) 2,62 1.17{4,10}

0(6)  POWyenit Exponent of power function Unitless 1.74 0.00 2.00 Stangdral. (1975); Smith et al. (1998) 153 0.23{1, 2}

Johnsson et al. (2004); Maag and Vinther (1999)
Maag and Vinther (1996); Skopp et al. (1990)

0(7)  OPTwrps Optimum WFPS for nitrification % 0.60 0.35 0.75 Jambert e{E97); Laville et al. (2005) 059 0.12

0(8) MINwrps Minimum WFPS for nitrification % 0.10 0.05 0.15 Linn and Dor@®84); Jambert et al. (1997) 0.095 0.02
Skopp et al. (1990); Ding et al. (2007)
Parton et al. (2001); Bateman and Baggs (2005)

0(9) MAXwrps Maximum WFPS for nitrification % 0.80 0.80 1.00 Linn and Do(a@84); Parton et al. (2001) 0.88 0.05
Bateman and Baggs (2005)

6(10) Km,; Half-saturation constant (nit) mg N kgsoil 10.00  1.00 50.00 Linnand Doran (1984); Jambert et 897} 25.69 14.17 {5}
Pihlatie et al. (2004)

A(11) Q10,; Q10 factor for nitrification Unitless 2.10 1.90 13.00 Maaglafinther (1996); Laville et al. (2005) 7.36 3.04

Smith (1997); Dobbie and Smith (2001)

Table 1: Description of the 11 parameters of th@Nemissions module. The prior probability distribution efided as multivariate
uniform between bounds,,;, andé,,.. which were extracted from literature review. The posteparameter distributions are
based on the multisample procedure and are characterisedhgi mean value of parameter chains, the standard devigiD)
and the parameters with which each parameter is correlatete(line if negative) at greater absolute value than 0.4



Site Treatment Year Soil texture  Crop type N fertiliser ~ Nwenbf Source
(kg N ha!) observations
Rafidin NO 1994-1995 Rendzina Rapeseed 0 7 Gosse et al. (1999)
N1 1994-1995 Rendzina Rapeseed 155 8 Gosse et al. (1999)
N2 1994-1995 Rendzina Rapeseed 262 9 Gosse et al. (1999)
Villamblain 1998-1999 Loamy Clay Winter Wheat 230 15 Héhatal. (2005)
Arrou 1998-1999 Loamy Clay Winter Wheat 180 18 Hénault e{2005)
La Saussaye 1998-1999 Clay Loams Winter Wheat 200 14 Hiestzail (2005)
Champnoel CT 2002-2003 Silt Loam Maize 0 15 Dambrevilld 2908)
AN 2002-2003 Silt Loam Maize 110 23 Dambreville et al. (2008)
Le Rheu CT 2004-2005 Silt Loam Maize 18 24 Dambreville et2008)
AN 2004-2005 Silt Loam Maize 180 22 Dambreville et al. (2008)
Grignon 2005 Silt Loam Maize 140 31 Lehuger et al. (2007)

Table 2: Database of JO emissions from different arable sites in France. For thfemint
data sets, following characteristics are described: yéareasurement, soil texture, crop type,
application of N fertiliser , number of observation pointslaeferences
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Site Treatment RMSE (in g /0-N ha ' d~!) computed with predictions based on:

Prior pdf Default parameter Posterior pdf Mean of Paramstewith Multisample
values parameter chain maximum log-likelihood  procedure
Rafidin NO 4.6 4.6 0.7 0.3 0.3 4.6
N1 7.5 104 1.2 14 1.2 12.8
N2 10.5 15.9 21 3.0 2.8 20.4
Villamblain 5.2 5.5 4.8 4.9 4.9 5.5
Arrou 254 29.0 27.1 253 23.8 29.2
La Saussaye 93.0 33.3 2.0 2.3 2.4 2.3
Champnoél CT 21.5 0.9 14 0.9 0.9 0.9
AN 65.58 15.0 13.8 14.0 13.8 14.0
Le Rheu CT 149.5 22.7 6.1 6.0 6.0 6.0
AN 30.4 4.2 2.0 2.2 2.2 2.4
Grignon 16.9 10 1.0 12 13 11

Table 3: Root mean square error (RMSE) of prediction (i, @M ha ! d~!) based on different
parameter sets: the prior pdf, the default parameter valbeposterior pdf, the mean of MCMC
chains, the parameter set with maximum log-likelihood dredrhean of parameter chains from

the multisample procedure
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Site Treatment Year O Fluxes 0.05 quantile  0.95 quantile IPCC Conversion factomisKion factor

(Nha'y™) (gNha'y™) (gNha'y™) (gNha'y™) (%) (%)

Rafidin NO 1994-1995 689 578 741 0 - -

N1 1994-1995 584 473 824 1550 0.4 (0.3-0.5) 0.07 (0.00-0.22)

N2 1994-1995 819 629 1183 2620 0.3(0.2-0.5)  0.10 (0.03)0.24
Villamblain 1998-1999 1465 454 2989 2300 0.6(0.2-1.3)  (B60-1.02)
Arrou 1998-1999 3672 1676 5874 1800 2.0(0.9-3.3) 0.26 (0.@9)
La Saussaye 1998-1999 3215 572 6035 2000 1.6 (0.3-3.0) @.a@-2.53)
Champnoél CT 2002-2003 218 49 746 0 - -

AN 2002-2003 336 106 855 1100 0.3(0.1-0.8)  0.06 (0.00-0.53)
Le Rheu cT 2004-2005 88 66 115 180 0.5 (0.4-0.6) -

AN 2004-2005 183 146 220 1800 0.10 (0.08-0.12) 0.05 (0.08)0.
Grignon 2005-2006 150 143 163 1400 0.11 (0.10-0.12) 0.@®0.05)

Table 4: Cumulative annualJO fluxes (g NO-N ha'y~!) computed as the sum of mean, 0.05
guantile and 0.95 quantile daily simulations based on patanMCMC thinned chains. Annual
estimates from IPCC methodology (corresponding to the ®oms due to fertiliser application),
conversion factor (%) and emission factor (%) with rangergartainty were also reported
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Figure 1: Posterior distribution of the 11 calibrated paetens ¢(1) to 6(11)) represented as
45

boxplots over the prior range of variation. For each grapie boxplots are computed from

calibration sample-by-sample and with the “multisamplesqedure
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Figure 2: Evolution of the Gelman and Rubin’s shrink factor the calibration of the site La

Saussaye
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Figure 3: Response functions of the®lemission module traced with different parameters sets:
default parameter values (dotted line), mean of parametess for each sample-by-sample
calibration (line) and with mean of parameter chains for thgtisample calibration (dashed

line)
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Figure 4: Simulated (lines) and observed (symbolgPNemissions for the different sites and
treatments. The simulated line is the mean time serie ofithalations based on the MCMC

chains of parameters from sample-by-sample calibrations
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