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Price-induced changes in greenhouse gas emissions

from agriculture, forestry, and other land use:

A spatial panel econometric analysis

Abstract

This paper provides a quantitative assessment of the effects of input and output prices on
French GHG emissions from agriculture, forestry and other land use (AFOLU) at the NUTS2
level. Reduced-form, random-effect spatial error models are estimated for four emissions cate-
gories (nitrogen use, manure management, enteric fermentation, and land use, land-use change
and forestry) in order to account for both spatial autocorrelation and spatial unobserved hetero-
geneity. The main findings are: (i) price impacts on emission levels are found to be significant,
although sign and magnitude vary from one emission category to the other, (ii) estimated price
effects are more apparent when emission categories are analyzed separately rather than aggre-
gated, and (iii) the spatial dimension is found to play an important role. The estimated models
are then used to simulate the effects of a doubling of crop prices on AFOLU emissions. The
results indicate that this would lead to an 11%-increase in agricultural sources.

Key words: AFOLU, greenhouse gas emissions, spatial autocorrelation, panel data

JEL classification: Q15, Q54, C31, C33

1. Introduction

Land-based sectors are significant contributors to the accumulation of greenhouse gas
(GHG). Farming activities are responsible for a large share of global anthropogenic methane
(CH4) and nitrous oxide (N2O) emissions, while Land Use, Land-Use Changes, and Forestry
(LULUCF) constitutes a major source of CO2 emissions globally. Moreover, LULUCF may
also contribute to sequester carbon in soils and/or above-ground biomass. Recently, these
sources and sinks have come under increasing scrutiny because of their potential role in the
global cost-effective mitigation mix. In France, agricultural sources account for approximately
20% of total emissions, whereas LULUCF represent a net sink that offsets about 10% of to-
tal emissions (CITEPA, 2010). Altogether, sources and sinks from Agriculture, Forestry, and
Other Land Uses (AFOLU) may thus play a pivotal role in meeting French ambitious mitigation
targets. From 1990 to 2005, the decrease in these emissions has contributed to the decline of
French GHG emissions more than any other sector. Since 2005, however, this contribution has
however considerably lessened. This raises the question of the influence of the significant price
increases that have characterized the recent period. This question is of great policy importance
for determining the mitigation effort that might be expected from AFOLU. The overall aim of
this paper is to provide some quantitative insight into this issue.

The links between land-based sectors and GHG emissions have been examined in previous
literature along two main lines of research. First, sectoral models of agriculture and/or forestry
have been utilized to investigate the impacts of policy instruments on GHG emissions (for a
survey, see Vermont and De Cara, 2010). In these models, the relationships between prices
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and emissions are generally implicit. Second, econometric models have been used to estimate
the determinants of land-use, from which some GHG sources and sinks can then be calculated
(e.g. Lubowski et al., 2006; Plantinga et al., 1999). The scope is however usually restricted to
LULUCF emissions and spatial effects are largely overlooked.

Recent developments in spatial econometrics provide new methods for accounting for spa-
tial effects in land-use models, in particular through the use of random effect spatial error
models (Chakir and Le Gallo, 2013). We build on these developments to estimate reduced-
form models of the main GHG sources/sinks category from AFOLU as functions of input and
output prices. We consider random effect spatial error models (RE-SEM) that capture both
time-invariant heterogeneity across Departements (NUTS2) and spatial effects that may arise
from omitted variables that have a spatial structure. The contribution of this paper is twofold.
First, we provide a quantitative assessment of the effects of input and output prices on GHG
emissions from AFOLU. Second, we estimate econometric models that capture both individual
heterogeneity and spatial autocorrelation. To the best of our knowledge, spatial autocorrelation
and unobserved heterogeneity have been ignored in previous studies addressing this issue.

The paper is structured as follows. We present the econometric model in section 2 and the
data in section 3. In section 4, estimation results are discussed. We use these results to simulate
the impact on emissions of a doubling of crop prices in section 5. Section 6 concludes.

2. The model

AFOLU sources/sinks result from a number of different land-based activities. Some are
related to livestock, others to crop or to land management. The underlying economic decisions
are often made by different agents and subject to different time horizons. Nevertheless, they are
related to each other through land allocation (cropland vs. grassland vs forestland vs other uses)
and input use (e.g. fertilizer use, animal feeding, substitution between synthetic fertilizer and
manure spreading). The complexity of these interactions emissions make it very challenging,
if not impossible, to derive a tractable structural model capable of (i) representing the relevant
decisions regarding crop allocation, livestock production, input use, and land use within a uni-
fied framework, and (ii) estimating explicitly the relationships between prices and emissions.
To our best knowledge, there is no structural econometric model in the literature addressing
simultaneously crop, livestock, and land-use at a sufficient level of details to provide relevant
insight into the implications for GHG emissions.

In this paper, we circumvent this difficulty by considering a reduced-form modeling strat-
egy.1 We consider the French GHG sources/sinks from AFOLU at the Departement level (96
departments in Mainland France). The model allows to control for both individual heterogeneity
and spatial correlation across Departements. Ignoring spatial correlation and heterogeneity due
to the random Departement effects may result in inefficient estimates and misleading inference
(Chakir and Le Gallo, 2013). Let ymit denote the GHG emissions in category m, Departement
i, and time t and assume that ymit is generated according to the following model:

ymit = xmitβm +umit , (1)
umit = µmi + εmit , (2)

εmit = λm

N

∑
j=1

wi jεm jt + vmit , (3)

1As discussed in Timmins and Schlenker (2009), "both structural and reduced form models have their own
context-specific advantages and disadvantages, and should be viewed as complements, not substitutes".
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where xmit is a k× 1 vector of observed individual specific regressors on the ith cross-section
unit at time t (i = 1, ...,N and t = 1, ...,T ), wi j is the generic element of a nonnegative, N×N
spatial-weight matrix W , µmi is the random Departement effect assumed to be IID(0,σ2

µm
), εmit

is the spatially autocorrelated error term, λm is the spatial autocorrelation coefficient, and vmit
is an IID error term with zero mean and variance σ2

v .
We control in our model for unobserved individual heterogeneity. From an econometric

point of view, individual effects can either be assumed as random variables or fixed parameters.
The choice between the random-effect (RE) or fixed-effect (FE) specification depends on the
model and data (Baltagi, 1995; Lee and Yu, 2010b). In a spatial setting, using individual fixed
effects might induce an incidental parameter problem as the asymptotics in the cross-sectional
dimension is necessary. Some papers (Lee and Yu, 2010a) have provided methods in order to
overcome this problem. However, in a fixed-effect model, time-invariant spatial clusters will be
"swept away" by the within estimator and the associated coefficient cannot be identified. For
this reason we choose to model individual effects through random effects. This choice imposes
that the individual effects are independent of exogenous regressors. In the empirical section this
hypothesis will be tested using Hausman test statistics.

In our model, spatial autocorrelation can arise from two possible sources (LeSage and Pace,
2009). First, it may arise from unobservable latent variables that are spatially correlated. Omit-
ted variables that are spatially correlated can result in an estimation bias as soon as they are
also correlated with one or more of the observed spatial variables. In our case, this may be due
to underlying pedo-climatic characteristics (e.g., dairy production tends to take place in rainy
areas, cereal production is located on plains, etc.) that are correlated over space. Moreover, the
geographic distribution of agricultural systems partly results from historical and institutional de-
terminants (e.g., the location of intensive livestock production is partly linked to infrastructure
such as harbor facilities for importing soybeans, the production of vegetables tends to be close
to consumption centers, etc.). Second, it may arise because of the measurement error spillovers
across neighboring boundaries or because of the scale mismatch and the inherent need to inte-
grate data from different scales. For example, data on fertilizers delivery at the Departement
level do not always reflect where these fertilizers are used. This is particularly true when deliv-
eries are made to harbors or distribution organizations, which then distribute fertilizers to other
Departements. The spatial weight matrix used in this paper is the Gabriel Neighbors matrix
(Matula and Sokal, 1980).2 The matrix W is constant over time. To estimate panel data models
that include spatially correlated error terms, we use the maximum likelihood approach Anselin
(1988); Baltagi et al. (2003); Elhorst (2003).

In matrix form, Eq. (1) becomes (index m is omitted):

y = Xβ +u (4)

y and u are of dimension NT ×1, X is NT ×K, β is K×1. The observations are sorted first by
time t and then by spatial units i. Equation (2) can be rewritten in vector form as:

u = (iT ⊗ IN)+ [IT ⊗B−1]v (5)

with B= IN−λW , iT is a vector of ones of dimension T , IT is an identity matrix of dimension T
and⊗ denotes the Kronecker product. The log-likelihood function of the spatial random effects

2 Any two points are considered to be Gabriel neighbors if the enclosing circle formed with the distance between
these two points as diameter contains no other point. An alternative (Delauney) weight matrix has also been
tested. The estimation results were found to be robust.
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model is (Anselin, 1988):

L =−NT
2

ln2πσ
2
v −

1
2

ln[|T φ IN +(B′B)−1|]+ T −1
2

ln|B′B|− 1
2σ2

v
e′Σ−1

u u (6)

with u = y−Xβ , φ =
σ2

µ

σ2
v

and

Σ
−1
u = JT ⊗

(
T φ IN +(B′B)−1)−1

+ET ⊗ (B′B) (7)

with JT = JT/T , ET = IT − JT , JT is a matrix of ones of dimension T .
β and σ2

v can be computed from the first-order maximizing conditions. In the absence of
analytical solution, the parameters φ and λ given β and σ2

v are obtained numerically by using
the two-stage iterative procedure proposed by Elhorst (2003). In a first stage, whereby β̂ and σ̂2

v
are computed by setting initial values for φ and λ . In the second stage, φ and λ are estimated
by maximizing the concentrated log-likelihood.

3. Data

The computation of emissions closely follows the methodology used in French GHG inven-
tories CITEPA (2010). Emissions are calculated by multiplying activity variables by emission
factors that are specific to each emission category. Emissions are calculated at the Departement
level,Non-CO2 emissions are converted into tCO2eq using Global Warming Potentials (25 for
CH4, 298 for N2O). Emissions are normalized by the total area of the respective Departement.

Emissions from the use of synthetic fertilizers (EMNITR) are computed by multiplying
nitrogen quantities at the Departement level (1990-2007, taken from UNIFA (2009)) by the
emission factors used in CITEPA (2010). These factors account for the shares of applied nitro-
gen that are leached and volatilised and are constant over time and space.

CH4 emissions from enteric fermentation (EMFERM) are calculated by using animal num-
bers (taken from AGRESTE, 2011b) and animal-specific emission factors. The emission factor
associated with dairy cattle depends on milk yield. This emission factor thus varies over time
and space according to the average milk yield at the Departement level (taken from AGRESTE,
2011b). The emission factor associated with non-dairy cattle varies according to the herd com-
position. The emission factors associated with the remaining animal categories are constant
over time and space.

Emissions from manure (EMMANU) include emissions occurring during manure storage
(N2O and CH4) and N2O (direct and indirect) emissions due to manure spreading on agricultural
soils. N2O emissions related to manure storage depends on the amount of nitrogen produced by
animals and the manure management system. Nitrogen quantities are calculated by multiplying
livestock numbers and per-head nitrogen coefficients for each animal category (CITEPA, 2010).
The share of nitrogen managed under each system is based on the average national distribution
of solid and liquid management systems. The emission factors related to CH4 emissions from
manure management and storage are specific to each animal category. The computation of
N2O emissions due to nitrogen excretion by animals on pastures and manure spreading on
agricultural soils is similar to that of EMNITR.

Net emissions from LULUCF (EMLUCF) are calculated by multiplying the acreage chang-
ing from one land use to another between year t− 1 and t. Each pair of land uses (i,k) is as-
sociated with a region-specific emission factor that corresponds either to a source (+) or sink
(-) of CO2 due to the conversion of one hectare from i in year t − 1 to k in year t. Land-use
data are taken from TERUTI (AGRESTE, 2004), in which 550,903 points throughout mainland
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France are surveyed on a yearly basis over the 1993-2003 period3. Each point is associated
with land-use category (among 81 categories). These data were used to calculate yearly land
use changes for each observed point and each pair (i,k) among the nine following categories:
coniferous forest, decidious forest, poplar, mixed forest, cropland, pastures, urban, wetlands,
and other uses. Region-specific emission factors that account for carbon stock changes in both
biomass and soils have been obtained from CITEPA. These factors vary over time and space.

Crop, cattle, milk, hog, and fertilizer prices at the country level over the 1990-2007 period
are taken from Eurostat (2011). Wood prices were obtained from the Laboratoire d’Economie
Forestière (LEF). Grassland prices were taken from AGRESTE (2011a). When need be, prices
are deflated using a Harmonized Index of Consumer Prices from OECD (2011). In order to
limit multicollinearity, crop prices (wheat, barley, rapeseed, maize, sunflower) were grouped
into one index using crop areas at the Departement level from AGRESTE (2011b) as weights:

pcropit =
∑

5
c=1 pctScit

∑
5
c=1 Scit

(8)

where c is the index for crop, pct is the price of crop c in year t and Scit is the area of crop c in
Departement i in year t. A similar approach was used to compute the cattle price index (pcattit)
from cattle and milk prices using dairy and non-dairy animal numbers as weights:

pcattit =
pnon−dairy

t Nnon−dairy
it + pmilk

t Ndairy
it

Nnon−dairy
it +Ndairy

it

(9)

where Nnon−dairy
it and Ndairy

it are non-dairy and dairy cattle numbers, in Departement i in year
t. pnon−dairy and pmilk are non-dairy cattle and milk price in year t, respectively. Therefore,
pcropit and pcattit vary over both space and time. All prices are converted into indexes (year
2000 = 100). Summary statistics are reported in table 1.

Table 1. Explanatory variables: Summary statistics, sources, and description

variable Source Mean Std.dev. Spatial resolution
crop price index pcropit (1) 116.23 24.20 Departement
cattle prices pnon−dairy

t Eurostat 109.46 21.90 country
milk prices pmilk

t Eurostat 98.01 7.95 country
cattle price index pcattit (1) 106.86 18.05 Departement
hogs prices phogst Eurostat 102.63 17.77 country
wood prices pwoodit LEF 101.85 19.24 Departement
N fertilizer prices p f ertt Eurostat 104.54 11.11 country
grassland prices pgrasit Agreste 103.29 25.15 Departement
(1): own calculations (See text).

A previous study showed strong evidence of global and local spatial autocorrelation for
each emission category (Chakir et al., 2011). Results from that study are used to construct spa-
tial clusters of Departements. The corresponding variable clmi has five modalities: “Hh”, “Ll”,
“Lh”, “Hl”, and “no”, which depends on whether there is significant spatial auto-correlation
and, if so, whether emissions of category m in Départment i are high (H) or low (L) and i is
surrounded by high- (h) or low-emissions (l) Départments. These clusters were computed based
on cumulative emissions over the sample period. They are therefore constant over time.

3TERUTI data are not available to us before 1993 and for the years between 2004 and 2006.
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4. Estimation results

Four estimators are considered: (i) pooled OLS, which ignores individual heterogeneity
and spatial correlation, (ii) random-effect (RE) estimator, which accounts for random individual
heterogeneity but ignores spatial correlation, (iii) spatial error model (SEM) estimator, which
accounts for autoregressive spatial error autocorrelation but ignores individual heterogeneity,
and (iv) the RE-SEM estimator, which accounts for both spatial error autocorrelation and ran-
dom individual heterogeneity.

Equations for EMNITR, EMMANU, EMFERM, and EMAGRI (sum of agricultural
sources) are estimated over the 1990-2007 period using a logarithm transformation of the
dependent variables and of the price variables. The estimated coefficients thus have a straight-
forward interpretation as a price elasticity. Given the lack of data for EMLUCF and EMNET
(total net emissions) after 2003, equations for these two emissions are estimated over the
1993-2003 period. In addition, as these emission categories may have negative values, they
were estimated without any log transformation of the variables.

The Hausman (1978) test based on the difference between FE and RE estimators is used
to analyze the consistency of the RE estimator. We use the joint and the conditional LM tests
developed by Baltagi et al. (2003) for error correlation as well as random individual effects (see
Table 2). The χ2

k statistics (k is the number of regressors that are not constant over time) for the
Hausman test are not statistically significant at 1% for each emission category. The null hypoth-
esis is not rejected confirming that the RE estimator is consistent for each emission category.
The joint test for spatial error correlation and random effects (T1) as well as the conditional tests
for spatial error correlation (T2) and random individual effects (T3) are significant at 1% for
each emission category (except (T3) for EMLUCF). This justifies the choice of a model taking
into account both spatial error autocorrelation and random individual heterogeneity (RE-SEM).

Table 2. Specification tests

Tests Hypothesis EMNITR EMMANU EMFERM EMAGRI EMLUCF EMNET

HT H0: RE is more efficient χ2
4 = 0.50 χ2

3 = 0.02 χ2
3 = 0.00 χ2

4 = 0.00 χ2
5 = 0.22 χ2

7 = 0.57
H1: RE is inconsistent (0.97) (1.00) (1.00) (1.00) (1.00) (1.00)

T1 H0: σ2
µ = λ = 0 11551.83 13414.47 13475.52 13135.13 2974.10 3943.52

H1: σ2
µ 6= 0 or λ 6= 0 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

T2 H0: λ = 0 (ass σ2
µ ≥ 0) 15.64 16.62 16.02 15.37 2.15 7.23

H1: λ 6= 0 (ass σ2
µ ≥ 0) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00)

T3 H0: σ2
µ = 0 (allowing λ 6= 0) 4.81 2.70 4.67 4.11 0.82 4.94

H1: σ2
µ > 0 (allowing λ 6= 0) (0.00) (0.00) (0.00) (0.00) (0.21) (0.00)

For tests T1 to T3, the values reported are the lagrange multiplier statistics of the tests, p-values are between brackets.

Estimation results are reported in tables 5 to 6 (in appendix). Because of the lack of a
satisfying counterpart of the R2 (Elhorst, 2009), we evaluate the goodness-of-fit by using the
squared correlation coefficient between actual and fitted values (corr2). The values of corr2

suggest that the RE-SEM model fits reasonably well our data. For all emission categories,
results from both the RE and the RE-SEM models confirm the existence of random individual
heterogeneity (φ significant at the 1% level). Moreover, the spatial autocorrelation parameter λ

is also significant (at the 1% level) for both the SEM and the RE-SEM models. This confirms
the results of the specifications tests in favor of the RE-SEM estimator.

Table 3 summarizes the estimation results in terms of elasticities. For each individual emis-
sion category, crop prices have a positive and significant effect on the corresponding emissions
(significance level of at least 5%). Higher crop prices tend to increase per-hectare emissions for
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Table 3. Summary of price elasticities from the RE-SEM model by emission category

EMNITR EMMANU EMFERM EMAGRI EMLUCF EMNET

pwoodit 0.111 0.115
pcropi,t−1 0.532*** 0.047** 0.068*** 0.151*** 0.340* 0.616
p f ertit -0.160* -0.081*** 0.619
pcatti,t−1 -0.224** 0.061*** 0.003 -0.027 0.411** 0.879**
phogsi,t−1 0.086*** 0.039* 0.490
pgrasit -0.044 0.058*** 0.000 -0.002
Significance levels: ∗∗∗: 0.01, ∗∗: 0.05, ∗: 0.1.
The elasticities for EMLUCF and EMNET are calculated as the mean change in predicted emissions due to a
1% increase of each respective price over the mean predicted emissions holding all variables constant.

each category. Among agricultural emission sources, crop prices have the greatest impact on
emissions due to synthetic fertilizer use (elasticity of 0.53). Estimated elasticities for manure
management and enteric fermentation are around ten times lower. The responsiveness of EM-
NITR to crop prices may explained by both intensive and extensive margin effects: (i) higher
crop prices encourage larger N application rates, and (ii) increased crop profitability favors
conversions to cropland. The latter effect may also explain the positive effect of crop prices
on emissions from LULUCF. The resulting effect of crop prices on EMAGRI and EMNET is
positive, although not significant for EMNET. Fertilizer prices have a negative and significant
effect on EMNITR and EMAGRI. The elasticity of fertilizer prices on EMNITR is however
more than three times lower than that of crop prices on the same emission category. We find no
significant impact of wood and grassland prices on the emissions due to LULUCF.

The sign of the coefficients associated with cattle prices differ between emission categories.
As expected, higher cattle prices tend to increase emissions from manure and enteric fermen-
tation. The effect of cattle prices on EMFERM is however not significant for the RE-SEM
model. On the contrary, higher cattle prices tend to lower emissions from the use of synthetic
fertilizers. This negative effect may result from (i) the conversion of croplands into pastures
(the increase in the profitability of animal production increasing the need for pastures) and (ii)
the substitution of synthetic fertilizers for organic fertilizers. The results suggest that the latter
effect dominates. Lastly, the positive effect of cattle prices on total net emissions suggests that
the combined effects of cattle prices on each individual emission source is positive. Hog prices
have a positive and significant effect on EMMANU and EMFERM.

The dummy for the year 2000 has a significant effect on emissions from LULUCF (at
5%) and total net emissions (at 1%). This captures the large amount of carbon released in
the aftermath of the 1999 storms. For each emission category, the HH and LL modalities of
the cluster variables have a significant effect on emissions. Departements for which clmi = HH
(clmi = LL) tend to have significantly (at 1%) higher (lower) values of emissions than the others.

5. Predictions

The best linear unbiased predictor (BLUP) when both error components and spatial auto-
correlation are present is (Baltagi and Li, 1999):

ŷRE−SEM
iT+S = xiT+Sβ̂

RE−SEM +T φ

N

∑
j=1

δ ju j., (10)
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Table 4. Root Mean Square Error for the four predictors

OLS SEM RE RE-SEM

EMNITR 0.35 0.35 0.35 0.17
EMMANU 0.42 0.44 0.41 0.05
EMFERM 0.32 0.34 0.32 0.04
EMAGRI 0.74 0.75 0.74 0.19
EMUTCF 0.93 0.95 0.94 0.67
EMNET 1.38 1.44 1.40 0.78

where φ =
σ2

µ

σ2
v

, δ j is the jth element of the ith row of V−1 with V = T φ IN + (B′B)−1 and

u j. = ∑
T
t=1 û jt/T , with ûit = yit − xit β̂ . For the RE model (Baltagi and Li, 2006), the spatial

autocorrelation correction is null and the BLUP reduces to:

ŷRE
iT+S = xiT+Sβ̂

RE +
T σ2

µ

T σ2
µ +σ2

v
u j. (11)

For the OLS and the SEM estimators the BLUP correction term is null.
For each model, the BLUP is calculated using the sample estimation periods. Predictions

are then compared with observed data available for 2008 for agricultural sources and 2007 for
EMLUCF and EMNET. Root Mean Square of Errors (RMSE) are reported in table 4. For
each emission category, the RMSE is of the same magnitude for the first three estimators but it
markedly drops for the RE-SEM estimator. This suggests that the RE-SEM estimator provides
more accurate predictions. Its performance is however much greater for agricultural emission
sources than for emissions from LULUCF and total net emissions.

The RE-SEM predictor is then used to simulate the effects of a doubling of crop prices.
All explanatory variables, excluding crop prices, are taken at their observed values for the last
sample year. The predicted values of the changes in emissions are depicted in Figure 1. It
shows that a 100% increase in crop prices (holding all other variables constant) leads to an
increase of about 45% of EMNITR, 3% of EMMANU and 5% of EMFERM at the national
level. This illustrates the higher price-responsiveness of emissions from the use of synthetic
fertilizer relative to animal-related emissions. Changes in emissions are not evenly distributed
over space. The effects of a crop price increase seem to be higher in Departements for which
observed 2007 emission were higher. The total agricultural emissions increase is about 10.5
MtCO2eq which corresponds to a 11% increase compared to predicted emissions taking all
variables at their 2007 observed values. Using the abatement supply curve given by De Cara
and Jayet (2011, table 2), compensating such an increase would require a tax of approximately
33 e.tCO2eq−1, which is significantly higher than the current carbon price on the European
Emission Trading market. These results also indicate a much greater impact on EMLUCF (and
consequently on EMNET) than on agricultural sources. This should however be interpreted
with caution as the prediction accuracy for emissions from LULUCF is much lower than for
agricultural emissions.

6. Conclusion

The objective of this paper was to assess the effects of input and output prices on GHG
sources/sinks from AFOLU at the Departement level in France. To this end, various estimation
methods have been applied to reduced-form models of the relationship between emissions and
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Figure 1. Emission variation for a 100% variation of crop price index

prices. Results of the specification tests show that the random effect spatial error models (RE-
SEM) estimator suits the best our data and leads to more accurate predictions than alternative
estimators (OLS, random error, and spatial error models). These results confirm the importance
of taking into account both spatial error autocorrelation and random regional effects.

Our main empirical findings are threefold. First, prices do have an impact on both the level
and spatial distribution of emissions. This result highlights the importance of taking into ac-
count the spatial structure of the various emissions categories. Second, the price effects are more
significant for individual emission categories than for total net emissions from AFOLU. Sepa-
rating emission sources and sinks thus allows us to differentiate price effects that are masked
at the aggregated level. Third, the price effects are more important for N2O emissions due to
synthetic fertilizer use than for other agricultural sources. Our results suggest that prices have
an important impact on both the level and the structure of the mitigation potential by emissions
categories. This effect should thus be taken into account in the design of public policies aimed
at reducing emissions or enhancing carbon sinks in these sectors.

The use of a reduced form has the advantage to summarize the complex interactions that
exist between the various emission categories, whilst keeping the approach relatively simple.
However, it does not allow us to explicitly describe the chain of events linking economic land-
use decisions to AFOLU emissions. Further research is needed along these lines.
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Appendix

Table 5. Estimation results for emissions from agriculture (N = 89, T = 18)).

Dependant variable: ln(EMFERM) Dependant variable: ln(EMMANU)

OLS RE SEM RE-SEM OLS RE SEM RE-SEM

Intercept -1.36∗∗ -1.32∗∗∗ -1.49 -1.25∗∗∗ -1.74∗∗∗ -1.51∗∗∗ -1.80∗∗∗ -1.5∗∗∗

(0.565) (0.095) (1.080) (0.097) (0.533) (0.092) (0.445) (0.099)
ln(pcropi,t−1) 0.037 0.069∗∗∗ -0.015 0.068∗∗∗ -0.068 0.064∗∗∗ -0.098 0.047∗∗

(0.223) (0.016) (0.269) (0.024) (0.210) (0.018) (0.220) (0.023)
ln(pcatti,t−1) 0.047 0.024∗ 0.094 0.003 0.185 0.059∗∗∗ 0.216 0.061∗∗∗

(0.188) (0.014) (0.231) (0.020) (0.178) (0.015) (0.193) (0.019)
ln(phogsi,t−1) 0.050 0.032∗∗ 0.072 0.039∗ 0.129 0.073∗∗∗ 0.140 0.086∗∗∗

(0.183) (0.013) (0.239) (0.020) (0.173) (0.015) (0.185) (0.019)
clmi = LL -1.60∗∗∗ -1.60∗∗∗ -1.27∗∗∗ -1.60∗∗∗ -1.42∗∗∗ -1.42∗∗∗ -1.31∗∗∗ -1.42∗∗∗

(0.047) (0.196) (0.059) (0.165) (0.044) (0.185) (0.041) (0.185)
clmi = HH 1.12∗∗∗ 1.12∗∗∗ 1.15∗∗∗ 1.12∗∗∗ 1.37∗∗∗ 1.37∗∗∗ 1.33∗∗∗ 1.37∗∗∗

(0.053) (0.223) (0.062) (0.188) (0.054) (0.229) (0.059) (0.229)

λ 0.226∗∗∗ 0.438∗∗∗ 0.113∗∗∗ 0.272∗∗∗

(0.021) (0.028) (0.018) (0.031)
φ 191∗∗∗ 160∗∗∗ 139∗∗∗ 149∗∗∗

(29.4) (18.3) (21.5) (23)
R2 0.55 0.22 0.58 0.56 0.31 0.56
corr2 0.55 0.56
logLik 2179.25 -1070.10 2287.79 2035.89 -1011.50 2072.42

Dependant variable: ln(EMNIT R) Dependant variable: ln(EMAGRI)

OLS RE SEM RE-SEM OLS RE SEM RE-SEM

Intercept -3.68∗∗ -1.56∗∗∗ -4.07∗∗∗ -1.63∗∗∗ -0.24 -0.14 -0.34 -0.12
(1.430) (0.407) (0.84) (0.565) (0.922) (0.143) (1.130) (0.173)

ln(pcropi,t−1) 0.760∗∗∗ 0.437∗∗∗ 0.942∗∗∗ 0.532∗∗∗ 0.162 0.148∗∗∗ 0.169∗∗ 0.151∗∗∗

(0.198) (0.053) (0.229) (0.075) (0.127) (0.017) (0.083) (0.022)
ln(p f erti,t) -0.277 -0.180∗∗∗ -0.226 -0.160∗ -0.090 -0.083∗∗∗ -0.065 -0.081∗∗∗

(0.234) (0.063) (0.144) (0.091) (0.151) (0.020) (0.185) (0.026)
ln(pcatti,t−1) -0.516∗∗ -0.146∗∗ -0.671∗∗∗ -0.224∗∗ -0.039 -0.019 -0.020 -0.027

(0.233) (0.063) (0.254) (0.089) (0.150) (0.020) (0.114) (0.026)
ln(pgrasi,t) 0.577∗∗∗ -0.021 0.571∗∗∗ -0.044 0.095 0.062∗∗∗ 0.055 0.058∗∗∗

(0.198) (0.058) (0.199) (0.059) (0.127) (0.019) (0.126) (0.019)
clmi = LL -1.48∗∗∗ -1.48∗∗∗ -1.25∗∗∗ -1.48∗∗∗ -1.20∗∗∗ -1.20∗∗∗ -0.88∗∗∗ -1.20∗∗∗

(0.054) (0.221) (0.063) (0.221) (0.040) (0.168) (0.031) (0.168)
clmi = HH 0.71∗∗∗ 0.71∗∗∗ 0.61∗∗∗ 0.71∗∗∗ 1.09∗∗∗ 1.09∗∗∗ 1.06∗∗∗ 1.09∗∗∗

(0.064) (0.261) (0.069) (0.262) (0.046) (0.193) (0.054) (0.193)
clmi = LH -0.02 -0.03 -0.10 -0.03

(0.152) (0.624) (0.148) (0.623)
clmi = HL 0.22 0.20 0.41∗∗ 0.20

(0.213) (0.873) (0.207) (0.873)

λ 0.19∗∗∗ 0.361∗∗∗ 0.236∗∗∗ 0.256∗∗∗

(0.0145) (0.0311) (0.0192) (0.0319)
φ 13∗∗∗ 14.6∗∗∗ 55∗∗∗ 58.2∗∗∗

(2.02) (2.26) ( 8.5) (8.99)
R2 0.42 0.14 0.45 0.52 0.2 0.56
corr2 0.42 0.52
logLik -222.45 -1506.75 -162.09 1533.45 -774.03 1563.59

Significance levels: ∗∗∗: 0.01, ∗∗: 0.05, ∗: 0.1. Standard deviations in parentheses.
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Table 6. Estimations results for net emissions from land use, land use change and forestry and
aggregated net AFOLU emissions (N = 89, T = 11).

Dependant variable: EMLUCF Dependant variable: EMNET

OLS RE SEM RE-SEM OLS RE SEM RE-SEM

Intercept -2.6∗∗∗ -2.69∗∗∗ -2.3∗∗∗ -2.29∗∗∗ -1.51∗ -1.79∗∗∗ -0.965 -1.46∗∗∗

(0.264) (0.172) (0.322) (0.24) (0.774) (0.296) (0.944) (0.555)
pwoodt 5.69e-05 0.00243∗ 0.00027 0.00126 -0.0046 0.0022 -0.00248 0.000743

(0.00177) (0.00131) (0.00181) (0.00109) (0.00282) (0.00139) (0.00281) (0.00112)
pcropi,t−1 0.00763∗∗∗ 0.00673∗∗∗ 0.00475∗ 0.00345∗ 0.0162∗∗∗ 0.00934∗∗∗ 0.0165∗∗∗ 0.00356

(0.00246) (0.00117) (0.00286) (0.00191) (0.00536) (0.00169) (0.00632) (0.00231)
p f erti,t 0.00508 0.00477∗∗∗ 0.00605 0.00411

(0.00529) (0.00164) (0.00658) (0.00386)
pcatti,t−1 0.00363∗ 0.0033∗∗∗ 0.00411∗ 0.00439∗∗ 0.000645 0.00311∗∗ -0.00166 0.00534∗∗

(0.00209) (0.000983) (0.00243) (0.00187) (0.00396) (0.00124) (0.00475) (0.00211)
phogsi,t−1 -0.00304 -0.000106 -0.00793 0.00307

(0.00426) (0.00133) (0.00484) (0.00261)
pgrasi,t 0.000264 0.00018 0.000204 4.61e-06 0.00196 0.000305 0.00176 -1.15e-05

(0.000837) (0.000413) (0.000822) (0.000298) (0.00132) (0.000432) (0.00127) (0.000305)
yr2000 0.275∗∗∗ 0.265∗∗∗ -0.114 0.225∗∗ 0.314∗∗ 0.315∗∗∗ -0.249 0.317∗∗∗

(0.0917) (0.0428) (0.115) (0.0971) (0.157) (0.0486) (0.193) (0.115)
clmi = LL -1.14∗∗∗ -1.16∗∗∗ -1.04∗∗∗ -1.14∗∗∗ -1.94∗∗∗ -2.01∗∗∗ -1.85∗∗∗ -1.98∗∗∗

(0.0678) (0.195) (0.0743) (0.199) (0.109) (0.332) (0.125) (0.336)
clmi = HH 1.57∗∗∗ 1.57∗∗∗ 1.46∗∗∗ 1.56∗∗∗ 3.87∗∗∗ 3.89∗∗∗ 3.47∗∗∗ 3.88∗∗∗

(0.0646) (0.19) (0.0728) (0.195) (0.111) (0.35) (0.135) (0.354)
clmi = LH -0.297 -0.319 -0.411∗ -0.324

(0.239) (0.705) (0.235) (0.704)

λ 0.171∗∗∗ 0.666∗∗∗ 0.22∗∗∗ 0.681∗∗∗

(0.0168) (0.0285) (0.0189) (0.0276)
φ 3.56∗∗∗ 5.97∗∗∗ 9.46∗∗∗ 16.3∗∗∗

(0.575) (0.965) ( 1.5) (2.61)
R2 0.56 0.24 0.57 0.67 0.3 0.69
corr2 0.56 0.67
logLik -567.31 -798.86 -397.77 -652.14 -1231.57 -469.43

Significance levels: ∗∗∗: 0.01, ∗∗: 0.05, ∗: 0.1. Standard deviations in parentheses.
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