
HAL Id: hal-01172745
https://hal.science/hal-01172745v1

Preprint submitted on 7 Jul 2015 (v1), last revised 4 Oct 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring large graphs with an l1-penalized likelihood
formulation and a hybrid genetic algorithm

Magali Champion, Victor Picheny, Matthieu Vignes

To cite this version:
Magali Champion, Victor Picheny, Matthieu Vignes. Inferring large graphs with an l1-penalized
likelihood formulation and a hybrid genetic algorithm. 2015. �hal-01172745v1�

https://hal.science/hal-01172745v1
https://hal.archives-ouvertes.fr

Inferring large graphs with an `1-penalized likelihood
formulation and a hybrid genetic algorithm

Magali Champion
Stanford Center for Biomedical Informatics Research (BMIR),

Department of Medicine, Stanford University, CA, USA
Victor Picheny

INRA, UR875 Applied Mathematics and Computer Science Unit,
Castanet-Tolosan, France

and
Matthieu Vignes

Institute of Fundamental Sciences, Massey University,
Palmerston North, New Zealand.

Abstract

We address the issue of recovering the structure of large sparse directed acyclic
graphs from noisy observations of the system. We propose a novel procedure based on
a specific formulation of the `1-norm regularized maximum likelihood, which decom-
poses the graph estimation into two sub-problems: topological structure and node
order learning. We provide oracle inequalities for the graph estimator, as well as an
algorithm to solve the induced optimization problem, in the form of a convex pro-
gram embedded in a genetic algorithm. We apply our method to various data sets
(including data from the DREAM4 challenge) and show that it compares favorably
to state-of-the-art methods.

Keywords: Directed Acyclic Graphs, Lasso, Convex program, Optimization.

1

1 Introduction

Revealing the true structure of a complex system is paramount in many fields to identify
system regulators, predict its behavior or decide where interventions are needed to disen-
tangle direct relationships (Newman, 2003; Barabási & Oltvai, 2004; Souma et al., 2006;
Verma et al., 2014). This problem can often be seen as a graph inference problem: given
observational data, we aim at predicting the presence (or absence) of edges between ele-
ments, which form the vertices of a graph. As a motivating problem, the reconstruction
of Gene Regulatory Networks (GRN), which model activation and inhibition relationships
between genes, is one of the main challenges in modern computational biology.

A popular approach consists in assuming that the data are generated by a Directed
Acyclic Graph (DAG) (Pearl, 2009). DAGs are made of a collection of vertices, which
stand for variables, and directed edges to model the dependency structure among the
variables, avoiding loops and cycles. However, inferring a DAG is a rather challenging
problem. Firstly, the number of nodes p of the graph may be so large that exploring
relevant DAG topologies is simply infeasible, since the number of possible DAG structures
is super-exponential in p (Koivisto & Sood, 2004; Tsarmadinos et al., 2006; Grzegorczyk &
Husmeier, 2008). Another dimension flaw occurs when p, even being reasonable, is larger
than the number of observations, and model/parameter estimation is jeopardized. High-
dimensional statistical techniques are then needed to overcome this issue (Bühlmann &
van de Geer, 2011; Giraud, 2014). Secondly, even if the ratio between p and the sample
size n is not impeding model estimation, the nature of the data can be an additional obstacle
(Ellis & Wong, 2008; Guyon et al., 2010; Fu & Zhou, 2013). The available observational data
are in general not sufficient to identify the true underlying DAG, and can only determine an
equivalence class of DAGs (Verma & Pearl, 1991). This approach relies on the assumption
that the joint distribution is Markov and faithful with respect to the true graph (Spirtes
et al., 2000).

A large number of methods have been proposed for estimating DAGs, including for
instance score-based methods (Bayesian score, Friedman & Koller 2003 or Bayesian In-
formation Criterion, Schwarz 1978), penalized likelihood methods (Shojaie & Michailidis,
2010), complex space sampling (Zhou, 2011) or the PC algorithm (Kalisch & Bühlmann,
2007). The latter has been proved to be uniformly consistant in the high-dimensional case,
but requires a test of conditional independences that quickly becomes computationally
intractable.

In this work, we focus on Gaussian structural equation models (Pearl, 2009) with equal
noise variances, for which the identifiability of the whole DAG is satisfied (Peters et al.,
2014), associated with maximum likelihood estimators (MLE). In the last years, the `0-
regularization of the MLE has been the focus of a large number of works since it leads
to infer sparse graphs. For a known order among the variables in the graph, Shojaie &
Michailidis (2010) present results for the estimation of high-dimensional graphs based on
independent linear regressions using an adaptive lasso scheme. When the order of the
variables is unknown, van de Geer & Bühlmann (2013) studied the convergence of the
`0-penalized likelihood. However, from a computational point of view, the `0-regularized
approaches (Silander & Myllymäki, 2006; Hauser & Bühlmann, 2012) require an exhaus-
tive exploration of the set of DAGs, impractical for estimating graphs with more than 20
vertices.

Our objective is to overcome this drastic dimensional limitation and find inference

2

strategies for graphs with up to several hundred nodes. Such strategies must ensure a high
level of sparsity and be supported by computationally affordable algorithms, while preserv-
ing sound theoretical bases. Here, we propose to use the `1-regularization, similarly to Fu
& Zhou (2013) and Shojaie & Michailidis (2010), to define the MLE. From a computational
point of view, this regularization makes the criterion to maximize partially convex while
ensuring sparse estimates. Our contribution is two-fold: first, we provide oracle inequali-
ties that guarantee good theoretical performances of our proposed estimator in the sparse
high-dimensional setting; then, we provide an efficient algorithm to infer the true unknown
DAG, in the form of a convex program embedded in a genetic algorithm.

The next section covers the model definition and the associated penalized MLE problem.
Section 3 details the oracle inequalities, and Section 4 our inference algorithm. Section 5
reports numerical experiments both on toy problems and realistic data sets.

2 The `1-penalized likelihood for estimating DAGs

2.1 DAG’s modelling and estimation

In this work, we consider the framework of an unknown DAG G0 = (V,E), consisting of
vertices V = {1, ..., p} and a set of edges E ⊆ V ×V . The p nodes are associated to random
variables X1, ..., Xp. A natural approach, developped by Meinshausen & Bühlmann (2006)
to solve the network inference problem is to consider that each variable X i (1 ≤ i ≤ p) of
the DAG can be represented as a linear function of all other variables Xj (j 6= i) through
the Gaussian Structural Equation Model:

∀j ∈ J1, pK, Xj =

p∑
i=1

(G0)jiX
i + εj, (1)

with εj ∼ N (0, σ2) (σ2 known, independent of j) a Gaussian residual error term and E
corresponding to the non-zero coefficients of G0, i.e. (G0)ji encoding the relationship from
variable X i to variable Xj.

Assume that we observe an n-sample consisting of n i.i.d. realizations (X1, ..., Xp) from
Equation (1). We denote by X := (X1, ..., Xp) the n × p data matrix with n i.i.d. rows,
distributed according to a N (0,Σ) law, where Σ is a non-singular covariance matrix. The
relations between the variables can be represented in its matrix form:

X = XG0 + ε, (2)

where G0 = ((G0)ji)1≤i,j≤p is the p × p matrix compatible with the graph G0 and ε :=
(ε1, ..., εp) is the n× p matrix of noise vectors.

The negative log-likelihood of the model is then (Rau et al., 2013):

`(G) =
np

2
log(2π) + n log σ +

1

σ2

n∑
k=1

p∑
j=1

(
Xk(I −G)j

)2
. (3)

To recover the structure of the DAG G0 and make the estimated graph sparse enough,
we focus on a penalized maximum likelihood procedure (Bickel & Li, 2006):

Ĝ = argmin
G∈GDAG

{`(G) + λ pen(G)}, (4)

3

where `(.) is the negative log-likelihood of Equation (3), pen(.) is a determined penalization
function, λ is a trade-off parameter between penalization and fit to the data, and GDAG is
the set of p× p matrices compatible with a DAG over p nodes.

Using an `0-norm regularization in Equation (4) to infer sparse graphs is an attractive
option, since the criterion to minimize is constant for all equivalent DAGs. It guarantees
that we can recover the Markov equivalence class of the underlying DAG. From a compu-
tational point of view, the main difficulty when solving Equation (4) is to explore GDAG,
which is a well-known NP-hard problem (Chickering, 1996): an `0-regularization does not
set a favorable framework for this task. To avoid the whole exploration of GDAG, a dynamic
programming method has been proposed in Silander & Myllymäki (2006), using a partic-
ular decomposition of the `0-penalized maximum likelihood. The greedy equivalent search
algorithms of Chickering (2002); Hauser & Bühlmann (2012) restrict the search space to
the smaller space of equivalence classes and provide an efficient algorithm without enu-
merating all the equivalent DAGs. They were shown to be asymptotically optimal under
a faithfulness assumption (i.e. independence in the distribution are those read from G0).
However, these approaches cannot be used on high-dimensional data to estimate graphs
with a large number of nodes.

We consider the setting of Gaussian structural equation model with equal noise vari-
ances. Peters et al. (2011, 2014) showed that the true DAG is identifiable for respectively
discrete and continuous data. We focus on the `1-norm convex regularization instead of `0

for its sparse, high-dimensional and computational properties. This regularization clearly
improves the computation in Equation (4) with a convex constraint on the graph topology.

Given Equation (3) and omitting constant terms, the `1-penalized likelihood estimator
we consider is:

Ĝ = argmin
G∈GDAG

{
1

n
‖X(I −G)‖2

F + λ ‖G‖1

}
, (5)

where ‖.‖1 denotes the `1-norm and ‖.‖F the Frobenius norm, i.e. respectively for any

matrix M := (M j
i)1≤i,j≤p, ‖M‖1 =

∑
i,j

∣∣M j
i

∣∣ and ‖M‖F =
∑

i,j

(
M j

i

)2
.

Remark 1. The price to pay for the `1-norm relaxation is a bias, which can be controlled
by thresholding the estimator (van de Geer et al., 2011), i.e. setting to 0 small values of
Ĝ.

2.2 A new formulation for the estimator

We propose here a new formulation of the minimization problem of Equation (5). It will
allow us to naturally uncouple two steps of the minimisation procedure: node ordering and
graph topology search. A key property is that any DAG leads to a topological ordering
of its vertices, denoted ≤, where a potential directed edge from node X i to node Xj is
equivalent to Xj ≤ X i (Kahn, 1962; Cormen et al., 2001). This ordering is not unique
in general, except when there exists a directed path between all the nodes of the graph
(see Example 1 below for more explanations). Proposition 2.1 from Bühlmann (2013) then
gives an equivalent condition for a matrix to be compatible with a DAG.

Proposition 2.1 (Bühlmann 2013). A matrix G is compatible with a DAG G if and only
if there exists a permutation matrix P and a strictly lower triangular matrix T such that:

G = PTP T .

4

Graphically, the permutation matrix sets an ordering of the nodes of the graph and
is associated to a complete graph. The strictly lower triangular matrix T sets the graph
structure, i.e. the non-zero entries of G, as illustrated in Example 1.

Example 1. Consider the DAG G given in Figure 1 (left). The corresponding matrix G
can be written as the strictly lower-triangular matrix T by permutation of its rows and
columns using P :

G =


0 0 0 0 0
2 0 1 6 4
0 0 0 7 5
0 0 0 0 0
3 0 0 0 0

 = PTP T , with T =


0 0 0 0 0
3 0 0 0 0
0 0 0 0 0
0 5 7 0 0
2 4 6 1 0

 and P =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 .

Looking at the non-zero values of P column by column, P defines a node hierarchy X1 ≤
X5 ≤ X4 ≤ X3 ≤ X2 compatible with the topological orderings of G. Graphically, P is
associated to the complete graph represented in Figure 1 (right). The dashed edges then
correspond to the lower zero entries of T . Note that since X4 is not connected with X5

and X1, three topological ordering are possible (X4 ≤ X1 ≤ X5, X1 ≤ X4 ≤ X5 and
X1 ≤ X5 ≤ X4).

X1

X2

X3

X4

X5

7

1

4

6

5
3

2

X1

X2

X3

X4

X5

4

6
2

7

1

5
3

Figure 1: An example of DAG G (left) and the action of P and T on G: P is associated to
a complete graph that orders the nodes of the graph (right) and T sets the weights on the
edges. The dashed edges correspond to null weight edges (a zero entry in T).

Using Proposition 2.1, the estimator in (5) leads to the following equivalent optimization
problem:

(P̂ , T̂) = argmin
(P,T)∈C

{
1

n

∥∥X(I − PTP T)
∥∥2

F
+ λ ‖T‖1

}
, (6)

where the optimization space C is defined as C = Pp(R) × Tp(R), with Pp(R) the set of
permutation matrices and Tp(R) the set of strictly lower-triangular matrices. This new
parametrization is particularly useful to separate the DAG structure search in two tasks:
the ordering estimation and the graph structure learning.

Note that a similar formulation has already been proposed by van de Geer & Bühlmann
(2013) to ensure good theoretical properties for the `0-penalized log-likelihood estimation.
However, it has never been exploited from a computational point of view to recover the
graph structure optimizing problem (5). In the following two sections, we propose a the-
oretical analysis of the proposed estimator and a computationally effficient algorithm to
solve (6)

5

3 Oracle inequalities for the DAG estimation

The main result in this section is about convergence rates: in Theorem 1, we provide upper
bound for error associated with the `1-penalized maximum likelihood estimator considered
in Equation (6), both in prediction (Equation 7) and estimation (Equation 8). Following
the works of van de Geer & Bühlmann (2013) on the `0-penalized maximum likelihood
estimator and of Bickel et al. (2009) on the Lasso and the Dantzig Selector, we obtain two
convergence results under some mild sparsity assumptions, when the number of variables
is large but upper bounded by a function ϕ(n) of the sample size n.

3.1 Estimating the true order of variables

For a known ordering among the variables of the graph (Shojaie & Michailidis, 2010), which
is an unrealistic assumption in many applications, the DAG inference problem is rather
simple. To provide oracle inequalities of the proposed estimator, in the case of unknown
order we consider here, we first focus on the problem of estimating the true variable order.
Let us denote by Π0 the set of permutation matrices compatible with the true DAG G0:

Π0 =
{
P ∈ Pp(R), P TG0P ∈ Tp(R)

}
.

Π0 contains one or more permutation matrice(s) (see Example 1). We will have to make a
decision as to whether the estimated order of variables P̂ given by Equation (6) is in Π0 or
not.

To answer this question, we investigate the effect of learning an erroneous order of
variables P /∈ Π0. We introduce the following notations: for any permutation matrix
P ∈ Pp(R), we denote by G0(P) the matrix defined as:

G0(P) = PT0P
T , with T0 = P T

0 G0P0 a lower triangular decomposition of G0.

From a graphical point of view, while P /∈ Π0, the graph G0(P) associated to G0(P) is
obtained from G0 by permuting some of its nodes (see Example 2), otherwise G0(P) = G0.
We also denote by ε(P) := X − XG0(P) the associated residual term. To simplify the
theoretical results and proofs, until the end of this work, we assume that the noise variances
σ2 := Var(εj) are equal to one. Our results are still valid even if σ2 6= 1, by small
modifications in the constant terms as long as they are all equal. We denote by Ω(P)
the covariance matrix of ε(P) and ωj(P) := Var(εj(P)) the associated noise variances.

With these notations and checking that the assumptions presented in Section 3.2 hold,
we ensure that, with large probability, we choose a right order of variables and the estimated
graph converges to the true graph when n and p grow to infinity (see Section 3.3).

Example 2. Let P =


0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

 /∈ Π0 a wrong permutation.

In Figure 2, we represent the permuted graph G0(P) (right) associated to the graph G0

(left). The latter is obtained from G0 after permutation of its nodes using PP T
0 , where P0

(corresponding to the matrix P in Example 1) defines a right order of variables.

6

X1

X2

X3

X4

X5

7

1

4

6

5
3

2

X4

X1

X2

X5

X3

7

1

4

6

5
3

2

Figure 2: The graph G0 (left) and the permuted graph G0(P) (right) associated to the
permutation P .

3.2 Assumptions on the model

For a matrix M ∈ Mp×p(R) and a subset S of J1, pK2, we denote by MS the matrix that
has the same elements as M on S and zero on the complementary set SC of S. We now
introduce the assumptions we used to obtain statistical properties of our estimator.

Hypothesis

H1 There exists σ2
0, independent of p and n, such that max1≤j≤p Var(Xj) ≤ σ2

0.

H2 The maximal weight of the DAG G0 is bounded ‖G0‖∞ := max
1≤i,j≤p

∣∣(G0)ji
∣∣ < +∞.

H3 The maximal number of parents smax of the graph nodes is bounded by s∗ > 0
depending only on ‖G0‖∞.

Hdim The number of nodes p satisfies p3 log p = O(n).

HRE(s) There exists κ(s) > 0 with 1 ≤ s ≤ p2 such that:

min

{
‖XM‖F√
n ‖MS‖F

: S ⊂ J1, pK2, |S| ≤ s,M ∈Mp×p(R)\{0}, ‖MSC‖1 ≤ 3 ‖MS‖1

}
≥ κ(s).

Hid There exists 0 < η ≤ C n
p log p

, with C > 0, such that, for all permutations P /∈ Π0,

1

p

p∑
j=1

(
|ωj(P)|2 − 1

)2
>

1

η
.

Assumption H1 is clearly satisfied for σ2
0 = 1 if we standardize the data. Assumptions

H2−3 are needed to show that the minimal eigenvalue λmin of the covariance matrix Σ of
X is not too small when n and p grow to infinity. It is clearly related to condition 3.2 of
van de Geer & Bühlmann (2013). We relax however the latter allowing λmin to decrease
with n and p (see Section B of the Appendix for further details).

Assumption Hdim deserves a special attention since it strongly bounds the high dimen-
sional setting. The considered problem is obviously non-trivial and requires a sufficient
amount of information. This assumption has to be carefully compared with the beta-min

7

condition introduced by van de Geer & Bühlmann (2013) for the `0-regularized MLE, sat-
isfied in a less restrictive regime p = O(

√
n/ log n). More precisely, Hdim can be relaxed to

the high-dimensional case at the expense of a tighter restriction on the maximal degree smax
of the graph. Note however that universal conditions cannot be overcome and the ultra-
high dimension settings (e.g. Wainwright (2009); Verzelen (2012)) is an insurmountable
limit, specifically when smax log(p/smax) becomes large as compared to n.

Assumption HRE(s) is a natural extension of the Restricted Eigenvalue condition of
Bickel et al. (2009) to our multi-task setting. More precisely, denoting

X̃ =

 X 0

0 X


p2

n× p,

HRE(s) is equivalent to assuming that the Gram matrix X̃X̃T

n
is non-degenerate on a re-

stricted cone (Lounici et al., 2009; Bühlmann & van de Geer, 2011). Notice that this
condition is very classical in the literature. It yields good practical performance even for
small sample sizes, and there is some hope that accurate population eigenvalues could be
estimated even in a large dimension setting (Mestre, 2008; El Karoui, 2008; Liu et al., 2014;
Ledoit & Wolf, 2015).

The last assumption Hid is an identifiability condition needed to ensure that the es-
timated permutation P̂ is in Π0. This assumption was introduced by van de Geer &
Bühlmann (2013) as the “omega-min” condition. In a sense, it separates the set of com-
patible permutations from its complement in a finite sample scenario.

3.3 Main result

The result we establish in this section is double-edged: (a) with large probability, the
first part of Theorem 1 ensures that the estimated P̂ belongs to Π0, and (b) we provide
oracle inequalities both in prediction and estimation for the graph estimated from the
minimisation problem (6). This result clearly states the desirable theoretical properties of
the derived estimator, assuming reasonable conditions on the complex system embedding
the data.

Theorem 1. Assume that Assumptions H1,2,3, Hdim, HRE(s) with s ⊂ J1, pK2 such that∑
i,j 1(G0)ji 6=0 ≤ s and Hid are satisfied. Let λ = 2C

√
log p
n
smax. Then, with probability

greater than 1 − 5/p, any solution Ĝ = P̂ T̂ P̂ T of the minimization problem (6) satisfies
that P̂ ∈ Π0. Moreover, with at least the same probability, the following inequalities hold:

1

n

∥∥∥XĜ−XG0

∥∥∥2

F
≤ 16C2s2

max log p

κ2(s)n
. (7)

∥∥∥Ĝ−G0

∥∥∥
1
≤ 16C

κ2(s)
s3/2
max

√
log p

n
. (8)

The proof of this result is deferred in Section B of the Appendix.

8

Remark 2. Theorem 1 states that with probability at least 1− 5/p, we choose a compatible
order of variables over the set of permutations. Inequalities (7) and (8) give non-asymptotic
upper bounds on the loss under conditions depending on p and n, the graph structure and
the data.

Remark 3. Inequalities (7) and (8) show that the estimated T̂ is close to the true T0 with
large probability as p, n→ +∞.

4 Inference algorithm

4.1 Global algorithm overview

In this section, we propose a computational procedure devoted to solve Equation (6).
Although decomposing the original problem made it much easier to handle, this problem
is indeed a very challenging task from an optimization point of view, due to the different
nature of the variables P and T , the non-convexity of the cost function and the very high
dimension of the search space.

An intuitive approach would consist in using an alternating minimization: alternatively,
fix one of the variables P or T and optimize over the other one, then reverse the roles or P
and T and do it again iteratively until convergence for some criterion (Csiszár & Tusnády,
1984). However, the structure of our problem does not allow us to use such a scheme:
looking for an optimal T given a fixed P makes sense, but changing P for a fixed T does
not.

In our inference algorithm, an outer loop is used to perform the global search among
the DAGs space, which is driven by the choice of P , while a nested loop is used to find an
optimal T for each given fixed P (see Figure 3). As we show in the following, population-
based metaheuristics algorithms are a natural and efficient choice for exploring the space
of permutation matrices (Section 4.3). The nested optimization problem can be resolved
using a steepest descent approach (Section 4.2).

Choice of P

Search of an optimal T ∗

Evaluate the likelihood

Problem solved?

END

YES

NO

Figure 3: Overview of our hybrid algorithm.

9

4.2 Graph structure learning when the variable order is fixed

Assume first that the variable ordering P ∈ Pp(R) is fixed. The problem of inferring a
graph is then reduced to estimating the graph structure, which can be solved by finding a
solution of:

min
T∈Tp(R)

{
1

n

∥∥X(I − PTP T)
∥∥2

F
+ λ ‖T‖1

}
. (9)

Equation (9) is a well-studied problem in machine learning, as it is closely related
to the `1-constrained quadratic program, known as the Lasso in the statistics literature
(Tibshirani, 1996). Indeed, the `1-regularization leads to variable selection and convex
constraints that make the optimization problem easy to solve. We note here that this
allows us to always provide a locally optimal solution, i.e optimal weight estimates given a
hierarchy between the nodes.

A large number of efficient algorithms are available for computing the entire path of
solutions as λ is varied, e.g. the LARS algorithm of Efron et al. (2004) and its deriva-
tive. For example, in the context of the estimation of sparse undirected graphical models,
Meinshausen & Bühlmann (2006) fit a Lasso model to each variable, using the others as
predictors. The graphical Lasso (or glasso, Friedman et al. 2007) algorithm directly relies
on the estimation of the inverse of a structure covariance matrix assumed to be sparse. Im-
provements were proposed for example by Duchi et al. (2008) (improved stopping criterion)
and Witten et al. (2011) (estimation of a block-diagonal matrix). Other authors propose
to solve the optimization problem using an adaptation of classical optimization methods,
such as interior point (Yuan & Lin, 2007) or block coordinate descent methods (Banerjee
et al., 2008; Friedman et al., 2007).

We propose here an original convex optimization algorithm to find the solution in Equa-
tion (9) in a form similar to a steepest descent algorithm. Our proposed algorithm is much
quicker than a glasso approach, a desirable features as it will run at each iteration of the
global algorithm (see the “Search of an optimal T ∗” box in Figure 3 and the “Evaluate the
new individuals” item in Algorithm 2). Moreover, its mechanistic components (see Section
A of the Appendix) allowed us to derive the theoretical results of Theorem 1. The proposed
scheme can be seen as an adaptation of the LARS algorithm with matrix arguments. Let
(Tk)k≥0 the sequence of matrices defined as:

∀i, j ∈ J1, pK2, (Tk+1)ji = sign
(
(Uk)

j
i

)
max

(
0,
∣∣(Uk)ji ∣∣− λ

L

)
, (10)

where Uk = Tk −
∇
(

1
n‖X(I−PTkPT)‖2

F

)
L

, L is the Lipschitz constant of the gradient function

∇
(

1
n

∥∥X(I − PTkP T)
∥∥2

F

)
and sign is the sign of any element. Then, a solution of (9) is

given by performing Algorithm 1, where:

• the projection ProjTp(R)(T) of any p× p real-valued matrix T = ((Tk)
j
i)i,j on the set

Tp(R) is given by (
ProjTp(R)(Tk)

)j
i

=

{
0 if i < j,

(Tk)
j
i otherwise.

(11)

• the gradient of 1
n

∥∥X(I − PTkP T)
∥∥2

F
is

∇
(

1

n

∥∥X(I − PTkP T)
∥∥2

F

)
= − 2

n
(XP)T (X −XPTkP T)P. (12)

10

The detailed calculations are deferred to Section A of the Appendix.

Algorithm 1: Graph structure learning - minimization of (9)

Input: λ, L, ε > 0.
Initialization: T0 the null squared p× p matrix, k = 0 and e = +∞.
while e > ε do

Compute Uk = Tk −
∇
(

1
n‖X(I−PTkPT)‖2

F

)
L

with Equation (12);

Using Equation (10), compute the current matrix Tk+1 =
(
(Tk+1)ji

)
i,j

;

Project Tk+1 on Tp(R) with Equation (11): Tk+1 ← ProjTp(R)(Tk+1);

Compute e = ‖Tk+1 − Tk‖F ;
Increase k: k ← k + 1;

end
Output: Tk ∈ Tp(R) the unique solution of (9).

4.3 A Genetic Algorithm for a global exploration of the permu-
tation matrices space blending network topologies

As the optimal T can be calculated for any P using Algorithm 1, the optimization task (6)
comes down to exploring the Pp(R) space of permutation matrices in dimension p. We first
note that the number of permutation matrices is p!, which rules out any exact method,
even with relatively small p. We propose instead to use a meta-heuristic approach, which
has proven to be successful for many discrete optimization problems like wire-routing,
transportation problems or traveling salesman problem (Michalewicz, 1994; Dréo, 2006).

Among the different meta-heuristics (Simulated annealing, Tabu search, Ant Colony,...)
we have favored Genetic Algorithms (GA) because, despite limited convergence results
(Cerf, 1998; Michalewicz, 1994), it has been found much more efficient in problems related
to ours than alternatives with more established convergence proofs (e.g. Granville et al.
(1994) for simulated annealing), while allowing the use of parallel computation.

GAs mimic the process of natural evolution, and use a vocabulary derived from natural
genetics: populations (a set of potential solutions of the optimization problem), individu-
als (a particular solution) and genes (the components of a potential solution). In short, a
population made of N potential solutions of the optimization problem samples the search
space. This population is sequentially modified, with the aim of achieving a balance be-
tween exploiting the best solutions and exploring the search space, until some termination
condition is met.

We use here a classical GA, as described in Michalewicz (1994) for instance, which
is based on three main operators at each iteration: selection, crossover and mutation.
The population is reduced by selection; selection shrinks the population diversity based
on the individual fitness values. The crossover allows the mixing of good properties of
the population to create new composite individuals. Mutations change one (or a few in
more general GAs) components of the individuals to allow random space exploration. The
complete sketch of the algorithm is given in Algorithm 2. The details of the different
operators are given in the following.

11

Variables encoding As we show in Example 3, any P ∈ Pp(R) is uniquely defined by a
permutation vector of J1, pK. Hence, we use as a the search space Sp the set of permutations
of J1, pK, which is a well-suited formulation for GAs.

Example 3. Consider the permutation matrix (p = 5): P =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 . Then,

P is represented by the 1 5 4 3 2 vector, looking at the ranks of non-null values of P
column by column. The nodes are ranked according to their topological ordering.

Note that our problem closely resembles the classical traveling salesman problem (TSP),
which has been succesfully addressed by means of genetic algorithms (Grefenstette et al.,
1985; Davis et al., 1991). Identically to the TSP, we optimize over the space of permuta-
tions, which induces specific constraints for defining the crossover and mutation operators.
However, unlike the TSP, the problem is not circular (in the TSP, the last city is connected
to the first one), and the permutation here defines a hierarchy between nodes rather than
a path, which makes the use of TSP-designed operators a potentially poor solution. As we
show in the following, we carefully chose those operators in order to respect the nature of
the problem at hand.

Fitness function Given a potential solution pi ∈ Sp, the fitness function is defined as:

Ji = J(pi) =
1

n

∥∥X(I − PiT ∗i P T
i)
∥∥2

F
+ λ ‖T ∗i ‖1 ,

with Pi constructed from pi as in Example 3 and T ∗i the solution of Equation (9) with
P = Pi. Hence, at each step of the proposed GA, the evaluation of the fitness function
requires running the nested loop of our global algorithm.

Selection operator The selection operator (or survival step) consists in generating a
population of N individuals from the N existing individuals by random sampling (with
replacement, hence some individuals are duplicated and others are deleted). It aims at
improving the average quality of the population by giving to the best potential solutions
a higher probability to be copied in the intermediate population. We have chosen to use
the classical proportional selection of Holland (1992): each individuals is selected with a
probability proportional to its fitness value.

Crossover operator A crossover operator generates a new set of potential solutions
(children) from existing solutions (parents). Crossover aims at achieving at the same time
(i) a good exploration of the search space by mixing the characteristics of the parents to
create potentially new ones while (ii) preserving some of the characteristics of the parents
(good solution features). The crossover population (set of parents) is obtained by select-
ing each individual of the population with a probability pxo; the parents are then paired
randomly.

We have chosen the order-based crossover, originally proposed for the TSP (Michalewicz,
1994, Chapter 10), which is defined as follows. Given two parents p1 and p2, a random

12

set of crossover points are selected, which we denote Ω. It consists in a k-permutation of
J1, pK, with k uniformly drawn between 0 and p. A first child C1 between p1 and p2 is then
generated by:

1. fixing the crossover points of p1,

2. completing C1 with the missing numbers in the order they appear in p2.

A second child C2, complementary of C1, is created with the same procedure, replacing p1

with p2 (see Example 4).

Example 4. Consider the two following parents:

p1 4 3 10 7 5 9 1 2 6 8

p2 6 1 9 4 10 2 8 3 7 5

Assume that the crossover points randomly chosen are 4, 9, 2 and 8 (in red above).
Then, the child C1 is defined by inheriting those points from p1 and filling the other points
in the order they appear in p2:

C1 4 * * * * 9 * 2 * 8

p2 6 1 9 4 10 2 8 3 7 5/ / / /

⇒ 4 6 1 10 3 9 7 2 5 8

From a graphical point of view, a crossover between p1 and p2, which encode two
complete graphs GP1 and GP2 , constructs two new graphs. One of them, GC1 is composed
of the sub-graph of GP1 induced by the set of crossover points Ω and the sub-graph of GP1

induced by the complementary set ΩC of Ω in J1, pK (see Figure 4). The second child graph
GC2 is obtained in an identical manner by reversing the roles played by the parent graphs.

Figure 4: Graphical representation of crossover between two 10-node graphs (in red and
blue above).

13

Mutation Mutation operators usually correspond to the smallest possible change in an
individual (unary operator). We thus define it as an alteration of two neighbouring genes
(see Example 5). Graphically, a mutation consists in switching the arrowhead of an edge
between two nodes. Mutation is applied to each child with probability pm.

Example 5. A possible mutation for the first child of Example 4 is to swap the genes “1”
and “10” (in red below):

M1 4 6 1 10 3 9 7 2 5 8

Stopping criterion Two quantities are monitored along the iterations: the heterogeneity
of the population and the value of the objective function.

For the first indicator, we use the Shannon entropy, defined for each rank position
j ∈ J1, pK as:

Hj = −
p∑
i=1

Ni,j

N
log

(
Ni,j

N

)
,

where Ni,j is the number of times when i appears in position j. Hj = 0 if all the individuals
“agree” on the position of a node. On the contrary, it is maximum when we observe a
uniform distribution of the different nodes at a given position. The algorithm stops if
the population entropy value H =

∑N
j=1Hj drops below a threshold since H = 0 if all

the individuals are identical. A second criterion can terminate the GA if difference in the
average fitness (denoted J̄ thereafter) of the population between four consecutive iterations,
does not change by more than a predefined threshold.

Algorithm 2: Algorithm overview

Input: pxo, pm, εH > 0, εJ > 0, λ, L.
Initialization: Generate the initial population P0 with N permutations of J1, pK,
k = 0 and eJ = +∞.
while H > εH & eJ > εJ do

Generate Pk+1 as a random selection of N individuals from Pk;
Pick an even subset Pxo of Pk+1 (each individual of Pk+1 selected with
probability pxo);
Perform crossover on Pxo by randomly pairing the individuals;
Mutate each obtained individual with probability pm ;
Evaluate the new individuals Pm by running Algorithm 1;
Replace Pxo by Pm in Pk+1;
Compute the Shannon entropy H and the difference in the average fitness
eJ = max0≤i≤4

(
J̄(Pk+1)− J̄(Pk−i)

)
;

Increase k: k ← k + 1;

end

5 Numerical experiments

This section is dedicated to experimental studies to assess practical performances of our
method through two kinds of datasets. In a first phase, the aim of these applications is to

14

show that the global algorithm we propose has a sound behavior on a simulated toy data.
In a second phase, we demonstrate the ability of our algorithm to analyse data sets, which
have features encountered in real situations, and we compare it to other state-of-the art
methods, namely the Bootstrap Lasso (Bach, 2008) and the Random Forests (Huynh-Thu
et al., 2010). The competing methods are presented in Section 5.3.1 and Section 5.3.2
introduces the measures we used to assess the merits of the different methods. In Section
5.1, we present the calibration of the Genetic Algorithm parameters. Experimental results
are then detailed in Section 5.2 for the simulated toy dataset, while Section 5.3 consists in
the study of datasets which mimic the activity of a complex biological system. These latter
datasets were used in a Machine Learning challenge (DREAM4, Marbach et al. 2009b).

5.1 Algorithm parameters

Running the procedure of Algorithm 2 requires to define parameters of the outer loop
(choice of P) and of the nested loop (optimal T ∗). The evaluation of the Lipschitz gradient
constant L, used to find the optimal graph structure T ∗, is known as a hard well-studied
problem in optimization. Some authors propose to choose an estimate of L from a set of
possible values (Jones et al., 1993; Sergeyev & Kvasov, 2006), to estimate local Lipschitz
constants (Sergeyev, 1995), or to give it a priori (Evtushenko et al., 2009; Horst & Pardalos,
1995). Here, observing Equation (12), a major bound for L is given by:

L ≤ 2

n

∥∥XTX
∥∥
F
.

We found that setting L to this bound worked well in practice in all our scenarii.
Five parameters need to be tuned to run the Genetic Algorithm: the crossover rate pxo,

the mutation rate pm, the constant of the stopping criteria εH and εJ and the size of the
population N . For the first four parameters, we observed that their value had a limited
effect on the efficiency, hence we chose commonly used values in the literature (see Table 1).
The size of the population has a more complex effect and has been investigated in several
prospective papers (e.g. Schaffer et al. 1989; Alander 1992; Piszcz & Soule 2006; Ridge
2007) but without providing a definitive answer to the problem. In our simulation study,
we chose as a rule-of thumb N = 5p, which was found as a good compromise between
computational cost and space exploration on several experiments.

The complete parameter settings used in our experiments are reported in Table 1.

Parameter pxo pm N L max. nb. of eval. εH εJ
Value 0.25 0.5 5× p 2

n

∥∥XTX
∥∥
F

5× p 10−6 10−4

Table 1: Algorithm parameter settings

5.2 Algorithm illustration on a toy dataset

We consider here a 50 node DAG with a hierarchical shape: a first node is connected to five
nodes, each of those being connected to nine nodes. The non-zero parameters (G0)ij of the
matrix associated to the true DAG (shown in Figure 5) are uniformly sampled between 0.3
and one. Using this graph, we generate n = 100 observations following the hypotheses of

15

Section 2.1 (Gaussian, homoscedastic and centred error). We then run our global algorithm
on this simulated data set.

For this graph, the true permutation with our parametrization is p∗ = (50, 49, . . . , 1),
but many permutations are also correct: node 1 must be at the last position, and nodes 2
to 6 only need to be placed after the nodes they dominate. To illustrate the behavior of
our algorithm, we set the penalization parameter to 0.5 and we focus on the evolution of
the following quantities:

• the value of the fitness function (as in Equation 6) of the current best solution and
of the current population (Figure 6),

• the ranks of the nodes 1−6 in the current permutation associated to the best solution
(Figure 7), i.e. the position where they appear in the permutation,

• the Shannon entropy of each node in the current population (Figure 8), i.e. the
diversity of the position where they appear in the permutations.

True DAG

1

2
3

4
5

6

7
8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29
30

31

32

33
34

35 36

3738

39

40

41

42

43
44

45

46

47 48

49

50

Estimated DAG

1

2
3

4
5

6

7
8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29
30

31

32

33
34

35 36

3738

39

40

41

42

43
44

45

46

47 48

49

50

Figure 5: True DAG (left) and its estimation by our Algorithm 2 (right). Critical nodes
are labelled 1 to 6: 1 is the root, 2 to 6 are the second level nodes while nodes 7 to 50 are
leaf nodes. The estimated graph is almost identical to the actual one, except for the arrow
between nodes 1 and 6 (reverse direction) and an extra arrow between nodes 9 and 12.

We first observe that the estimated graph (Figure 5, right) is almost identical to the
true one (Figure 5, left). Most of the fitness function evolution is achieved within the
first 50 iterations/generations. Moreover, for this particular problem, many permutations
are equivalent from the likelihood perspective. This partly explains why the best solution
marginally changes until the end of the run (Figure 7), and why the Shannon entropy
(Figure 8) does not converge to zero, meaning that the population remains diverse. More-
over, the mutation operator introduces a small amount of randomness in the population at
each generation. More specifically, we observe that the Shannon entropy of the root node
1 approaches zero, while the other critical nodes 2 − 6 have a smaller entropy than the

16

0 50 100 150 200 250

41
.0

41
.5

42
.0

42
.5

Cost function

generation #

−
lo

gL
ik

el
ih

oo
d

Current best
Population

Figure 6: Evolution of the value of the fitness function of the current best solution (bold red
line) and of the current population (the grey area shows the interval between the 10th and
90th percentile). Most of the cost function improvement is achieved after 30 generations.
The population evolves towards small function values only but do not converge towards a
unique value.

non-critical ones: they simply have fewer degrees of freedom in their position relative to
non-critical nodes.

This first numerical experiment allows us to conclude that our algorithm show desirable
features as expected on this toy problem: rapid convergence towards a set of good solutions
with respect to the fitness while ensuring some diversity to guarantee a good exploration
of the space of permutations. Moreover, the diagnostic quantity are good indicator to
monitor the convergence of the proposed algorithm to find solutions to the minimization
problem 6.

5.3 DREAM data analysis

The second type of datasets we used mimics activations and regulations that occur in
gene regulatory networks. It is provided by the DREAM4 challenge on “In Silico Network
Challenge” (Marbach et al., 2009a). Note that although plausibly simulated, DREAM4
data sets are not real biological data sets. However, the used network structures (5 in total)
were extracted from E. coli and S. cerevisae -2 biological model organisms- trancriptional
networks. Note that these networks contain cycles, but self-loops were discarded. The gene
expression observations were not simulated by an equal noise Gaussian multivariate model.
On the contrary, stochastic differential equations were used to mimic the kinetic laws of
intricate and intertwined gene regulations. In addition to the biological noise simulated
from the stochastic differential equations, technical noise was added to reproduce actual

17

0 50 100 150 200 250

0
10

20
30

40
50

Best permutation

generation #

N
od

e
pa

th

node 1
node 2
node 3
node 4
node 5
node 6

Figure 7: Evolution of the ranks of the critical nodes 1 to 6 of the current best solution.
All the nodes evolve towards high ranks within the first 30 iterations. The node 1 takes
the rank 49 instead of 50, which explains the inversion of the arrow between node 1 and 6
(as pointed out Figure 5 caption).

gene measurement noise. All data sets were generated by the GNW software (Marbach et al.,
2009b).

Working with simulated networks, we are able to quantitatively and objectively assess
the merit of different methods in terms of true positive vs. false positive (noisy predictions)
and false negative (incomplete predictions) edges. While the analysis of a real data set is
certainly the final goal of a methodology motivated by a real problem like ours, there are
only imprecise ways of validating a method when analysing a real data set. Well known
systems are often small and even if knowledge has accumulated on them, these can be noisy
and difficult to gather to obtain a fair picture of what can adequately be considered as sets
of true positive and true negative sets of edges. Even if the data generation process of
the DREAM4 In Silico Network Challenge is completely understood, no existing method is
able to predict all regulatory relationships, but at the price of including many false positive
predictions. In addition, the DREAM4 datasets we considered have p = 100 nodes and
only n = 100 observations making it a a very challenging task.

5.3.1 Comparison to state-of-the art

We compare our Genetic Algorithm to other state-of-the art inference methods. These
methods decompose the prediction of the network into p feature selection sub-problems. In
each of the p sub-problems, one of the node is predicted from the other ones using random
forests (Breiman, 2001) or a bootstrapped version of the Lasso (Tibshirani, 1996), denoted
BootLasso thereafter. Random forests obtained the best performing rank on the DREAM4

18

0 50 100 150 200 250

0
1

2
3

4

Shannon entropy

generation #

en
tr

op
y

Figure 8: Evolution of the Shannon entropy of the critical nodes 1 to 6 and of the others
within the current population. The legend is the same as in Figure 7; black curves stand
for nodes 7 to 50.

In Silico Networks challenge Huynh-Thu et al. (2010) while the Bootstrap Lasso allowed
a meta-analysis to achieve even better performances than the best performing team of the
DREAM5 Systems Genetics challenge (de la Fuente & Stolovitzky, 2010; Vignes et al.,
2011; de la Fuente, 2013).

The Lasso is a `1-norm penalization technique for solving linear regression. Following
the works of Bach (2008), BootLasso uses bootstrapped estimates of the active regression
set based on a Lasso penalty: only those variables that are selected in every bootstrap are
kept in the model, and actual coefficient values are estimated from a straightforward least
square procedure. Note that we slightly relax the condition for a variable to be included in
the model. A variable was selected at a given penalty level if more than 80% of bootstrapped
samples led to selecting it in the model. This strategy was observed to be more efficient
in a different but related setting (de la Fuente, 2013). We used 100 bootstraps in our
numerical experiments and used all penalty values that detected a change in the regression
set for each of the sub-problems. As a last step, we refitted the finally predicted model
with least square estimates to obtained unbiased estimates of the regression coefficients.
Our implementation was based on the R package glmnet (Friedman et al., 2010).

For the random forest approach, each gene expression was successively considered as
a target, and the method sought regulators of that gene in the expressions of all other
genes. More specifically, regulators were detected as most significant explanatory variables
according to a variance reduction criterion in a regression tree framework. The process was
repeated on a randomized ensemble of trees, which made up the so-called random forest.
This method allowed us to derive a ranking of the importance of all regulator expressions
for the target by averaging the scores over all the trees of the random forest. We only kept

19

those scores which were higher than the cut-off score of a random pseudo-gene included in
each regression tree. The randomized subset of regulators tested at each tree split allowed
us to avoid local minima of the global score. Finally, the random sub-sample of the data,
we used for each tree avoided over-fitting of the data. Robust estimates were obtained by
repeating the analysis of each forest 100 times with 100 different random pseudo-gene. Our
implementation was based on the R package randomforest (Liaw & Wiener, 2002) with
1, 000 tress grown in each forest. Other parameters were kept to their default value, in
particular the number of nodes tested at each split was bp/3c.

5.3.2 Performance metrics

A classical performance measure for graph inference methods consists in comparing pre-
dicted interactions with the known edges in the true graph G0 using precision versus recall
(P/R) curves. We denote TP, respectively FP, FN and TN, the true positive (correctly pre-
dicted) edges, respectively the false positive (inferred by mistake) edges, the false negative
(missed) edges, and the true negative (correctly non-predicted) edges. The recall, defined
as TP

TP+FN
, measures the power (or sensitivity) of reconstruction of non-zero elements of the

true matrix G (or equivalently of the true network) for one method, whereas the precision,
equal to TP

TP+FP
, measures the accuracy of the reconstruction. The closer to 1 the precision

and the recall the better.
P/R curves represent the evolution of those quantities when varying the sparsity of the

methods. Random forests produce as an output a ranked list of regulatory interactions,
which corresponds to the edges of the inferred graph. Edges are then successively introduced
with decreasing confidence scores to produce the random forest P/R curve. Contrary to
the random forest algorithm, our proposed Genetic Algorithm and BootLasso are based
on penalized optimization: both seek linear dependencies between the variables with a
controlled level of parsimony (λ in Equation (5) for the Genetic Algorithm). For λ varying
from 0 (complete graph) to +∞ (empty graph), each of these methods produce a list of
edges, successively introduced in the model. These lists of edges define the precision versus
recall curves for these two approaches.

As a summary performance measurement, we also computed the classical area under
the P/R curve (AUPR).

5.4 Numerical results

The P/R curves for the five DREAM problems are shown in Figure 9. Each curve corre-
sponds to one of the five networks used in the challenge. In general, for all the problems
the three methods are able to achieve a precision equal to 1 (that is, to include only true
edges), but these correspond to overly sparse graphs (very small recall). Conversely, a recall
equal to 1 can only be reached by adding a large number of FP edges. The main differences
between the methods appear on the leftmost part of the P/R curves, especially B, C and
D: while the precision of BootLasso and random forests drops rapidly with a slow increases
in recall above 20% recall, it remains higher for the GA. Hence, its first predicted edges
are at least as accurate than those of the two other methods and it produces a larger set
of reliable edges. For graphs of lesser sparsity, none of the three methods is really able to
identify clearly reliable edges. Large number of FP edges are produced to achieve a recall
higher than 60%.

20

For Networks 1 and 5 (Figure 9 A and E), the GA recovers with more difficulty the
first true edges than BootLasso and Random Forests, with a high level of FP edges at
the beginning of the curve (low precision and low recall). However, as soon as the recall
exceeds the 10%, resp. 15%, for graph A, resp. for graph E, the GA is again better than
other methods.

In addition, Table 2 gives the areas under the P/R curves for all methods and net-
works. For this indicator, GA significantly outperforms the state-of-the-art methods for all
networks.

Method Genetic Algorithm BootLasso Random Forests
Network 1 0.182 0.118 0.154
Network 2 0.236 0.061 0.155
Network 3 0.348 0.171 0.231
Network 4 0.317 0.147 0.208
Network 5 0.267 0.169 0.197

Table 2: Area under the Precision vs. Recall curve for all networks and methods.

6 Conclusion and remarks

In this paper, we proposed a hybrid genetic/convex algorithm for inferring large graphs
based on a particular decomposition of the `1-penalized maximum likelihood criterion. We
obtained two oracle inequalities that ensure that the graph estimator converges to the true
graph under assumptions that mainly control the model structure: graph size (balance
between sparsity, number of nodes and maximal degree) and signal-to-noise ratio. From
an algorithmic point of view, the estimation task decomposes into two subproblems: the
node ordering estimation and the graph structure learning. The first one is a non-trivial
problem since we optimize over a discrete non-convex large dimensional set, which led us to
use a heuristic approach. The second one is a more common problem, related to the Lasso
one, for which we proposed a tailored procedure. The potential of such an approach clearly
appeared in the numerical experiments, for which the behavior of our algorithm seemed to
be competitive compared to the state-of-the art.

Nevertheless, we see many opportunities for further improvements. First, convergence
proof for the algorithm, although a challenging task, is worth investigating, for instance
using the works of Cerf (1998) on genetic algorithms. An alternative would be to consider
other optimization schemes for the node ordering with more established convergence proofs
(e.g., Granville et al., 1994, for simulated annealing).

Second, other potential extensions involve algorithmic considerations in order to im-
prove the calculation time, including a finer calibration of the algorithm parameters, an
initialization step for the gradient descent, and in general increasing the communication
between the nested and outer loops. Tackling very large datasets (from several thousands
of nodes) may also require a particular treatment, for instance by adding local search
operators to the genetic algorithm.

Finally, we would like to emphasize the graph identifiability problem: in our settings,
we assume the noise variances of all graph nodes to be equal to ensure graph identifiability

21

A B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision vs. recall curve

recall

pr
ec

is
io

n
Genetic Algorithm
BootLasso
Random Forests

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision vs. recall curve

recall

pr
ec

is
io

n

Genetic Algorithm
BootLasso
Random Forests

C D

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision vs. recall curve

recall

pr
ec

is
io

n

Genetic Algorithm
BootLasso
Random Forests

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision vs. recall curve

recall

pr
ec

is
io

n
Genetic Algorithm
BootLasso
Random Forests

E

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision vs. recall curve

recall

pr
ec

is
io

n

Genetic Algorithm
BootLasso
Random Forests

Figure 9: P/R curves for the five Dream networks and the three compared methods.

(that is no equivalence class of graphs). Such a hypothesis is of course restrictive and
likely to be violated for real datasets. In order to infer networks for any noise variances,
one solution consists in incorporating interventional data on the model. These data are

22

obtained from perturbations of the system (like gene knockouts) and make the equivalence
class of graphs smaller (Hauser & Bühlmann, 2012). Then, the use of such new data could
be combined with observational on the MLE estimator (as recently proposed by Hauser
& Bühlmann (2015) for a BIC-score penalized MLE, or by Rau et al. (2013) for learning
Gaussian Bayesian networks in the case of GRN inference) and a modification of our hybrid
algorithm could lead to the identification of the true graph.

23

A Calculation details of Section 4.2

In this section, we present the detailed calculations of Section 4.2. These should ensure
that a solution of Equation (9) is given by performing Algorithm 1. The objective function
in Equation (9) can be split into a sum of two functions: a convex, L-smooth part g(T) =
1
n

∥∥X −XPTP T
∥∥2

F
and a penalization term h(T) = λ ‖T‖1. As a L-smooth function, g is

differentiable, its gradient is L-Lipschitz-continuous and a standard convex analysis result
(Hiriart-Urruty & Lemaréchal, 1993) provides:

g(T) ≤ g(U) + 〈∇g(U), T − U〉F +
L

2
‖T − U‖2

F ,

for all p× p matrices T and U , where 〈., .〉F stands for the inner product associated to the
Frobenius norm.

A natural idea to minimize the g + h function consists in defining a sequence (Tk)k≥0

such that:

Tk+1 = argmin
T

{
g(Tk) + 〈∇g(Tk), T − Tk〉F +

L

2
‖T − Tk‖2

F + h(T)

}
, (13)

which ensures that the sequence (g(Tk) + h(Tk))k decreases. Then, adding L
2

∥∥∥∇g(Tk)
L

∥∥∥2

F

(which does not depend on T) to the minimization problem (13), a standard equality
between sums of squared norms yields:

Tk+1 = argmin
T

{
L

2

∥∥∥∥T − (Tk − ∇g(Tk)

L

)∥∥∥∥2

F

+ h(T)

}
. (14)

Denote Uk = Tk − ∇g(Tk)
L

. Equation (14) then becomes:

Tk+1 = argmin
T

{
L

2
‖T − Uk‖2

F + λ ‖T‖1

}
.

In an element-wise formulation, this writes:

(Tk+1)ji = argmin
T ji ∈R

{
L

2

(
T ji − (Uk)

j
i

)2
+ λ

∣∣T ji ∣∣} , (15)

for all i, j ∈ J1, pK.
Lemma 1 below allows us to derive an explicit solution to Equation (15). It follows

from technical calculations we don’t detail here.

Lemma 1. Denote ϕ(x) = (x− x0)2 + 2λ
L
|x|, with x0 ∈ R and λ, L ∈ (R+)2. A solution of

the optimization problem min
x∈R

ϕ(x) is given by:

x = sign(x0) max

(
0, |x0| −

λ

L

)
,

where sign(.) is the notation for the sign of any non-zero element.

From Lemma 1, we deduce that a solution of (15) is:

(Tk+1)ji = sign
(
(Uk)

j
i

)
max

(
0,
∣∣(Uk)ji ∣∣− λ

L

)
,

where Uk = Tk − ∇g(Tk)
L

. This concludes the justification for Algorithm 1.

24

B Proof of Theorem 1

Outline of the proof: in section B.1, we introduce the notations and present some technical
lemmas. We also propose a discussion around Assumption H3. The proof of Theorem
1 then works as follows: in section B.2, we investigate what happens when estimating a

wrong permutation P̂ /∈ Π0. We present a bound for
∑

j

(
|ω̂j|2 − 1

)2
, with ω̂j the variance

of εj(P̂), on a probability space where the random components behave well. We show that
this event has a large probability to happen and we obtain a contradiction of Assumption
Hid. Then, given a true order of variables P̂ ∈ Π0, in Section B.3, we present two bounds
for the estimator Ĝ by careful manipulations.

B.1 Notations and technical results

We begin by recalling the model structure and some induced technical results. Let us first
introduce useful graph terminology: in a graph G made of p vertices V = {X1, ..., Xp}
and a set of edges E ⊂ V × V , X i is said to be a parent of Xj if there is a directed edge
between X i and Xj (X i → Xj). More generally, X i is a descendant of Xj if there exists
a directed path (sequence of directed edges) between X i and Xj. We denote by Pa(Xj),
resp. Des(Xj), the set of parents, resp. descendants of Xj. Let also denote by ND(Xj),
the complementary set of Des(Xj) (the non-descendants of Xj). We recall here the model
we cast:

X = XG0 + ε,

where G0 =
(
(G0)ji

)
1≤i,j≤p with Gj

0 representing the p-vector of linear effects of all nodes

on node Xj. More precisely, a non-zero entry (G0)ji of G0 encodes a directed edge between
X i and Xj in the graph G0.

In this framework, lemma 2 below highlights independence between any non-descendant
of Xj and the noise associated to Xj, for a given node Xj.

Lemma 2 (Peters et al. (2011)). ∀X i ⊂ ND(Xj), εj ⊥ X i.

A proof of this result is given in (Peters et al., 2011). As a consequence, we deduce
that:

εj ⊥ X i, as soon as (G0)ji 6= 0. (16)

Remind that G0 can be written as a strictly lower-triangular matrix after permutation
of its rows and columns: G0 = P0T0P

T
0 , with P0 ∈ Π0 (the set of permutations compatible

with the true DAG). For any permutation P , we denote by G0(P) := PP T
0 G0P0P

T the
permuted graph (see Section 3.1 for more explanations), ε(P) := X − XG0(P) the p × p
residual term associated to G0(P) and Ω(P) its covariance matrix. Lemma 3 below is then
satisfied:

Lemma 3. The variables (εj(P))1≤j≤p are independent and the covariance matrix Ω(P) of
ε(P) is diagonal.

Proof. A consequence for Lemma 2 is that, for all j ∈ J1, pK, εj(P) ⊥
(
Xk
)
Xk∈Pa(Xj)

.

Moreover, for any Xk ∈ Pa(Xj), Xk (and by extension εk(P)) can be written as a linear
combination of

(
Xk′
)
Xk′∈Pa(Xk)

. We thus deduce that εj(P) is independent of everything

used before. This implies that all error terms are independent and the covariance matrix

25

Ω(P) of ε(P) is diagonal. Until the end of the proof, we denote by ωj(P) its diagonal
elements.

Next lemma then provides a technical relation between the error εj associated to variable
Xj and the permuted error εj(P).

Lemma 4. ‖ε‖2
F =

∑p
j=1

∑n
k=1(ε

j
k(P))

2

ω2
j (P)

.

Proof. The covariance matrix Σ of X is given by:

Σ = [(I −G0)−1]T (I −G0)−1 = [(I −G0(P))−1]TΩ(P)(I −G0(P))−1.

We thus have:

‖ε‖2
F = ‖X(I −G0)‖2

F = trace
(
X(I −G0) (X(I −G0))T

)
= trace

(
X(I −G0(P))Ω(P)−1(I −G0(P))TXT

)
.

Then, with Ω(P) = diag(ω2
1(P), ..., ω2

p(P)) (see Lemma 3), we deduce:

‖ε‖2
F =

∑
i,j

(
(X(I −G0(P)))ji

)2 1

ω2
j (P)

=

p∑
j=1

∑n
k=1

(
εjk(P)

)2

ω2
j (P)

,

which ends the proof.

Lemma 5 states that under Assumption H2−3, the minimal eigenvalue of the covariance
matrix Σ of X is controled while p (and n) grows to infinity.

Lemma 5. Denote by λmin the minimal eigenvalue of the covariance matrix Σ of X. Then,
the following bound holds for λmin:

λmin ≥
1

pmax
(
1, ‖G0‖2

∞
)

(1 + smax)
,

with smax as in H3.

Proof. Since P0 is orthogonal and T0 is strictly lower triangular, det(I −G0) = det(P0(I −
T0)P T

0) = 1, and det(Σ) = [(I −G0)−1]T (I −G0)−1 = 1.
Let χΣ(λ) be the characteristic polynomial of Σ and denote by (λ1, ..., λp) its p non-

negative eigenvalues. On the one hand, χΣ(λ) =
∏p

i=1(λ− λi) and

χ′Σ(0) = (−1)p−1

p∑
i=1

∏
j 6=i

λj.

A minor bound for |χ′Σ(0)| is
∣∣∣∏j 6=i λj

∣∣∣ for a given i ∈ J1, pK. In particular, considering the

index i that corresponds to the smallest eigenvalue and using det(Σ) = 1, we obtain:

|χ′Σ(0)| ≥

∣∣∣∣∣∣
∏

λj 6=λmin

λj

∣∣∣∣∣∣ =
1

λmin
. (17)

26

On the other hand, for a given matrix M ∈Mp×p(R), the derivative χ′M of the charac-
teristic polynomial of M is given by (Petersen & Pedersen, 2012):

χ′M(λ) = − det(M − λI) trace
(
(M − λI)−1

)
.

Using det(Σ) = 1 again, we thus have:

|χ′Σ(0)| = trace(Σ−1) = ‖I −G0‖2
F .

To finish the proof, note that the diagonal of G0 is null:

χΣ(0)′ = ‖I −G0‖2
F =

p∑
i=1

1 +

p∑
i=1

p∑
j=1
j<i

(
(G0)ji

)2

≤ p
(
1 + smax ‖G0‖2

∞
)

≤ pmax
(
1, ‖G0‖2

∞
)

(1 + smax).

This ends the proof with Equation (17).

B.2 Estimation of the order of variables

We now turn to the proof of the first part of Theorem 1. To prove it, we assume that the
permutation we estimate is a wrong permutation: P̂ /∈ Π0. For clarity purpose, until the
end of the proof, we denote by Ĝ0 := G0(P̂), ε̂ := ε(P̂) and ω̂ := ω(P̂). A standard norm
equality yields:∥∥∥XĜ−XĜ0

∥∥∥2

F
=
∥∥∥X −XĜ∥∥∥2

F
−
∥∥∥X −XĜ0

∥∥∥2

F
+ 2〈X −XĜ0, XĜ−XĜ0〉F ,

where Ĝ is defined as (see Equation (5)),

1

n

∥∥∥X −XĜ∥∥∥2

F
+ λ

∥∥∥Ĝ∥∥∥
1
≤ 1

n
‖X −XG0‖2

F + λ ‖G0‖1 .

Then, Lemma 4 implies:

1

n

∥∥∥XĜ−XĜ0

∥∥∥2

F
+ λ

∥∥∥Ĝ∥∥∥
1
≤ 1

n

p∑
j=1

∑n
k=1

(
ε̂jk
)2

|ω̂j|2
+ λ ‖G0‖1 −

1

n
‖ε̂‖2

F +
2

n
〈ε̂, XĜ−XĜ0〉F

≤ 1

n

p∑
j=1

(
1

|ω̂j|2
− 1

)
n∑
k=1

(
ε̂jk
)2

+
2

n
〈ε̂, XĜ−XĜ0〉F + λ ‖G0‖1 ,

27

and we finally obtain:

1

n

∥∥∥XĜ−XĜ0

∥∥∥2

F
+ λ

∥∥∥Ĝ∥∥∥
1
≤

p∑
j=1

|ω̂j|2 − 1
n

∑n
k=1

(
ε̂jk
)2

|ω̂j|2
(
|ω̂j|2 − 1

)
+

p∑
j=1

(
1− |ω̂j|2

)
+

2

n
〈ε̂, XĜ−XĜ0〉F + λ ‖G0‖1

≤

√√√√ p∑
j=1

(
|ω̂j|2 − 1

n

∑n
k=1

(
ε̂jk
)2

|ω̂j|2

)2

︸ ︷︷ ︸
=I

√√√√ p∑
j=1

(
|ω̂j|2 − 1

)2

+

p∑
j=1

(
1− |ω̂j|2

)
︸ ︷︷ ︸

=II

+
2

n
〈ε̂, XĜ−XĜ0〉F︸ ︷︷ ︸

=III

+λ ‖G0‖1 . (18)

Lemmas 6 and 7 below aim at bounding the terms I and III, with large probability.

Lemma 6. Assume that Assumption Hdim is satisfied. Then, with probability at least 1− 2
p
,

there exists C1 > 0 such that:

p∑
j=1

(
|ω̂j|2 − 1

n

∑n
k=1

(
ε̂jk
)2

|ω̂j|2

)2

≤ C1
log p

n
(p+ ŝ0) ,

where ŝ0 :=
∑

i,j 1(Ĝ0)
j

i
6=0

is the number of non-zero coefficients of Ĝ0.

Proof of Lemma 6. The proof of this result is already given in van de Geer & Bühlmann
(2013). For a better understanding, we recall key elements of the proof here. Denote by:

Zj(P) :=
1
n

∑n
k=1

(
εjk(P)

)2 − |ωj(P)|2

|ωj(P)|2
,

and assume that G0(P) is s0(P)-sparse, i.e. G0(P) has s0(P) non-zero entries. Using
Bernstein-like concentration inequalities, we can show that:

P

(
∃P,

p∑
j=1

Zj(P)2 ≥ 8

(
pt+ (1 + 8α)s0(P) log(p) + 2p log p

n

)
+ 8

(
4p(t2 + log2 p)

n2

))
≤ 2e−t,

for all t ≥ 0, where α is some constant such that p4 ≤ αn. The conclusion then holds with
P = P̂ and t = log p.

Lemma 7. Assume that Assumptions H1 and Hdim are satisfied. Then, with probability
at least 1− 1

p
, there exists C3 > 0 such that:

2

n
〈ε̂, XĜ−XĜ0〉F ≤ C3

√
log p

n
max
j

√
ŝ0,j

∥∥∥Ĝ− Ĝ0

∥∥∥
1
,

where ŝ0,j is the number of non-zero coefficients of the p-vector Ĝj
0.

28

Proof of Lemma 7. Remark that:

〈ε̂, XĜ−XĜ0〉F =
∑
i,j

(
Ĝ− Ĝ0

)j
i

∑
k

X i
kε̂
j
k.

To prove Lemma 7, we aim at showing that, uniformly over the set of permutation matrices
and uniformly on 1 ≤ i ≤ p,

∑
kX

i
kε
j
k(P) is bounded.

Let (Vk)k=1,..,n i.i.d random variables generated according to a N (0, 1) distribution. A
standard concentration inequality yields:

P

(
1

n

n∑
k=1

Vk ≥ t

)
≤ exp(−nt2).

Let P ∈ Pp(R). Denote by Aj(P) and Bj(P) the sets defined as:

Aj(P) = {β ∈ Rp,∀βi 6= 0, X i ⊥ εj(P), with εj(P) = Xj −
∑

kX
kβk}

Bj(P) =

{
∃β ∈ Aj(P),

2

n

∑
k

X i
kε
j
k(P) ≥ 2σ0

√
t+ sj(P) log p+ 2 log p

n

}
,

where εj(P) = Xj −
∑

kX
kβk and sj(P) is the number of non-zero entries of some β ∈

Bj(P). Remark that for all j, Gj
0(P) ∈ Aj(P).

Under Assumption H1, the random variables εj(P) follow aN (0, ω2
j (P)), with

∣∣ω2
j (P)

∣∣ ≤
σ2

0. We thus deduce that:

P(Bj(P)) ≤ exp (− (t+ sj(P) log(p) + 2 log p)) .

Let m ∈ J1, pK. We now let P vary over all permutations such that sj(P) = m, and we
denote Πm this set. On Πm, node j has exactly m parents, and there exists at most

(
p
m

)
possibilities for P . We then have:

P

(⋃
P∈Πm

Bj(P)

)
≤

(
p

m

)
exp (− (t+ sj(P) log(p) + 2 log p))

≤ exp (− (t+ 2 log p)) .

For m and j varying as possible, we conclude that:

P

 ⋃
j∈J1,pK

⋃
P∈Π

Bj(P)

 ≤ exp (−t) .

Then, with probability at least 1− e−t,

〈ε̂, XĜ−XĜ0〉F ≤
∑
i,j

2σ0

√
t+ ŝ0,j log p+ 2 log p

n

(
Ĝ− Ĝ0

)j
i

≤ 2σ0 max
j

√
t+ ŝ0,j log p+ 2 log p

n

∥∥∥Ĝ− Ĝ0

∥∥∥
1
,

which ends the proof with t = log p.

29

The last term II of Equation (18) is bounded using inequality log(1+x) ≤ x− 1
2(1+c20)

x2,

satisfied for −1 ≤ x ≤ c0, to x = |ω̂j|2 − 1, which satisfies −1 ≤ x ≤ σ2
0 − 1 (Hypotheses

H1):
p∑
j=1

log
(
|ω̂j|2

)
≤

p∑
j=1

(
|ω̂j|2 − 1

)
− 1

2σ4
0

p∑
j=1

(
|ω̂j|2 − 1

)2
.

Moreover, det(Σ) =
∏
ω̂2
j = 1 (see the proof of Lemma 5 for more details). We thus deduce

that
∑

j log
(
|ω̂j|2

)
= 0 and we finally obtain:

II ≤ − 1

2σ4
0

p∑
j=1

(
|ω̂j|2 − 1

)2
. (19)

From Lemmas 6 and 7 and Equation (19), the following inequality is deduced from
Equation (18), with probability at least 1− 3

p
:

1

n

∥∥∥XĜ−XĜ0

∥∥∥2

F
+λ

∥∥∥Ĝ∥∥∥
1
≤ C1

√
log p

n

√
p+ ŝ0

√√√√ p∑
j=1

(
|ω̂j|2 − 1

)2− 1

2σ4
0

p∑
j=1

(
|ω̂j|2 − 1

)2

+ C3

√
log p

n
max
j

√
ŝ0,j

∥∥∥Ĝ− Ĝ0

∥∥∥
1

+ λ ‖G0‖1 .

Let δ > 0 such that δ ≤ 1
2σ4

0
. Using 2xy ≤ x2

a
+ ay2 with a = 2δ, we can show with

probability at least 1− 3
p
, that:

1

n

∥∥∥XĜ−XĜ0

∥∥∥2

F
+ λ

∥∥∥Ĝ∥∥∥
1
≤ C1 log p

4δn
(p+ ŝ0) +

(
δ − 1

2σ4
0

) p∑
j=1

(
|ω̂j|2 − 1

)2

+ C3

√
log p

n
max
j

√
ŝ0,j

∥∥∥Ĝ− Ĝ0

∥∥∥
1

+ λ ‖G0‖1 . (20)

Lemma 8. Assume that Assumptions H1−3 and Hdim hold. Then, with probability at least
1− 2

p
:

1

n

∥∥∥X (Ĝ− Ĝ0

)∥∥∥2

F
≥

(
3λmin

4
− 2

√
log p

n
− 3σ0

√
2p log p

n

)2 ∥∥∥Ĝ− Ĝ0

∥∥∥2

F
.

Proof of Lemma 8. Denote ‖.‖2 the standard euclidian norm. This result is a consequence
of Theorem 7.3 of van de Geer & Bühlmann (2013): for all t > 0, with probability at least
1− 2e−t, we have:

1

n
‖Xβ‖2 ≥

(
3λmin

4
−
√

2(t+ log p)

n
− 3σ0

√
sβ log p

n

)
‖β‖2 , (21)

uniformly on β ∈ Rp, where sβ is the number of non-zero coefficients of β.

30

Moreover, 1
n

∥∥∥X (Ĝ− Ĝ0

)∥∥∥2

F
= 1

n

∑
j

∥∥∥∥X (Ĝ− Ĝ0

)j∥∥∥∥2

2

.Applying (21) to β =
(
Ĝ− Ĝ0

)j
(j ∈ J1, pK), with probability at least 1− 2e−t:

1

n

∥∥∥∥X (Ĝ− Ĝ0

)j∥∥∥∥
2

≥

3λmin
4
−
√

2(t+ log p)

n
− 3σ0

√
s
(Ĝ−Ĝ0)

j log p

n

∥∥∥∥(Ĝ− Ĝ0

)j∥∥∥∥
2

,

where the quantity between brackets is non-negative by Assumption H2. The conclusion
holds using s

(Ĝ−Ĝ0)
j ≤ 2p and setting t = log p.

From Lemma 8 and Equation (20), we deduce that:(
3λmin

4
− 2

√
log p

n
− 3σ0

√
2p log p

n

)2 ∥∥∥Ĝ− Ĝ0

∥∥∥2

F
− C3

√
log p

n
max
j

√
ŝ0,j

∥∥∥Ĝ− Ĝ0

∥∥∥
1

+

(
1

2σ4
0

− δ
) p∑

j=1

(
|ω̂j|2 − 1

)2
+ λ

∥∥∥Ĝ∥∥∥
1
≤ C1 log p

4δn
(p+ ŝ0) + λ ‖G0‖1 .

For all j ∈ J1, pK, we finally use the Cauchy-Schwarz inequality:∥∥∥∥(Ĝ− Ĝ0

)j∥∥∥∥
1

≤
√
s
(Ĝ−Ĝ0)

j

∥∥∥∥(Ĝ− Ĝ0

)j∥∥∥∥
2

≤
√

2p

∥∥∥∥(Ĝ− Ĝ0

)j∥∥∥∥
2

,

which gives:

max
j

√
ŝ0,j

∥∥∥Ĝ− Ĝ0

∥∥∥
1
≤
√

2p
∥∥∥Ĝ− Ĝ0

∥∥∥
F
.

Therefore,(3λmin
4
− 2

√
log p

n
− 3σ0

√
2p log p

n

)2 ∥∥∥Ĝ− Ĝ0

∥∥∥
F
− C3p

√
2 log p

n

∥∥∥Ĝ− Ĝ0

∥∥∥
F︸ ︷︷ ︸

=A

+

(
1

2σ4
0

− δ
) p∑

j=1

(
|ω̂j|2 − 1

)2
+ λ

∥∥∥Ĝ∥∥∥
1

≤ C1 log p

4δn
(p+ ŝ0) + λ ‖G0‖1 ≤

C1p
2 log p

4δn
+ λsmaxp ‖G0‖∞ , (22)

where we have used ‖G0‖1 =
∑

i,j |G0|ji ≤
∑p

i=1 smax maxj |G0|ji .
Lemma 9 below gives us a bound for A.

Lemma 9.(3λmin
4
− 2

√
log p

n
− 3σ0

√
2p log p

n

)2 ∥∥∥Ĝ− Ĝ0

∥∥∥
F
− C3p

√
2 log p

n

∥∥∥Ĝ− Ĝ0

∥∥∥
F

≥ −
C2

3p
2 log p

n

2

(
3λmin

4
− 2
√

log p
n
− 3σ0

√
2p log p
n

)2 .

31

Proof of Lemma 9. A is minimal as soon as
∥∥∥Ĝ− Ĝ0

∥∥∥
F

=
Cp
√

2 log p
n

2
(

3λmin
4
−2
√

log p
n
−3σ0
√

2p log p
n

)2 , and

its minimal value is:

A = −
C2

3p
2 log p

n

2

(
3λmin

4
− 2
√

log p
n
− 3σ0

√
2p log p
n

)2 .

If η given in Assumption Hid satisfies

η ≤
1

2σ4
0
− δ

C1 log p
4δn

p2 + λpsmax ‖G0‖∞ +
C2

3p
2 log p

2n
(

3λmin
4
−2
√

log p
n
−3σ0
√

2p log p
n

)2 · p, (23)

Equation (22) then contradicts Assumption Hid. Setting λ = C
√

log p
n
smax with smax chosen

as in Assumption H3, η satisfies Equation (23) with probability at least 1 − 5
p
. We then

deduce that the estimated permutation P̂ is a good permutation, i.e. P̂ ∈ Π0.

B.3 Inequalities in prediction and estimation

We now restart the proof with P̂ ∈ Π0, Ĝ0 = G0 and ω̂j = 1, for all j. Equation (20)
provides:

1

n

∥∥∥XĜ−XG0

∥∥∥2

F
+ λ

∥∥∥Ĝ∥∥∥
1
≤ λ

2

∥∥∥Ĝ−G0

∥∥∥
1

+ λ ‖G0‖1 . (24)

We thus deduce that λ
2

∥∥∥Ĝ−G0

∥∥∥
1
≤ λ

(
‖G0‖1 −

∥∥∥Ĝ∥∥∥
1

+
∥∥∥Ĝ−G0

∥∥∥
1

)
.Denote S0 = {(i, j) ∈

J1, pK2, (G0)ji 6= 0} the support of G0. Then, one has

‖G0‖1 −
∥∥∥Ĝ∥∥∥

1
+
∥∥∥Ĝ−G0

∥∥∥
1

= 0 if (i, j) /∈ S0

≤ 2

∣∣∣∣(Ĝ−G0

)j
i

∣∣∣∣ otherwise,

and we finally obtain:
λ

2

∥∥∥Ĝ−G0

∥∥∥
1
≤ 2λ

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

,

where (Ĝ−G0)S0 is the matrix that has the same components as Ĝ−G0 on S0, 0 otherwise.

Using
∥∥∥Ĝ−G0

∥∥∥
1

=

∥∥∥∥(Ĝ−G0

)
SC0

∥∥∥∥
1

+

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

, where SC0 is the notation for the

complementary set of S0, the following inequality holds:∥∥∥∥(Ĝ−G0

)
SC0

∥∥∥∥
1

≤ 3

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

. (25)

We now apply Assumption HRE(s) to the matrix Ĝ−G0 which satisfies Equation (25):

κ (s)

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
F

≤ 1√
n

∥∥∥XĜ−XG∥∥∥
F
. (26)

32

From Equation (24) and using the same calculus as previously, we can show that:

1

n

∥∥∥XĜ−XG0

∥∥∥2

F
+
λ

2

∥∥∥Ĝ−G0

∥∥∥
1
≤ 2λ

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

. (27)

The Cauchy-Schwarz inequality now gives:∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

≤
√
smax

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
F

. (28)

From Equations (26), (27) and (28), we finally obtain:

1

n

∥∥∥XĜ−XG0

∥∥∥2

F
+
λ

2

∥∥∥Ĝ−G0

∥∥∥
1
≤

2λ
√
smax

κ (s)
√
n

∥∥∥XĜ−XG0

∥∥∥
F
.

As a conclusion:
1

n

∥∥∥XĜ−XG0

∥∥∥2

F
≤ 4λ2smax

κ2 (s)
.

The proof of the inequality in prediction follows with the definition of λ.
To obtain an inequality on estimation, remind that:∥∥∥∥(Ĝ−G0

)
SC0

∥∥∥∥
1

≤ 3

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

.

We thus have∥∥∥Ĝ−G0

∥∥∥
1

=

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

+

∥∥∥∥(Ĝ−G0

)
SC0

∥∥∥∥
1

≤ 4

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
1

≤ 4
√
smax

∥∥∥∥(Ĝ−G0

)
S0

∥∥∥∥
F

,

with Cauchy-Schwarz inequality. Then, using again HRE(s) to Ĝ − Ĝ0 which satisfies
Equation (24):

∥∥∥Ĝ−G0

∥∥∥
1
≤

4
√
smax
κ(s)

∥∥∥X (Ĝ−G0

)∥∥∥
F√

n

≤ 16C

κ2(s)

√
log p

n
s3/2
max,

where we have used the inequality of prediction (7). This ends the proof.

References

Alander, J. (1992). On optimal population size of genetic algorithms. In Proceedings of
the IEEE Computer Systems and Software Engineering.

Bach, F. (2008). Bolasso: model consistent lasso estimation through the bootstrap. In
Proceedings of the Twenty-fifth International Conference on Machine Learning.

33

Banerjee, O., El Ghaoui, L. & d’Aspremont, A. (2008). Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal
of Machine Learning Research 9, 485–516.

Barabási, A. & Oltvai, Z. (2004). Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics 5, 101–113.

Bickel, P. & Li, B. (2006). Regularization in statistics. Test 15, 271–344.

Bickel, P. J., Ritov, Y. & Tsybakov, A. B. (2009). Simultaneous analysis of lasso
and Dantzig selector. The Annals of Statistics 37, 1705–1732.

Breiman, L. (2001). Random forests. Machine Learning 45, 532.

Bühlmann, P. (2013). Causal statistical inference in high dimensions. Mathematical
Methods of Operations Research 77, 357–370.

Bühlmann, P. & van de Geer, S. (2011). Statistics for High-Dimensional Data: Meth-
ods, Theory and Applications. Springer Publishing Company, Incorporated, 1st ed.

Cerf, R. (1998). Asymptotic convergence of genetic algorithms. Advances in Applied
Probability 30, 521–550.

Chickering, D. M. (1996). Learning Bayesian networks is NP-complete. In Learning
from data (Fort Lauderdale, FL, 1995), vol. 112 of Lecture Notes in Statist. Springer,
New York, pp. 121–130.

Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal
Machine Learning Research 3, 507–554.

Cormen, T. H., Stein, C., Rivest, R. L. & Leiserson, C. E. (2001). Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd ed.

Csiszár, I. & Tusnády, G. (1984). Information geometry and alternating minimization
procedures. Statistics & Decisions suppl. 1, 205–237. Recent results in estimation
theory and related topics.

Davis, L. et al. (1991). Handbook of genetic algorithms, vol. 115. Van Nostrand Reinhold
New York.

de la Fuente, A., ed. (2013). Gene Network Inference, Verification of Methods for
Systems Genetics Data, chap. A Panel of Learning Methods for the Reconstruction of
Gene Regulatory Networks in a Systems Genetics. Springer, pp. 9–31.

de la Fuente, A. & Stolovitzky, G. (2010). Dream5 systems genetics challenge.
http://wiki.c2b2.columbia.edu/dream/index.php/D5c3.

Dréo, J. (2006). Metaheuristics for hard optimization: methods and case studies. Springer
Science & Business Media.

Duchi, J., Gould, S. & Koller, D. (2008). Projected subgradient methods for learning
sparse gaussians. In Proceedings of the 24th Conference on Uncertainty in Artificial
Intelligence.

34

Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004). Least angle regression.
The Annals of Statistics 32, 407–499.

El Karoui, N. (2008). Spectrum estimation for large dimensional covariance matrices
using random matrix theory. The Annals of Statistics 36, 2757–2790.

Ellis, B. & Wong, W. (2008). Learning causal Bayesian network structures from exper-
imental data. Journal of the American Statistical Association 103, 778–789.

Evtushenko, Y., Malkova, V. & Stanevichyus, A. (2009). Parallel global optimiza-
tion of functions of several variables. Comput. Math. Math. Phys. 49, 246–260.

Friedman, J., Hastie, T. & Tibshirani, R. (2007). Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics 9, 432–441.

Friedman, J., Hastie, T. & Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software 33, 1–22.

Friedman, N. & Koller, D. (2003). Being Bayesian about network structure: a Bayesian
approach to structure discovery in Bayesian networks. Machine Learning 50, 95–125.

Fu, F. & Zhou, Q. (2013). Learning sparse causal Gaussian networks with experimental
intervention: regularization and coordinate descent. Journal of the American Statistical
Association 108, 288–300.

Giraud, C. (2014). Introduction to High-Dimensional Statistics. Monographs on Statistics
& Applied Probability. CRC Press.

Granville, V., Krivanek, M. & Rasson, J.-P. (1994). Simulated annealing: A proof
of convergence. IEEE Transactions on Pattern Analysis and Machine Intelligence 16,
652–656.

Grefenstette, J., Gopal, R., Rosmaita, B. & Van Gucht, D. (1985). Genetic
algorithms for the traveling salesman problem. In Proceedings of the first International
Conference on Genetic Algorithms and their Applications.

Grzegorczyk, M. & Husmeier, D. (2008). Improving the structure MCMC sampler
for bayesian networks by introducing a new edge reversal move. Machine Learning 71.

Guyon, I., Aliferis, C. & Cooper, G., eds. (2010). Causation and Prediction Chal-
lenge: Challenges in Machine Learning, vol. 2. Microtome Publishing.

Hauser, A. & Bühlmann, P. (2012). Characterization and greedy learning of inter-
ventional Markov equivalence classes of directed acyclic graphs. Journal of Machine
Learning Research 13, 2409–2464.

Hauser, A. & Bühlmann, P. (2015). Jointly interventional and observational data: es-
timation of interventional Markov equivalence classes of directed acyclic graphs. Journal
of the Royal Statistical Society. Series B 77, 291–318.

Hiriart-Urruty, J. B. & Lemaréchal, C. (1993). Convex analysis and minimization
algorithms. II, vol. 306 of Fundamental Principles of Mathematical Sciences. Berlin:
Springer-Verlag.

35

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Cambridge,
MA, USA: MIT Press.

Horst, R. & Pardalos, P., eds. (1995). Handbook of global optimization. Nonconvex
optimization and its applications. Dordrecht, Boston: Kluwer Academic Publishers.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. (2010). Inferring
regulatory networks from expression data using tree-based methods. PLoS ONE 5,
e12776.

Jones, D. R., Perttunen, C. D. & Stuckman, B. E. (1993). Lipschitzian optimization
without the lipschitz constant. Journal of Optimization Theory and Applications 79,
157–181.

Kahn, A. (1962). Topological sorting of large networks. Communications of the ACM 5,
558562.

Kalisch, M. & Bühlmann, P. (2007). Estimating high-dimensional directed acyclic
graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613–636.

Koivisto, M. & Sood, K. (2004). Exact bayesian structure discovery in Bayesian net-
works. Journal of Machine Learning Research 5, 549–573.

Ledoit, O. & Wolf, M. (2015). Spectrum estimation: A unified framework for covariance
matrix estimation and pca in large dimensions. Journal of Multivariate Analysis 139,
360384.

Liaw, A. & Wiener, M. (2002). Classification and regression by randomforest. R News
2, 18–22.

Liu, H., Wang, L. & Zhao, T. (2014). Sparse covariance matrix estimation with eigen-
value constraints. Journal of Computational and Graphical Statistics 23, 439–459.

Lounici, K., Pontil, M., Tsybakov, A. & van de Geer, S. (2009). Taking advantage
of sparsity in multi-task learning. In Proceedings of the 22nd Conference on Learning
Theory.

Marbach, D., Schaffter, T. & Floreano, D. (2009a). Dream4 in silico network
challenge. http://wiki.c2b2.columbia.edu/dream/index.php?title=D4c2.

Marbach, D., Schaffter, T., Mattiussi, C. & Floreano, D. (2009b). Generat-
ing realistic in silico gene networks for performance assessment of reverse engineering
methods. Journal of Computational Biology 16, 229–239.

Meinshausen, N. & Bühlmann, P. (2006). High-dimensional graphs and variable se-
lection with the lasso. The Annals of Statistics 34, 1436–1462.

Mestre, X. (2008). Improved estimation of eigenvalues and eigenvectors of covariance
matrices using their sample estimates. IEEE Transactions on Information Theory 54,
5113–5129.

36

Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs.
Berlin: Springer-Verlag, 2nd ed.

Newman, M. (2003). The structure and function of complex networks. SIAM Review 45,
157–256.

Pearl, J. (2009). Causality. Cambridge: Cambridge University Press. Models, reasoning,
and inference.

Peters, J., Mooij, J., Janzing, D. & Schölkopf, B. (2014). Causal discovery with
continuous additive noise models. Journal of Machine Learning Research 15, 2009–2053.

Peters, J., Mooij, J. M., Janzing, D. & Schölkopf, B. (2011). Identifiability of
causal graphs using functional models. In 27th Conference on Uncertainty in Artificial
Intelligence (UAI 2011).

Petersen, K. B. & Pedersen, M. S. (2012). The matrix cookbook. http://www2.

imm.dtu.dk/pubdb/p.php?3274. Version 20121115.

Piszcz, A. & Soule, T. (2006). Genetic programming: Optimal population sizes for vary-
ing complexity problem. In Proceedings of the Genetic and Evolutionary Computation
Conference.

Rau, A., Jaffr’ezic, F. & Nuel, G. (2013). Joint estimation of causal effects from
observational and intervention gene expression data. BMC Systems Biology 7, 111.

Ridge, E. (2007). Design of Experiments for the Tuning of Optimisation Algorithm. Ph.D.
thesis, The University of York, Department of Computer Science.

Schaffer, J. D., Caruana, R., Eshelman, L. J. & Das, R. (1989). A study of control
parameters affecting online performance of genetic algorithms for function optimization.
In Proceedings of the Third International Conference on Genetic Algorithms.

Schwarz, G. E. (1978). Estimating the dimension of a model. The Annals of Statistics
6, 461–464.

Sergeyev, Y. (1995). An information global optimization algorithm with local tuning.
SIAM Journal on Optimization 5, 858–870.

Sergeyev, Y. & Kvasov, D. (2006). Global search based on efficient diagonal partitions
and a set of lipschitz constants. SIAM Journal on Optimization 16, 910–937.

Shojaie, A. & Michailidis, G. (2010). Penalized likelihood methods for estimation of
sparse high-dimensional directed acyclic graphs. Biometrika 97, 519–538.

Silander, T. & Myllymäki, T. (2006). A simple approach for finding the globally
optimal bayesian network structure. In Proceedings of the Twenty-second Conference on
Uncertainty in Artificial Intelligence (UAI).

Souma, W., Fujiwara, Y. & Aoyama, H. (2006). The Complex Networks of Economic
Interactions, chap. Heterogeneous Economic Networks. Springer, pp. 79–92.

37

Spirtes, P., Glymour, C. & Scheines, R. (2000). Causation, prediction, and search.
Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press, 2nd ed.
With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper
and Thomas Richardson, A Bradford Book.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B 58, 267–288.

Tsarmadinos, I., Brown, L. & Aliferis, C. (2006). The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning 65, 31–78.

van de Geer, S. & Bühlmann, P. (2013). `0-penalized maximum likelihood for sparse
directed acyclic graphs. The Annals of Statistics 41, 536–567.

van de Geer, S., Bühlmann, P. & Zhou, S. (2011). The adaptive and the thresholded
lasso for potentially misspecified models (and a lower bound for the lasso). Electronic
Journal of Statistics 5, 688–749.

Verma, T., Araújo, N. & Herrmann, H. (2014). Revealing the structure of the world
airline network. Scientific Reports 5.

Verma, T. & Pearl, J. (1991). Equivalence and synthesis of causal models. In Proceed-
ings of the 6th Annual Conference on Uncertainty in Artificial Intelligence (UAI).

Verzelen, N. (2012). Minimax risks for sparse regressions: Ultra-high dimensional phe-
nomenons. Electronic Journal of Statistics 6, 38–90.

Vignes, M., Vandel, J., Allouche, D., Ramadan-Alban, N., Cierco-Ayrolles,
C., Schiex, T., Mangin, B. & de Givry, S. (2011). Gene regulatory network recon-
struction using bayesian networks, the dantzig selector, the lasso and their meta-analysis.
PLoS ONE 6, e29165.

Wainwright, M. (2009). Information-theoretic limits on sparsity recovery in the high-
dimensional and noisy setting. IEEE Transactions on Information Theory 55, 5728–5741.

Witten, D., Freidman, J. & Simon, N. (2011). New insights and faster computations
for the graphical lasso. Journal of Computational and Graphical Statistics 20, 892–900.

Yuan, M. & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical
model. Biometrika 94, 19–35.

Zhou, Q. (2011). Multi-domain sampling with applications to structural inference of
Bayesian networks. Journal of the American Statistical Association 106, 1317–1330.

38

