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Nitrous oxide (N 2 O) is the main biogenic greenhouse gas contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate therefore requires a capacity to predict the net exchanges of this gas in relation to environmental conditions and crop management. The biophysical crop model CERES-EGC is designed to predict the productivity and GWP of agro-ecosystems by simulating C and N dynamics, including N 2 O emissions from soils, on a daily time step, as driven by the nitrification and denitrification pathways. These two microbiological processes are modelled as the product of a potential rate with three dimensionless factors related to soil water content, nitrogen content and temperature, of which a fixed site-specific proportion is evolved as N 2 O. These equations form the N 2 O submodel of CERES-EGC, and involve a total set of 15 parameters. Four of those are site-specific and should be measured on site, while the other 11 are considered global, i.e. fixed over time and space. Accurate estimates of the global parameters should be sought prior to extrapolating the model to make predictions in new situations. Here, we used Bayesian calibration to that purpose using a database of N 2 O flux measurements including seven different field-sites in France. First, we gathered prior information on the model parameters based on literature review, and assigned them uniform probability distributions. A Bayesian method based on the Metropolis-Hastings algorithm was subsequently used to update the parameter distributions for each field site. Three parallel Markov chains were run to ensure a convergence of the algorithm. This site-specific calibration significantly reduces the model prediction error across the field sites, along with its overall uncertainty, compared to the initial parameter setting. The root mean square error (RMSE) of predictions computed with posterior parameters values was thus reduced by 73% on average in comparison with the prior estimates. The RMSE declined from 39 to 6 g N 2 O-N ha -1 day -1 on average. The Bayesian calibration was also applied to all the data sets simultaneously, to obtain 1 better global estimates for the parameters initially deemed universal. This made it possible to reduce the RMSE by 33% on average, compared to the uncalibrated model. These global parameter values may be used to obtain more realistic estimates of N 2 O emissions from arable soils at regional or continental scales.

Introduction

While food supply for increasing population is becoming one of the alarming question worldwide, we are faced with the growing environmental footprint of agriculture due to land use change and management intensification [START_REF] Kiers | Agriculture at a crossroads[END_REF]. Assessing the contribution of agriculture to climate change is one of the key question addressed to environmental scientists who should help to identify measures to reduce the burden of agriculture in global warming. Soils are the main source of nitrous oxide (N 2 O) in the atmosphere due to microbial processes of nitrification and denitrification. By intensively using N-fertilisers, agriculture amplifies these two processes and hence, agro-ecosystems contribute 55-65% of the global anthropogenic emissions of N 2 O and are the most responsible for the increase of N 2 O atmospheric concentration compared to other ecosystems or activity sectors [START_REF] Smith | Agriculture[END_REF]. The use of agro-ecosystem models facilitates predictions of N 2 O emissions from arable soils at the plot scale and offers the unique mean to upscale the predictions at regional and continental scales [START_REF] Butterbach-Bahl | Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models[END_REF]. Predictions of process-based models such as agro-ecosystem models are highly dependant on model parameters and uncertainty about their values inevitably induces uncertainty about model outputs. To facilitate decisions based on model, it requires first to estimate the parameter values and then to quantify the risk of error of prediction due to parameter estimates. Although model parameterisation and uncertainty analysis of process-based models are widely developed in the literature, they rarely are considered simultaneously. Bayesian calibration makes the combination of this two goals possible by providing estimates of parameters values under the form of probability density functions (pdfs) which are propagated to model outputs that can also be expressed as pdfs [START_REF] Gallagher | Parameter estimation and uncertainty analysis for a watershed model[END_REF]. Probability density functions are initially the expression of current imprecise knowledge about model parameter values, this prior probability is then updated with the measured observations into posterior probability distribution by means of Bayes' theorem.

In ecological and environmental sciences, Bayesian calibration has been applied for various different models and is actively developing for many types of models. For example, [START_REF] Hong | Bayesian estimation of input parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard Brook Watershed Six[END_REF] applied a Bayesian estimation to input parameters of a nitrogen cycle model that simulates N cycle at the watershed scale, [START_REF] Larssen | Forecasting acidification effects using a Bayesian calibration and uncertainty propagation approach[END_REF] used a Bayesian approach for model calibration and uncertainty analysis of a hydrogeochemical model that simulates acidification effects on trout population health and [START_REF] Ricciuto | Causes of interannual variability in ecosystem-atmosphere CO 2 exchange in a northern Wisconsin forest using a Bayesian model calibration[END_REF] have developed a technique performing both calibration of all the parameters of a simple model of simulation of net ecosystem CO 2 exchanges and assimilation of hourly observations into the model. All these techniques were based on Markov Chain Monte Carlo (MCMC), a Bayesian technique that has demonstrated its superiority compared to other methods of parameter estimation. [START_REF] Qian | On Monte Carlo methods for Bayesian inference[END_REF] and [START_REF] Gallagher | Parameter estimation and uncertainty analysis for a watershed model[END_REF] demonstrated that MCMC methods are the most powerful methods compared to other Bayesian and frequentist methods of uncertainty analysis. In the same way, [START_REF] Makowski | Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods[END_REF] demonstrated that the Metropolis-Hastings gives lower mean squared error of prediction than the Generalized Likelihood Uncertainty Estimation method (GLUE) in the case of parameter estimation of an agronomic model. The Bayesian methodology described by Van Oijen et al. (2005) has been applied to dynamic process-based forest models with the goal to calibrate model parameters with multiple observed data from forested experimental sites (Svensson et al., 2008;[START_REF] Klemedtsson | Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[END_REF]. The technique is based on the Metropolis-Hastings algorithm that generates samples from high dimensional distributions under the form of Markov Chains Monte Carlo (MCMC) which approximate the posterior parameter distributions.

Although a large literature is developing about application of Bayesian techniques in environmental sciences, Bayesian approach has never been applied to process-based model of soil N 2 O emission models. These models have been developed first to by-pass the expensive and time-consuming direct measurements of N 2 O emissions on field and then to extrapolate emis-sions over space and time. Indeed, models of N 2 O emissions are definitely indispensable to facilitate simulation and interpretation of specific measuring sites, to make tests of different management and mitigation strategies possible for farmers and to carry out spatially-explicit inventories of N 2 O emissions from agriculture. Predicting N 2 O emissions from agro-ecosystems requires taking into account complex processes and interactions which originate from both environmental conditions and agricultural practises [START_REF] Frolking | Comparison of N 2 O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models[END_REF]. Several process-based models have been developed to simulate N 2 O emissions from arable soils, including DAYCENT [START_REF] Parton | Generalized model for NO x and N 2 O emissions from soils[END_REF], DNDC [START_REF] Li | Modeling trace gas emissions from agricultural ecosystems[END_REF], FASSET [START_REF] Chatskikh | Simulation of effects of soils, climate and management on N 2 O emission from grasslands[END_REF] and CERES-EGC [START_REF] Gabrielle | Simulation of nitrous oxide emissions from wheat-cropped soils using CERES[END_REF]. As recommended by IPCC, the tier 3 methodology allows the countries of Annex 1 to use these more complex models to quantify their N 2 O budgets from agriculture in order to improve the accuracy of national inventories (IPCC, 2006). However these models have still high uncertainties coming from parameter values, driving variables and model structure (Gabrielle et al., 2006a).

The overall purpose of this study was to calibrate the parameters of the N 2 O emissions module of the CERES-EGC agro-ecosystem model and to quantify uncertainty of model predictions by using a Bayesian calibration technique and a sophisticated procedure for analysis and diagnostics of MCMC chains. Measured observations were from seven field-sites in Northern France which represent major soil types, crops and crop management. Two additional specific objectives were to apply our Bayesian procedure both to the measured data sets successively and to the data sets simultaneously in order to find respectively, site-specific and universal parameter values with their uncertainty quantified. Our results will be useful in using the site-specific calibrated parameters to develop mitigation strategies in the measuring sites and the universal values of calibrated parameters to extrapolate the model at regional and continental scales. In addition, our study allows us to partly reach the objectives of the Plot Scale Modelling Component of the NitroEurope Integrated project (Sutton et al., 2007) in which we are actively involved and thus to give a little advance to the question addressed by the project: "What is the effect of reactive nitrogen supply on the direction and magnitude of net greenhouse gas budgets for Europe?"

Material and Methods

We used a Bayesian calibration technique based on the Metropolis-Hastings algorithm to estimate the parameter probability density functions of the N 2 O emissions module of the CERES-EGC model. The equations of the N 2 O emissions module involve a total set of 15 parameters of which 11 were estimated by our procedure based on running three parallel Markov Chains Monte Carlo to ensure a convergence of the algorithm. We used a database of N 2 O flux measurements including seven different field-sites in France in the goal of either to apply our procedure for each data sample successively and find the site-specific parameter estimates or to apply our calibration procedure to all the data samples simultaneously and find parameters estimates considered as universal.

The Bayesian approach

Bayesian methods are used to estimate model parameters by combining two sources of information: the prior information about parameter values and the measurements of output data. The prior information is based on expert knowledge, literature review or by measuring them directly on field or in laboratory and observations are generally direct-field measurements which assess the different fluxes between soil-crop-atmosphere compartments. Using the Bayes' theorem makes it possible to combine these two sources of information in order to calibrate the model parameters whereas most statistical methods only use the output data and does not provide probability distributions of the parameters. The uncertain parameters are random variables for which we assigned them a prior probability distribution. This probability distribution constitutes the prior uncertainty about parameter values and what we wanted was to reduce this uncertainty by using the measured data. In our case, we specified lower and upper bounds of the parameters' uncertainty which define the prior parameter distributions as uniform. In addition, using this approach allowed us to analyse the uncertainty of model predictions by running the model with different parameter settings sampled from the calibrated parameter distributions and to quantify cross-correlations between parameters. Bayesian calibration generates the posterior parameter distribution which is given by Bayes' theorem:

p(θ|Y ) = p(Y |θ)p(θ) p(Y ) (1) 
where we denote the parameters as θ and the vector of measurements as Y . p(θ) is the prior parameter distribution for θ, p(θ|Y ) is the posterior parameter distribution, p(Y ) is a constant of proportionality that is not explicitly computed, and p(Y |θ) is the likelihood function for θ. The likelihood is the probability of the data Y given the parameters θ and is determined from the probability distribution of errors between observations and predictions. In our case, we assume that the errors are normally distributed with mean 0 and uncorrelated, and as probability densities may be very small numbers and to avoid rounding errors we assumed calculations using logarithms. The logarithm of the data likelihood is thus set up as follows:

logL = K j=1 -0.5 y j -f (ω j ; θ) σ i 2 -0.5log(2π) -log(σ i ) (2)
where y j is the j th y value in the data set Y , ω j is the vector of model input data associated with y j , f (ω j ; θ) is the model prediction of y j , and K is the total number of observations in the data sets. The data sets Y are times-series of N 2 O emission measurements and σ i is the standard deviation of the N 2 O measurements. We assumed that the model error can be attributed to additive measurement errors following Van Oijen et al. (2005) and in the same fashion as Svensson et al. (2008) and [START_REF] Klemedtsson | Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[END_REF].

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a Markov Chain Monte Carlo (MCMC) technique that generates a sample of parameter vectors from the posterior distribution p(Y |θ) [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF]. First of all, the starting vector θ 0 of the Markov chain in the parameter space is chosen within the prior parameter space and then the next candidate vectors θ i are generated for i = 1, ..., N iterations as follows:

Step 1. Randomly generate a proposal parameter vector for a new candidate parameter vector

θ * = θ i-1 + δ (3)
where δ is a random vector generated using a multivariate normal distribution;

Step 2. Calculate the ratio of the posterior probability of the new candidate over the posterior probability of the previous candidate:

α = p(θ * |Y ) p(θ i-1 |Y ) = p(Y |θ * )p(θ * ) p(Y |θ i-1 )p(θ i-1 ) (4) 
In our case, since calculations are made using logarithms, we compute the log of α as the difference between the log of the posterior probability of current point minus the log of posterior probability of the previous point.

Step 3. Accept θ * if logα ≥ u where u is an uniform random variable from an uniform distribution on the interval (0,1), else reject and

θ i = θ i-1 .
The new point θ * is always accepted if its posterior value is no lower than the posterior value of θ i-1 . Once the chain has attained the N iterations, the chain must have converged to the target distribution which is the posterior parameter distribution p(θ|Y ). Before running the algorithm, the chain length N (total number of iterations) and the proposal distribution δ for generating new candidates must have been pre-defined as well as the M number of first iterations that should be discarded. The first iterations at the beginning of the chain need to be discarded while the MCMC "burns-in". In our case, we discard 10% of the total number of iterations at the beginning of the chain (Van Oijen et al., 2005). The chain length N is fixed between 10 4 and 10 5 iterations and depends on the convergence point of the Markov chains. The proposal distribution δ used for generating new candidate vectors is a Gaussian distribution with a mean of zero. In our case, we tuned the variance matrix Σ of δ so that the Markov chains explore the space of possible values for θ. We subsequently followed the procedure of Van Oijen et al. (2005) and we defined the variances equal to the square of 1 to 5 % of the prior parameter range (θ minθ max ) and zero covariances. The variances of Σ were tuned so that the fraction of accepted points was comprised between 20 to 30% during the test performed in the step 2 of the Metropolis-Hastings algorithm.

The CERES-EGC model

CERES-EGC was adapted from the CERES suite of soil-crop models [START_REF] Jones | CERES-N Maize: a simulation model of maize growth and development[END_REF], with a focus on the simulation of environmental outputs such as nitrate leaching, emissions of N 2 O and nitrogen oxides (Gabrielle et al., 2006a). CERES-EGC runs on a daily time step, and requires daily rain, mean air temperature and Penman potential evapo-transpiration as forcing variables. The CERES models are available for a large number of crop species, which share the same soil components [START_REF] Jones | CERES-N Maize: a simulation model of maize growth and development[END_REF]. CERES-EGC comprises sub-models for the major processes governing the cycles of water, carbon and nitrogen in soil-crop systems. A physical sub-model simulates the transfer of heat, water and nitrate down the soil profile, as well as soil evaporation, plant water uptake and transpiration in relation to climatic demand. Water infiltrates down the soil profile following a tipping-bucket approach, and may be redistributed upwards after evapo-transpiration has dried some soil layers. In both of these equations, the generalised Darcy's law has subsequently been introduced in order to better simulate water dynamics in fine-textured soils [START_REF] Gabrielle | Analysis and field-evaluation of the CERES models water-balance component[END_REF].

sis is a linear function of intercepted radiation according to the Monteith approach, with interception depending on leaf are index based on Beer's law of diffusion in turbid media. Photosynthates are partitioned on a daily basis to currently growing organs (roots, leaves, stems, fruits) according to crop development stage. The latter is driven by the accumulation of growing degree days, as well as cold temperature and day-length for crops sensitive to vernalisation and photoperiod.

Lastly, crop N uptake is computed through a supply/demand scheme, with soil supply depending on soil nitrate and ammonium concentrations and root length density.

A micro-biological sub-model simulates the turnover of organic matter in the plough layer. Decomposition, mineralisation and N-immobilisation are modelled with three pools of organic matter (OM): the labil OM, the microbial biomass and the humads. Kinetic rate constants define the C and N flows between the different pools.

Direct field emissions of CO 2 , N 2 O, NO and NH 3 into the atmosphere are simulated with different trace gas modules. Here, we focus on the nitrous oxide emissions module which is adapted from the semi-empirical model NOE [START_REF] Hénault | Predicting in situ soil N 2 O emission using NOE algorithm and soil database[END_REF] for simulating the N 2 O production in the soil through both the nitrification and the denitrification pathways. Denitrification component is derived from the NEMIS model [START_REF] Hénault | NEMIS, a predictive model of denitrification on the field scale[END_REF] that calculates the actual denitrification (Da) as the product of a potential rate (P DR) with three unitless factors related to soil water content (F W ), nitrate content (F N ) and temperature (F T ), as follows:

Da = P DR.F N .F W .F T (5) 
In a similar fashion, nitrification is modelled as the product of a maximum nitrification rate (MNR) with three unitless factors related to water-filled pore space (N W ), ammonium concentration (N N ) and temperature (N T ) and expressed as follows:

Ni = MNR.N N .N W .N T (6)
denitrification and nitrification pathways and are calculated according to:

N 2 O = r.Da + c.Ni (7)
where r is the fraction of denitrified N and c is the fraction of nitrified N that both evolve as N 2 O.

The N 2 O sub-model of CERES-EGC involves a total set of 15 parameters of which four of them are site-specific and must be measured on site, while the other 11 are considered global, i.e.

fixed over time and space. The local parameters are the potential denitrification rate (PDR), the maximum nitrification rate (MNR) and the fractions of nitrified (c) and denitrified (r) N that evolve as N 2 O. They were all measured with the same protocol as summarised by [START_REF] Hénault | Predicting in situ soil N 2 O emission using NOE algorithm and soil database[END_REF]. For each test site, the PDR were measured by acetylene blocking of undisturbed soil cores taken from the top 20 cm of soil, satured with water and incubated with an ample supply of nitrate [START_REF] Hénault | NEMIS, a predictive model of denitrification on the field scale[END_REF]. The fraction of denitrified nitrate that evolves as N 2 O was determined as the difference between the N 2 O production rates of soil cores incubated with and without acetylene and the fraction of nitrification evolved as N 2 O was measured on sieved soil samples incubated with increasing soil moisture content and non-limiting NH 3 supply. Lastly, the maximum nitrification rate (MNR) and the fraction (c) were measured by using laboratory soil incubations and following the protocol of [START_REF] Garrido | N 2 O and NO emissions by agricultural soils with low hydraulic potentials[END_REF]. The 11 global parameters are the constants of the N 2 O module equations which are fixed from site to another and fixed in time. In the original model, the calibration of the global parameters of the denitrification process was carried out by [START_REF] Hénault | NEMIS, a predictive model of denitrification on the field scale[END_REF] whereas the global parameters of the nitrification pathway were calibrated by [START_REF] Garrido | N 2 O and NO emissions by agricultural soils with low hydraulic potentials[END_REF] and [START_REF] Laville | Measurement and modelling of NO fluxes on maize and wheat crops during their growing seasons: effect of crop management[END_REF]. The different response functions computed with the default parameter values and equations presented below are shown in Figure 3 (as the dotted lines). The response functions are unitless and are calculated as:

F N = NO - 3 Km denit + NO - 3 (8)
where F N is the denitrification response factor to soil nitrate content NO - 3 , in mg N kg -1 soil and Km denit id the nitrate N content (mg N kg -1 soil) where F N = 0.5.

F W = 0, W F P S < T r W F P S F W = W F P S -T r W F P S 1 -T r W F P S P OW , W F P S ≥ T r W F P S (9)
where F W is the denitrification response factor to soil WFPS, T r W F P S is a threshold value below which no denitrification occurs and P OW is the exponent of the power function.

F T = exp (T -T T r denit ) ln (Q10 denit,1 ) -9ln (Q10 denit,2 ) 10 , T < T T r denit F T = exp (T -20)ln(Q10 denit,2 ) 10 , T ≥ T T r denit (10)
where F T is the denitrification response function to soil temperature (T ). F T is derived from two biological reactions that occur either below a threshold temperature T T r denit or above T T r denit .

Both reactions present a different Q10 (Q10 denit,1 and Q10 denit,2 ) which are both an increase factor for a 10 °C increase in T.

N N = NH + 4 Km nit * H p + NH + 4 (11)
where N N is the nitrification response factor to soil ammonium content NH + 4 . The halfsaturation constant Km nit is calculated at each soil water content (Hp in w/w).

N W = W F P S -MIN W F P S OP T W F P S -MIN W F P S , MIN W F P S < W F P S ≤ OP T W F P S N W = MAX W F P S -W F P S MAX W F P S -OP T W F P S , OP T W F P S ≤ W F P S < MAX W F P S else N W = 0 (12)
where N W is the nitrification response function to soil water content. Nitrification is assumed to increase linearly from a minimum WFPS (MIN W F P S ) up to an optimal value (OP T W F P S ) and

N T = exp (T -20)ln(Q10 nit ) 10 (13)
where N T is the response factor to soil temperature (T ) and Q10 nit is the Q10 factor for this reaction.

Once we had gathered prior information on likely ranges of variation for each parameter, based on literature review, we assigned them uniform and non-correlated probability distributions between the minimum and maximum bounds. Table 1 describes the parameters on which we applied our procedure described below.

The database of N 2 O measurements

The nitrous oxide measurements were carried out on seven experiment sites which are located in Northern France (Table 2). The experiments were conducted on major arable crop types and soils types representative of the area. For some sites, different treatments were conducted with various N-fertiliser amounts supplied to the crop. Nitrous oxide emissions were monitored by the static chamber method with eight replicates for all the sites, except for the site of Grignon where measurements were monitored with three automatic chambers during 31 successive days EGC. Uncertainty on these input data is not considered in our approach.

Our Procedure

The procedure described below was applied for two main objectives: (i) calibrate the parameters site-by-site and (ii) obtain better global estimates for the parameters initially deemed universal.

The first objective was obtained by applying our Bayesian procedure for each data sample which is called the sample-by-sample procedure, i.e. the calibration was successively implemented for each data sample, the likelihood between the measurements and the predictions was computed using only one site-specific data set of N 2 O measurements and using the associated specific model input data. The universal values of the global parameters were calibrated by running our procedure with the 11 data sets simultaneously, which is called the multisample procedure, i.e.

by calculating the posterior distribution as:

p(θ|Y 1 , ..., Y 11 ) ∝ p(Y 1 , ..., Y 11 |θ) p(θ) (14) 
where Y i is the i th data sample in our data base. Thus, data log-likelihood becomes equal to the sum of the log-likelihoods calculated between observations and predictions for all the data sets. The procedure of the Bayesian method we set up was built using the Metropolis-Hastings algorithm and based on running three parallel Markov chains Monte Carlo of N iterations which were started with three different parameter points (θ 0 ). The three starting points were defined in the prior parameter space as the default parameter values and the two lower and upper parameter bounds (θ min and θ max ). Before running the chains, we pre-defined the chain length N, the variances matrix Σ for the proposal distribution δ and the starting points θ 0 . After that, we checked to obtain a satisfactory acceptance rate (20-30%) of candidate vectors and that the chains had converged. If these two conditions were not fulfilled, we restarted new chains with different tuning values: N and Σ. Once we had run the three parallel chains, we applied the convergence diagnostic proposed by Gelman and Rubin which is based on the comparison of within-chain and between-chain variances, and is similar to a classical analysis of variance [START_REF] Gelman | Inference from iterative simulation using multiple sequences[END_REF]. The convergence is diagnosticed when variance between the multiple chains is no larger than the variance within each individual chain. Running this test facilitates both the testing of the convergence and the identification of the convergence point. We considered that the chains had converged when the ratio of within-chains variances over the between chains variances (the Gelman and Rubin's shrink factor) approached 1. On the contrary, values substantially above 1 indicated lack of convergence. The Markov chains resulting from the random walk of the Metropolis-Hastings algorithm are highly auto-correlated in time because each iteration depends on the previous one and this is a problem to approximate the posterior pdf. In fact, the time serie with the maximum of posterior information is such as each iteration should be an independent sample from the posterior distribution [START_REF] Plummer | CODA: Convergence diagnosis and output analysis for MCMC[END_REF]. For obtaining such chains less auto-correlated, the chains must be made thinner to extract independent iterations. The process of thinning was made in two steps: the auto-correlation was first computed for increasing lags and then the posterior chain was extracted by keeping the iterations defined by the thinning interval.

We defined this one as the number of iterations between consecutive samples in a chain for which the auto-correlation was less than 60%. We also extracted the final subset of iterations by removing the burn in period, i.e. 10% of the iterations at the beginning of the chain. This sample can be used to summarise the posterior pdf by calculating the mean vector, the variance matrix and the 90% credible interval for each parameter. In addition, the posterior pdf facilitates the calculation of cross-correlations between parameters and the distribution of model predictions directly computed with the posterior parameter sample.

The generation of the Markov chains and the chain analysis were carried out by using the R software devices (R Development Core Team, 2008). The CERES-EGC model coded in Fortran was compiled as a R-library and called from the R software with the different parameter values generated in the loop of the Metropolis-Hastings algorithm which was coded as a R function.

The chains analysis and diagnostics were carried out with the coda R package (Plummer et al.,

Evaluation of model predictions

The performance of the calibration procedures was assessed by calculating the root mean square error (RMSE) of predictions computed with the simulations f (θ) for which the vector θ either was drawn from the prior parameter pdfs, or was the posterior MCMC chains from sample-bysample or multisample calibration procedure. Otherwise, θ was either a single value equal to the default parameter vector (θ def ault ), or in both following cases, three parameter vectors, equal either to the mean of calibrated parameter (θ) for the 3 parallel chains or to the maximum a posteriori estimate of θ (θ M AP ). θ M AP is the single best value of the parameter vector in each MCMC chain, at which the posterior probability distribution is maximal (Van Oijen et al., 2005).

RMSE was defined as follows:

RMSE = E (O i -S i ) 2 1/2 (15)
where O i and S i are the time series of the observed and the simulated data and E denotes the expectancy [START_REF] Smith | Quantitative methods to evaluate and compare soil organic matter (SOM) models[END_REF]. Simulations S i were achieved with a single run of the model in the case of the single value of θ def ault . Simulations were achieved with the 3 values of θ and θ M AP corresponding to the results from the 3 three parallel MCMC chains, then, in these cases, S i was the expectancy of the 3 simulated time-series. In the case of prior parameter pdfs, S i was defined as the expectancy of the simulations computed with 100 parameter vectors generated as random deviates in the prior uniform distributions. In the case of MCMC chains of parameters, S i was the expectancy of the simulations with the thinned chains of parameters from both sample-by-sample and multisample calibration procedures.

Results

Posterior parameter distributions

Figure 1 portrays, in the form of boxplots, the posterior parameter distributions obtained with the application of our procedure performed sample-by-sample and with the multisample procedure.

In both cases, three Markov chains were run to assure the convergence of the algorithm, then, the chains were thinned with the method described in Section 2.5 and, finally, the boxplots are the distributions of the combination of the three thinned Markov chains for each calibration. The boxplots depict the parameter distribution through the five following numbers: the median, the lower quartile (Q1), the upper quartile (Q3) and the largest observations (without outliers). This representation allows us to display differences between parameter calibration in relation to fieldsite and the shape of the boxplot portrays the dispersion and symmetry of the distribution. The y-axis is limited with the minimum and maximum bounds of the prior parameter distribution.

Our Bayesian procedure generally generated uni-modal distributions, clearly suggesting that the MCMC chains converged towards a unique convergence point. This result was clearly corroborated by the convergence test that we systematically applied to the three parallel Markov chains.

Figure 2 displays the 50 and 97.5% quantiles of the sampling distribution for the Gelman-Rubin shrink factor for the 11 parameters specifically calibrated with the data set of La Saussaye and indicates that the shrink factor approached 1 for all the parameters after 30 000 iterations which supports the convergence of the three chains for all the parameters.

Figure 1 shows that the posterior distributions become narrower compared to the uniform prior distributions which is undoubtedly due to the efficiency of our procedure. From prior uniform distribution function, the posterior parameter distribution was converging into normal or log normal distribution functions as already observed by Svensson et al. (2008) for the Bayesian calibration of a process-based forest model with a similar procedure. For example, the distribu-tions of parameter θ(1) which is the WFPS threshold for denitrification activation appear tight on a specific value for each data sample, suggesting that the calibration have clearly reduced the uncertainty about the value of this parameter. On contrary, the parameters θ(8) and θ(9) which respectively correspond to the minimum and maximum water-filled pore space for which nitrification is activated in the topsoil layer are relatively spread in the prior range of variation and the median is rather centred in the distribution.

Figure 1 also shows that some parameter distributions are flattened on the limits of the prior bounds. We therefore should reconsider the prior ranges for these parameters, particularly the distribution of the parameters θ(10), the half-saturation constant of the ammonium function, and θ(11), the Q10 factor for nitrification, which are flattened on the minimum limit of the prior range for the data samples of Champnoël AN, La Saussaye and Grignon.

The last boxplot in the 11 graphs of Figure 1 displays the distribution obtained with the multisample procedure. The shape of this boxplot and its median value appear to be more constrained by certain data samples than others which can be explained by the fact that both data samples with a larger number of observations and individual observations with higher precision have substantially more weight in the log-likelihood function. For example, the boxplots of the multisample procedure show a similarity with the boxplots of the site La Saussaye, particularly for the parameters θ(1), θ(3) and θ(6).

Data samples acquired in the same sites, i.e. sites with both identical climate and soil type but with differentiated crop management, may generate similar shapes of distribution. The three treatments Rafidin N0, Rafidin N1, Rafidin N2, the two treatments Champnoël CT and Champnoël AN, and the two treatments Le Rheu CT and Le Rheu AN may present similar distributions for some parameters which could support the conclusion that the parameters are site-specific. The uncertainty on the parameters computed with the multisample procedure is the synthesis of the various observations and the best compromise in relation to our current obser-vations. The posterior pdfs computed with this procedure could be useful to simulate N 2 O emissions in new locations where no measurement is available for parameter calibration, whereas it could be more interesting to use site-specific calibrated parameters in the case of simulations with similar characteristics of soil to the soil types of our database. shows that the minimum WFPS for activation of the nitrification (θ( 8)) is centred on the default value, that the optimum WFPS for nitrification (θ( 7)) is lower for the calibration with data sets Le Rheu AN and La Saussaye, and that the value from multisample procedure is similar to the default parameter value. The calibrated maximum WFPS for nitrification (θ(9)) are always higher than the default value and are centred on 90% WFPS which means that the nitrification could occur for higher WFPS than initially. The shapes of the response function N T (Fig. was apparently too low. The function F W which reflects the effect of WFPS on denitrification presents a large variety of shapes depending on the parameter θ(1), the threshold of WFPS from which denitrification starts to occur, and θ(6), the exponent of the function. [START_REF] Hénault | NEMIS, a predictive model of denitrification on the field scale[END_REF] and [START_REF] Heinen | Application of a widely used denitrification model to Dutch data sets[END_REF] showed that denitrification process was highly sensitive to θ(1)

and that this parameter was really dependant on soil type. The value of θ(1) calibrated with the multisample procedure is higher than the default value which means that the denitrification could start to occur with higher WFPS than with the default value. As proposed by [START_REF] Parton | Generalized model for N 2 and N 2 O production from nitrification and denitrification[END_REF] to differentiate F W with soil texture and as recommended by [START_REF] Hénault | NEMIS, a predictive model of denitrification on the field scale[END_REF], it will be preferable to recalibrate the parameters of F W for each new soil with new experimental data.

The shape of the functions F T is quite similar, down to 25 °C, for each parameter set which lead us to believe that the function calibrated with the multisample procedure could be universally used in the future.

Bayesian calibration facilitates quantification of correlations between the calibrated parameters.

All of them were cross-correlated to others and 6 of them showed correlation higher than 0.4 (Table 1), which we interpreted to mean that the different response functions of the N 2 O module of CERES-EGC are coupled between each other and that the different parameters might be imagined as clusters of parameters such as suggested by Svensson et al. (2008). The parameters θ(1) and θ(2) are positively correlated and are both negatively correlated to θ(6) which suggests a coupling between the nitrate (F N ) and water (F W ) functions. excepted for the data sample of the Arrou site. RMSE was improved by 73% on average for all the data samples and the higher efficiency was observed for the site of La Saussaye with a RMSE declining by 98% when comparing simulations based on prior and posterior pdfs. Calibrations with the data samples: Grignon, Le Rheu CT, Le Rheu AN, Champnoël CT, Champnoël AN, Rafidin N0, Rafidin N1 and Rafidin N2 also were significantly efficient inducing the reduction of of RMSE for all the data samples dropped from 39 down to 6 g N 2 O-N ha -1 d -1 . In the same way, RMSE declined by 41% on average when comparing simulations based on default parameter set and posterior pdf, mean of RMSE decreasing from 13 down to 6 g N 2 O-N ha -1 d -1 .

Error of prediction of the calibrated model

RMSE of prediction with posterior pdf was only higher than RMSE of prediction with default parameter values for the data sample of Champnoël CT for which RMSE slightly rose from 0.9

up to 1.4 g N 2 O-N ha -1 d -1 .
RMSE comparison between simulations based on mean vector of parameters chains, prior pdf and default parameter values gave similar results to the performance of the posterior-pdf-based simulations. RMSE with predictions based on θ was equal to 6 g N 2 O-N ha -1 d -1 on average for all the sites, i.e. the same as posterior-pdf-based prediction. Hence, this result proved that the mean parameters could reasonably be used for future simulations of the sites of our database or for sites with similar soil types. The RMSE value based on simulations with θ M AP was logically the lowest value of RMSE for the predictions based on the various parameter sets.

RMSE based on parameter sets of the multisample procedure decreased on average by 33% compared to RMSE based on simulations with prior pdfs and 14% compared to simulations with default parameter values which would lead us to believe that the parameter set summarised in Table 1 could be a good compromise when the model will be apply for a new site.

In addition, Table 3 shows that the calibration did not really improved the prediction for the two data samples of Villamblain and Arrou which may be explain for the first site by an uncertainty of prediction which was perhaps not due to parameter uncertainty and for the second site by an inaptitude of the model to simulate such hydromorphic soil. In fact, this result is in agreement with [START_REF] Hénault | Predicting in situ soil N 2 O emission using NOE algorithm and soil database[END_REF], Gabrielle et al. (2006a) and [START_REF] Heinen | Application of a widely used denitrification model to Dutch data sets[END_REF] who also demonstrated that the N 2 O module and particularly the sub-module of denitrification (Eqs. 5, 8, 9, 10) was not able to reproduce fitting dynamic of denitrification rate or N 2 O emissions for soil with high

Model prediction uncertainty

Simulations of N 2 O emissions based on MCMC chains of parameters were generated as statistical distributions around a mean value which is traced in Figure 4 For the data sample of Rafidin N0 (Fig. 4.i), observations also were concentrated on two short periods but with few observation points and inversely to Grignon, the calibration of this site highly constrained the model during this period but was less constraining out of the period of measurement.

Table 4 summarises the annual N 2 O emissions for the different sites and treatments. The emissions were integrated over one year-period and the uncertainty of N 2 O predictions was expressed as the 0.90 credible interval. Mean annual simulated fluxes were comprised between 88 and 3672 g N 2 O-N ha -1 y -1 through the different sites and treatments and uncertainty about model prediction was quite large, notably for the sites where the predictions were high. The conversion factor is equal to the ratio of the integrated flux over the N fertiliser amount, whereas the emission factor for the application of N fertiliser is relative to "background" emissions, i.e. it is calculated as the difference between the mean cumulative N 2 O-N emissions (g N 2 O-N ha -1 y -1 ) of fertilised and unfertilised predictions, over the amount of total N-fertiliser applied over one year. The emission factors were comprised between 0.05 and 1.12%, and the mean emission factor was 0.26%. This value is four times lower than the default value recommended by the IPCC tier 1 methodology which presents an uncertainty range of variation comprised between 0.3 and 3% (IPCC, 2006).

Discussion

Bayesian calibration

Our principal goal was to demonstrate the potential of a Bayesian-style calibration procedure to quantify parameter uncertainty and to reduce the uncertainties about the model. Our procedure sought to calibrate model parameters either successively sample-by-sample in order to improve model prediction for the specific sites of our database or simultaneously with all the data samples in order to find universal parameter values which could be apply for new soil conditions and spatial extrapolation of the model. This paper also aimed at simulating N 2 O emissions with uncertainty quantification for different sites in Northern France which represent major soil, climate and crop management conditions. It has already been suggested that simple process-based models such as the N 2 O module of CERES-EGC needs to be parameterised for each new location [START_REF] Heinen | Application of a widely used denitrification model to Dutch data sets[END_REF]. The application of our Bayesian procedure proves that is the case but our multisample procedure also demonstrates that it makes possible to find universal parameter values by encompassing all our current observations.

Our procedure which implies running three MCMC chains to ensure convergence of the algorithm for each data sample demonstrates that the parameter pdfs were considerably narrowed in comparison with the prior pdfs and proves that the uncertainty about parameters strongly decreased. The application of the sample-by-sample procedure also shows that the values of parameters could differ for each location (Fig. 1) inducing differentiated response functions according to the site (Fig. 3). Our results are in agreement with those of [START_REF] Heinen | Application of a widely used denitrification model to Dutch data sets[END_REF] that revealed it seemed impossible to formulate universal reduction functions for the denitrification sub-module (Eqs. 5, 8, 9, 10) for the major soil types sand, loam and peat because the functions differed considerably within the soil types. We support the same conclusion but furthermore, our multisample procedure allows us to find the best universal compromise for parameter values.

The RMSE of prediction calculated with calibrated model was significantly reduced in comparison with prediction based on prior parameter values: 73% reduction on average with the sample-by-sample procedure and 33% reduction on average with the multisample procedure.

These results clearly suggest that our calibration procedure has dramatically reduced the model uncertainty. In addition, the parameter vector equal to the mean of the thinned MCMC chains of parameters can easily be used to apply the model in similar soil conditions.

The parameterisation does not induce a perfect match between predictions and measurements for the temporal dynamics of daily N 2 O fluxes. Measured data with high uncertainty were in particular less well predicted because they presented a high spatial variability and consequently were less constraining in the calculation of the log-likelihood function. Heinen ( 2006) also showed with a different calibration method that the optimised denitrification sub-module did not result in perfect prediction at the point scale.

Since the work of Van Oijen et al. (2005), it has been assumed that Bayesian calibration can be applied to process-based forest models and to specific sub-model (Svensson et al., 2008;[START_REF] Klemedtsson | Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[END_REF] and that the Metropolis-Hastings algorithm is particularly well adapted for calibration of ecosystem models with high number of parameters [START_REF] Makowski | Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods[END_REF].

As we have just seen, our Bayesian calibration can be applied for agro-ecosystem models and for its specific modules by using data sets of measurements from different locations. Indeed, we have shown that uncertainty about parameters was considerably reduced and model performance was improved. Furthermore, our procedure to analyse the outputs for MCMC chains clearly advances the diagnostic on the parameter calibration. Convergence test on the three parallel chains of parameters and thinning for dealing with high auto-correlation in MCMC chains have been applied for each data set of our database and we are now convinced that this procedure improves the quality of parameterisation. We have also established a database of N 2 O emissions for Northern France and in the future, it will be interesting to use this one to parameterise other models or to compare the performance of different N 2 O emissions process-based module integrated in CERES-EGC. Another direction could also be to use other kind of output data to parameterise specific module, for example the use of NO emission measurements for calibration of the nitrification sub-module (Eqs. 6,11,12,13) of CERES-EGC.

4.2 Improvement of the model performance after integrating N 2 O measurements [START_REF] Heinen | Application of a widely used denitrification model to Dutch data sets[END_REF] showed that the denitrification module (Eqs 5, 8 ,9, 10) needs to be parameterised for each location where the model would be used. In view of our results based on the sample-bysample procedure for the complete N 2 O module of CERES-EGC, we assume the same conclusion because the calibrated response functions differs from site to another which would lead us to believe that the model would not be universally applicable to simulate N 2 O emissions by using the default parameters values without parameterisation. But, on the basis of the results from the application of the multisample procedure, we have seen that it becomes possible to find universal parameter values which integrate all our current observations. With the information contained in the parameter pdfs, there is now a higher likelihood to use these parameters in comparison with the prior pdfs or the default parameter values when the model needs to be applied for a new site.

The power of a model is that it is able to predict variables over time and space but prior to its application, we must ensure that parameterisation is accurate. In fact, we would now point out that when the model will be applied to a new site without any available N 2 O measurements, firstly we should check if the parameters will have already been parameterised for the same soil type, if yes, we could use the parameters specifically-calibrated for this soil type, else, it will be possible to use the parameters values which will have been calibrated with the multisample procedure.

Indeed, it becomes possible to imagine that the parameter values from our both procedures could be used for spatial extrapolation of the model at the regional scale. In the future, as soon as a new data set will be available we could assimilate the new observations points with the multisample procedure in order to reduce uncertainty about the global parameters and to increase the universality of the model.

Prediction of N 2 O fluxes from agro-ecosystems

CERES-EGC and its specific N 2 O module have widely been used in many soil conditions [START_REF] Hénault | Predicting in situ soil N 2 O emission using NOE algorithm and soil database[END_REF][START_REF] Dambreville | N 2 O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany[END_REF][START_REF] Heinen | Application of a widely used denitrification model to Dutch data sets[END_REF] uncertainty for which the model did not perform to well predict them. In addition, the procedure makes it possible to quantify model output uncertainty for yearly N 2 O budget and emission factors (EFs). Model prediction of yearly cumulative N 2 O fluxes were comprised between 88 and 3672 g N 2 O-N ha -1 y -1 over the different sites and EFs ranged from 0.05 to 1.12%. On the basis of these results alongside those of Gabrielle et al. (2006a), it now appears that the IPCC EF is not suitable for the sites that we have studied because it considerably overestimates the annual emissions (Table 4). [START_REF] Beheydt | Validation of DNDC for 22 long-term N 2 O field emission measurements[END_REF] used the DNDC model to calculate EF corresponding to various scenarios of simulations with high N input levels and N surplus, and they found EF predicted by DNDC equal to 6.49% a value 25 times higher than our prediction and EF derived from the measurements equal to 3.16%. In the future, we also should assimilate data sets with higher level of N 2 O emissions such as those used by [START_REF] Beheydt | Validation of DNDC for 22 long-term N 2 O field emission measurements[END_REF] in order to calibrate the model with annual emissions higher than 10 kg N 2 O-N ha -1 y -1 . Furthermore, our results sug-gest that the annual N 2 O emissions were not strictly proportional to the application of N fertiliser which is in agreement with the results of [START_REF] Barton | Nitrous oxide emissions from a cropped soil in a semi-arid climate[END_REF]. Indeed, they have showed that, in a semi-arid climate, in spite of the application of N fertiliser the annual N 2 O emissions were not significantly increased in comparison with background emissions and demonstrated that the N 2 O emissions from arable soils can not be directly derived from the application of N fertiliser.

In light of these results, we are now of the opinion that our Bayesian procedure is highly informative about model uncertainty quantification and can be very useful for taking into account risk in model-based GWP quantification of agro-ecosystems, environmental balance assessment of cropping systems and decision-making. Nevertheless, we should advice, for an efficient calibration of N 2 O emissions models, that N 2 O measurements with the static chamber method should be carried out with a regular recurrence at the yearly scale, at least one observation per month, and with a higher frequency during the peak fluxes that occur after N-fertiliser inputs and events that activate mineralisation of crop residues during autumn.

In the future, it would be very interesting to compare performance of various agro-ecosystem models for their aptitude to predict N 2 O emissions on the same data sets in the fashion of [START_REF] Frolking | Comparison of N 2 O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models[END_REF]; [START_REF] Li | Comparison of three model-ing approaches for simulating denitrification and nitrous oxide emissions from loam-textured arable soils[END_REF]. Furthermore, Bayesian Model Comparison (Van Oijen et al., 2005;[START_REF] Kass | Bayes factors[END_REF] could be applied to examine multiple models and to quantify their relative likelihood, i.e. by determining which model is most probable in view of the data and prior information.

Limits and developments of CERES-EGC to predict N 2 O emissions

Our uncertainty analysis was performed without taking into account for uncertainty about the input variables of the N 2 O sub-model which are the soil temperature, the soil nitrate and ammonium concentrations and the soil water content. These variables are daily calculated by the model and are dependant of numerous process (crop N uptake, nitrate leaching, evapo-transpiration, drainage, N gas emissions, soil organic matter turnover) and thus of a large number of parameters and variables interacting over time. The Bayesian calibration could be expanded to multiple other parameters by using measured data which might be crop biomass, soil N concentration, soil water content, soil temperature and other gas emissions. In fact, the Bayesian technique could be used in a more holistic way because the method gives the possibility of calibrating various parameters by using different kind of output data [START_REF] Klemedtsson | Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[END_REF].

We have seen that the 11 global parameters we studied depend on soil type and hence they are variable over space, as a consequence, they seem themselves to be relied on other parameters that contain a prior inherent variability. In the future, we believe that it could be very peculiar to define these new hyperparameters which control the spatial variability of our parameters [START_REF] Clark | Why environmental scientists are becoming bayesians[END_REF] and very interesting to deal with this spatial variability by developing a hierarchical Bayesian approach. Hence, the use of our plot-scale measurements could allow us to properly extrapolate our model at the regional scale.

Another future development of the N 2 O module of CERES-EGC, indispensable for model extrapolation and already mentioned by [START_REF] Hénault | Predicting in situ soil N 2 O emission using NOE algorithm and soil database[END_REF], should be to render the model independent of the four local parameters which still need to be measured for new soil conditions. It will require to define the key controls of these parameters in order to model them in relation to soil type characteristics.

Conclusion

We have shown that Bayesian calibration was successfully applied to the CERES-EGC agroecosystem model in order to parameterise its N 2 O emissions module. We have demonstrated that both the Bayesian calibration and our procedure of analysis and diagnostic for MCMC chains of parameters can be applied to our process-based model in order to calibrate parameters either (i) by using successively data samples or (ii) by using all the data samples simultaneously, to satisfy our objectives which were, respectively, to improve model prediction at the field scale and to find universal values of parameters in order to spatially extrapolate the model. In addition, Bayesian calibration has given us the possibility of quantifying both parameter and model uncertainty.

Furthermore, it appears reasonable to assume that when the model should be applied at a larger scale than the plot-scale, the parameter values resulted from the multisample procedure could then be used for soil types which will have never been parameterised. In fact, the posterior parameter distributions encompass all our current observations and give us the possibility of quantifying their uncertainty. To this end we recommend further research into modern Bayesian method which could help us to deal with the spatial variability of the parameters. ) based on different parameter sets: the prior pdf, the default parameter values, the posterior pdf, the mean of MCMC chains, the parameter set with maximum log-likelihood and the mean of parameter chains from the multisample procedure 

  from 13 May 2005 to 12 June 2005. Uncertainty about measurements was the standard deviation of fluxes measured with the different chambers on field. Input data required to run the model were also collected on each site. Daily weather data required by CERES-EGC (rainfall, air temperature, solar radiation) were collected from local weather stations and detailed information concerning soil parameters and crop management were compiled into input files for CERES-

Figure 3

 3 Figure 3 demonstrates that the calibration procedure involves response functions with different shapes that result from the functions plotted with the various calibrated parameter sets. Difference between the individual functions may be quite considerable. The response functions N N (Fig. 3.a) are very different between each other and reflect the value of θ(10). The function calibrated with the multisample procedure (dashed line in Fig. 3.a) is below the function computed with default parameter values, which means that the calibrated function reduces more the potential of nitrification rate than the function by default. The water functions N W (Fig. 3.b)

  3.c) are similar to the initial shape for the sites La Saussaye and Grignon, and for the other sites, the shapes are equivalent between each other at least down to 25 °C. The response functions F N (Fig. 3.d) are clearly below the function by default what suggests that the default value of θ(2)

  and displays the averaged temporal dynamic of daily N 2 O emissions for every sites (Fig.4.a to 4.k). This is a large benefit of the Bayesian approach because it facilitates analysis of the model output uncertainty due to the uncertainty about parameters values.Model predictions were not still in agreement with all measurements which was due to uncertainty in both the measurements and the model. Measurement points with high uncertainty have less weight in the log likelihood function and then in the posterior probability, therefore, parameter sets that may give good agreement between measurements and predictions might not induced a such high log-likelihood. For example, the two higher N 2 O flux measurements of the site of Villamblain (Fig. 4.a) have a large uncertainty which did not induce a strong constraint for the calibration, whereas various lower N 2 O fluxes with lower uncertainty were more constraining in the calibration. The same remark is supported for the site of Arrou (Fig. 4.b). For the data sample of Champnoël AN (Fig. 4.e), a high peak flux of N 2 O was observed in autumn that the model could not predict whereas fluxes lower than 10 g N 2 O-N ha -1 d -1 were all well predicted. For the site of Grignon (Fig. 4.h), the observation points were concentrated on successive 31 daily measurements from 13 May 2005 to 12 June 2005 and reproduced a high peak flux of N 2 O.Model with default parameter set (θ def ault ) simulated three peaks of N 2 O that were not observed in the field (results not shown, see[START_REF] Lehuger | Predicting the global warming potential of agro-ecosystems[END_REF]). The first peak flux of N 2 O occurred four days after the application of N fertiliser, in response to rainfall and high soil N content in the 0-30 cm topsoil layer. Two additional peak fluxes were simulated by the model during the measurement period as a consequence of two rainfall events, high nitrate content in soil and WFPS predicted by the model greater than the WFPS threshold for denitrification (θ(1)) which had been fixed to 62%. The Bayesian procedure applied on the Grignon site eliminates the simulation of the two additional peak fluxes simulated with the default parameter set what may be explained by the fact that the WFPS threshold for denitrification (θ(1)) rose up to 73% which is the highest value in all the calibrations (Fig.1.a). The calibration procedure for this specific data sample produced calibrated parameter values that eliminated all the other possible peak fluxes in the year (Fig.4.h).

  and the model uncertainty has only been really quantified once by Gabrielle et al. (2006a) by using 5 different uncertain parameters. Likewise, uncertainty analysis about parameters is rarely carried out for process-based ecosystem models that simulate N 2 O emissions. As we have just seen our Bayesian calibration resulted in probabilistic simulation of temporal dynamic of N 2 O emissions over cropping seasons including the information about the probability of parameters. The calibrated model could predict temporal dynamic of daily instantaneous N 2 O fluxes rather well, except for the highest peaks with high
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 123 Figure 1: Posterior distribution of the 11 calibrated parameters (θ(1) to θ(11)) represented as boxplots over the prior range of variation. For each graph, the boxplots are computed from calibration sample-by-sample and with the "multisample" procedure

Figure 4 :

 4 Figure 4: Simulated (lines) and observed (symbols) N 2 O emissions for the different sites and treatments. The simulated line is the mean time serie of the simulations based on the MCMC chains of parameters from sample-by-sample calibrations
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 3 

summarises the RMSEs of prediction obtained with various parameters sets. Simulations were carried out as explained in Section 2.6 for each of the 11 data samples. RMSE computation facilitates comparison of model performance between the different sites and the different parameter values. RMSE based on posterior pdf is always lower than RMSE based on prior pdf

Table 2 :

 2 Database of N 2 O emissions from different arable sites in France. For the different data sets, following characteristics are described: year of measurement, soil texture, crop type, application of N fertiliser , number of observation points and references

	Site	Treatment		RMSE (in g N 2 O-N ha -1 d -1 ) computed with predictions based on:	
			Prior pdf Default parameter Posterior pdf	Mean of	Parameter set with	Multisample
				values		parameter chain maximum log-likelihood	procedure
	Rafidin	N0	4.6	4.6	0.7	0.3	0.3	4.6
		N1	7.5	10.4	1.2	1.4	1.2	12.8
		N2	10.5	15.9	2.1	3.0	2.8	20.4
	Villamblain		5.2	5.5	4.8	4.9	4.9	5.5
	Arrou		25.4	29.0	27.1	25.3	23.8	29.2
	La Saussaye		93.0	33.3	2.0	2.3	2.4	2.3
	Champnoël CT	21.5	0.9	1.4	0.9	0.9	0.9
		AN	65.58	15.0	13.8	14.0	13.8	14.0
	Le Rheu	CT	149.5	22.7	6.1	6.0	6.0	6.0
		AN	30.4	4.2	2.0	2.2	2.2	2.4
	Grignon		16.9	1.0	1.0	1.2	1.3	1.1

Table 3 :

 3 Root mean square error (RMSE) of prediction (in g N 2 O-N ha -1 d -1
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