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Abstract1

Nitrous oxide (N2O) is the main biogenic greenhouse gas contributing to the global warming2

potential (GWP) of agro-ecosystems. Evaluating the impactof agriculture on climate there-3

fore requires a capacity to predict the net exchanges of thisgas in relation to environmental4

conditions and crop management. The biophysical crop modelCERES-EGC is designed to pre-5

dict the productivity and GWP of agro-ecosystems by simulating C and N dynamics, including6

N2O emissions from soils, on a daily time step, as driven by the nitrification and denitrification7

pathways. These two microbiological processes are modelled as the product of a potential rate8

with three dimensionless factors related to soil water content, nitrogen content and temperature,9

of which a fixed site-specific proportion is evolved as N2O. These equations form the N2O sub-10

model of CERES-EGC, and involve a total set of 15 parameters.Four of those are site-specific11

and should be measured on site, while the other 11 are considered global, i.e. fixed over time and12

space. Accurate estimates of the global parameters should be sought prior to extrapolating the13

model to make predictions in new situations. Here, we used Bayesian calibration to that purpose14

using a database of N2O flux measurements including seven different field-sites inFrance. First,15

we gathered prior information on the model parameters basedon literature review, and assigned16

them uniform probability distributions. A Bayesian methodbased on the Metropolis-Hastings17

algorithm was subsequently used to update the parameter distributions for each field site. Three18

parallel Markov chains were run to ensure a convergence of the algorithm. This site-specific cal-19

ibration significantly reduces the model prediction error across the field sites, along with its over-20

all uncertainty, compared to the initial parameter setting. The root mean square error (RMSE) of21

predictions computed with posterior parameters values wasthus reduced by 73% on average in22

comparison with the prior estimates. The RMSE declined from39 to 6 g N2O-N ha−1 day−1 on23

average. The Bayesian calibration was also applied to all the data sets simultaneously, to obtain24
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better global estimates for the parameters initially deemed universal. This made it possible to1

reduce the RMSE by 33% on average, compared to the uncalibrated model. These global param-2

eter values may be used to obtain more realistic estimates ofN2O emissions from arable soils at3

regional or continental scales.4

Keywords5

Bayesian calibration, Parameter uncertainty, CERES-EGC,Nitrous oxide, Markov Chain Monte6

Carlo, NitroEurope7

2



1 Introduction1

While food supply for increasing population is becoming oneof the alarming question world-2

wide, we are faced with the growing environmental footprintof agriculture due to land use3

change and management intensification (Kiers et al., 2008).Assessing the contribution of agri-4

culture to climate change is one of the key question addressed to environmental scientists who5

should help to identify measures to reduce the burden of agriculture in global warming. Soils6

are the main source of nitrous oxide (N2O) in the atmosphere due to microbial processes of ni-7

trification and denitrification. By intensively using N-fertilisers, agriculture amplifies these two8

processes and hence, agro-ecosystems contribute 55-65% ofthe global anthropogenic emissions9

of N2O and are the most responsible for the increase of N2O atmospheric concentration com-10

pared to other ecosystems or activity sectors (Smith et al.,2007). The use of agro-ecosystem11

models facilitates predictions of N2O emissions from arable soils at the plot scale and offers the12

unique mean to upscale the predictions at regional and continental scales (Butterbach-Bahl et al.,13

2004). Predictions of process-based models such as agro-ecosystem models are highly depen-14

dant on model parameters and uncertainty about their valuesinevitably induces uncertainty about15

model outputs. To facilitate decisions based on model, it requires first to estimate the parameter16

values and then to quantify the risk of error of prediction due to parameter estimates. Although17

model parameterisation and uncertainty analysis of process-based models are widely developed18

in the literature, they rarely are considered simultaneously. Bayesian calibration makes the com-19

bination of this two goals possible by providing estimates of parameters values under the form20

of probability density functions (pdfs) which are propagated to model outputs that can also be21

expressed as pdfs (Gallagher and Doherty, 2007). Probability density functions are initially the22

expression of current imprecise knowledge about model parameter values, this prior probability23

is then updated with the measured observations into posterior probability distribution by means24
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of Bayes’ theorem.1

In ecological and environmental sciences, Bayesian calibration has been applied for various dif-2

ferent models and is actively developing for many types of models. For example, Hong et al.3

(2005) applied a Bayesian estimation to input parameters ofa nitrogen cycle model that simu-4

lates N cycle at the watershed scale, Larssen et al. (2006) used a Bayesian approach for model5

calibration and uncertainty analysis of a hydrogeochemical model that simulates acidification ef-6

fects on trout population health and Ricciuto et al. (2008) have developed a technique performing7

both calibration of all the parameters of a simple model of simulation of net ecosystem CO2 ex-8

changes and assimilation of hourly observations into the model. All these techniques were based9

on Markov Chain Monte Carlo (MCMC), a Bayesian technique that has demonstrated its superi-10

ority compared to other methods of parameter estimation. Qian et al. (2003) and Gallagher and11

Doherty (2007) demonstrated that MCMC methods are the most powerful methods compared to12

other Bayesian and frequentist methods of uncertainty analysis. In the same way, Makowski et al.13

(2002) demonstrated that the Metropolis-Hastings gives lower mean squared error of prediction14

than the Generalized Likelihood Uncertainty Estimation method (GLUE) in the case of parame-15

ter estimation of an agronomic model. The Bayesian methodology described by Van Oijen et al.16

(2005) has been applied to dynamic process-based forest models with the goal to calibrate model17

parameters with multiple observed data from forested experimental sites (Svensson et al., 2008;18

Klemedtsson et al., 2007). The technique is based on the Metropolis-Hastings algorithm that19

generates samples from high dimensional distributions under the form of Markov Chains Monte20

Carlo (MCMC) which approximate the posterior parameter distributions.21

Although a large literature is developing about application of Bayesian techniques in environ-22

mental sciences, Bayesian approach has never been applied to process-based model of soil23

N2O emission models. These models have been developed first to by-pass the expensive and24

time-consuming direct measurements of N2O emissions on field and then to extrapolate emis-25
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sions over space and time. Indeed, models of N2O emissions are definitely indispensable to1

facilitate simulation and interpretation of specific measuring sites, to make tests of different2

management and mitigation strategies possible for farmersand to carry out spatially-explicit in-3

ventories of N2O emissions from agriculture. Predicting N2O emissions from agro-ecosystems4

requires taking into account complex processes and interactions which originate from both en-5

vironmental conditions and agricultural practises (Frolking et al., 1998). Several process-based6

models have been developed to simulate N2O emissions from arable soils, including DAYCENT7

(Parton et al., 2001), DNDC (Li, 2000), FASSET (Chatskikh etal., 2005) and CERES-EGC8

(Gabrielle et al., 2006b). As recommended by IPCC, the tier 3methodology allows the countries9

of Annex 1 to use these more complex models to quantify their N2O budgets from agriculture10

in order to improve the accuracy of national inventories (IPCC, 2006). However these models11

have still high uncertainties coming from parameter values, driving variables and model structure12

(Gabrielle et al., 2006a).13

The overall purpose of this study was to calibrate the parameters of the N2O emissions module14

of the CERES-EGC agro-ecosystem model and to quantify uncertainty of model predictions by15

using a Bayesian calibration technique and a sophisticatedprocedure for analysis and diagnos-16

tics of MCMC chains. Measured observations were from seven field-sites in Northern France17

which represent major soil types, crops and crop management. Two additional specific objec-18

tives were to apply our Bayesian procedure both to the measured data sets successively and to19

the data sets simultaneously in order to find respectively, site-specific and universal parameter20

values with their uncertainty quantified. Our results will be useful in using the site-specific cali-21

brated parameters to develop mitigation strategies in the measuring sites and the universal values22

of calibrated parameters to extrapolate the model at regional and continental scales. In addition,23

our study allows us to partly reach the objectives of the PlotScale Modelling Component of the24

NitroEurope Integrated project (Sutton et al., 2007) in which we are actively involved and thus25

5



to give a little advance to the question addressed by the project: “What is the effect of reactive1

nitrogen supply on the direction and magnitude of net greenhouse gas budgets for Europe?”2

2 Material and Methods3

We used a Bayesian calibration technique based on the Metropolis-Hastings algorithm to esti-4

mate the parameter probability density functions of the N2O emissions module of the CERES-5

EGC model. The equations of the N2O emissions module involve a total set of 15 parameters of6

which 11 were estimated by our procedure based on running three parallel Markov Chains Monte7

Carlo to ensure a convergence of the algorithm. We used a database of N2O flux measurements8

including seven different field-sites in France in the goal of either to apply our procedure for each9

data sample successively and find the site-specific parameter estimates or to apply our calibra-10

tion procedure to all the data samples simultaneously and find parameters estimates considered11

as universal.12

2.1 The Bayesian approach13

Bayesian methods are used to estimate model parameters by combining two sources of informa-14

tion: the prior information about parameter values and the measurements of output data. The15

prior information is based on expert knowledge, literaturereview or by measuring them directly16

on field or in laboratory and observations are generally direct-field measurements which as-17

sess the different fluxes between soil-crop-atmosphere compartments. Using the Bayes’ theorem18

makes it possible to combine these two sources of information in order to calibrate the model19

parameters whereas most statistical methods only use the output data and does not provide prob-20

ability distributions of the parameters. The uncertain parameters are random variables for which21

we assigned them a prior probability distribution. This probability distribution constitutes the22

prior uncertainty about parameter values and what we wantedwas to reduce this uncertainty23
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by using the measured data. In our case, we specified lower andupper bounds of the parame-1

ters’ uncertainty which define the prior parameter distributions as uniform. In addition, using this2

approach allowed us to analyse the uncertainty of model predictions by running the model with3

different parameter settings sampled from the calibrated parameter distributions and to quantify4

cross-correlations between parameters. Bayesian calibration generates the posterior parameter5

distribution which is given by Bayes’ theorem:6

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
(1)

where we denote the parameters asθ and the vector of measurements asY . p(θ) is the prior7

parameter distribution forθ, p(θ|Y ) is the posterior parameter distribution,p(Y ) is a constant of8

proportionality that is not explicitly computed, andp(Y |θ) is the likelihood function forθ. The9

likelihood is the probability of the dataY given the parametersθ and is determined from the10

probability distribution of errors between observations and predictions. In our case, we assume11

that the errors are normally distributed with mean 0 and uncorrelated, and as probability den-12

sities may be very small numbers and to avoid rounding errorswe assumed calculations using13

logarithms. The logarithm of the data likelihood is thus setup as follows:14

logL =

K
∑

j=1

(

−0.5

(

yj − f(ωj; θ)

σi

)2

− 0.5log(2π)− log(σi)

)

(2)

whereyj is the jth y value in the data setY , ωj is the vector of model input data associated15

with yj, f(ωj; θ) is the model prediction ofyj, andK is the total number of observations in16

the data sets. The data setsY are times-series of N2O emission measurements andσi is the17

standard deviation of the N2O measurements. We assumed that the model error can be attributed18

to additive measurement errors following Van Oijen et al. (2005) and in the same fashion as19

Svensson et al. (2008) and Klemedtsson et al. (2007).20
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2.2 The Metropolis-Hastings algorithm1

The Metropolis-Hastings algorithm is a Markov Chain Monte Carlo (MCMC) technique that2

generates a sample of parameter vectors from the posterior distributionp(Y |θ) (Metropolis et al.,3

1953). First of all, the starting vectorθ0 of the Markov chain in the parameter space is chosen4

within the prior parameter space and then the next candidatevectorsθi are generated fori =5

1, ..., N iterations as follows:6

Step 1. Randomly generate a proposal parameter vector for a new candidate parameter vector7

θ∗ = θi−1 + δ (3)

whereδ is a random vector generated using a multivariate normal distribution;8

Step 2. Calculate the ratio of the posterior probability of the new candidate over the posterior9

probability of the previous candidate:10

α =
p(θ∗|Y )

p(θi−1|Y )
=

p(Y |θ∗)p(θ∗)

p(Y |θi−1)p(θi−1)
(4)

In our case, since calculations are made using logarithms, we compute the log ofα as the11

difference between the log of the posterior probability of current point minus the log of12

posterior probability of the previous point.13

Step 3. Acceptθ∗ if logα ≥ u whereu is an uniform random variable from an uniform distribution14

on the interval (0,1), else reject andθi = θi−1.15

The new pointθ∗ is always accepted if its posterior value is no lower than theposterior value of16

θi−1. Once the chain has attained theN iterations, the chain must have converged to the target17

distribution which is the posterior parameter distribution p(θ|Y ). Before running the algorithm,18

the chain lengthN (total number of iterations) and the proposal distributionδ for generating new19

candidates must have been pre-defined as well as theM number of first iterations that should be20
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discarded. The first iterations at the beginning of the chainneed to be discarded while the MCMC1

“burns-in”. In our case, we discard 10% of the total number ofiterations at the beginning of the2

chain (Van Oijen et al., 2005). The chain lengthN is fixed between104 and105 iterations and3

depends on the convergence point of the Markov chains. The proposal distributionδ used for4

generating new candidate vectors is a Gaussian distribution with a mean of zero. In our case, we5

tuned the variance matrixΣ of δ so that the Markov chains explore the space of possible values6

for θ. We subsequently followed the procedure of Van Oijen et al. (2005) and we defined the7

variances equal to the square of 1 to 5 % of the prior parameterrange (θmin − θmax) and zero8

covariances. The variances ofΣ were tuned so that the fraction of accepted points was comprised9

between 20 to 30% during the test performed in the step 2 of theMetropolis-Hastings algorithm.10

2.3 The CERES-EGC model11

CERES-EGC was adapted from the CERES suite of soil-crop models (Jones and Kiniry, 1986),12

with a focus on the simulation of environmental outputs suchas nitrate leaching, emissions of13

N2O and nitrogen oxides (Gabrielle et al., 2006a). CERES-EGC runs on a daily time step, and14

requires daily rain, mean air temperature and Penman potential evapo-transpiration as forcing15

variables. The CERES models are available for a large numberof crop species, which share16

the same soil components (Jones and Kiniry, 1986). CERES-EGC comprises sub-models for17

the major processes governing the cycles of water, carbon and nitrogen in soil-crop systems. A18

physical sub-model simulates the transfer of heat, water and nitrate down the soil profile, as well19

as soil evaporation, plant water uptake and transpiration in relation to climatic demand. Water20

infiltrates down the soil profile following a tipping-bucketapproach, and may be redistributed21

upwards after evapo-transpiration has dried some soil layers. In both of these equations, the gen-22

eralised Darcy’s law has subsequently been introduced in order to better simulate water dynamics23

in fine-textured soils (Gabrielle et al., 1995).24
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A biological sub-model simulates the growth and phenology of the crops. Crop net photosynthe-1

sis is a linear function of intercepted radiation accordingto the Monteith approach, with intercep-2

tion depending on leaf are index based on Beer’s law of diffusion in turbid media. Photosynthates3

are partitioned on a daily basis to currently growing organs(roots, leaves, stems, fruits) accord-4

ing to crop development stage. The latter is driven by the accumulation of growing degree days,5

as well as cold temperature and day-length for crops sensitive to vernalisation and photoperiod.6

Lastly, crop N uptake is computed through a supply/demand scheme, with soil supply depending7

on soil nitrate and ammonium concentrations and root lengthdensity.8

A micro-biological sub-model simulates the turnover of organic matter in the plough layer. De-9

composition, mineralisation and N-immobilisation are modelled with three pools of organic mat-10

ter (OM): the labil OM, the microbial biomass and the humads.Kinetic rate constants define the11

C and N flows between the different pools.12

Direct field emissions of CO2, N2O, NO and NH3 into the atmosphere are simulated with differ-13

ent trace gas modules. Here, we focus on the nitrous oxide emissions module which is adapted14

from the semi-empirical model NOE (Hénault et al., 2005) for simulating the N2O production15

in the soil through both the nitrification and the denitrification pathways. Denitrification compo-16

nent is derived from the NEMIS model (Hénault and Germon, 2000) that calculates the actual17

denitrification (Da) as the product of a potential rate (PDR) with three unitless factors related18

to soil water content (FW ), nitrate content (FN ) and temperature (FT ), as follows:19

Da = PDR.FN .FW .FT (5)

In a similar fashion, nitrification is modelled as the product of a maximum nitrification rate20

(MNR) with three unitless factors related to water-filled pore space (NW ), ammonium concen-21

tration (NN ) and temperature (NT ) and expressed as follows:22

Ni = MNR.NN .NW .NT (6)
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Nitrous oxide emissions resulting from the two processes are soil-specific proportions of total1

denitrification and nitrification pathways and are calculated according to:2

N2O = r.Da + c.Ni (7)

wherer is the fraction of denitrified N and c is the fraction of nitrified N that both evolve as N2O.3

The N2O sub-model of CERES-EGC involves a total set of 15 parameters of which four of them4

are site-specific and must be measured on site, while the other 11 are considered global, i.e.5

fixed over time and space. The local parameters are the potential denitrification rate (PDR), the6

maximum nitrification rate (MNR) and the fractions of nitrified (c) and denitrified (r) N that7

evolve as N2O. They were all measured with the same protocol as summarised by Hénault et al.8

(2005). For each test site, the PDR were measured by acetylene blocking of undisturbed soil9

cores taken from the top 20 cm of soil, satured with water and incubated with an ample supply of10

nitrate (Hénault and Germon, 2000). The fraction of denitrified nitrate that evolves as N2O was11

determined as the difference between the N2O production rates of soil cores incubated with and12

without acetylene and the fraction of nitrification evolvedas N2O was measured on sieved soil13

samples incubated with increasing soil moisture content and non-limiting NH3 supply. Lastly,14

the maximum nitrification rate (MNR) and the fraction (c) were measured by using laboratory15

soil incubations and following the protocol of Garrido et al. (2002). The 11 global parameters16

are the constants of the N2O module equations which are fixed from site to another and fixed in17

time. In the original model, the calibration of the global parameters of the denitrification process18

was carried out by Hénault and Germon (2000) whereas the global parameters of the nitrification19

pathway were calibrated by Garrido et al. (2002) and Lavilleet al. (2005). The different response20

functions computed with the default parameter values and equations presented below are shown21

in Figure 3 (as the dotted lines). The response functions areunitless and are calculated as:22

FN =

[

NO−

3

]

Kmdenit +
[

NO−

3

] (8)
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whereFN is the denitrification response factor to soil nitrate content
[

NO−

3

]

, in mg N kg−1 soil1

andKmdenit id the nitrate N content (mg N kg−1 soil) whereFN = 0.5.2

FW = 0, WFPS < TrWFPS

FW =

[

WFPS − TrWFPS

1 − TrWFPS

]POW

, WFPS ≥ TrWFPS

(9)

whereFW is the denitrification response factor to soil WFPS,TrWFPS is a threshold value below3

which no denitrification occurs andPOW is the exponent of the power function.4

FT = exp

[

(T − TTrdenit) ln (Q10denit,1) − 9ln (Q10denit,2)

10

]

, T < TTrdenit

FT = exp

[

(T − 20)ln(Q10denit,2)

10

]

, T ≥ TTrdenit

(10)

whereFT is the denitrification response function to soil temperature (T ). FT is derived from two5

biological reactions that occur either below a threshold temperatureTTrdenit or aboveTTrdenit.6

Both reactions present a different Q10 (Q10denit,1 andQ10denit,2) which are both an increase7

factor for a 10 °C increase in T.8

NN =

[

NH+

4

]

Kmnit ∗ Hp +
[

NH+

4

] (11)

whereNN is the nitrification response factor to soil ammonium content
[

NH+

4

]

. The half-9

saturation constantKmnit is calculated at each soil water content (Hp in w/w).10

NW =
WFPS − MINWFPS

OPTWFPS − MINWFPS
, MINWFPS < WFPS ≤ OPTWFPS

NW =
MAXWFPS − WFPS

MAXWFPS − OPTWFPS
, OPTWFPS ≤ WFPS < MAXWFPS

else NW = 0

(12)

whereNW is the nitrification response function to soil water content. Nitrification is assumed to11

increase linearly from a minimum WFPS (MINWFPS) up to an optimal value (OPTWFPS) and12
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then to linearly decrease down to a maximum WFPS (MAXWFPS) (Rolland et al., 2008).1

NT = exp

[

(T − 20)ln(Q10nit)

10

]

(13)

whereNT is the response factor to soil temperature (T ) andQ10nit is the Q10 factor for this2

reaction.3

Once we had gathered prior information on likely ranges of variation for each parameter, based4

on literature review, we assigned them uniform and non-correlated probability distributions be-5

tween the minimum and maximum bounds. Table 1 describes the parameters on which we ap-6

plied our procedure described below.7

2.4 The database of N2O measurements8

The nitrous oxide measurements were carried out on seven experiment sites which are located9

in Northern France (Table 2). The experiments were conducted on major arable crop types and10

soils types representative of the area. For some sites, different treatments were conducted with11

various N-fertiliser amounts supplied to the crop. Nitrousoxide emissions were monitored by12

the static chamber method with eight replicates for all the sites, except for the site of Grignon13

where measurements were monitored with three automatic chambers during 31 successive days14

from 13 May 2005 to 12 June 2005. Uncertainty about measurements was the standard deviation15

of fluxes measured with the different chambers on field. Inputdata required to run the model16

were also collected on each site. Daily weather data required by CERES-EGC (rainfall, air17

temperature, solar radiation) were collected from local weather stations and detailed information18

concerning soil parameters and crop management were compiled into input files for CERES-19

EGC. Uncertainty on these input data is not considered in ourapproach.20
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2.5 Our Procedure1

The procedure described below was applied for two main objectives: (i) calibrate the parameters2

site-by-site and (ii) obtain better global estimates for the parameters initially deemed universal.3

The first objective was obtained by applying our Bayesian procedure for each data sample which4

is called thesample-by-sample procedure, i.e. the calibration was successively implemented for5

each data sample, the likelihood between the measurements and the predictions was computed6

using only one site-specific data set of N2O measurements and using the associated specific7

model input data. The universal values of the global parameters were calibrated by running our8

procedure with the 11 data sets simultaneously, which is called themultisample procedure, i.e.9

by calculating the posterior distribution as:10

p(θ|Y1, ..., Y11) ∝ p(Y1, ..., Y11|θ) p(θ) (14)

whereYi is the ith data sample in our data base. Thus, data log-likelihood becomes equal to11

the sum of the log-likelihoods calculated between observations and predictions for all the data12

sets. The procedure of the Bayesian method we set up was builtusing the Metropolis-Hastings13

algorithm and based on running three parallel Markov chainsMonte Carlo ofN iterations which14

were started with three different parameter points (θ0). The three starting points were defined in15

the prior parameter space as the default parameter values and the two lower and upper parameter16

bounds (θmin and θmax). Before running the chains, we pre-defined the chain lengthN , the17

variances matrixΣ for the proposal distributionδ and the starting pointsθ0. After that, we18

checked to obtain a satisfactory acceptance rate (20-30%) of candidate vectors and that the chains19

had converged. If these two conditions were not fulfilled, werestarted new chains with different20

tuning values:N andΣ. Once we had run the three parallel chains, we applied the convergence21

diagnostic proposed by Gelman and Rubin which is based on thecomparison of within-chain and22

between-chain variances, and is similar to a classical analysis of variance (Gelman and Rubin,23
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1992). The convergence is diagnosticed when variance between the multiple chains is no larger1

than the variance within each individual chain. Running this test facilitates both the testing of2

the convergence and the identification of the convergence point. We considered that the chains3

had converged when the ratio of within-chains variances over the between chains variances (the4

Gelman and Rubin’s shrink factor) approached 1. On the contrary, values substantially above5

1 indicated lack of convergence. The Markov chains resulting from the random walk of the6

Metropolis-Hastings algorithm are highly auto-correlated in time because each iteration depends7

on the previous one and this is a problem to approximate the posterior pdf. In fact, the time serie8

with the maximum of posterior information is such as each iteration should be an independent9

sample from the posterior distribution (Plummer et al., 2006). For obtaining such chains less10

auto-correlated, the chains must be made thinner to extractindependent iterations. The process11

of thinning was made in two steps: the auto-correlation was first computed for increasing lags and12

then the posterior chain was extracted by keeping the iterations defined by the thinning interval.13

We defined this one as the number of iterations between consecutive samples in a chain for14

which the auto-correlation was less than 60%. We also extracted the final subset of iterations by15

removing the burn in period, i.e. 10% of the iterations at thebeginning of the chain. This sample16

can be used to summarise the posterior pdf by calculating themean vector, the variance matrix17

and the 90% credible interval for each parameter. In addition, the posterior pdf facilitates the18

calculation of cross-correlations between parameters andthe distribution of model predictions19

directly computed with the posterior parameter sample.20

The generation of the Markov chains and the chain analysis were carried out by using the R21

software devices (R Development Core Team, 2008). The CERES-EGC model coded in Fortran22

was compiled as a R-library and called from the R software with the different parameter values23

generated in the loop of the Metropolis-Hastings algorithmwhich was coded as a R function.24

The chains analysis and diagnostics were carried out with the coda R package (Plummer et al.,25
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2006).1

2.6 Evaluation of model predictions2

The performance of the calibration procedures was assessedby calculating the root mean square3

error (RMSE) of predictions computed with the simulationsf(θ) for which the vectorθ either4

was drawn from the prior parameter pdfs, or was the posteriorMCMC chains from sample-by-5

sample or multisample calibration procedure. Otherwise,θ was either a single value equal to6

the default parameter vector (θdefault), or in both following cases, three parameter vectors, equal7

either to the mean of calibrated parameter (θ) for the 3 parallel chains or to the maximum a8

posteriori estimate ofθ (θMAP ). θMAP is the single best value of the parameter vector in each9

MCMC chain, at which the posterior probability distribution is maximal (Van Oijen et al., 2005).10

RMSE was defined as follows:11

RMSE =
(

E
[

(Oi − Si)
2
])1/2

(15)

whereOi andSi are the time series of the observed and the simulated data andE denotes the12

expectancy (Smith et al., 1996). SimulationsSi were achieved with a single run of the model13

in the case of the single value ofθdefault. Simulations were achieved with the 3 values ofθ14

andθMAP corresponding to the results from the 3 three parallel MCMC chains, then, in these15

cases,Si was the expectancy of the 3 simulated time-series. In the case of prior parameter16

pdfs,Si was defined as the expectancy of the simulations computed with 100 parameter vectors17

generated as random deviates in the prior uniform distributions. In the case of MCMC chains of18

parameters,Si was the expectancy of the simulations with the thinned chains of parameters from19

both sample-by-sample and multisample calibration procedures.20
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3 Results1

3.1 Posterior parameter distributions2

Figure 1 portrays, in the form of boxplots, the posterior parameter distributions obtained with the3

application of our procedure performed sample-by-sample and with the multisample procedure.4

In both cases, three Markov chains were run to assure the convergence of the algorithm, then,5

the chains were thinned with the method described in Section2.5 and, finally, the boxplots are6

the distributions of the combination of the three thinned Markov chains for each calibration. The7

boxplots depict the parameter distribution through the fivefollowing numbers: the median, the8

lower quartile (Q1), the upper quartile (Q3) and the largestobservations (without outliers). This9

representation allows us to display differences between parameter calibration in relation to field-10

site and the shape of the boxplot portrays the dispersion andsymmetry of the distribution. The11

y-axis is limited with the minimum and maximum bounds of the prior parameter distribution.12

Our Bayesian procedure generally generated uni-modal distributions, clearly suggesting that the13

MCMC chains converged towards a unique convergence point. This result was clearly corrobo-14

rated by the convergence test that we systematically applied to the three parallel Markov chains.15

Figure 2 displays the 50 and 97.5% quantiles of the sampling distribution for the Gelman-Rubin16

shrink factor for the 11 parameters specifically calibratedwith the data set of La Saussaye and17

indicates that the shrink factor approached 1 for all the parameters after 30 000 iterations which18

supports the convergence of the three chains for all the parameters.19

Figure 1 shows that the posterior distributions become narrower compared to the uniform prior20

distributions which is undoubtedly due to the efficiency of our procedure. From prior uniform21

distribution function, the posterior parameter distribution was converging into normal or log22

normal distribution functions as already observed by Svensson et al. (2008) for the Bayesian23

calibration of a process-based forest model with a similar procedure. For example, the distribu-24
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tions of parameterθ(1) which is the WFPS threshold for denitrification activation appear tight1

on a specific value for each data sample, suggesting that the calibration have clearly reduced the2

uncertainty about the value of this parameter. On contrary,the parametersθ(8) andθ(9) which3

respectively correspond to the minimum and maximum water-filled pore space for which nitrifi-4

cation is activated in the topsoil layer are relatively spread in the prior range of variation and the5

median is rather centred in the distribution.6

Figure 1 also shows that some parameter distributions are flattened on the limits of the prior7

bounds. We therefore should reconsider the prior ranges forthese parameters, particularly the8

distribution of the parametersθ(10), the half-saturation constant of the ammonium function, and9

θ(11), the Q10 factor for nitrification, which are flattened on the minimum limit of the prior10

range for the data samples of Champnoël AN, La Saussaye and Grignon.11

The last boxplot in the 11 graphs of Figure 1 displays the distribution obtained with the multi-12

sample procedure. The shape of this boxplot and its median value appear to be more constrained13

by certain data samples than others which can be explained bythe fact that both data samples14

with a larger number of observations and individual observations with higher precision have15

substantially more weight in the log-likelihood function.For example, the boxplots of the mul-16

tisample procedure show a similarity with the boxplots of the site La Saussaye, particularly for17

the parametersθ(1), θ(3) andθ(6).18

Data samples acquired in the same sites, i.e. sites with bothidentical climate and soil type19

but with differentiated crop management, may generate similar shapes of distribution. The20

three treatments Rafidin N0, Rafidin N1, Rafidin N2, the two treatments Champnoël CT and21

Champnoël AN, and the two treatments Le Rheu CT and Le Rheu ANmay present similar22

distributions for some parameters which could support the conclusion that the parameters are23

site-specific. The uncertainty on the parameters computed with the multisample procedure is the24

synthesis of the various observations and the best compromise in relation to our current obser-25
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vations. The posterior pdfs computed with this procedure could be useful to simulate N2O emis-1

sions in new locations where no measurement is available forparameter calibration, whereas it2

could be more interesting to use site-specific calibrated parameters in the case of simulations3

with similar characteristics of soil to the soil types of ourdatabase.4

Figure 3 demonstrates that the calibration procedure involves response functions with different5

shapes that result from the functions plotted with the various calibrated parameter sets. Differ-6

ence between the individual functions may be quite considerable. The response functionsNN7

(Fig. 3.a) are very different between each other and reflect the value ofθ(10). The function8

calibrated with the multisample procedure (dashed line in Fig. 3.a) is below the function com-9

puted with default parameter values, which means that the calibrated function reduces more the10

potential of nitrification rate than the function by default. The water functionsNW (Fig. 3.b)11

shows that the minimum WFPS for activation of the nitrification (θ(8)) is centred on the de-12

fault value, that the optimum WFPS for nitrification (θ(7)) is lower for the calibration with data13

sets Le Rheu AN and La Saussaye, and that the value from multisample procedure is similar to14

the default parameter value. The calibrated maximum WFPS for nitrification (θ(9)) are always15

higher than the default value and are centred on 90% WFPS which means that the nitrification16

could occur for higher WFPS than initially. The shapes of theresponse functionNT (Fig. 3.c)17

are similar to the initial shape for the sites La Saussaye andGrignon, and for the other sites,18

the shapes are equivalent between each other at least down to25 °C. The response functionsFN19

(Fig. 3.d) are clearly below the function by default what suggests that the default value ofθ(2)20

was apparently too low. The functionFW which reflects the effect of WFPS on denitrification21

presents a large variety of shapes depending on the parameter θ(1), the threshold of WFPS from22

which denitrification starts to occur, andθ(6), the exponent of the function. Hénault and Ger-23

mon (2000) and Heinen (2006) showed that denitrification process was highly sensitive toθ(1)24

and that this parameter was really dependant on soil type. The value ofθ(1) calibrated with the25
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multisample procedure is higher than the default value which means that the denitrification could1

start to occur with higher WFPS than with the default value. As proposed by Parton et al. (1996)2

to differentiateFW with soil texture and as recommended by Hénault and Germon (2000), it will3

be preferable to recalibrate the parameters ofFW for each new soil with new experimental data.4

The shape of the functionsFT is quite similar, down to 25 °C, for each parameter set which lead5

us to believe that the function calibrated with the multisample procedure could be universally6

used in the future.7

Bayesian calibration facilitates quantification of correlations between the calibrated parameters.8

All of them were cross-correlated to others and 6 of them showed correlation higher than 0.49

(Table 1), which we interpreted to mean that the different response functions of the N2O mod-10

ule of CERES-EGC are coupled between each other and that the different parameters might be11

imagined as clusters of parameters such as suggested by Svensson et al. (2008). The parameters12

θ(1) andθ(2) are positively correlated and are both negatively correlated toθ(6) which suggests13

a coupling between the nitrate (FN ) and water (FW ) functions.14

3.2 Error of prediction of the calibrated model15

Table 3 summarises the RMSEs of prediction obtained with various parameters sets. Simulations16

were carried out as explained in Section 2.6 for each of the 11data samples. RMSE computa-17

tion facilitates comparison of model performance between the different sites and the different18

parameter values. RMSE based on posterior pdf is always lower than RMSE based on prior pdf19

excepted for the data sample of the Arrou site. RMSE was improved by 73% on average for all20

the data samples and the higher efficiency was observed for the site of La Saussaye with a RMSE21

declining by 98% when comparing simulations based on prior and posterior pdfs. Calibrations22

with the data samples: Grignon, Le Rheu CT, Le Rheu AN, Champnoël CT, Champnoël AN,23

Rafidin N0, Rafidin N1 and Rafidin N2 also were significantly efficient inducing the reduction of24
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RMSE between 79 and 96% by comparing predictions based on prior and posterior pdfs. Mean1

of RMSE for all the data samples dropped from 39 down to 6 g N2O-N ha−1 d−1. In the same2

way, RMSE declined by 41% on average when comparing simulations based on default param-3

eter set and posterior pdf, mean of RMSE decreasing from 13 down to 6 g N2O-N ha−1 d−1.4

RMSE of prediction with posterior pdf was only higher than RMSE of prediction with default5

parameter values for the data sample of Champnoël CT for which RMSE slightly rose from 0.96

up to 1.4 g N2O-N ha−1 d−1.7

RMSE comparison between simulations based on mean vector ofparameters chains, prior pdf8

and default parameter values gave similar results to the performance of the posterior-pdf-based9

simulations. RMSE with predictions based onθ was equal to 6 g N2O-N ha−1 d−1 on average10

for all the sites, i.e. the same as posterior-pdf-based prediction. Hence, this result proved that the11

mean parameters could reasonably be used for future simulations of the sites of our database or12

for sites with similar soil types. The RMSE value based on simulations withθMAP was logically13

the lowest value of RMSE for the predictions based on the various parameter sets.14

RMSE based on parameter sets of the multisample procedure decreased on average by 33%15

compared to RMSE based on simulations with prior pdfs and 14%compared to simulations with16

default parameter values which would lead us to believe thatthe parameter set summarised in17

Table 1 could be a good compromise when the model will be applyfor a new site.18

In addition, Table 3 shows that the calibration did not really improved the prediction for the two19

data samples of Villamblain and Arrou which may be explain for the first site by an uncertainty20

of prediction which was perhaps not due to parameter uncertainty and for the second site by an21

inaptitude of the model to simulate such hydromorphic soil.In fact, this result is in agreement22

with Hénault et al. (2005), Gabrielle et al. (2006a) and Heinen (2006) who also demonstrated23

that the N2O module and particularly the sub-module of denitrification(Eqs. 5, 8, 9, 10) was24

not able to reproduce fitting dynamic of denitrification rateor N2O emissions for soil with high25

21



degree of water saturation.1

3.3 Model prediction uncertainty2

Simulations of N2O emissions based on MCMC chains of parameters were generated as statis-3

tical distributions around a mean value which is traced in Figure 4 and displays the averaged4

temporal dynamic of daily N2O emissions for every sites (Fig. 4.a to 4.k). This is a large benefit5

of the Bayesian approach because it facilitates analysis ofthe model output uncertainty due to6

the uncertainty about parameters values.7

Model predictions were not still in agreement with all measurements which was due to uncer-8

tainty in both the measurements and the model. Measurement points with high uncertainty have9

less weight in the log likelihood function and then in the posterior probability, therefore, parame-10

ter sets that may give good agreement between measurements and predictions might not induced11

a such high log-likelihood. For example, the two higher N2O flux measurements of the site of12

Villamblain (Fig. 4.a) have a large uncertainty which did not induce a strong constraint for the13

calibration, whereas various lower N2O fluxes with lower uncertainty were more constraining14

in the calibration. The same remark is supported for the siteof Arrou (Fig. 4.b). For the data15

sample of Champnoël AN (Fig. 4.e), a high peak flux of N2O was observed in autumn that the16

model could not predict whereas fluxes lower than 10 g N2O-N ha−1 d−1 were all well predicted.17

For the site of Grignon (Fig. 4.h), the observation points were concentrated on successive 3118

daily measurements from 13 May 2005 to 12 June 2005 and reproduced a high peak flux of N2O.19

Model with default parameter set (θdefault) simulated three peaks of N2O that were not observed20

in the field (results not shown, see Lehuger et al. (2007)). The first peak flux of N2O occurred21

four days after the application of N fertiliser, in responseto rainfall and high soil N content in the22

0-30 cm topsoil layer. Two additional peak fluxes were simulated by the model during the mea-23

surement period as a consequence of two rainfall events, high nitrate content in soil and WFPS24
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predicted by the model greater than the WFPS threshold for denitrification (θ(1)) which had been1

fixed to 62%. The Bayesian procedure applied on the Grignon site eliminates the simulation of2

the two additional peak fluxes simulated with the default parameter set what may be explained3

by the fact that the WFPS threshold for denitrification (θ(1)) rose up to 73% which is the highest4

value in all the calibrations (Fig. 1.a). The calibration procedure for this specific data sample5

produced calibrated parameter values that eliminated all the other possible peak fluxes in the6

year (Fig. 4.h). For the data sample of Rafidin N0 (Fig. 4.i), observations also were concentrated7

on two short periods but with few observation points and inversely to Grignon, the calibration8

of this site highly constrained the model during this periodbut was less constraining out of the9

period of measurement.10

Table 4 summarises the annual N2O emissions for the different sites and treatments. The emis-11

sions were integrated over one year-period and the uncertainty of N2O predictions was expressed12

as the 0.90 credible interval. Mean annual simulated fluxes were comprised between 88 and13

3672 g N2O-N ha−1 y−1 through the different sites and treatments and uncertaintyabout model14

prediction was quite large, notably for the sites where the predictions were high. The conver-15

sion factor is equal to the ratio of the integrated flux over the N fertiliser amount, whereas the16

emission factor for the application of N fertiliser is relative to “background” emissions, i.e. it is17

calculated as the difference between the mean cumulative N2O-N emissions (g N2O-N ha−1 y−1)18

of fertilised and unfertilised predictions, over the amount of total N-fertiliser applied over one19

year. The emission factors were comprised between 0.05 and 1.12%, and the mean emission20

factor was 0.26%. This value is four times lower than the default value recommended by the21

IPCC tier 1 methodology which presents an uncertainty rangeof variation comprised between22

0.3 and 3% (IPCC, 2006).23
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4 Discussion1

4.1 Bayesian calibration2

Our principal goal was to demonstrate the potential of a Bayesian-style calibration procedure to3

quantify parameter uncertainty and to reduce the uncertainties about the model. Our procedure4

sought to calibrate model parameters either successively sample-by-sample in order to improve5

model prediction for the specific sites of our database or simultaneously with all the data sam-6

ples in order to find universal parameter values which could be apply for new soil conditions and7

spatial extrapolation of the model. This paper also aimed atsimulating N2O emissions with un-8

certainty quantification for different sites in Northern France which represent major soil, climate9

and crop management conditions. It has already been suggested that simple process-based mod-10

els such as the N2O module of CERES-EGC needs to be parameterised for each new location11

(Heinen, 2006). The application of our Bayesian procedure proves that is the case but our multi-12

sample procedure also demonstrates that it makes possible to find universal parameter values by13

encompassing all our current observations.14

Our procedure which implies running three MCMC chains to ensure convergence of the algo-15

rithm for each data sample demonstrates that the parameter pdfs were considerably narrowed16

in comparison with the prior pdfs and proves that the uncertainty about parameters strongly17

decreased. The application of the sample-by-sample procedure also shows that the values of18

parameters could differ for each location (Fig. 1) inducingdifferentiated response functions19

according to the site (Fig. 3). Our results are in agreement with those of Heinen (2006) that20

revealed it seemed impossible to formulate universal reduction functions for the denitrification21

sub-module (Eqs. 5, 8, 9, 10) for the major soil types sand, loam and peat because the functions22

differed considerably within the soil types. We support thesame conclusion but furthermore, our23

multisample procedure allows us to find the best universal compromise for parameter values.24

24



The RMSE of prediction calculated with calibrated model wassignificantly reduced in com-1

parison with prediction based on prior parameter values: 73% reduction on average with the2

sample-by-sample procedure and 33% reduction on average with the multisample procedure.3

These results clearly suggest that our calibration procedure has dramatically reduced the model4

uncertainty. In addition, the parameter vector equal to themean of the thinned MCMC chains of5

parameters can easily be used to apply the model in similar soil conditions.6

The parameterisation does not induce a perfect match between predictions and measurements for7

the temporal dynamics of daily N2O fluxes. Measured data with high uncertainty were in partic-8

ular less well predicted because they presented a high spatial variability and consequently were9

less constraining in the calculation of the log-likelihoodfunction. Heinen (2006) also showed10

with a different calibration method that the optimised denitrification sub-module did not result11

in perfect prediction at the point scale.12

Since the work of Van Oijen et al. (2005), it has been assumed that Bayesian calibration can13

be applied to process-based forest models and to specific sub-model (Svensson et al., 2008;14

Klemedtsson et al., 2007) and that the Metropolis-Hastingsalgorithm is particularly well adapted15

for calibration of ecosystem models with high number of parameters (Makowski et al., 2002).16

As we have just seen, our Bayesian calibration can be appliedfor agro-ecosystem models and17

for its specific modules by using data sets of measurements from different locations. Indeed, we18

have shown that uncertainty about parameters was considerably reduced and model performance19

was improved. Furthermore, our procedure to analyse the outputs for MCMC chains clearly ad-20

vances the diagnostic on the parameter calibration. Convergence test on the three parallel chains21

of parameters and thinning for dealing with high auto-correlation in MCMC chains have been22

applied for each data set of our database and we are now convinced that this procedure improves23

the quality of parameterisation. We have also established adatabase of N2O emissions for North-24

ern France and in the future, it will be interesting to use this one to parameterise other models25
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or to compare the performance of different N2O emissions process-based module integrated in1

CERES-EGC. Another direction could also be to use other kindof output data to parameterise2

specific module, for example the use of NO emission measurements for calibration of the nitrifi-3

cation sub-module (Eqs. 6, 11, 12, 13) of CERES-EGC.4

4.2 Improvement of the model performance after integratingN2O mea-5

surements6

Heinen (2006) showed that the denitrification module (Eqs 5,8 ,9, 10) needs to be parameterised7

for each location where the model would be used. In view of ourresults based on the sample-by-8

sample procedure for the complete N2O module of CERES-EGC, we assume the same conclu-9

sion because the calibrated response functions differs from site to another which would lead us to10

believe that the model would not be universally applicable to simulate N2O emissions by using11

the default parameters values without parameterisation. But, on the basis of the results from the12

application of the multisample procedure, we have seen thatit becomes possible to find universal13

parameter values which integrate all our current observations. With the information contained in14

the parameter pdfs, there is now a higher likelihood to use these parameters in comparison with15

the prior pdfs or the default parameter values when the modelneeds to be applied for a new site.16

The power of a model is that it is able to predict variables over time and space but prior to its ap-17

plication, we must ensure that parameterisation is accurate. In fact, we would now point out that18

when the model will be applied to a new site without any available N2O measurements, firstly19

we should check if the parameters will have already been parameterised for the same soil type, if20

yes, we could use the parameters specifically-calibrated for this soil type, else, it will be possible21

to use the parameters values which will have been calibratedwith the multisample procedure.22

Indeed, it becomes possible to imagine that the parameter values from our both procedures could23

be used for spatial extrapolation of the model at the regional scale. In the future, as soon as a24
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new data set will be available we could assimilate the new observations points with the multi-1

sample procedure in order to reduce uncertainty about the global parameters and to increase the2

universality of the model.3

4.3 Prediction of N2O fluxes from agro-ecosystems4

CERES-EGC and its specific N2O module have widely been used in many soil conditions (Hénault5

et al., 2005; Dambreville et al., 2008; Heinen, 2006) and themodel uncertainty has only been6

really quantified once by Gabrielle et al. (2006a) by using 5 different uncertain parameters. Like-7

wise, uncertainty analysis about parameters is rarely carried out for process-based ecosystem8

models that simulate N2O emissions. As we have just seen our Bayesian calibration resulted in9

probabilistic simulation of temporal dynamic of N2O emissions over cropping seasons including10

the information about the probability of parameters. The calibrated model could predict temporal11

dynamic of daily instantaneous N2O fluxes rather well, except for the highest peaks with high12

uncertainty for which the model did not perform to well predict them. In addition, the procedure13

makes it possible to quantify model output uncertainty for yearly N2O budget and emission fac-14

tors (EFs). Model prediction of yearly cumulative N2O fluxes were comprised between 88 and15

3672 g N2O-N ha−1y−1 over the different sites and EFs ranged from 0.05 to 1.12%. Onthe basis16

of these results alongside those of Gabrielle et al. (2006a), it now appears that the IPCC EF is17

not suitable for the sites that we have studied because it considerably overestimates the annual18

emissions (Table 4). Beheydt et al. (2007) used the DNDC model to calculate EF corresponding19

to various scenarios of simulations with high N input levelsand N surplus, and they found EF20

predicted by DNDC equal to 6.49% a value 25 times higher than our prediction and EF derived21

from the measurements equal to 3.16%. In the future, we also should assimilate data sets with22

higher level of N2O emissions such as those used by Beheydt et al. (2007) in order to calibrate the23

model with annual emissions higher than 10 kg N2O-N ha−1 y−1. Furthermore, our results sug-24
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gest that the annual N2O emissions were not strictly proportional to the application of N fertiliser1

which is in agreement with the results of Barton et al. (2008). Indeed, they have showed that,2

in a semi-arid climate, in spite of the application of N fertiliser the annual N2O emissions were3

not significantly increased in comparison with background emissions and demonstrated that the4

N2O emissions from arable soils can not be directly derived from the application of N fertiliser.5

In light of these results, we are now of the opinion that our Bayesian procedure is highly infor-6

mative about model uncertainty quantification and can be very useful for taking into account risk7

in model-based GWP quantification of agro-ecosystems, environmental balance assessment of8

cropping systems and decision-making. Nevertheless, we should advice, for an efficient calibra-9

tion of N2O emissions models, that N2O measurements with the static chamber method should10

be carried out with a regular recurrence at the yearly scale,at least one observation per month,11

and with a higher frequency during the peak fluxes that occur after N-fertiliser inputs and events12

that activate mineralisation of crop residues during autumn.13

In the future, it would be very interesting to compare performance of various agro-ecosystem14

models for their aptitude to predict N2O emissions on the same data sets in the fashion of Frol-15

king et al. (1998); Li et al. (2005). Furthermore, Bayesian Model Comparison (Van Oijen et al.,16

2005; Kass and Raftery, 1995) could be applied to examine multiple models and to quantify17

their relative likelihood, i.e. by determining which modelis most probable in view of the data18

and prior information.19

4.4 Limits and developments of CERES-EGC to predict N2O emissions20

Our uncertainty analysis was performed without taking intoaccount for uncertainty about the21

input variables of the N2O sub-model which are the soil temperature, the soil nitrateand ammo-22

nium concentrations and the soil water content. These variables are daily calculated by the model23

and are dependant of numerous process (crop N uptake, nitrate leaching, evapo-transpiration,24

28



drainage, N gas emissions, soil organic matter turnover) and thus of a large number of parame-1

ters and variables interacting over time. The Bayesian calibration could be expanded to multiple2

other parameters by using measured data which might be crop biomass, soil N concentration, soil3

water content, soil temperature and other gas emissions. Infact, the Bayesian technique could4

be used in a more holistic way because the method gives the possibility of calibrating various5

parameters by using different kind of output data (Klemedtsson et al., 2007).6

We have seen that the 11 global parameters we studied depend on soil type and hence they are7

variable over space, as a consequence, they seem themselvesto be relied on other parameters8

that contain a prior inherent variability. In the future, webelieve that it could be very pecu-9

liar to define these new hyperparameters which control the spatial variability of our parameters10

(Clark, 2005) and very interesting to deal with this spatialvariability by developing a hierarchical11

Bayesian approach. Hence, the use of our plot-scale measurements could allow us to properly12

extrapolate our model at the regional scale.13

Another future development of the N2O module of CERES-EGC, indispensable for model ex-14

trapolation and already mentioned by Hénault et al. (2005), should be to render the model inde-15

pendent of the four local parameters which still need to be measured for new soil conditions. It16

will require to define the key controls of these parameters inorder to model them in relation to17

soil type characteristics.18

5 Conclusion19

We have shown that Bayesian calibration was successfully applied to the CERES-EGC agro-20

ecosystem model in order to parameterise its N2O emissions module. We have demonstrated that21

both the Bayesian calibration and our procedure of analysisand diagnostic for MCMC chains of22

parameters can be applied to our process-based model in order to calibrate parameters either (i)23

by using successively data samples or (ii) by using all the data samples simultaneously, to satisfy24

29



our objectives which were, respectively, to improve model prediction at the field scale and to find1

universal values of parameters in order to spatially extrapolate the model. In addition, Bayesian2

calibration has given us the possibility of quantifying both parameter and model uncertainty.3

Furthermore, it appears reasonable to assume that when the model should be applied at a larger4

scale than the plot-scale, the parameter values resulted from the multisample procedure could5

then be used for soil types which will have never been parameterised. In fact, the posterior6

parameter distributions encompass all our current observations and give us the possibility of7

quantifying their uncertainty. To this end we recommend further research into modern Bayesian8

method which could help us to deal with the spatial variability of the parameters.9
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Parameter vectorθ = [θ(1)...θ(11)] Prior probability Posterior probability
distribution distribution

θ(i) Symbol Description Unit Default θmin(i) θmax(i) References Mean SD Correlated
value {θ(i)}

θ(1) TrWFPS WFPS threshold for denitrification % 0.62 0.40 0.80 Gabrielle (2006); Hénault et al. (2005) 0.689 0.007{2,6}
Hénault and Germon (2000); Johnsson et al. (2004)

θ(2) Kmdenit Half-saturation constant (denit) mg N kg−1 soil 22.00 5.00 120.00 Gabrielle (2006); Ding et al. (2007) 66.94 22.47 {1,6}
Parton et al. (2001); Del Grosso et al. (2000)
Parton et al. (1996); Bateman and Baggs (2005)
Johnsson et al. (2004)

θ(3) TTrdenit Temperature threshold °C 11.00 10.00 15.00 Gabrielle (2006); Johnsson et al. (2004) 10.27 0.17
Renault et al. (1994)

θ(4) Q10denit,1 Q10 factor for low temperature Unitless 89.00 60.00 120.00 Stanford et al. (1975); Maag and Vinther (1999) 89.46 18.28{5}
θ(5) Q10denit,2 Q10 factor for high temperature Unitless 2.10 1.00 4.80 Gabrielle (2006); Stanford et al. (1975) 2.62 1.17{4,10}
θ(6) POWdenit Exponent of power function Unitless 1.74 0.00 2.00 Stanfordet al. (1975); Smith et al. (1998) 1.53 0.23{1, 2}

Johnsson et al. (2004); Maag and Vinther (1999)
Maag and Vinther (1996); Skopp et al. (1990)

θ(7) OPTWFPS Optimum WFPS for nitrification % 0.60 0.35 0.75 Jambert et al.(1997); Laville et al. (2005) 0.59 0.12
θ(8) MINWFPS Minimum WFPS for nitrification % 0.10 0.05 0.15 Linn and Doran(1984); Jambert et al. (1997) 0.095 0.02

Skopp et al. (1990); Ding et al. (2007)
Parton et al. (2001); Bateman and Baggs (2005)

θ(9) MAXWFPS Maximum WFPS for nitrification % 0.80 0.80 1.00 Linn and Doran(1984); Parton et al. (2001) 0.88 0.05
Bateman and Baggs (2005)

θ(10) Kmnit Half-saturation constant (nit) mg N kg−1 soil 10.00 1.00 50.00 Linn and Doran (1984); Jambert et al. (1997) 25.69 14.17 {5}
Pihlatie et al. (2004)

θ(11) Q10nit Q10 factor for nitrification Unitless 2.10 1.90 13.00 Maag and Vinther (1996); Laville et al. (2005) 7.36 3.04
Smith (1997); Dobbie and Smith (2001)

Table 1: Description of the 11 parameters of the N2O emissions module. The prior probability distribution is defined as multivariate
uniform between boundsθmin andθmax which were extracted from literature review. The posteriorparameter distributions are
based on the multisample procedure and are characterised with the mean value of parameter chains, the standard deviation (SD)
and the parameters with which each parameter is correlated (underline if negative) at greater absolute value than 0.4
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Site Treatment Year Soil texture Crop type N fertiliser Number of Source
(kg N ha−1) observations

Rafidin N0 1994-1995 Rendzina Rapeseed 0 7 Gosse et al. (1999)
N1 1994-1995 Rendzina Rapeseed 155 8 Gosse et al. (1999)
N2 1994-1995 Rendzina Rapeseed 262 9 Gosse et al. (1999)

Villamblain 1998-1999 Loamy Clay Winter Wheat 230 15 Hénault et al. (2005)
Arrou 1998-1999 Loamy Clay Winter Wheat 180 18 Hénault et al. (2005)
La Saussaye 1998-1999 Clay Loams Winter Wheat 200 14 Hénault et al. (2005)
Champnoël CT 2002-2003 Silt Loam Maize 0 15 Dambreville et al. (2008)

AN 2002-2003 Silt Loam Maize 110 23 Dambreville et al. (2008)
Le Rheu CT 2004-2005 Silt Loam Maize 18 24 Dambreville et al. (2008)

AN 2004-2005 Silt Loam Maize 180 22 Dambreville et al. (2008)
Grignon 2005 Silt Loam Maize 140 31 Lehuger et al. (2007)

Table 2: Database of N2O emissions from different arable sites in France. For the different
data sets, following characteristics are described: year of measurement, soil texture, crop type,
application of N fertiliser , number of observation points and references
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Site Treatment RMSE (in g N2O-N ha−1 d−1) computed with predictions based on:
Prior pdf Default parameter Posterior pdf Mean of Parameterset with Multisample

values parameter chain maximum log-likelihood procedure
Rafidin N0 4.6 4.6 0.7 0.3 0.3 4.6

N1 7.5 10.4 1.2 1.4 1.2 12.8
N2 10.5 15.9 2.1 3.0 2.8 20.4

Villamblain 5.2 5.5 4.8 4.9 4.9 5.5
Arrou 25.4 29.0 27.1 25.3 23.8 29.2
La Saussaye 93.0 33.3 2.0 2.3 2.4 2.3
Champnoël CT 21.5 0.9 1.4 0.9 0.9 0.9

AN 65.58 15.0 13.8 14.0 13.8 14.0
Le Rheu CT 149.5 22.7 6.1 6.0 6.0 6.0

AN 30.4 4.2 2.0 2.2 2.2 2.4
Grignon 16.9 1.0 1.0 1.2 1.3 1.1

Table 3: Root mean square error (RMSE) of prediction (in g N2O-N ha−1 d−1) based on different
parameter sets: the prior pdf, the default parameter values, the posterior pdf, the mean of MCMC
chains, the parameter set with maximum log-likelihood and the mean of parameter chains from
the multisample procedure
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Site Treatment Year N2O Fluxes 0.05 quantile 0.95 quantile IPCC Conversion factor Emission factor
(g N ha−1 y−1) (g N ha−1 y−1) (g N ha−1 y−1) (g N ha−1 y−1) (%) (%)

Rafidin N0 1994-1995 689 578 741 0 - -
N1 1994-1995 584 473 824 1550 0.4 (0.3-0.5) 0.07 (0.00-0.22)
N2 1994-1995 819 629 1183 2620 0.3 (0.2-0.5) 0.10 (0.03-0.24)

Villamblain 1998-1999 1465 454 2989 2300 0.6 (0.2-1.3) 0.36(0.00-1.02)
Arrou 1998-1999 3672 1676 5874 1800 2.0 (0.9-3.3) 0.26 (0.00-1.49)
La Saussaye 1998-1999 3215 572 6035 2000 1.6 (0.3-3.0) 1.12 (0.00-2.53)
Champnoël CT 2002-2003 218 49 746 0 - -

AN 2002-2003 336 106 855 1100 0.3 (0.1-0.8) 0.06 (0.00-0.53)
Le Rheu CT 2004-2005 88 66 115 180 0.5 (0.4-0.6) -

AN 2004-2005 183 146 220 1800 0.10 (0.08-0.12) 0.05 (0.03-0.08)
Grignon 2005-2006 150 143 163 1400 0.11 (0.10-0.12) 0.05 (0.04-0.05)

Table 4: Cumulative annual N2O fluxes (g N2O-N ha−1y−1) computed as the sum of mean, 0.05
quantile and 0.95 quantile daily simulations based on parameter MCMC thinned chains. Annual
estimates from IPCC methodology (corresponding to the emissions due to fertiliser application),
conversion factor (%) and emission factor (%) with range of uncertainty were also reported
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List of Figures1

1 Posterior distribution of the 11 calibrated parameters (θ(1) to θ(11)) represented2

as boxplots over the prior range of variation. For each graph, the boxplots are3

computed from calibration sample-by-sample and with the “multisample” pro-4

cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

2 Evolution of the Gelman and Rubin’s shrink factor for the calibration of the site6

La Saussaye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

3 Response functions of the N2O emission module traced with different parameters8

sets: default parameter values (dotted line), mean of parameters chains for each9
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multisample calibration (dashed line) . . . . . . . . . . . . . . . . .. . . . . . . 4711
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Figure 1: Posterior distribution of the 11 calibrated parameters (θ(1) to θ(11)) represented as
boxplots over the prior range of variation. For each graph, the boxplots are computed from
calibration sample-by-sample and with the “multisample” procedure

45



0 20000 40000

0
10

30

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(1)

0 20000 40000

0
50

15
0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(2)

0 20000 40000

0
40

80
12

0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(3)

0 20000 40000

0
20

40
60

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(4)

0 20000 40000

0
10

0
20

0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(5)

0 20000 40000

0
10

30

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(6)

0 20000 40000

0
50

10
0

15
0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(7)

0 20000 40000

0
50

10
0

15
0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(8)

0 20000 40000

0
50

15
0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(9)

0 20000 40000

0
40

80
12

0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(10)

0 20000 40000

0
50

10
0

15
0

last iteration in chain

sh
rin

k 
fa

ct
or median

97.5%

θ(11)

Figure 2: Evolution of the Gelman and Rubin’s shrink factor for the calibration of the site La
Saussaye
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Figure 3: Response functions of the N2O emission module traced with different parameters sets:
default parameter values (dotted line), mean of parameterschains for each sample-by-sample
calibration (line) and with mean of parameter chains for themultisample calibration (dashed
line)
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Figure 4: Simulated (lines) and observed (symbols) N2O emissions for the different sites and
treatments. The simulated line is the mean time serie of the simulations based on the MCMC
chains of parameters from sample-by-sample calibrations
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