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Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems

A wandering domain for a diffeomorphism Ψ of A n " T ˚Tn is an open connected set W such that Ψ k pW q X W " H for all k P Z ˚. We endow A n with its usual exact symplectic structure. An integrable diffeomorphism, i.e. the time-one map Φ h of a Hamiltonian h : A n Ñ R which depends only on the action variables, has no nonempty wandering domains. The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of Φ h , in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory, lower estimates are related to examples of Arnold diffusion. This is a contribution to the "quantitative Hamiltonian perturbation theory" initiated in previous works on the optimality of long term stability estimates and diffusion times; our emphasis here is on discrete systems because this is the natural setting to study wandering domains.

We first prove that the measure (or the capacity) of these wandering domains is exponentially small, with an upper bound of the form exp `´c `1 ε ˘1 2nα ˘, where ε is the size of the perturbation, α ě 1 is the Gevrey exponent (α " 1 for analytic systems) and c is some positive constant depending mildly on h. This is obtained as a consequence of an exponential stability theorem for near-integrable exact symplectic maps, in the analytic or Gevrey category, for which we give a complete proof based on the most recent improvements of Nekhoroshev theory for Hamiltonian flows, and which requires the development of specific Gevrey suspension techniques.

The second part of the paper is devoted to the construction of near-integrable Gevrey systems possessing wandering domains, for which the capacity (and thus the measure) can be estimated from below. We suppose n ě 2, essentially because KAM theory precludes Arnold diffusion in too low a dimension. For any α ą 1, we produce examples with lower bounds of the form exp `´c `1 ε ˘1 2pn´1qpα´1q ˘. This is done by means of a "coupling" technique, involving rescaled standard maps possessing wandering discs in A and near-integrable systems possessing periodic domains of arbitrarily large periods in A n´1 . The most difficult part of the construction consists in obtaining a perturbed pendulum-like system on A with periodic islands of arbitrarily large periods, whose areas are explicitly estimated from below. Our proof is based on a version due to Herman of the translated curve theorem.

Introduction

0.1 Let A n " T n ˆRn be the cotangent bundle of the torus T n , endowed with its usual angle-action coordinates pθ, rq and the usual exact symplectic form. What we call an integrable diffeomorphism is the time-one map of the flow generated by an integrable Hamiltonian, i.e. a Hamiltonian function which depends only on the action variables r; the phase space is then foliated into invariant tori T n ˆtr 0 u, r 0 P R n , carrying quasiperiodic motions. We are interested in near-integrable systems, i.e. exact symplectic perturbations of an integrable diffeomorphism, and their wandering sets.

A wandering set for a diffeomorphism Ψ of A n is a subset W Ă A n whose iterates Ψ k pW q, k P Z, are pairwise disjoint. The Poincaré recurrence theorem shows that any wandering set of an integrable diffeomorphism has zero Lebesgue measure. It is more difficult to prove that wandering sets with positive measure may exist for near-integrable systems. In fact KAM theory shows that they cannot exist for n " 1 (at least when restricting to perturbations of non-degenerate integrable maps). In [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF], examples of near-integrable systems possessing nonempty wandering domains1 , thus with positive measure, have been constructed for any n ě 2.

The aim of the present work is to estimate, from above and from below, the possible "size" of the wandering sets of a near-integrable system as a function of the "size of the perturbation". We define the size of the perturbation to be the distance between the near-integrable system and the integrable map of which it is a perturbation, assuming that all our functions belong to a Gevrey class and measuring this distance in the Gevrey sense. For Gevrey classes, we use the notation G α , where α ě 1 is a real parameter; recall that G 1 coincides with the analytic class, while the classes G α , α ą 1, are larger and more flexible, in particular they contain bump functions.

As for the size of wandering sets, we consider two natural candidates: the Lebesgue measure and the Gromov capacity. The former can be seen as the "maximal" possible one and is related to the theory of transport. The latter is the "minimal" possible one and is directly related to the symplectic character of our problem.

Our aim is to find explicit upper bounds for the measure of wandering Borel subsets and "test" their optimality by constructing examples of near-integrable systems possessing wandering sets whose capacity is estimated from below.

Our upper estimates are closely related to the long term stability estimates in perturbation theory, initiated by Nekhoroshev. Since usual estimates deal with continuous systems, we first have to transfer the whole theory to the discrete setting, which is done by adapted suspension techniques. The resulting estimates hold for near-integrable systems in all Gevrey classes G α , α ě 1: for such systems, the actions remain almost constant during exponentially long times. As a consequence, taking into account the measure-preserving character of symplectic diffeomorphisms, we prove that for any G α near-integrable system the measure of a wandering Borel subset is exponentially small with respect to the size of the perturbation.

Our lower estimates deal with the capacity of the wandering sets. The interest of this is twofold: first, the measure of a set is always larger than a positive power of its capacity (up to an explicit multiplicative factor), so lower bounds for the capacity entail lower bounds for the measure; second, capacity is a truly symplectic notion. The capacity of a set is in general extremely difficult to compute, however we will design our "unstable" examples so that they admit wandering polydiscs (i.e. products of discs in each factor of A n ). In that case the capacity is just the minimum of the areas of the factors. Our constructions rely strongly on the existence of bump functions. So, as in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] and [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF], we produce our examples in the classes G α for α ą 1 only. A striking fact is that the lower bounds on the capacity admit the same exponential form as the upper estimates deduced from Nekhoroshev theory. This is the main result we get here about instability in near-integrable systems. Related results on the existence of periodic domains with large periods will also be obtained in the course of the proof of the main instability result.

Before stating our results more precisely, let us now give a brief overview of the evolution of results in perturbation theory, in order to introduce the main tools we will use in the sequel.

0.2

We begin with stability results. The stability problem for perturbations of integrable Hamiltonian systems originated in the first investigations on the secular stability of the solar system. At this early stage, the main question was to understand the behaviour of the linearised equations along a particular solution. Then, under the influence of Poincaré, this purely local vision experienced a drastic metamorphosis towards a global qualitative understanding of the asymptotic behaviour of the orbits. He introduced a fundamental tool-amongst many others-for such a qualitative description: the method of normal forms, that is, the construction of simplified systems which nevertheless exhibit the preeminent features of the initial one. The theory of normal forms was further developed by Birkhoff, and thoroughly investigated since then by a number of authors.

It was also a fundamental contribution of Poincaré to distinguish between two different modes of "convergence" of series: convergence au sens des astronomes and convergence au sens des géomètres. The latter coincides with our usual notion of convergence, while the former is related to the notion of asymptotic expansion and does not exclude the possibility of performing "least term summation" (which is itself intimately related to the Gevrey nature of the series at hand).

This bunch of ideas was applied in particular to the fundamental problem of dynamics, that is, the study of the qualitative dynamical behaviour of analytic Hamiltonian systems on A n which are perturbations of integrable Hamiltonians. The various problems of convergence of the series giving rise to the solutions of the perturbed problem were extensively examined by Poincaré, without however reaching a definitive conclusion.

The next major breakthrough was due to Kolmogorov, who understood in the 1950s how to take advantage of stability properties exhibited by the unperturbed quasiperiodic tori, provided that their fundamental frequencies are sufficiently nonresonant (i.e. satisfy Diophantine conditions). This approach was then generalised by Arnold and Moser and gave rise to the so-called KAM theory: in appropriate function spaces (analytic, C 8 , finitely differentiable) the surviving tori form a subset whose relative measure tends to 1 when the size of the perturbation tends to 0. See [START_REF] Dumas | The KAM story. A friendly introduction to the content, history, and significance of classical Kolmogorov-Arnold-Moser theory[END_REF] for a non-technical historical account and appropriate references on KAM theory.

Besides the KAM theorem, one major achievement occured in the 1980s with the direct proof by Eliasson of the convergence of the perturbative series under the usual assumptions of KAM theory. This yields directly the quasiperiodic solutions, and the KAM tori are nothing but their closure. So, after a somewhat suprising detour, the Poincaré convergence au sens des géomètres indeed gives rise to invariant geometric objects. In a different direction, the Poincaré convergence au sens des astronomes can be considered as the mechanism at work behind "exponential stability". Exponential stability means that, for a perturbation of an integrable Hamiltonian flow, the action variables of an arbitrary solution vary little over a time interval of the order of exp `1 ε a ˘, where ε is the size of the perturbation and a is a positive exponent independent of the perturbation. This was established by Nekhoroshev in the 1970s for the analytic case. Again, the theory of normal forms revealed itself to be of crucial importance in this setting. The main idea there is to cover the whole phase space by a patchwork of domains with various resonant structures and perform in each of them a finite-but long-sequence of adapted normalising transformations. An additional geometric argument (steepness) then proves the confinement of the actions for all initial conditions over an exponentially long timescale.

In this text we will take advantage of the numerous improvements of the stability estimates after Nekhoroshev's initial work, beginning with the work by Lochak [START_REF] Lochak | Canonical perturbation theory via simultaneous approximation[END_REF] where the question of the optimality of the stability exponent first appeared, with a first conjecture on its value. Then the "likely optimal" stability exponent was derived more precisely in the case of quasi-convex unperturbed systems by Lochak, Neishtadt and Niederman, and Pöschel (see [START_REF] Lochak | Stability of nearly integrable convex Hamiltonian systems over exponentially long times[END_REF][START_REF] Pöschel | Nekhoroshev estimates for quasi-convex Hamiltonian systems[END_REF] and references therein). Finally, based on Herman's ideas, these works were later generalised to general Gevrey classes in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]which also clarified the connection with Gevrey asymptotics and least term summationand the stability exponent was improved in [START_REF] Bounemoura | Improved exponential stability for nearintegrable quasi-convex Hamiltonians[END_REF] to reach the probably optimal value. Our present study relies on these latter two works to produce upper estimates of the measure of wandering sets.

More surprisingly, the construction of our unstable examples will also heavily rely on KAM techniques (in the form developed by Herman for invariant curves on the annulus). So stability results may also help produce unstable behaviour and transport in phase space. This has already been noticed in the context of Arnold diffusion (see below), but we will deal here with new phenomena.

0.3

Let us now pass to the description of some unstable systems, beginning with the seminal and highly inspiring Arnold example. In parallel with the evolution of stability theory, Arnold introduced in the 1960s a paradigm perturbed angle-action system exhibiting unstable behaviour [START_REF] Arnold | Instability of dynamical systems with several degrees of freedom[END_REF]. In his example (a non-autonomous nearly integrable Hamiltonian flow on A 2 ), the action variables drift over intervals of fixed length whatever the size of the perturbation. Arnold conjectured that this instability phenomenon (now called Arnold diffusion) should occur in the complement of the KAM tori for "typical" systems. Of course, due to Nekhoroshev theory, Arnold diffusion in analytic or Gevrey systems has to be exponentially slow with respect to the size of the perturbation.

The key idea in Arnold's example is the possibility that a perturbation of an integrable Hamiltonian can create a continuous family of hyperbolic tori in a given energy level, whose invariant manifolds also vary continuously. An additional perturbation then makes the stable and unstable manifolds of each torus intersect transversely in their energy level. It is therefore possible to exhibit ordered families pT m q 1ďmďm˚o f hyperbolic tori, extracted from the continuous one, such that the unstable manifold W u pT m q intersects transversely the stable manifold W s pT m`1 q, and such that the distance between the extremal tori T 1 and T m˚( in the action space) is independent of the size of the perturbation (the number m of tori in such a family tends to `8 when the size of the perturbation tends to 0). Finally, one constructs orbits which shadow the consecutive heteroclinic orbits between the tori and pass close to both T 1 and T m˚. The action variables of such orbits therefore experience a drift which is independent of the size of the perturbation.

Arnold's example has been generalised in many ways, particularly in view of proving the "generic" occurrence of Arnold diffusion in nearly integrable systems on A 3 . Notice that the existence of hyperbolic KAM tori (or more generally hyperbolic Mather sets) is an important tool to implement the previous scheme: this is a first example of how stability induces instability.

Another important development was the possibility of computing the drifting time of unstable orbits in examples of Arnold diffusion. This program was achieved in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] for G α Gevrey systems with α ą 1, and then in [START_REF] Lochak | Diffusion times and stability exponents for nearly integrable analytic systems[END_REF][START_REF] Zhang | Speed of Arnold diffusion for analytic Hamiltonian systems[END_REF] for analytic systems.

In this work, to produce examples of near-integrable systems possessing wandering polydiscs, we develop the method of [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF], which itself builds on the techniques of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]. The construction of unstable orbits in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] is rather different from that of Arnold, even if, a posteriori, one can see that these drifting orbits too shadow families of heteroclinically connected tori, which clearly shows the intrinsic complexity of their dynamics.

The key idea in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] is to embed a well-controlled discrete dynamical system of A, namely a renormalised standard map, into a high iterate of a specific G α near-integrable system of A n , assuming α ą 1 (and then into a nearly integrable non-autonomous Hamiltonian flow). Taking advantage of the drifting points of the standard map, one can produce drifting orbits in this near-integrable system (and then in the corresponding Hamiltonian flow). In contrast with Arnold's example, such a construction yields systems with orbits biasymptotic to infinity in action. This proves to be a crucial feature of the construction when one builds on it to produce wandering sets with positive measure, since they cannot be confined inside compact subsets due to the preservation of volume.

In [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF], the KAM theorem was used to produce wandering polydiscs surrounding drifting orbits in near-integrable systems of the same kind as those of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF], but without any quantitative estimate. It seems that such a coexistence of stable geometric objects (invariant tori) and highly unstable open sets had not been observed before, although it is reminiscent of the existence of the "periodic islands" in "chaotic seas" which are ubiquitous in the theory of two-dimensional symplectic maps. Our wandering domains coexist with (and are contained in the complement of) all the invariant compact subsets, including Lagrangian invariant tori, lower-dimensional invariant tori (like the hyperbolic ones used in Arnold's mechanism) or Mather sets.

The novelty of the present paper is that, using more refined versions of the KAM theorem and a (much) better control of the normal forms, we are now able to estimate the capacity of the wandering polydiscs that we construct.

0.4

We can now informally describe the content of this paper. Our interest in wandering sets makes it essential that we deal with diffeomorphisms rather than flows, like in [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF] and in contrast with most of the literature on Hamiltonian perturbation theory; in fact, it is the first time that wandering sets of near-integrable discrete systems are the object of such detailed investigation.

So we first have to transfer the known stability results for Hamiltonian flows to the setting of near-integrable discrete systems. The result is Theorem A, whose simplified statement is the following. We fix a real α ě 1 and an integrable diffeomorphism of A n

Φ h : pθ, rq Þ Ñ `θ `∇hprq, r ˘,
where h : R n Ñ R is a G α convex function. Then, given ρ ą 0, for any G α exact symplectic diffeomorphism Ψ having ε :" dist α pΨ, Φ h q small enough (see Section 1.1 for the precise definition of the distance in Gevrey classes), the iterates Ψ k pθ r0s , r r0s q " pθ rks , r rks q of any initial condition satisfy ∥r rks ´rr0s ∥ ď ρ for 0 ď k ď exp ´c´1 ε

¯1 2nα ¯,
where c is a suitable positive constant depending mildly on h.

Other and more refined estimates are also available, for which the confinement radius of the action variables tends to 0 with ε.

Our proof makes use of a new suspension result, Theorem E, which allows one to embed a G α near-integrable system into a non-autonomous near-integrable Hamiltonian flow; the analytic case is essentially done in [START_REF] Kuksin | On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications[END_REF], while for the case α ą 1 we had to devise specific Gevrey techniques to adapt quantitatively Douady's method [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF] based on generating functions.

Next, taking into account the preservation of the Lebesgue measure µ by symplectic diffeomorphisms, we prove in Theorem B that a wandering Borel set W of Ψ, when it is contained in a bounded region of A n , must satisfy

µpW q ď exp ´´c ´1 ε ¯1 2nα ¯,
where c ą 0 is a suitable constant depending mildly on h. The rest of the paper is devoted to the construction of examples with wandering domains, with estimates of their Gromov capacity. This is the content of Theorem C: there is a sequence pΨ j q jě1 of G α diffeomorphisms of A n , with α ą 1, such that

ε j :" dist α ´Ψj , Φ 1 2 pr 2 1 `¨¨¨`r 2 n q
tends to 0 when j Ñ 8, each of which admits a wandering polydisc W j whose Gromov capacity satisfies the inequality

C G pW j q ě exp ´´c 1 ´1 ε j ¯1 2pn´1qpα´1q ¯,
where c 1 ą 0 is a suitable constant.

The proof of Theorem C is based on a version of the "coupling lemma" introduced in [MS03] and [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF], whose application requires the construction of several controlled dynamics on distinct subfactors of the annulus A n . Here is, in a few lines, the strategy:

-On the one hand, Theorem D provides us with a near-integrable system G arbitrarily close to Φ 1 2 pr 2 2 `¨¨¨`r 2 n q , possessing a q-periodic polydisc V Ă A n´1 of arbitrarily large period q. Moreover the orbit of V under G is controlled well enough and its capacity can be explicitly bounded from below.

-On the other hand, we choose a Gevrey function U so that the "rescaled standard map"

ψ : pθ 1 , r 1 q Þ Ñ `θ1 `qr 1 , r 1
´1 q U 1 pθ 1 `qr 1 q has a wandering domain U Ă A whose area is of order 1{q. We observe that this map can be written as the composition of the time-one map of the Hamiltonian 1 q U pθ 1 q with the qth iterate of the integrable map Φ

1 2 r 2 1 .
-The aforementioned coupling lemma then produces an exact symplectic perturbation Ψ of Φ

1 2 r 2 1 ˆΦ 1 2 pr 2 2 `¨¨¨`r 2 n q " Φ 1 2 pr 2 1 `r2 2 `¨¨¨`r 2
n q whose qth iterate coincides with ψ ˆGq when restricted to A ˆV . In that situation, U ˆV is easily seen to be a wandering set of Ψ.

Choosing an appropriate function U and estimating the area of the wandering domain U are rather easy.

The application of the coupling lemma requires a Gevrey function g on A n´1 satisfying a "synchronization condition" with respect to the orbit of V under G. For this, we use a bump function, whose Gevrey norm is large, unavoidably, but somehow this can be compensated by choosing q large enough, so as to ensure that Ψ is indeed arbitrarily close to integrable.

Much more work will be needed to prove Theorem D. Another use of the coupling lemma will first allow us to reduce the problem to proving the two-dimensional version of the statement, which is essentially Theorem F. The proof of Theorem F is then the most technical part of the construction. It first necessitates the introduction of a "pseudopendulum" on A, of the form

P pθ, rq " 1 2 r 2 `1 N 2 V pθq,
where the potential V is a flat-top bump function on T and N is a large parameter. This pseudo-pendulum is then perturbed to produce elliptic periodic points of any period, surrounded by elliptic islands with controlled areas. The main task consists in estimating these areas, which requires the use of Herman's quantitative version of the two-dimensional KAM theorem and necessitates the computation of high-order parametrised normal forms. Theorem F is interesting in itself; see for instance [START_REF] Liverani | Birth of an elliptic island in a chaotic sea[END_REF] for related questions on standard maps.

0.5

To conclude this introduction, let us mention that the present work can be seen as a contribution to the development of a "quantitative Hamiltonian perturbation theory", focused on the question of the size of wandering domains. Other studies should be devoted to the numerous quantities one can associate with a nearly integrable exact symplectic diffeomorphism or Hamiltonian flow: one may think of the separatrix splitting, the angles of Green bundles, the topological entropy, the growth of isolated periodic orbits, and so on; each of them should be estimated from above and below in an optimal way. While the upper estimates may be based on normal form theory, the construction of "optimal" examples may reveal itself to be extremely rich and difficult, as illustrated by the case of wandering domains in this work. We see this problem as a challenging motivation to pursue these quantitative studies and get a more developed vision of this domain-still in its infancy.

0.6

The paper is organized as follows.

• Section 1 is dedicated to a precise formulation of our assumptions, notations and results. Theorem A gives long time stability estimates for near-integrable systems of A n . Theorem B and Theorem C respectively state our main results about the upper and lower bounds for the measure and capacity of wandering sets of nearintegrable systems. Theorem D, on the construction of near-integrable systems of A n´1 possessing periodic domains with explicit lower bounds for their capacity, is stated. It splits into two parts: Theorem D(i) deals with the two-dimensional case, i.e. periodic domains in A, while Theorem D(ii) is dedicated to systems on A m , m ě 2.

• In Section 2, we state and prove Theorem E, on the suspension of Gevrey nearintegrable systems. This enables us to deduce the stability theory for Gevrey diffeomorphisms from the stability theory for Gevrey Hamiltonian flows and thus prove Theorem A, and then Theorem B.

• Section 3 contains the most technical part of the paper, that is, the construction of examples of near-integrable systems of A with periodic islands of arbitrarily large period, whose area we are able to estimate from below. This is the content of Theorem F, which is a parametrised version of Theorem D(i). The proof of Theorem D(i) is in Section 3.2, the rest of Section 3 is devoted to the proof of Theorem F.

• In Section 4 we explain the coupling lemma and its use to produce periodic or wandering polydiscs. The proof of Theorem D(ii) is thus obtained, by coupling the periodic domains of Theorem F (suitably rescaled) with periodic domains of an elementary perturbation of Φ 1 2 pr 2 3 `¨¨¨`r 2 n q . Then, Theorem C is obtained by coupling the wandering domain of a rescaled standard map and the periodic domains of Theorem D.

• The paper ends with four appendices, dealing with some technicalities needed in the course of the various proofs.

1 Presentation of the results

Perturbation theory for analytic or Gevrey near-integrable maps-Theorem A

1.1.1 Let T :" R{Z. For n ě 1 we denote by A n " T n ˆRn the 2n-dimensional annulus, viewed as the cotangent bundle of T n , with coordinates θ " pθ 1 , . . . , θ n q, r " pr 1 , . . . , r n q, respectively called "angles" and "actions", and Liouville exact symplectic form Ω " ´dλ, λ :" ř n i"1 r i dθ i . Recall that a map Ψ is said to be exact symplectic (or globally canonical) if the differential 1-form Ψ ˚λ ´λ is exact. Examples of exact symplectic maps are provided by the flows of Hamiltonian vector fields.

When the Hamiltonian vector field generated by a function

H on A n BH Br 1 B Bθ 1 `¨¨¨`B H Br n B Bθ n ´BH Bθ 1 B Br 1 ´¨¨¨´B H Bθ n B Br n
is complete, we denote by Φ H : A n ý the time-one map of the Hamiltonian flow. We say that a diffeomorphism of A n is integrable when it is of the form Φ h , where the function h depends only on the action variable r, thus

Φ h pθ, rq " `θ `x∇hprqy, r ˘, (1.1) 
where x ¨y : R n Ñ T n is our notation for the canonical projection. We are interested in near-integrable maps2 , i.e. exact symplectic maps close to an integrable map Φ h , closeness being intended in the analytic sense or Gevrey sense.

1.1.2

Let us introduce notations for the spaces of Gevrey functions. Given n ě 1, we use the Euclidean norm in R n and, for R positive real or infinite, denote by B R the closed ball of radius R centred at 0 (so B 8 " R n ). We set

A n R :" T n ˆBR , (1.2)
in particular A n 8 " A n . Given α ě 1 and L ą 0 real, and 0 ă R ď 8, we define the Banach spaces of real-valued functions

G α,L pB R q :" th P C 8 pB R q | ∥h∥ α,L,R ă 8u, ∥h∥ α,L,R :" ÿ ℓPN n L |ℓ|α ℓ! α ∥B ℓ h∥ C 0 pB R q (1.3) G α,L pA n R q :" tf P C 8 pA n R q | ∥f ∥ α,L,R ă 8u, ∥f ∥ α,L,R :" ÿ ℓPN 2n L |ℓ|α ℓ! α ∥B ℓ f ∥ C 0 pA n R q . (1.4)
We have used the standard notations |ℓ| "

ℓ 1 `¨¨¨`ℓ 2n , ℓ! " ℓ 1 ! . . . ℓ 2n !, B ℓ " B ℓ 1 1 . . . B ℓ 2n 2n , B k " B x k for k " 1, . . . , 2n
, where px 1 , . . . , x 2n q " pθ 1 , . . . , θ n , r 1 , . . . , r n q, and N :" t0, 1, 2, . . .u.

We shall make use of the natural inclusion G α,L pB R q ãÑ G α,L pA n R q without further notice, treating an h P G α,L pB R q indifferently as an element of any of the two spaces.

For α " 1, one recovers real analytic functions of A n R : any function f P G 1,L pA n R q is real analytic in A n R and admits a holomorphic extension in V L T n ˆVL B R , with complex neighbourhoods of T n and B R defined by

V L T n :" t θ P pC{Zq n | |pIm θ 1 , . . . , Im θ n q| 8 ă L u, V L B R :" ď r ˚PB R t r P C n | |r ´r˚| 8 ă L u, (1.5) 
where |ξ| 8 :" maxt|ξ 1 | , . . . , |ξ n |u for ξ P R n or C n ; conversely, for any function f real analytic in A n R , there exists L ą 0 such that f P G 1,L pA n R q. For α ą 1, one gets nonquasianalytic spaces of Gevrey functions.

Recall that ∥ ¨∥α,L is an agebra norm for every α ě 1: ∥f g∥ α,L ď ∥f ∥ α,L ∥g∥ α,L ; see [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]-some other useful properties of these norms are recalled in Appendix B.1.

1.1.3

Our maps will be analytic, i.e. Gevrey-1, or more generally Gevrey-α for some α ě 1, i.e. elements of one of the sets

G α,L pA n R , A n q :" t Ψ : A n R Ñ T n ˆRn | D Ψ : A n R Ñ R n ˆRn lifting Ψ so that Ψ1 , . . . , Ψ2n P G α,L pA n R q u,
with L ą 0 and 0 ă R ď 8. We set, for any

∆ P G α,L pA n R , A n q, |||∆||| α,L,R :" inf ! ∥ ∆1 ∥ α,L,R `¨¨¨`∥ ∆2n ∥ α,L,R | ∆ : A n R Ñ R n ˆRn lift of ∆ ) (1.6)
(in fact the infimum is always attained); one can check that the formula

pΨ 1 , Ψ 2 q Þ Ñ |||Ψ 2 ´Ψ1 ||| α,L,R
defines a translation-invariant distance which makes G α,L pA n R , A n q a complete metric space.

Our first result is a version of the Nekhoroshev Theorem for Gevrey near-integrable exact symplectic maps in the convex case:

Theorem A (Exponential stability for maps). Let n ě 1 be an integer. Let α ě 1 and L, R, R 0 ą 0 be reals such that R ă R 0 . Let h P G α,L pB R 0 q have positive definite Hessian matrix on B R 0 . Then there exist positive reals ε ˚, c ˚, and, for each positive ρ ă R 0 ´R, positive reals ε 1 ρ ď ε ˚and c 1 ρ ď c ˚, and, for each positive σ ă

1 n`1 , positive reals ε 2 σ ď ε ånd c 2 σ ď c ˚, satisfying the following: For each exact symplectic map Ψ P G α,L pA n R 0 , A n q such that ε :" |||Ψ´Φ h ||| α,L,R 0 ď ε ˚, every point pθ r0s , r r0s q of A n
R has well-defined iterates pθ rks , r rks q :" Ψ k pθ r0s , r r0s q P A n R 0 for all k P Z such that |k| ď exp `c˚`1 ε ˘1 2nα ˘, and

(i) ε ď ε 1 ρ and |k| ď exp ´c1 ρ ´1 ε ¯1 2nα ¯ñ ∥r rks ´rr0s ∥ ď ρ, (ii) ε ď ε 2 σ and |k| ď exp ´c2 σ ´1 ε ¯1´σ 2nα ¯ñ ∥r rks ´rr0s ∥ ď $ & % 1 c 2 σ ε σ 2 if α " 1, 1 c 2 σ ε σ 5n 2 if α ą 1, (iii) ε ď ε ˚and |k| ď exp ´c˚´1 ε ¯1 2pn`1qα ¯ñ ∥r rks ´rr0s ∥ ď 1 c˚ε 1 2pn`1q .
The proof of Theorem A is in Section 2. The case α " 1 of (iii) is due to S. Kuksin and J. Pöschel [START_REF] Kuksin | On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications[END_REF]. The rest of the statement is, to the best of our knowledge, new. It relies on the most recent version of the Nekhoroshev Theorem for Gevrey near-integrable quasi-convex Hamiltonian vector fields due to A. Bounemoura and J.-P. Marco [START_REF] Bounemoura | Improved exponential stability for nearintegrable quasi-convex Hamiltonians[END_REF], which improves the possible exponents for the stability time (at the price of a less good control of the confinement of the orbits)-we reproduce Bounemoura-Marco's statement in Section 2.3. To transfer it to the discrete dynamics induced by a near-integrable exact symplectic map Ψ, we will have to construct a non-autonomous time-periodic Gevrey Hamiltonian function, defined for pθ, r, tq

P A n R 1 ˆT with R ă R 1 ă R 0 ,
whose flow interpolates the discrete dynamics-this is the content of Theorem E of Section 2.

The hypothesis that the Hessian matrix of the integrable part h is positive definite is a strict convexity assumption: it amounts to the existence of a positive real m such that h is m-convex, in the sense that t v d∇hprqv ě m∥v∥ 2 for all r P B R 0 and v P R n , (

where d∇hprq is the Hessian matrix of h ar the point r. In fact, the reals

ε ˚, c ˚, ε 1 ρ , c 1 ρ , ε 2 σ , c 2 σ
depend on the integrable part h only through m and ∥h∥ α,L,R 0 .

Remark 1.1 (On the time exponents). Beware that, as far as Nekhoroshev theory is concerned, exact symplectic maps in A n behave like N -degree of freedom autonomous Hamiltonian systems with N " n `1. So the "time exponent" and the "confinement exponent" in the case (iii) are simply 1 2N α and 1 2N , which have been familiar since the works by Lochak-Neishtadt and Pöschel in the analytic case, or Marco-Sauzin in the Gevrey case.

Bounemoura-Marco's novel result of [START_REF] Bounemoura | Improved exponential stability for nearintegrable quasi-convex Hamiltonians[END_REF] was the obtention of better stability times at the price of releasing part of the control on the confinement property. The counterpart for discrete systems, as demonstrated by Theorem A, is that the time exponent can be taken as large as a σ " 1´σ 2nα with arbitrary σ such that 0 ď σ ď 1 n`1 , and the corresponding confinement radius still tends to 0 as ε Ñ 0 if σ ą 0, while we only get a fixed (but arbitrarily small) confinement radius ρ if σ " 0; observe that a σ is a decreasing function of σ, so σ close to In particular, the time exponent 1 2nα given in (i) for general orbits coincides with the time exponent available for the orbits starting close to a simple resonance, but the latter have a better confinement property (described by the positive exponent 1 2n ) than general orbits.

Remark 1.3 (About the steep case). The original Nekhoroshev theorem was proved in the analytic case for a wider class of near-integrable Hamiltonian flows than just those with quasi-convex integrable part. Nekhoroshev only needed a non-degeneracy assumption called steepness, which turns out to be generic in quite a strong sense. This allowed S. Kuksin and J. Pöschel to give an exponential stability theorem for analytic near-integrable maps in the case where h is supposed to be steep but not necessarily convex [START_REF] Kuksin | On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications[END_REF]. The same could be done for Gevrey near-integrable maps if the original Nekhorohev statement could be generalised to the Gevrey steep case.

Remark 1.4 (KAM theorem for analytic or Gevrey near-integrable maps). The assumption that h be non-degenerate in the sense of Kolmogorov (i.e. that ∇h be a local diffeomorphism, which is a weaker condition than strict convexity) is sufficient to apply the KAM theorem, in its analytic version if α " 1, or in its C 8 version if α ą 1. For each r ˚P B R 0 such that ∇hpr ˚q is Diophantine, we obtain for the discrete dynamics Ψ an invariant quasi-periodic torus » T n located close to T n ˆtr ˚u as soon as |||Ψ ´Φh ||| α,L,R 0 is small enough. If α " 1, then such a torus is known to be analytically embedded in A n R 0 . If α ą 1, then the embedding is known to be C 8 and one can prove that the embedding is in fact Gevrey-α by applying Popov's KAM theorem for Gevrey near-integrable Hamiltonians [START_REF] Popov | KAM theorem for Gevrey Hamiltonians[END_REF] to the interpolating Hamiltonian flow constructed in Theorem E of Section 2.

Wandering sets of near-integrable systems-Theorems B and C

1.2.1

The other results of this paper deal with wandering sets for near-integrable systems.

Definition 1.5. Given a diffeomorphism Ψ of a manifold M , we say that W Ă M is wandering if Ψ k pW q X W " H for all k P Zzt0u or, equivalently, if Ψ k pW q X Ψ ℓ pW q " H for all k, ℓ P Z with k ‰ ℓ.

Notice that if W 1 Ă W and W is wandering, then W 1 is wandering too. Beware that, when W is reduced to a single point x, saying that the set W " txu is wandering is a less stringent condition than saying that the point x is wandering in the usual sense (which amounts to the existence of a neighborhood V of x such that Ψ k pV q X V " H for k P Zzt0u).

Remark 1.6. If Ψ preserves a finite measure, then obviously any measurable wandering set must have zero measure (this is the key argument in the Poincaré recurrence theorem).

1.2.2

We denote the canonical Lebesgue measure on A n by µ. Recall that a domain of

A n is a connected open subset of A n .
Before going further, we notice that, given h of class C 2 on an open set Ω of R n , any measurable wandering set W of the integrable diffeomorphism Φ h : T n ˆΩ ý has zero Lebesgue measure. Indeed, formula (1.1) shows that each torus T prq " T n ˆtru is invariant, with the restriction of Φ h preserving the Haar measure µ r of T prq, which is finite. Thus Remark 1.6 implies that the wandering set W X T prq has zero µ r -measure for each r P Ω and, by Fubini, µpW q " ż Ω µ r pW X T prqq dr " 0.

In particular, the only wandering domain for Φ h is the empty set.

1.2.3

Another preliminary remark concerns the case n " 1: any measurable wandering set W of a near-integrable system of A has zero Lebesgue measure. More precisely, if 0 ă R ă R 0 ă 8 and h P G α,L pr´R 0 , R 0 sq is Kolmogorov non-degenerate (i.e. its second derivative does not vanish), then for any exact symplectic diffeomorphism Ψ of A with a restriction to A R 0 " T ˆr´R 0 , R 0 s such that |||Ψ ´Φh ||| α,L,R 0 is small enough, any measurable wandering set contained in A R has zero Lebesgue measure.

Indeed, the KAM theorem yields two invariant circles, one contained in TˆsR, R 0 r and the other one in Tˆs ´R0 , ´Rr, which bound a finite measure invariant region; any measurable wandering set contained in that region must have zero measure according to Remark 1.6. (This is the same argument which forbids Arnold diffusion in two degrees of freedom.)

1.2.4

We thus assume n ě 2 from now on. The first examples of near-integrable systems possessing wandering sets of positive Lebesgue measure, namely wandering domains, were constructed in [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF]. 3 Although the construction was quite explicit, no estimate was given for the "size" of these wandering domains.

In this paper, we show that, for a perturbation Ψ of an integrable diffeomorphism Φ h with ε :" |||Ψ ´Φh ||| α,L,R small, the wandering sets have an exponentially small size. We shall provide general upper bounds and examples with explicit lower bounds.

1.2.5

We shall use two natural but essentially different notions of "size": the Lebesgue measure and the Gromov capacity. Recall that the Gromov capacity (or width, or depth) C G pW q of a subset W of a symplectic manifold is the supremum of the numbers πr 2 , where r ě 0 is such that the Euclidean ball B 2n prq of radius r in R 2n can be symplectically embedded in W . As a consequence, for measurable subsets W of A n , C G pW q ď π ´µpW q Vol pB 2n p1qq ¯1{n .

(1.8)

The capacity of a domain in the 2-dimensional annulus A equals its Lebesgue measure (i.e. its area in this case), but they are in general distinct for higher dimensional domains. As an extreme case, given a disc D in A, the capacity of W :" D ˆAn´1 Ă A n is the area of D, while the Lebesgue measure of W is infinite. We refer to [START_REF] Mcduff | Introduction to Symplectic Topology[END_REF] for a more complete exposition of the notion of Gromov capacity.

We are interested in estimates of the size of wandering subsets from above and from below. In view of inequality (1.8), we may content ourselves with using the Lebesgue measure for upper estimates and the Gromov capacity for the lower ones.

1.2.6

Our upper bound result consists in general exponentially small estimates, with explicit exponents stemming from Theorem A: Theorem B (Upper bounds for wandering sets). Let n ě 2 be integer. Let α ě 1 and L, R 0 ą 0 be real. Let h P G α,L pB R 0 q have positive definite Hessian matrix on B R 0 . Then for 0 ă R ă R 0 there exist ε ˚, c ˚ą 0 such that, for each exact symplectic diffeomorphism Ψ of A n whose restriction to A n R 0 satisfies

Ψ |A n R 0 P G α,L pA n R 0 , A n q, ε :" |||Ψ |A n R 0 ´Φh ||| α,L,R 0 ă ε ˚, any measurable wandering set W of Ψ contained in A n R has Lebesgue measure µpW q ď exp ´´c ˚´1 ε ¯1 2nα ¯.
(1.9)

The proof is in Section 2.4. It is a pretty direct consequence of Theorem A and the preservation of the Lebesgue measure by symplectic maps. (It works for the case n " 1 as well but, as already mentioned, µpW q " 0 in that case.) Again, the reals ε ˚and c depend on h only through ∥h∥ α,L,R 0 and m such that h is m-convex in the sense of (1.7).

1.2.7

Our lower bound result consists in constructing examples which possess wandering domains whose Gromov capacity is estimated from below by an exponentially small quantity with explicit exponents:

Theorem C (Lower bounds in examples of wandering domains). Let n ě 2 be integer. Let α ą 1 and L ą 0 be real. Let hprq :" 1 2 pr 2 1 `¨¨¨`r 2 n q. Then there exists a sequence pΦ j q jě0 of exact symplectic diffeomorphisms of A n such that

• each Φ j has a wandering domain W j contained in A n 3 ,
• for 0 ă R ă 8 the maps Φ j belong to G α,L pA n R , A n q and there exists c ą 0 such that

ε j :" |||Φ j ´Φh ||| α,L,R Ý ÝÝ Ñ jÑ8 0 and C G pW j q ě exp ´´c ´1 ε j ¯1 2pn´1qpα´1q ¯(1.10)
for all integers j.

The proof is in Sections 3 and 4; see Section 1.3 for a description of the structure of the proof.

Observe that, putting together (1.8) and (1.9), we get

C G pW j q ď K µpW j q 1{n ď exp ´´c ˚´1 ε j ¯1 2nα ¯,
with appropriate K, c ˚ą 0, for j large enough, which is compatible with (1.10) because 1 2nα ď 1 2pn´1qpα´1q . Notice also that our examples are constructed only in the nonquasianalytic case α ą 1. See Section 1.4 for more comments on the previous inequalities and possible extensions to the analytic case.

Our method is related to the one developed in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] for estimating the maximal speed of Arnold diffusion orbits and in [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF] for constructing the first examples of nearintegrable systems with wandering domains. A common feature of the examples in [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF] and in Theorem C is that these wandering domains follow complicated paths in the phase space, located in the complement of the set of KAM tori.

Specific form of our examples and elliptic islands-Theorem D

We now indicate the structure of the proof of Theorem C to be found in Sections 3 and 4.

1.3.1

Given a function h P C 8 pR n q and real constants α ě 1 and L ą 0, we set

P α,L m pΦ h q :" ! Φ um ˝¨¨¨˝Φ u 1 ˝Φh`u 0 | u 0 , u 1 , . . . , u m P G α,L pA n q ) , m ě 1 (1.11) P α,L pΦ h q :" ď mě1 P α,L m pΦ h q (1.12)
(observe that the Hamiltonian functions h `u0 , u 1 , . . . , u m generate complete vector fields because their partial derivatives with respect to the angles are bounded; the notation is well-defined, since giving the diffeomorphism Φ h allows one to compute the gradient ∇h mod Z n and therefore the diffeomorphism Φ h`u 0 for any smooth u 0 ). Any Ψ P P α,L pΦ h q is an exact symplectic map which can be viewed as a perturbation of Φ h , with a "deviation" defined as

δ α,L pΨ, Φ h q :" Inf ! m ÿ k"0 ∥u k ∥ α,L,8 | m ě 1, pu 0 , u 1 , . . . , u m q P U α,L m pΨ, Φ h q ) , (1.13)
where U α,L m pΨ, Φ h q :" ␣ pu 0 , u 1 , . . . , u m q P `Gα,L pA n q ˘m`1 | Φ um ˝¨¨¨˝Φ u 1 ˝Φh`u 0 " Ψ ( . One can check that the deviation vanishes if and only if Ψ " Φ h .

1.3.2

If h P G α,L pB R 0 q, then the elements of P α,L pΦ h q are Gevrey maps and the deviation can be compared to the distances |||Ψ ´Φh ||| α,L˚,R . More precisely, Proposition 1.7. Let n ě 1 be integer. Let α ě 1 and L, R 0 ą 0 be real. Let h P C 8 pR n q X G α,L pB R 0 q. Then for 0 ă R ă R 0 there exist ε ˚, L ˚, C ˚ą 0, with L ˚ă L, such that

Ψ P P α,L pΦ h q and δ α,L pΨ, Φ h q ă ε ˚ñ |||Ψ ´Φh ||| α,L˚,R ď C ˚δα,L pΨ, Φ h q. (1.14) The proof of Proposition 1.7 is in Appendix B.3 (ε ˚, L ˚, C ˚depend on h only through ∥h∥ α,L,R 0 ).
As a consequence, Theorems A and B apply to the maps of P α,L pΦ h q with δ α,L pΨ, Φ h q small enough, and the role of ε in the statements can be played by δ α,L pΨ, Φ h q instead of |||Ψ ´Φh ||| α,L,R 0 .

1.3.3

Theorem C will follow from a more precise statement, Theorem C' stated in Section 4.3.1. The unperturbed system h :" 1 2 pr 2 1 `¨¨¨`r 2 n q and the constants α ą 1, L ą 0 being fixed, Theorem C' will yield very explicit maps Φ j P P α,L 2 pΦ h q when n " 2, Φ j P P α,L 3 pΦ h q when n ě 3, with wandering domains W j Ă A n 3 , and a real c ˚ą 0 such that

ε 1 j :" δ α,L pΦ j , Φ h q Ý ÝÝ Ñ jÑ8 0, C G pW j q ě expp´c ˚´1 ε 1 j ¯1 2pn´1qpα´1q q.
(1.15)

By Proposition 1.7, (1.15) implies the property (1.10) for every finite R, hence Theorem C is an immediate consequence of Theorem C'. The domains W j will be polydiscs, i.e. product sets of the form D Ă A. This product structure is an essential feature in the use of the "coupling lemma" of Section 4.1, which is a basic ingredient of the proof of Theorem C'.

Note that the Gromov capacity of a polydisc is given by the formula C G pD r1s ˆ¨¨¨ˆD rns q " min ␣ areapD r1s q, . . . , areapD rns q ( . (1.16) (One inequality follows from the fact that, in dimension 2, Gromov capacity and area coincide; the reverse inequality is a consequence of Gromov's "non-squeezing theorem"see [START_REF] Mcduff | Introduction to Symplectic Topology[END_REF].)

1.3.4

As another ingredient of the proof of Theorem C', we shall have to devise an additional result on the construction of examples with periodic domains, which is interesting in itself and connected with other aspects of transport phenomena in near-integrable Hamiltonian systems.

To ease the comparison with Section 4, we present this result in A n´1 (still with n ě 2), labelling the coordinates as pθ 2 , r 2 q, . . . , pθ n , r n q, and set hprq :" 1 2 pr 2 2 `¨¨¨`r 2 n q.

For an integer q ě 1, we call q-periodic polydisc of a diffeomorphism ϕ of A n´1 a polydisc D of A n´1 such that ϕ q pDq " D. We introduce the notation A d :" T ˆr0, ds Ă A, B d :" ␣ `xθy, r ˘| θ P r´d, ds, r P R ( Ă A for any real d ą 0.

(1.17)

Theorem D (Periodic domains in A n´1 ). Let α ą 1 and L ą 0 be real, and let n ě 2 be integer. Then there exist real numbers c, C 1 , C 2 , C 3 ą 0, a non-negative integer j 0 and a sequence pΨ j,q q of exact symplectic diffeomorphisms of A n´1 belonging to P α,L pΦ h q defined for j, q P N, j ě j 0 , q ě C 1 N j , (1.18)

with deviations δ α,L pΨ j,q , Φ h q ď C 2 N 2 j , (1.19)
where N j :" p j`2 ¨¨¨p j`n , (1.20) pp j q jě0 denoting the prime number sequence, so that:

(i) If n " 2, each Ψ j,q is in P α,L 1 pΦ h q and has a q-periodic disc D :" D j,q Ă A 3 with all its iterates also contained in A 3 , such that

C G pDq ě C 3 min " N 2 j q 5 , exp ´´cN 1 α´1 j ¯* (1.21) and D Ă A `4 N j X B 1 2p j`2 , Ψ k j,q pDq X B 1 p j`2 " ∅ for 1 ď k ď q ´1. (1.22) (ii) If n ě 3, each Ψ j,q is in P α,L
2 pΦ h q and, for q integer multiple of N j , Ψ j,q has a q-periodic polydisc D :" D j,q whose iterates are polydiscs:

Ψ k j,q pDq " D r2,ks ˆ¨¨¨ˆD rn,ks , k P Z, with Ψ k j,q pDq Ă A n´1 3 for all k, such that C G pDq ě C 3 min " 1 q 5 N 4´2 n´1 j , exp ´´cN 1 pn´1qpα´1q j ¯*, (1.23)
the projections of the polydisc D satisfy

D r2,0s Ă A `4 N j X B 1 2p j`2 , D r3,0s Ă B 1 2p j`3 , . . . , D rn,0s Ă B 1 2p j`n , (1.24)
and, for 1 ď k ď q ´1, those of the polydisc Ψ k j,q pDq satisfy Dℓ P t2, . . . , nu such that D rℓ,ks X B 1 p j`ℓ " ∅.

(1.25)

The proof of Theorem D is spread over Sections 3 and 4. More precisely, Case (i), i.e. the two-dimensional case, is proved in Section 3.2, based on an auxiliary result; this auxiliary result is also used in Section 4.2, together with the "coupling lemma" (Lemma 4.1), to prove Case (ii). Theorem D is used in Section 4.3.3 (again with the help of the coupling lemma) to prove Theorem C', with an appropriate choice of q " q j exponentially large with respect to N j .

Remark 1.8. Fix j ě j 0 and q as in the statement of Theorem D. Because of condition (1.22) or conditions (1.24)-(1.25), the sets Ψ k j,q pD j,q q, k " 0, 1, . . . , q ´1, are pairwise disjoint. This implies that q is the minimal period of the periodic polydisc D j,q . This also implies an upper bound for the Lebesgue measure of this polydisc:

µpD j,q q ď µpA n´1 3 q q .
Indeed, the q pairwise disjoint sets Ψ k j,q pD j,q q have the same Lebesgue measure and are all contained in A n´1

3

. It follows that the lower bound in (1.21) or (1.23) has to depend on q, it cannot depend on j alone, because q is allowed to be arbitrarily large and (1.8) implies C G pD j,q q ď π q 1 n´1 ˆµpA n´1 3 q Vol pB 2pn´1q p1qq ˙1 n´1 .

1.3.5

The aforementioned auxiliary result on which the proof of Theorem D(i) is based is Theorem F; this much more precise statement is the object of Section 3, it is the analytical core of our method. The (quite lengthy) proof of Theorem F relies on the construction of a suitable perturbation of the time-one map of a "pseudo-pendulum" on A, of the form

P pθ, rq " 1 2 r 2 `1 N 2 j V pθq, (1.26)
where V is a (specially designed) potential function on T. Both V and the perturbation can be made very explicit. The effect of the perturbation is to create elliptic islands around the periodic points located near the separatrix of the pseudo-pendulum. The main difficulty in estimating the size of these islands is that one has to use Herman's quantitative version of the two dimensional KAM theorem ([He01]), whose implementation requires the computation of high order parametrized normal forms, the parameters being the size of the perturbation and the period of the island.5 Another peculiarity of our systems is that the potential V has degenerate maxima, which create degenerate stationary points for the Hamiltonian vector field generated by (1.26). This is crucial in order to find elliptic islands with "exponentially small" area: a nondegerate situation would yield a double exponential in the estimates.

Further comments

1.4.1 Observe that in Theorem B, we impose a priori that the wandering set W be contained in a fixed compact A n R . Suprisingly enough, as soon as n ě 3, this is necessary to ensure that the measure of W is finite. Indeed, given α ą 1 and L ą 0, for any ε, R 0 ą 0 we can exhibit (by [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF] or by Theorem C) a near-integrable system Ψ on A 2 with a non-empty wandering domain W , such that |||Ψ ´Φ 1 2 pr 2 1 `r2

2 q ||| α,L,R 0 ă ε. Therefore, when n ě 3, the direct product p Ψ " Ψ ˆΦ 1 2 pr 2 3 `¨¨¨`r 2 n q on A n admits the wandering domain W ˆAn´2 , which is of infinite measure, while ||| p Ψ ´Φ 1 2 pr 2 1 `¨¨¨`r 2 n q ||| ă ε. As a consequence, by taking subsets of W ˆAn´2 , one may obtain for the near-integrable system p Ψ wandering domains of arbitrary measure between 0 and 8 inclusive.

1.4.2

In any case, this leaves open the question of the existence of upper bounds for the Gromov capacity of an arbitrary wandering set W (without the restriction W Ă A n R ): is it always finite? is it exponentially small? Notice that a wandering set has empty intersection with the set of KAM tori, so a related question is the question of the finiteness of C G pT n ˆpR n zK q ˘, where K is the set of all vectors satisfying a fixed Diophantine condition. Due to the intricate structure of this set, it could be worthwile to produce a simpler model for this line of questions. For instance, what can be said on the finiteness of any symplectic capacity of the open subset

T n ˆpR n zZ n q Ă T ˚Tn ?
This question seems to be completely open.

1.4.3

Another open question is that of the optimal exponents that one could obtain in inequalities such as (1.9) and (1.10): to sharpen Theorem B would mean to replace the exponent 1 2nα by a larger exponent a up in (1.9), and to sharpen Theorem C would mean to replace the exponent 1 2pn´1qpα´1q by a smaller exponent a low in (1.10); how large can one take the first exponent and how small can one take the second? Of course, one would still have a up ď a low ; if the equality a up " a low could be realised, the resulting exponent should certainly be called "optimal".

The problem is clearly related to the possibility of contructing examples in the analytic category α " 1, since the factor α ´1 (whose appearance is directly linked to our use of Gevrey bump functions) creates a major discrepancy between our lower and upper bounds when α Ñ 1. We believe that such constructions are possible, at the cost of relaxing the constraint that our wandering subsets be domains.

Stability theory for Gevrey near-integrable maps

We develop in this section a perturbation theory for Gevrey discrete dynamical systems, based on the corresponding theory available for Gevrey Hamiltonian flows. To transfer the results from the latter to the former, we first prove a Gevrey suspension theorem (Theorem E), according to which any Gevrey near-integrable map can be viewed as the time-one map of a Gevrey near-integrable Hamiltonian vector field. This will allow us to prove in Section 2.3 the Nekhoroshev Theorem for Gevrey maps (Theorem A), from which we will derive upper bounds for the measure of their wandering sets (Theorem B) in Section 2.4.

Embedding in a Hamiltonian flow-Theorem E Definition 2.1. Given an exact symplectic map

Ψ : A n R Ñ T n ˆRn , we call suspension of Ψ any 1-periodic time-dependent Hamiltonian function H : Ω ˆT Ñ R, where Ω is a neighbourhood of A n
R , for which the flow map between the times t " 0 and t " 1 is well-defined on A n R and coincides with Ψ.

We adapt the definitions (1.3) and (1.4) to deal with C 8 functions depending on an extra variable t P T or t P r0, 1s:

G α,L pTq :" tη P C 8 pTq | ∥η∥ α,L ă 8u, ∥η∥ α,L :" ÿ ℓPN L ℓα ℓ! α ∥B ℓ η∥ C 0 pTq (2.1) G α,L pA n R ˆTq :" tf P C 8 pA n R ˆTq | ∥f ∥ α,L,R ă 8u, ∥f ∥ α,L,R :" ÿ ℓPN 2n`1 L |ℓ|α ℓ! α ∥B ℓ f ∥ C 0 pA n R q (2.2)
and similarly for G α,L pr0, 1sq and G α,L pA n R ˆr0, 1sq.

Theorem E (Suspension theorem).

Let n be a positive integer. Let

α ě 1, L 0 , R, R 0 , E ą 0 be reals such that R ă R 0 . Then there exist ε ˚, L ˚, C ˚ą 0 such that, for every h P G α,L 0 pB R 0 q with ∥h∥ α,L 0 ,R 0 ď E, the restriction to A n R of any exact symplectic map Ψ P G α,L 0 pA n R 0 , A n q such that ε :" |||Ψ ´Φh ||| α,L 0 ,R 0 ď ε ådmits a suspension H " Hpθ, r, tq P G α,L˚p A n R ˆTq for which ∥H ´h∥ α,L˚,R ď C ˚ε.
(2.3) Remark 2.2. In view of Proposition 1.7, Theorem E applies to the maps of P α,L pΦ h q with δ :" δ α,L pΨ, Φ h q small enough, and the role of ε in the statement can be played by δ instead of |||Ψ ´Φh ||| α,L,R 0 .

In fact, the resulting statement can be proved directly if one restricts oneself to Ψ P P α,L m pΦ h q with a fixed m (upon which the implied constants may depend) and α ą 1, by adapting the ideas of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]§ 2.4.1] and [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF]§ 5.2]. Indeed, use the hypothesis α ą 1 to find non-negative functions φ 0 , φ 1 , . . . , φ m P G α,L pTq such that each φ j has total mass 1 and is supported on r j m`1 , j`1 m`1 s mod Z (use e.g. Lemma A.3 of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]), and set φ0 ptq :" ş t 0 `φ0 psq ´1˘d s. Then, for any u 0 , u 1 , . . . , u m P G α,L pA n q, the map Ψ " Φ um ˝¨¨¨˝Φ u 1 ˝Φh`u 0 admits an explicit suspension given by Hpθ, r, tq :" hprq `φ0 ptqu 0 `θ `φ 0 ptq∇hprq, r ˘`m ÿ j"1

φ j ptqu j `θ `p1 ´tq∇hprq, r ˘,
and one can find λ P p0, 1q and C ą 0 independent of u 0 , . . . , u m such that

∥H ´h∥ α,λL,R ď C `∥u 0 ∥ α,L `¨¨¨`∥u m ∥ α,L ˘.
We now briefly indicate how to prove Theorem E in the analytic case, i.e. when α " 1; the case α ą 1 is dealt with in Section 2.2.

Proof of Theorem E in the case α " 1. This is due to Kuksin [START_REF] Kuksin | On the inclusion of an almost integrable analytic symplectomorphism into a Hamiltonian flow[END_REF] and Kuksin-Pöschel [START_REF] Kuksin | On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications[END_REF]. There is only a slight difference in the way norms are measured, but this is immaterial: for a real analytic function φ :

A n R Ñ R, [KP94]
defines |φ| ρ as the sup-norm of the holomorphic extension of φ to a complex domain V ρ T n ˆVρ B R defined as in (1.5) but with | ¨|8 replaced by } ¨}, with }ξ} :"

b |ξ 1 | 2 `¨¨¨`|ξ n | 2 for ξ P R n or C n ; this is related to our Gevrey-1 norms by c∥φ∥ 1,L,R ď |φ| ρ ď ∥φ∥ 1,ρ,R for 0 ă L ă ρ{ ? n, with c :" p1 ´Lρ ´1?
nq 2n . With this in mind, when α " 1, our Theorem E follows from Theorem 4 of [START_REF] Kuksin | On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications[END_REF] by isoenergetic reduction, with the help of the Implicit Function Theorem (the same way their Theorem 1 follows from their Theorem 3).

Proof of Theorem E in the Gevrey non-analytic case

For the Gevrey non-analytic case, the proof will consist in a Gevrey quantitative adaptation of Douady's method [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF].

In all this section we fix a positive integer n and a real α ą 1. When dealing with a map Ψ taking its values in T n ˆRn or R n ˆRn , we shall often denote its components by Ψ 1 , . . . , Ψ 2n and use the notation

Ψ r1s :" pΨ 1 , . . . , Ψ n q, Ψ r2s :" pΨ n`1 , . . . , Ψ 2n q.
(2.4)

Similarly, we shall make use of the partial gradient operators ∇ r1s and ∇ r2s defined by (C.1).

Overview

The construction is based on the classical formalism of generating functions for exact symplectic C 8 maps, with mixed set of variables: we use the notation F A whenever we have a C 8 function A defined on an open subset of A n such that the equation r " θ `∇r1s Apθ, r 1 q implicitly defines r 1 P R n in terms of θ P T n and r P R n , so that we can set

F A pθ, rq :" pθ 1 , r 1 q, θ 1 :" θ `∇r2s Apθ, r 1 q.
When it is defined, the map F A is automatically an exact symplectic local diffeomorphism; moreover, all exact symplectic C 8 maps close enough to identity are of this form. The reader is referred to Appendix C for more details. 6Here is an overview of the construction of a suspension for a given exact symplectic Gevery map Ψ close enough to Φ h : following [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF], we write our map as

Ψ " Φ h ˝FA , (2.5)
while we pick η P C 8 pr0, 1sq such that η " 0 on a neighbourhood of 0, η " 1 on a neighbourhood of 1, and 0 ď η ď 1 on r0, 1s; then the formula Ψ t :" Φ th ˝FηptqA defines an isotopy between the identity and Ψ, which can be shown to be the flow map between time 0 and time t for a time-periodic Hamiltonian vector field H which is close to h. We will repeat the arguments in detail to check that one can find a small Gevrey function A such that (2.5) holds and that, provided we take a Gevrey function for η (which is possible because α ą 1), we can find a suspension H Gevrey close to h. The last point will follow from the very explicit formula that we shall obtain for H: with the notation (2.4), Hpθ, r, tq " hprq `η1 ptqA `pF ´1 ηptqA q r1s pθ ´t∇hprq, rq, r (formula (2.24) below).

First step: finding a generating function

Proposition 2.3. Let L 0 , R, R 0 , E ą 0 be reals such that R ă R 0 . Then there exist ε ˚, L, C ˚ą 0 such that, for any h P G α,L 0 pB R 0 q such that ∥h∥ α,L 0 ,R 0 ď E and any exact symplectic map

Ψ P G α,L 0 pA n R 0 , A n q such that ε :" |||Ψ ´Φh ||| α,L 0 ,R 0 ď ε ˚, (2.6)
there exist open subsets Ω and

Ω 1 of A n R 0 which contain A n R and a function A P C 8 pΩ 1 q such that • F A : Ω Ñ A n R 0 is a well-defined exact symplectic map, • Ψ |Ω " Φ h ˝FA , • A |A n R P G α,L pA n R q and ∥A |A n R ∥ α,L,R ď C ˚ε.
The proof of Proposition 2.3 relies on two auxiliary results. The first one is a straightforward Gevrey adaptation in A n R of the Poincaré lemma, the second one is a technical inversion result that will be needed in the second step too and whose proof is given in Appendix D.

Lemma 2.4. Let R, L ą 0 and β 1 , . . . , β 2n P G α,L pA n R q. We denote the variables in A n R by pθ, rq " px 1 , . . . , x 2n q and assume that

• B x i β j " B x j β i for i, j " 1, . . . , 2n,
• for each r P B R and i " 1, . . . , n, the function β i p ¨, rq has mean value zero on T n .

Then there exists

A P G α,L pA n R q such that 2n ÿ i"1 β i dx i " dA and ∥A∥ α,L,R ď C `∥β 1 ∥ α,L,R `¨¨¨`∥β 2n ∥ α,L,R ˘,
where

C :" max ␣ 1 2 , R, L α ( .
Lemma 2.5. Let R, R 0 , L 0 ą 0 be reals such that R ă R 0 , and let η P G α,L 0 pr0, 1sq be a non-trivial function. Then there exist ε ˚, L ą 0 such that, for any ψ " pψ 1 , . . . ,

ψ n q P G α,L 0 pA n R 0 , R n q satisfying ε :" n ÿ i"1 ∥ψ i ∥ α,L 0 ,R 0 ď ε ånd
for any t P r0, 1s, the map

pθ, rq P A n R 0 Þ Ñ pθ, r 1 q " `θ, r `ηptqψpθ, rq ˘P A n (2.7) induces a C 8 diffeomorphism from T n ˆBR 0 onto an open subset Ω t of A n which con- tains A n R , with an inverse map of the form pθ, r 1 q P Ω t Þ Ñ pθ, rq " `θ, r 1 `χpθ, r 1 , tq ˘P T n ˆBR 0 , (2.8)
where χ " pχ 1 , . . . , χ n q is C 8 and restricts to χ

|A n R ˆr0,1s P G α,L pA n R ˆr0, 1s, R n q with n ÿ i"1 ∥χ i ∥ α,L,R ď ε∥η∥ α,L 0 .
(2.9)

For ε ˚and L, one can take the values indicated in (D.1) and (D.2).

Proof of Lemma 2.4. The function

Ãpxq :"

ż 1 0 2n ÿ i"1 x i β i ptxq dt
is well defined on R n ˆBR . An easy computation yields B x i à " β i for i " 1, . . . , 2n. In particular, for each r P B R , the functions B θ 1 Ãp ¨, rq, . . . , B θn Ãp ¨, rq are Z n -periodic and have mean value zero, whence it follows that Ãp ¨, rq is itself Z n -periodic. Thus à induces a function A P C 8 pA n R q, and the differential of

A is β 1 dx 1 `¨¨¨`β 2n dx 2n . Choosing " ´1 2 , 1 2 ˘n ˆBR as a fundamental domain in R n ˆBR , we get ∥A∥ C 0 pA n R q ď max ␣ 1 2 , R (`∥ β 1 ∥ C 0 pA n R q `¨¨¨`∥β 2n ∥ C 0 pA n R q ˘.
Any ℓ P N 2n such that |ℓ| ě 1 can be written (usually in more than one way) as ℓ " m `ei with m P N 2n and i P t1, . . . , 2nu, moreover

B ℓ A " B m β i and pm `ei q! ě m!, hence ÿ |ℓ|ě1 L |ℓ|α ℓ! α ∥B ℓ A∥ C 0 pA n R q ď 2n ÿ i"1 ÿ mPN 2n L p1`|m|qα pm `ei q! α ∥B m β i ∥ C 0 pA n R q ď L α 2n ÿ i"1 ∥β i ∥ α,L,R ,
which completes the proof.

Proof of Lemma 2.5. See Appendix D.

Proof of Proposition 2.3.

Given L 0 , L, R ą 0 such that R ă R 0 , we set R 1 :" R`R 0 2 and ε ˚:" min ! R 0 ´R1 2 , L α 0 2 α`1 p2n `1q α´1 ) , L :" L 0 p2 α`1 p2n `1q α´1 q 1{α .
(2.10)

Let h P G α,L 0 pB R 0 q and let Ψ P G α,L 0 pA n R 0 , A n q be exact symplectic and satisfy (2.6). Let us choose a lift ξ P C 8 pA n R 0 , R n ˆRn q of Ψ´Φ h so that ∥ξ 1 ∥ α,L 0 ,R 0 `¨¨¨`∥ξ 2n ∥ α,L 0 ,R 0 " ε. Since Φ h pθ
, rq " pθ `x∇hprqy, rq, we have Ψ r1s pθ, rq " θ `x∇hprq `ξr1s pθ, rqy, Ψ r2s pθ, rq " r `ξr2s pθ, rq.

We apply Lemma 2.5 with η " 1 and ψ " ξ r2s : in view of (D.1) and (D.2), our choice (2.10) of ε ˚and L implies the existence of an open subset Ω

1 of A n containing A n R 1 such that pθ, rq P T n ˆBR 0 Þ Ñ pθ, r 1 q " `θ, Ψ r2s pθ, rq ˘P Ω 1 (2.11)
is a C 8 diffeomorphism, the inverse of which can be written

Φ : pθ, r 1 q P Ω 1 Þ Ñ pθ, rq " `θ, r 1 `χpθ, r 1 q ˘P T n ˆBR 0 , with ∥χ 1 ∥ α,L,R 1 `¨¨¨`∥χ n ∥ α,L,R 1 ď ε. We set Ω 1 :" Ω 1 X pT n ˆBR 0 q and Ω :" ΦpΩ 1 q Ă T n ˆBR 0 . Notice that A n R Ă A n R 1 Ă Ω 1 and A n R Ă Ω (because ∥ξ r2s pθ, rq∥ ď R 1 ´R for all pθ, rq P A n R 0 , thus Φ ´1pA n R q Ă A n R 1
). We now consider F pθ, rq :" Φ ´h ˝Ψpθ, rq " `Ψr1s pθ, rq ´x∇h ˝Ψr2s pθ, rqy, Ψ r2s pθ, rq for pθ, rq P Ω (which is possible since Ψ r2s pΩq Ă B R 0 ). This is an exact symplectic C 8 local diffeomorphism, which can be written F pθ, rq " `θ `xf pθ, rqy, Ψ r2s pθ, rq ˘, f :" ξ r1s `∇h ´∇h ˝Ψr2s , and the map (2.11) induces a C 8 diffeomorphism from Ω onto Ω 1 ; therefore, following the recepee of Lemma C.3, we know that the 1-form

β :" n ÿ i"1 χ i pθ, r 1 q dθ i `n ÿ i"1 f i ˝Φpθ, r 1 q dr 1 i
is exact and F " F A on Ω, where A P C 8 pΩ 1 q is any primitive of β.

We conclude by checking that we can apply Lemma 2.4 and get a primitive A P G α,L pA n R q whose norm we can bound. On the one hand, we have χ i P G α,L pA n R q for each i and ∥χ 1 ∥ α,L,R `¨¨¨`∥χ n ∥ α,L,R ď ε. On the other hand, since Ψ r2s ˝Φpθ, r 1 q " r 1 , we can write

f i ˝Φpθ, r 1 q " ξ i ˝Φpθ, r 1 q `gi pθ, r 1 q, g i pθ, r 1 q :" B i h ˝Φr2s pθ, r 1 q ´Bi hpr 1 q " n ÿ j"1 ż 1 0 B i B j hpr 1 `sχpθ, r 1 q ˘χj pθ, r 1 q ds.
Let L 1 :" L 0 {2. We can apply Proposition A.1 of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] to the composition with Φpθ, r 1 q " `θ, r 1 `χpθ, r 1 q ˘or, more generally, with U s pθ, r 1 q :" `θ, r 1 `sχpθ, r 1 q ˘for s P r0, 1s, because

ÿ ℓPN 2n , ℓ‰0 L |ℓ|α ℓ! α ∥B ℓ U s,i ∥ C 0 pA n R q ď L α 1 p2nq α´1 , i " 1, . . . , 2n (indeed: this follows from L α `∥χ i ∥ α,L,R ď L α 0 2 α p2nq α´1
), and we get

∥ξ i ˝Φ∥ α,L,R ď ∥ξ i ∥ α,L 1 ,R 0 and ∥B i B j h ˝Us ∥ α,L,R ď ∥B i B j h∥ α,L 1 ,R 0 , whence ∥g i ∥ α,L,R ď ÿ j ∥B i B j h∥ α,L 1 ,R 0 ∥χ j ∥ α,L,R
by the algebra norm property. Thus Lemma 2.4 gives us

A P G α,L pA n R q with ∥A∥ α,L,R ď C ˆÿ i ∥ξ i ∥ α,L 1 ,R 0 `ÿ i,j ∥B i B j h∥ α,L 1 ,R 0 ∥χ j ∥ α,L,R ˙ď C ˆ1 `ÿ i,j ∥B i B j h∥ α,L 1 ,R 0 ˙ε,
and, using (B.1), we get the desired estimate with

C ˚:" C `1 `23α L 2α 0 }h} α,L 0 ,R 0 ˘.

Second step: constructing a Hamiltonian isotopy

Proposition 2.6.

Let L 0 , R, R 0 ą 0 be reals such that R ă R 0 . Let η P G α,L 0 pr0, 1sq.
Then there exist ε ˚, L, C ą 0 satisfying the following: for any A P G α,L 0 pA n R 0 q such that ∥A∥ α,L 0 ,R 0 ď ε ˚and for any t P r0, 1s, there exists an open subset

Ω t of A n containing A n R such that F ηptqA : Ω t Ñ T n ˆBR 0
is a well-defined exact symplectic C 8 diffeomorphism, and for each pθ, rq

P A n R , d dt F ηptqA pθ, rq " X f `FηptqA pθ, rq, t ˘, t P r0, 1s, (2.12)
where X f is the non-autonomous Hamiltonian vector field associated with f pθ, r, tq :" η 1 ptqA `pF ´1 ηptqA q r1s pθ, rq, r ˘, pθ, r, tq P T n ˆBR 0 ˆr0, 1s, (2.13)

which is a C 8 Hamiltonian function whose restriction to A n R ˆr0, 1s is Gevrey-pα, Lq, with ∥f ∥ α,L,R ď 2 α L ´α 0 ∥η∥ α,L 0 ∥A∥ α,L 0 ,R 0 . (2.14) Proof. Let L 1 :" L 0 {2 and ε ˚:" pL 0 ´L1 q α ∥η∥ α,L 0 min ! ? n, R 0 ´R 2 , L α 1 2 α`1 p2n `1q α´1 ) , L :" L 1 p2 α`1 p2n `1q α´1 q 1{α . Let A P G α,L 0 pA n R 0 q such that ε :" ∥A∥ α,L 0 ,R 0 ď ε ˚. By (B.1), we have ř n i"1 ∥B i A∥ α,L 1 ,R 0 ď 1 pL 0 ´L1 q α ε ˚,
thus we can apply Lemma 2.5 and we get for each t P r0, 1s an open subset Ω t of A n containing A n R such that the map

pθ, r 1 q P T n ˆBR 0 Þ Ñ pθ, rq " `θ, r 1 `ηptq∇ r1s Apθ, r 1 q ˘P Ω t is a diffeomorphism whose inverse is C 8 on A n R ˆr0
, 1s in the variables θ, r and t. By Lemma C.1, ηptqA is thus a generating function for Ω t , inducing an exact symplectic local diffeomorphism from Ω t to T n ˆBR 0 : given pθ, rq P Ω t and pθ 1 , r 1 q P T n ˆBR 0 , pθ 1 , r 1 q " F ηptqA pθ, rq ðñ # r " r 1 `ηptq∇ r1s Apθ, r 1 q θ 1 " θ `ηptq∇ r2s Apθ, r 1 q.

(2.15)

Moreover, pθ, r, tq

P A n R ˆr0, 1s Þ Ñ F ηptqA pθ, rq is C 8 . In order to check that F ηptqA is in fact a diffeomorphism from Ω t onto T n ˆBR 0 , we consider the map pθ, r 1 q P B 2 ? n ˆBR 0 Þ Ñ pθ 1 , r 1 q " `θ `ηptq∇ r2s Apθ, r 1 q, r 1 ˘P R n ˆRn .
(2.16) By (B.1), we have

ř n i"1 ∥B n`i A∥ α,L 1 ,R 0 ď 1 pL 0 ´L1 q α ε
, thus we can apply of Lemma 2.5 (or rather a variant of it in which the Z n -periodicity assumption is removed and the roles of θ and r are exchanged): we get an open subset Ωt of R n ˆBR 0 containing B ?

n ˆBR 0 such that the map (2.16) is a C 8 diffeomorphism from B 2 ? n ˆBR 0 to Ωt , with an inverse of the form pθ 1 , r

1 q P Ωt Þ Ñ pθ, r 1 q " `θ1 `gpθ 1 , r 1 , tq, r 1 ˘P B 2 ? n ˆBR 0 ,
with Gevrey-pα, Lq estimates on B ? n ˆBR 0 ˆr0, 1s for the components of g. Since

∇ r2s A is Z n -periodic in θ and B ? n contains " ´1 2 , 1 2 ‰ n , the vector-valued function g is Z n -periodic
in θ 1 and extends by periodicity to the whole of R n ˆBR 0 ; we thus get a C 8 diffeomorphism pθ 1 , r 1 q P T n ˆBR 0 Þ Ñ pθ, r 1 q " `θ1 `gpθ 1 , r 1 , tq, r 1 ˘P T n ˆBR 0 with

g 1 , . . . , g n P G α,L pA n R ˆr0, 1sq, n ÿ i"1 ∥g i ∥ α,L,R ď ∥η∥ α,L 0 pL 0 ´L1 q α ε.
In view of (2.15), we conclude that F ηptqA is invertible, with inverse F ´1 ηptqA pθ 1 , r 1 q " `xθ 1 `gpθ 1 , r 1 , tqy, r 1 `ηptq∇ r1s Apθ 1 `gpθ 1 , r 1 , tq, r 1 q ˘, pθ 1 , r 1 q P T n ˆBR 0 .

Let us now consider the C 8 function f pθ, r, tq :" η 1 ptqA `θ `gpθ, r, tq, r ˘, pθ, r, tq P T n ˆBR 0 ˆr0, 1s.

By Proposition A.1 of [MS03] (cf. also Appendix B.1), it is Gevrey-pα, Lq on A n R ˆr0, 1s because L α `ÿ ℓPN 2n`1 , ℓ‰0 L |ℓ|α ℓ! α ∥B ℓ g i ∥ C 0 pA n R ˆr0,1sq ď L α 0 p2nq α´1 , i " 1, . . . , n,
and ∥f ∥ α,L,R ď ∥η 1 ∥ α,L ∥A∥ α,L 0 ,R 0 ď
1 pL 0 ´Lq α ∥η∥ α,L 0 ε (thanks to the algebra norm property and (B.1)), which yields (2.14). It only remains to be shown that, for each pθ, rq P A n R , the C 8 curve t P r0, 1s Þ Ñ `θptq, rptq ˘:" F ηptqA pθ, rq satisfies the system of ordinary differential equations θ 1 ptq " ∇ r2s f `θptq, rptq, t ˘, r 1 ptq " ´∇r1s f `θptq, rptq, t ˘.

(2.17)

On the one hand, the relations r " rptq `ηptq∇ r1s A `θ, rptq ˘, θptq " θ `ηptq∇ r2s A `θ, rptq ȇntail r 1 ptq " ´η1 ptq ´1n `ηptqd r2s ∇ r1s A `θ, rptq ˘¯´1 ∇ r1s A `θ, rptq ˘, (2.18) 

θ 1 ptq " η 1 ptq∇ r2s A `θ, rptq ˘`ηptqd r2s ∇ r2s A `θ,

Completion of the proof of Theorem E

We now prove Theorem E. We thus give ourselves reals L 0 , R, R 0 ą 0 such that R ă R 0 and a function h P G α,L 0 pB R 0 q. We pick R 1 P pR, R 0 q and η P G α,L 0 pr0, 1sq such that η " 0 on a neighbourhood of 0, η " 1 on a neighbourhood of 1, and 0 ď η ď 1 on r0, 1s (e.g. ηptq " Gptq{Gp1q with Gptq " ş t 0 F psq ds, where

F P G α,L 0 pr0, 1sq satisfies F ě 0, F p 1 2 q " 1, F |r0, 1 4 sYr 3 4 ,1s " 0; such a function F is constructed in Lemma A.3 of [MS03]-see also Lemma 3.3 of [MS04] quoted in Appendix B.4). Applying Proposition 2.3 with L 0 , R 1 , R 0 and h, we get constants ε 1 , L 1 , C 1 such that, for any exact symplectic map Ψ P G α,L 0 pA n R 0 , A n q with ε :" |||Ψ ´Φh ||| α,L 0 ,R 0 ď ε 1 , (2.20) there exists A P G α,L 1 pA n R 1 q such that F A : A n R 1 Ñ A n R 0 is a well-defined exact symplectic map, Ψ |A n R 1 " Φ h ˝FA , ∥A∥ α,L 1 ,R 1 ď C 1 ε. (2.21)
Applying Proposition 2.6 with L 1 , R, R 1 and η: we get constants ε 2 , L 2 , C 2 such that, for any A P G α,L 1 pA n R 1 q with ∥A∥ α,L 1 ,R 1 ď ε 2 and for any t P r0, 1s, there exists an open subset Ω t of A n containing A n R such that F ηptqA : Ω t Ñ T n ˆBR 1 is a well-defined exact symplectic C 8 diffeomorphism, t Þ Ñ F ηptqA pθ, rq satisfies the ordinary differential equation (2.12) for each pθ, rq

P A n R , with f P C 8 pT n ˆBR 1 ˆr0, 1sq such that f pθ, r, tq :" η 1 ptqA `pF ´1 ηptqA q r1s pθ, rq, r ˘, ∥f ∥ α,L 2 ,R ď 2 α L ´α 1 ∥η∥ α,L 1 ∥A∥ α,L 1 ,R 1 . (2.22) Let us set ε ˚:" min ! ε 1 , 1 C 1 ε 2 ) , C ˚:" 2 α C 1 L α 1 ∥η∥ α,L 0
and choose L ˚ą 0 small enough so that

L α ˚`L α ˚p1 `Lα 2 q pL 2 ´L˚q α pL 0 ´L2 q α ∥h∥ α,L 0 ,R 0 ď L α 2 p2n `1q α .
(2.23)

Given an exact symplectic map Ψ P G α,L 0 pA n R 0 , A n q such that (2.20) holds, we get from Proposition 2.3 a function A satisfying (2.21). Since C 1 ε ď ε 2 , we can then apply Proposition 2.6 to the generating function A and get a non-autonomous Hamiltonian function f P C 8 pT n ˆBR 1 ˆr0, 1sq as in (2.22), for which the flow between time 0 and time t on A n R coincides with F ηptqA (because the differential equation (2.12) is satisfied and ηp0q " 0, F 0 " Id). Notice that ∥f ∥ α,L 2 ,R ď C ˚ε.

For t P r0, 1s, we define Ψ t :" Φ th ˝FηptqA on A n R : this is an isotopy from Id to Ψ, and one checks easily that it gives the flow between time 0 and time t on A n R for the Hamiltonian function Hpθ, r, tq :" hprq `f ˝Φpθ, r, tq, pθ, r, tq P T n ˆBR 1 ˆr0, 1s, where Φpθ, r, tq :" `θ´t∇hprq, r, t ˘(because Φ th is symplectic and Φpx, tq " pΦ ´th px, tq, tq, hence dΦ th pxqX f px, tq " X f ˝ΦpΦ th pxq, tq). Since η 1 ptq " 0 in neighbourhoods of 0 and 1, the formula Hpθ, r, tq " hprq `η1 ptqA `pF ´1 ηptqA q r1s pθ ´t∇hprq, rq, r ˘(2.24) shows that H can be extended by Z-periodicity in t, so that we get H P C 8 pT n ˆBR 1 ˆTq, which can be viewed as a suspension of Ψ |A n R . By Proposition A.1 of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] (cf. also Appendix B.1), we have

H |A n R ˆT P G α,L˚p A n R ˆTq and ∥H ´h∥ α,L˚,R " ∥f ˝Φ∥ α,L˚,R ď ∥f ∥ α,L 2 ,R ď C ˚ε because the components of Φ satisfy ÿ ℓPN 2n`1 , ℓ‰0 L |ℓ|α l! α ∥B ℓ Φ i ∥ C 0 pA n R ˆr0,1sq ď L α 2 p2n `1q α´1 , i " 1, . . . , 2n `1 (2.25) (indeed, the left-hand side is ď L α ˚`L α pL 2 ´L˚q α ∥tB i h∥ α,L 2 ,R by a p2n `1q-variable variant of Lemma B.2, which is ď L α ˚`L α ˚p1`L α 2 q
pL 2 ´L˚q α pL 0 ´L2 q α ∥h∥ α,L 0 ,R 0 by (B.1), hence (2.25) follows from (2.23)). This ends the proof of Theorem E.

Proof of Theorem A (Nekhoroshev Theorem for maps)

We now prove Theorem A of Section 1.1. To this end, we first recall the exponential stability theorem for near-integrable quasi-convex Hamiltonian flows in its most recent formulation. Theorem E will then allow us to transfer this result to near-integrable maps.

Theorem ). Let N ě 2 be an integer. Let α ě 1 and L, R, R 0 , m, E ą 0 be reals such that R ă R 0 . Then there exist positive reals ε ˚, c ˚, and, for each positive ρ ă R 0 ´R, positive reals ε 1 ρ ď ε ˚and c 1 ρ ď c ˚, and, for each positive σ ă 1 N , positive reals ε 2 σ ď ε ˚and c 2 σ ď c ˚, satisfying the following: For each h P G α,L pB R 0 q such that ∥h∥ α,L,R 0 ď E, ∇hprq ‰ 0 for every r P B R 0 and t v d∇hprqv ě m∥v∥ for all v P R N orthogonal to ∇hprq, (2.26)

and for each H P G α,L pA N R 0 q such that ε :" ∥H ´h∥ α,L,R 0 ď ε ˚, every initial condition pθ r0s , r r0s q in A N R gives rise to a solution t Þ Ñ `θptq, rptq ˘of X H which is defined at least for |t| ď exp `c˚`1 ε ˘1 2pN ´1qα ˘, and

(i) ε ď ε 1 ρ and |t| ď exp ´c1 ρ ´1 ε ¯1 2pN ´1qα ¯ñ ∥rptq ´rr0s ∥ ď ρ, (ii) ε ď ε 2 σ and |t| ď exp ´c2 σ ´1 ε ¯1´σ 2pN ´1qα ¯ñ ∥rptq ´rr0s ∥ ď $ & % 1 c 2 σ ε σ 2 if α " 1, 1 c 2 σ ε σ 5pN ´1q 2 if α ą 1, (iii) ε ď ε ˚and |t| ď exp ´c˚´1 ε ¯1 2N α ¯ñ ∥rptq ´rr0s ∥ ď 1 c˚ε 1 2N .
Remark 2.8. This result is given in [START_REF] Bounemoura | Improved exponential stability for nearintegrable quasi-convex Hamiltonians[END_REF] in a slightly different presentation and we took the opportunity of correcting a slight mistake in the time exponent in the case α ą 1 of (ii): in [START_REF] Bounemoura | Improved exponential stability for nearintegrable quasi-convex Hamiltonians[END_REF], it should be Bounemoura-Marco's article [START_REF] Bounemoura | Improved exponential stability for nearintegrable quasi-convex Hamiltonians[END_REF] focuses on the stability time (rather than the confinement radius, which is anyway a less important issue), for the Gevrey case (α ě 1); their discovery is that one can obtain a time exponent a arbitrarily close to 1 2pN ´1qα at the price of a smaller exponent b, or even equal to that value at the price of accepting a weaker notion of confinement: there is an arbitrarily small confinement radius ρ but it does not tend to 0 with ε. This weaker confinement property is all we need when studying wandering domains (see Section 2.4).

Remark 2.9 (Stabilization by resonances). The phenomenon of stabilization by resonances for quasi-convex Hamiltonians was first proved by Lochak-Neishtadt and Pöschel in the analytic case; Marco-Sauzin's article [MS03] contains a generalization to the Gevrey case α ě 1 obtained by adapting Lochak's periodic method. The result can be formulated as follows:

For any submodule M of Z n of rank multpMq P t1, . . . , N ´1u, consider the resonant surface

S M :" ␣ r P B R 0 | n ÿ i"1 k i B i hprq " 0 for all k P M ( , which is a multpMq-codimensional submanifold of B R 0 Ă R N .
Then there is an improvement of the stability property whenever the initial condition lies at a distance Opε 1{2 q of S M : for any real σ ą 0, there exist ε, c ą 0 (which depend on α, L, R, R 0 , m, E, σ, M) such that, for any m-quasi-convex h P G α,L pB R 0 q such that ∥h∥ α,L,R 0 ď E, for any

H P G α,L pA N R 0 q such that ε :" ∥H ´h∥ α,L,R 0 ď ε, for any initial condition pθ r0s , r r0s q in A N R such that distpr r0s , S M q ď σ ε 1{2 , the solution `θptq, rptq ˘of X H satisfies |t| ď exp ´c ´1 ε ¯a¯ñ ∥rptq ´rr0s ∥ ď 1 c ε b
with a :" 1 2 `N ´multpMq ˘α and b :"

1 2pN ´multpMqq . Proof of Theorem A. Let us give ourselves n ě 1 integer and α ě 1, L, R, R 0 , m, E ą 0 reals such that R ă R 0 . Let R 1 :" R`R 0 2 . Applying Theorem E with n, α, L, R 1 , R 0 , E, we get positive reals ε 1 , L 1 , C 1 such that, for every h P G α,L pB R 0 q such that ∥h∥ α,L,R 0 ď E and every exact symplectic map Ψ P G α,L pA n R 0 , A n q such that ε :" |||Ψ´Φ h ||| α,L,R 0 ď ε 1 , there is a suspension H P G α,L 1 pA n R 1 Tq such that ∥H ´h∥ α,L 1 ,R 1 ď C 1 ε. Without loss of generality, we can assume L 1 ď L and C 1 ě 1. Let N :" n `1, E 1 :" R 1 `L1 `E, m 1 :" m 1`pL´L 1 q ´2α E 2 . Applying Bounemoura- Marco's theorem with N, α, L 1 , R, R 1 , m 1 , E 1 ,
we get positive reals ε˚, c˚, and, for each positive ρ ă R 1 ´R, positive reals ε1 ρ ď ε˚a nd c1 ρ ď c˚, and, for each positive σ ă 1 n`1 , positive reals ε2 σ ď ε˚a nd c2 σ ď c˚, such that, for any m 1 -quasi-convex h and any

H in G α,L 1 pA n`1 R 1 q such that ∥ h∥ α,L 1 ,R 1 ď E 1 and ε :" ∥ H ´h∥ α,L 1 ,R 1 ď ε˚, every initial condition `θ r0s , rr0s ˘in A n`1 R
gives rise to a solution of X H defined at least for |t| ď exp `c ˚`1 ε ˘1 2nα ˘, which satisfies the properties (i), (ii) and (iii) of Bounemoura-Marco's theorem.

We now check the statement of Theorem A for an m-convex function h P G α,L pB R 0 q such that ∥h∥ α,L,R 0 ď E and an exact symplectic

Ψ P G α,L pA n R 0 , A n q such that ε :" |||Ψ ´Φh ||| α,L,R 0 ď ε ˚:" mintε 1 , ε˚{ C 1 u.
Let H P G α,L 1 pA n R 1 ˆTq denote the suspension of Ψ obtained from Theorem E. We introduce the pn `1q-degree of freedom autonomous Hamiltonian functions hpr, r n`1 q :" r n`1 `hprq,

Hpθ, r, θ n`1 , r n`1 q :" r n`1 `Hpθ, r, θ n`1 q for pθ, r, θ n`1 , r n`1 q P A n R 1 ˆT ˆR » T n`1 ˆBR 1 ˆR, which contains A n`1 R 1 . One easily checks that ∥ h∥ α,L 1 ,R 1 ď E 1 and h is m 1 -quasi-convex. Since ∥ H ´h∥ α,L 1 ,R 1 " ∥H ´h∥ α,L 1 ,R 1 ď C 1 ε ď ε˚, Bounemoura-Marco'
s theorem ensures stability properties for all the solutions of X H starting in A n`1 R . The conclusion stems from the fact that the solutions of the autonomous vector field X H are related to the solutions of the nonautonomous vector field X H , which, in turn, interpolate the discrete dynamics induced by Ψ; in particular, if the initial condition is of the form `θr0s , r r0s , θ r0s n`1 , r r0s n`1 ˘" pθ, r, 0, 0q, then the value of the solution at any integer time k such that |k| ď exp `c ˚`1

C 1 ε ˘1 2nα satisfies `θpkq, rpkq ˘" Ψ k pθ, rq, θ n`1 pkq " k, r n`1 pkq " Hpθ, r, 0q ´H`Ψ k pθ, rq, k ˘,
hence the properties (i), (ii) and (iii) in Bounemoura-Marco's theorem imply the desired properties for the discrete orbits of Ψ starting in

A n R , with c ˚:" c˚`1 C 1 ˘1 2nα , ε 1 ρ :" mintε 1 , ε1 ρ {C 1 u, c 1 ρ :" c˚`1 C 1 ˘1 2nα , ε 2 σ :" mintε 1 , ε2 σ {C 1 u, c 2 σ :" c˚`1 C 1 ˘1´σ 2nα .

Proof of Theorem B (upper bounds for wandering sets)

We now prove Theorem B of Section 1.2. Let us give ourselves n ě 1 integer and α ě 1, L, R, R 0 , m, E ą 0 such that R ă R 0 . We take ε ˚and c ˚as in Theorem A.

Given an arbitrary m-convex function h P G α,L pB R 0 q such that ∥h∥ α,L,R 0 ď E, and a map Ψ as in the statement of Theorem B, with a measurable wandering set

W Ă A n R , we can apply Theorem A to Ψ |A n R 0
. This shows that for a point pθ, rq

P A n R , all the iterates Ψ k pθ, rq with |k| ď k ˚:" exp `c˚`1 ε ˘1 2nα ˘stay in A n R 0 .
In particular, all the sets Ψ k pW q with |k| ď k ˚are contained in A n R 0 . But these sets are pairwise disjoint and they all have the same Lebesgue measure, therefore p2k ˚`1qµpW q ď µpA n R 0 q, which yields the desired estimate (diminishing the value of ε ˚and c ˚if necessary).

A quantitative KAM result -proof of Part (i) of Theorem D

As announced in Section 1.3, this section contains the proof of the two-dimensional case of Theorem D stated there. This proof is based on an auxiliary result, Theorem F, which will also be instrumental in the obtention of the full proof of Theorem D in Section 4.2.

Elliptic islands in

A with a tuning parameter -Theorem F

We will take the liberty of identifying a 1-periodic function on R with a function on T.

Here is the auxiliary result which has been alluded to:

Theorem F. Let α ą 1 and L ą 0 be real numbers. Suppose, on the one hand, that V P C 8 pRq is a 1-periodic function and that L 0 , θ ‹ , ρ 0 are positive reals such that L 0 ă 1 2 ´θ‹ and

(i) ´L0 ď θ ď L 0 ñ V pθq " ´1 2 ρ 2 0 (ii) 1 2 ´θ‹ ď θ ď 1 2 `θ‹ ñ V pθq " ´pθ ´1{2q 4 (iii) θ ´1 2 R Z ñ V pθq ă 0. V pθq ´L0 L 0 ´1 2 1 2 ´ρ2 0 2
We use the notation

P V {N 2 pθ, rq :" 1 2 r 2 `1 N 2 V pθq for N P N ˚. (3.1)
Suppose, on the other hand, that δ is a real number such that 0 ă δ ă ρ 0 {2, and that pW N q N PN ˚is a sequence of 1-periodic functions of C 8 pRq such that

(iv) ´δ 2N ď θ ď δ 2N ñ W N pθq " 1 2 θ 2 (v) δ N ď θ ď 1 ´δ N ñ W N pθq " 0.
Then there exist positive reals C 1 , C 2 , C 3 , C 4 such that, for any integers q, N P N ˚such that q ě C 1 N and for any real µ P `0, C 2 N 4 {q 5 ˘, the exact symplectic map of A

G N,µ :" Φ µW N ˝ΦP V {N 2 (3.2)
admits a q-periodic disc D q,N,µ Ă A 3 , with all its iterates also contained in A 3 , such that

C 3 µ N 2 ď areapD q,N,µ q ď C 4 µ N 2 (3.3) and D q,N,µ Ă B δ{p2N q X A 4δ{N , G k N,µ pD q,N,µ q X B δ{N " ∅ for 1 ď k ď q ´1. (3.4)
The proof of Theorem F is given in Sections 3.3-3.7. Recall that the notations A d and B d were introduced in (1.17).

Observe that, when V, W N P G α,L pRq, we have G N,µ P P α,L 1 pΦ 1 2 r 2 q; this map can be viewed as a perturbation of the "pseudo-pendulum" Φ P V {N 2 . Here, we have two external parameters, N and µ (changing them amounts to changing the discrete dynamical system we are dealing with), and one internal parameter, q (we may vary it, e.g. taking it larger and larger, while keeping the same system G N,µ ). We call µ the "tuning parameter"; an appropriate choice of µ will yield Theorem D(i) in Section 3.2 and Theorem D(ii) in Section 4.2.

Theorem F implies Part (i) of Theorem D

Taking for granted Theorem F, we now show how Theorem D(i) follows.

Let α ą 1 and L ą 0. With the help of "bump functions" as in Appendix B.4, we can easily choose V P G α,L pRq satisfying conditions (i)-(iii) (for whatever choice of L 0 , θ ‹ , ρ 0 ). We choose ρ 0 ą 2 and δ " 1. For the choice of the sequence pW N q N PN ẘe apply Lemma B.5, which produces a real cpα, Lq ą 0 and a sequence of 1-periodic functions pη N q N PN ˚in G α,L pRq such that

´1 2N ď θ ď 1 2N ñ η N pθq " 1, 1 N ď θ ď 1 ´1 N ñ η N pθq " 0 and }η N } α,L ď exp ´cpα, Lq N 1 α´1 ¯for all N P N ˚. (3.5) 
We then set W N pθq :" 1 2 η N pθq `distpθ, Zq ˘2, so that

}W N } α,L ď C 0 exp ´cpα, Lq N 1 α´1 ¯for all N P N ˚(3.6)
with some constant C 0 ą 0, and we apply Theorem F. We get C 1 , C 2 , C 3 , C 4 ą 0 fulfilling the conclusions of Theorem F. Observe that formula (3.2) defines G N,µ P P α,L 1 pΦ

1 2 r 2 q with δ α,L ´GN,µ , Φ 1 2 r 2 ¯ď 1 N 2 }V } α,L `C0 µ exp ´cpα, Lq N 1 α´1 ¯(3.7)
for any integer N ě 1 and real µ ą 0. Recall that N j :" p j`2 is given by the prime number sequence. We set

µ j,q :" min " C 2 N 4 j 2q 5 , 1 N 2 j exp ´´cpα, LqN 1 α´1 j
¯*, Ψ j,q :" G N j ,µ j,q , D j,q :" D q,N j ,µ j,q (3.8) for all j, q P N ˚such that q ě C 1 N j (notice that D q,N j ,µ j,q is well defined because µ j,q P `0, C 2 N 4 j {q 5 ˘for such values of j and q). Let us check that the conclusions of Theorem D(i) are fulfilled. Since (3.8) entails µ j,q exp ´cpα, Lq N 1 α´1 ¯ď 1{N 2 j , we deduce from (3.7) that Ψ j,q P P α,L 1 pΦ

1 2 r 2 q, δ α,L `Ψj,q , Φ 1 2 r 2 ˘ď }V } α,L `C0 N 2 j .
According to Theorem F, D j,q is a q-periodic disc for Ψ j,q , whose orbit is localized precisely as desired, in particular (3.4) amounts exactly to (1.22). Now, by (3.3), C G pD j,q q " areapD j,q q ě C 3 µ j,q

N 2 j " 1 2 C 2 C 3 min " N 2 j q 5 , 2 C 2 N 4 j exp ´´cpα, LqN 1 α´1 j ¯* ě C 1 3 min " N 2 j q 5 , exp ´´cN 1 α´1 j ¯* with C 1 3 :" 1 2 C 2 C
3 and c :" 2 cpα, Lq for j large enough. This ends the proof of Theorem D(i).

Overview of the proof of Theorem F

The rest of Section 3 is devoted to the proof of Theorem F.

We thus give ourselves once for all α, L, V and pW N q N PN ˚as in the statement. Let us begin with a brief overview of the method.

The pseudo-pendulum Φ P V {N 2 has a degenerate equilibrium point at p 1 2 , 0q, with an "upper separatrix" t pθ, rq P A | r ą 0 and P V {N 2 pθ, rq " 0 u; see the figure on p. 37. It also has periodic points of arbitrarily high period located near this upper separatrix, and the effect of the perturbation Φ µW N in G N,µ is to create elliptic islands around these periodic points.

We will estimate the size of these islands by means of Herman's quantitative version of the two-dimensional KAM theorem [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] recalled in Section 3.6. To do this, we have to compute parametrized normal forms of high order, the parameters being the size of the perturbation (measured by 1{N and µ) and the period q of the island.

More precisely, for q large enough, we will study the q-th iterate of G N,µ in a neighbourhood of a q-periodic point in Section 3.4 and, in Section 3.5, find normalizing coordinates in which Herman's version of the invariant curve theorem can be applied to G q N,µ .

3.4 Preliminary study near a q-periodic point a q of G N,µ

Localization

We begin with defining a suitable notion of adapted box, to be used in this section as well as in Section 4.2.

Definition 3.1. Let q be an integer ě 2 and fix d P p0, 1{2q. Consider a Hamiltonian function

H : A Ñ R. A q-adapted box for H and B d is a rectangle B " I ˆra, bs Ă T ˆR contained in B d such that i) for 1 ď t ď q ´1, Φ tH pBq X B d " ∅; ii) Φ qH pBq Ă B d{2 .
This section is devoted to the construction of an explicit q-adapted box centered at a q-periodic point a q,N , as defined below, with respect to the system P V {N 2 and B δ{N .

In the same way as for the classical pendulum, the integral curve S e :" tpθ, rq P A | r ą 0, P V {N 2 pθ, rq " eu is a closed curve if e ą 0, so the flow t Þ Ñ Φ tP V {N 2 pθ, rq is periodic on S e , with a period T V {N 2 peq given by

T V {N 2 peq " ż 1 0 du a 2pe ´V puq{N 2 q .
(3.9) Definition 3.2. Let q ą 0 be a real number. Let a q,N " p0, r q,N q denote the unique point that satisfies r q,N ą 0 and T V {N 2 pa q,N q " q. We also set e q,N " P V {N 2 pa q,N q and ρ N " ρ 0 {N .

| θ´1 2 | ďθ ‹ | θ`1 2 | ďθ ‹ r a q,N ρ N ' θ ´L0 L 0 ´1 2 1 2
Note that ρ N is the height of the separatrix S 0 above r´L 0 , L 0 s ˆt0u. We identify the time-1 flow φ " Φ P V {N 2 and its lift to R 2 satisfying φ q p0, r q,N q " p1, r q,N q. We set B q pℓ, ℓ 1 q :" r´ℓ, ℓs ˆrr q,N ´ℓ1 , r q,N `ℓ1 s.

If there is no source of confusion, we may identify B q pℓ, ℓ 1 q Ă R 2 with its image in A. We also denote θ the projection to the first coordinate, from A to T, or from R 2 to R.

Proposition 3.3. Assume N is a positive integer and q is real number. If N ě N 0 and q ě q 0 N then we have

ρ N ď r q,N ď 2ρ N , C 1 N 2 q 4 ď e q,N ď C 2 N 2 q 4 and C 3 N 3 q 4 ď r q,N ´ρN ď C 4 N 3 q 4 ;
if q ě 2 and 0 ă δ ă ρ 0 {2, if we set ℓ " δ{p4N q and ℓ 1 " C 5 N 3 q 5 δ then B q pℓ, ℓ 1 q is a q-adapted box with respect to P V {N 2 and B δ{N , where N 0 , q 0 , C 1 , C 2 , C 3 , C 4 and C 5 are positive constants (which depend only on V ). Furthermore, if q ě q 1 0 N , with pq 1 0 ´q0 qN 0 ě 1, then we have

ρ N ă r q`1,N ă r ă r q´1,N ď 2ρ N ,
for all pθ, rq P B q pℓ, ℓ 1 q.

For the convenience of the reader, the proof of the proposition is split as follows. Lemma 3.4 provides a criterium for a rectangle to be q-adapted for the system P V {N 2 and Lemma 3.5 extracts from the system P V all the properties we need. This eventually gives an explicite estimate of the size of a q-adapted box in Proposition 3.6 when N " 1.

In order to generalise these resuts to the system when N ě N 0 is arbitrary, we note that the systems N 2 P V {N 2 and P V are equal up to a dilatation in the coordinate r. From this, Lemma 3.7 gives explicit dependances between the two systems P V and P V {N 2 for the main quantities we may compute.

Proof. Assuming Proposition 3.6, Lemma 3.5 and Lemma 3.7, we prove Proposition 3.3.

' Since e q,1 " pr 2 q,1 ´ρ2 0 q{2, we have ρ 0 ă r q,1 ď 2ρ 0 if and only if 0 ă e q,1 ď 3 2 ρ 2 0 . Let q 0 ą 0 be the unique real number such that e q 0 ,1 " 3ρ 2 0 {2; Lemma 3.5. iii) with k " 0 shows that c 0 {q ď e 1{4 q,1 ď c 1 {q, for q ě q 0 , where c 0 and c 1 are positive constants (which depend only on V ). Therefore, for q ě q 0 , we have 0 ă e q,1 ď e q 0 ,1 , so

ρ 0 ă r q,1 ď 2ρ 0 ; c 4 0 q 4 ď e q,1 ď c 4 1 q 4 .
Furthermore, we have e q,1 " 1 2 pr q,1 `ρ0 qpr q,1 ´ρ0 q. Since ρ 0 ă 1 2 pr q,1 `ρ0 q ď 2ρ 0 , it follows that

c 4 0 2ρ 0 1 q 4 ď e q,1 2ρ 0 ď r q,1 ´ρ0 ď e q,1 ρ 0 ď c 4 1 ρ 0 1 q 4 .
Since Lemma 3.7 shows that r q,N " r q{N,1 {N , we obtain that

ρ N ă r q,N ď 2ρ N and C 3 N 3 q 4 ď r q,N ´ρN ď C 4 N 3 q 4 , provided q{N ě q 0 ,
with C 3 :" c 4 0 {p2ρ 0 q and C 4 :" c 4 1 {ρ 0 . In a similar way, since Lemma 3.7 shows that e q,N " e q{N,1 {N 2 , we obtain that

C 1 N 2 q 4 ď e q,N ď C 2 N 2 q 4 , provided q{N ě q 0 ,
with C 1 :" c 4 0 and C 2 :" c 4 1 . ' We now construct the q-adapted box. Proposition 3.6 with V {N 2 substituted to V shows that the rectangle B q pℓ, ℓ 1 q is q-adapted with respect to P V {N 2 and B δ{N , provided we have 0 ă δ{N ă δ 0,N , ℓ " pδ{N q{4 and

ℓ 1 " δ N ¨ˆr q,N ´ρN r 0,N ˙5{4 .
Here r 0,N and δ 0,N are the corresponding constants for P V {N 2 given by (3.15), that is

r 0,N :" 2 ¨p40C 0,N ρ 2 N q 4{5 , (3.10a) δ 0,N " min ˆL0 ; ρ N {2; r 5{4 0,N 2ρ 1{4 N ˙" min ˆL0 ; ρ N {2; 20 ¨25{4 ρ 7{4 N C 0,N ˙, (3.10b) 
where C 0,N " C 0 N 7{4 as it appears in 3.7 v). Since ρ N " ρ 0 {N , we observe that C 0,N ρ 7{4 N " C 0 ρ 7{4 0 , so δ 0,N " ρ 0 {p2N q if N ě N 0 with N 0 large enough (depending only on L 0 , C 0 and ρ 0 ), and we have

r 0,N " C 6 N 1{5 , with C 6 " 2 ¨p40C 0 ρ 2 0 q 4{5 .
This implies that

ℓ 1 ě δ N ˆC3 N 3 q 4 N 1{5 C 6 ˙5{4 " C 5 N 3 q 5 δ, with C 5 " pC 3 {C 6 q 5{4 .
Since C 5 depends only on V , this proves that B q pℓ, ℓ 1 q is a suitable q-adapted box.

' Now we assume that q ´1 ě q 0 N and we prove the estimates of the proposition on r q´1,N and r q`1,N . Notice that the assumption q ě q 0 N `pq 1 0 ´q0 qN 0 implies that q ´1 ě q 0 N , hence ρ N ă r q`1 ă r q´1,N ď 2ρ N .

Furthermore, since there exist pq ´1q-adapted and pq `1q-adapted boxes repectively centered at a q´1,N and a q`1,N , the image points φ q pa q`1,N q and φ q pa q´1,N q " φpa q´1,N q do not belong to B δ{N , so a q´1,N and a q`1,N are not in B q pℓ, ℓ 1 q. This implies that B q pℓ, ℓ 1 q Ă tpθ, rq | r q`1 ă r ă r q´1,N u and the proof of the proposition is complete.

Lemma 3.4. Assume q ě 2 and 0 ă δ ă minpρ 0 , L 0 q. We set m q " a q,N ´pℓ, ℓ 1 q and M q " a q,N `pℓ, ℓ 1 q. Then there exists ℓ ą 0 and ℓ 1 ą 0 satisfying the following properties.

(a) ℓ ă δ{p2N q and ρ N `ℓ1 ă r q,N ;

(b) δ{N ă θpφpm q qq;

(c) θpφ q´1 pM q qq ă 1 ´δ{N ;

(d) |θpφ q pm q qq ´1| ă δ{p2N q and |θpφ q pM q qq ´1| ă δ{p2N q.

Furthermore, if these conditions are fulfilled then B q " B q pℓ, ℓ 1 q is a q-adaped box.

Proof. We abreviate a q :" a q,N and r q :" r q,N . Note that r q ą ρ N ą δ{N since we have chosen 0 ă δ ă ρ 0 {2. Assume first that ℓ " ℓ 1 " 0, so m q " M q " a q . Condition i) in Lemma 3.5 implies that either r q ď L 0 and θpφpa q qq " r q , or r q ą L 0 and θpφpa q qq ą L 0 . In both cases, we have θpφpa q qq ą δ{N . In the same way, either r q ď L 0 and θpφ q´1 pa q qq " 1 ´rq , or r q ą L 0 and θpφ q´1 pa q qq ă 1 ´L0 . In both cases, we have θpφ q´1 pa q qq ă 1 ´δ{N . At last, we have θpφ q pa q qq " 1. Thus Conditions paq, pbq, pcq and pdq are fulfilled for ℓ " ℓ 1 " 0. Since these conditions are open, this implies that this already holds for pℓ, ℓ 1 q close enough to zero. Now we check is that these conditions imply that B q is q-adapated. Let assume that pℓ, ℓ 1 q satisfies paq, pbq, pcq and pdq.

-We first observe that we have B q Ă B δ{N since ℓ ă δ{p2N q. Furthermore, we may observe that the condition ρ 0 {N `ℓ1 ă r q implies that B q is completely above S 0 .

-We now prove i) in Definition 3.1. Notice that θpφ t pmqq is increasing with t ą 0 if m P B q pℓ, ℓ 1 q since m is above the separatrix S 0 . Therefore (b) shows that θpφ t pm q qq ą δ{N for t ě 1. From this, Lemma 3.5. i) implies that θpφ t pmqq ą δ{N for all m P B q pℓ, ℓ 1 q and t ě 1. In the same way, (c) shows that θpφ t pM q qq ă 1´δ{N for t ď q ´1, so Lemma 3.5. i) implies that θpφ t pmqq ă 1 ´δ{N for all m P B q pℓ, ℓ 1 q and t ď q ´1. This proves that δ{N ă θpφ t pmqq ă 1 ´δ{N , for 1 ď t ď q ´1 and m P B q pℓ, ℓ 1 q, which implies i).

-At last, we prove ii) in Definition 3.1. Notice that (d) shows that φ q pm q q and φ q pM q q belong to the band p1, 0q `Bδ{p2Nq . Therefore Condition i) in Lemma 3.5 implies that 1 ´δ{p2N q ă θpφ q pmqq ă 1 `δ{p2N q for all m P B q pℓ, ℓ 1 q, which implies ii).

Thus Conditions (a), (b), (c) and (d) imply the required properties for B q and the proof of the proposition is complete.

Lemma 3.5. The system defined by P V satisfies the following properties.

i) Assume t ą 0, θ 0 P R, r 0 ě 0 and P V pθ 0 , r 0 q " 0. Then θ ˝φtP V pθ 0 , rq is an increasing function of r P rr 0 , `8q.

ii) T V is an increasing bijection from p0, `8q onto itself;

iii) For each integer k ě 0, we have

T pkq V peq " 1 e k`1 4 ˆ´1 2 k ˙ż `8 0 dx p1 `x4 q k`1{2
as e ą 0 tends to zero. iv) If we set ∆T pr 2 , r 1 q " T V pP V p0, r 1 qq ´TV pP V p0, r 2 qq then we have

0 ă ∆T pr 2 , r 1 q ď C 0 r 1 pr 2 ´r1 q pr 1 ´ρ0 q 5{4 , provided ρ 0 ă r 1 ă r 2 ď 3ρ 0 ,
where C 0 is a positive constant (which depends only on V ).

Proof. i). For every t ą 0, we have t "

ż θ˝φ t pθ 0 ,rq θ 0 du a 2peprq ´V puqq .
Since the energy eprq " P V pθ 0 , rq " 1 2 r 2 `V pθ 0 q is increasing with r ě 0, it follows that θ ˝φt pθ 0 , rq is increasing with r P rr 0 , `8q.

ii). It follows from (3.9) that T V is a continuous and decreasing function and converges to zero at infinity. We have T V p0q " `8 because V pθq " ´pθ ´1{2q 4 for |θ ´1{2| ď θ ‹ .

iii). We compute

T pkq V peq " ˆ´1 2 k ˙żT dθ ? 2pe ´V pθqq 1 2 `k " 1 ? 2 ˆ´1 2 k ˙ż 1 2 ´θ‹ ´1 2 `θ‹ dθ pe ´V pθqq k`1 2 `ˆ´1 2 k ˙?2 ż θ ‹ 0 dθ pe `θ4 q k`1 2 . Since ş 1 2 ´θ‹ ´1 2 `θ‹ dθ pe´V pθqq k`1 2 ď ş 1 2 ´θ‹ ´1 2 `θ‹ dθ p´V pθqq k`1 2
is bounded independantly of e, it follows that

T pkq V peq " ? 2 ˆ´1 2 k ˙ż θ ‹ 0 dθ pe `θ4 q k`1 2 " ? 2 
ˆ´1 2 k ˙1 e k`1 4 ż θ ‹ {e 1{4 0 dθ p1 `θ4 q k`1 2
as e tends to zero, and this completes the proof of iii). iv). Notice that P V p0, rq " pr 2 ´ρ2 0 q{2 ă 4ρ 2 0 if ρ 0 ă r ă 3ρ 0 . Furthermore, Condition iii) shows that there exists a constant B such that 0 ă ´T 1 V peq ď Be ´5{4 if 0 ă e ď 4ρ 2 0 ; we set τ prq " ∆T pr, r 1 q, for r 1 ď r ď r 2 , so we have:

0 ď τ 1 prq " ´rT 1 V pHp0, rqq ď Brppr 2 ´ρ2 0 q{2q ´5{4 ď Br 1 ppr 2 1 ´ρ2 0 q{2q ´5{4 ,
hence the estimate as claimed, with C 0 " Bρ ´5{4 0 since pr 2 1 ´ρ2 0 q{2 ě ρ 0 pr 1 ´ρ0 q.

Proposition 3.6. There exist positive constants δ 0 and r 0 (which depends only on V ) such that for each integer q ě 2 satisfying ρ 0 ă r q,1 ď 2ρ 0 and for 0 ă δ ă δ 0 , if we set ℓ " δ{4 and ℓ 1 " δ ¨ˆr q,1 ´ρ0 r 0

˙5{4

then r q,1 ´ℓ1 ą ρ 0 and B q pℓ, ℓ 1 q is q-adapted with respect to B δ and the system P V .

Proof. Here we abreviate r q :" r q,1 and a q :" a q,1 and we prove that ℓ, ℓ 1 , m q " a q ´pℓ, ℓ 1 q and M q " a q `pℓ, ℓ 1 q satisfy Conditions (a),(b),(c) and (d) in Lemma 3.4 with N " 1, provided that r 0 and δ 0 satisfy suitable conditions. We recall that we assume that δ ă ρ 0 {2, so we may already set the constraint

δ 0 ď ρ 0 {2. (3.11)
We decompose the proof of the lemma in five steps : first we prove that B q pℓ, ℓ 1 q is above the separatrix r " ρ 0 . Then we estimate the variation of the period inside B q pℓ, ℓ 1 q and, at last, we check pbq, pcq and pdq.

Step 1 : we prove that ℓ 1 ă pr q ´ρ0 q{2. Notice that 0 ă r q ´ρ0 ď ρ 0 , so we have

ℓ 1 r q ´ρ0 " δ r 5{4 0 pr q ´ρ0 q 1{4 ď ρ 1{4 0 r 5{4 0 δ ă 1 2 , provided that δ 0 ď r 5{4 0 2ρ 1{4 0 . (3.12)
This implies that r q ´ℓ1 ą 1 2 pr q `ρ0 q ą ρ 0 . Since we have ℓ " δ{4 ă δ{2, we obtain Condition (a) of Lemma 3.4.

Step 2 : we prove that ℓ `pr q `ℓ1 qτ ă δ{2, where ℓ " δ{4 and τ " ∆T pr q `ℓ1 , r q ´ℓ1 q.

Step 1 shows that ℓ 1 ă 1 2 pr q ´ρ0 q ď 1 2 ρ 0 . Set r 1 q " r q ´ℓ1 ; since ρ 0 ă r q ´ℓ1 ă r q `ℓ1 ď 3ρ 0 , Lemma 3.5. iv) shows that τ ď 2C 0 ℓ 1 r 1 q pr 1 q ´ρ0 q ´5{4 . Since r 1 q ´ρ0 " r q ´ρ0 ´ℓ1 ą rq´ρ 0 2 and r q `ℓ1 ă 5 2 ρ 0 , since r 1 q ď r q ď 2ρ 0 , it follows that

τ pr q `ℓ1 q ă 5τ ρ 0 {2 ď 10 C 0 ℓ 1 ρ 2 0 ppr q ´ρ0 q{2q 5{4 ď 10 C 0 ℓ 1 ρ 2 0 ppr q ´ρ0 q{2q 5{4 " 10 C 0 ρ 2 0 pr 0 {2q 5{4 δ ď δ 4 ,
which proves the claimed estimate, provided

10C 0 ρ 2 0 pr 0 {2q 5{4 ď 1 4 . (3.13)
Step 3 : we prove (d). Set a q " pℓ, r q q, a q " p´ℓ, r q q and notice that θpφ q pa q q " 1 `ℓ, θpφ q pa q q " 1 ´ℓ, provided that ℓ ď L 0 ; we assume that δ 0 ď L 0 .

(3.14)

Since θpM q q " θpa q q, θpm q q " θpa q q and since Step 2 implies that ℓ`τ pr q `ℓ1 q ď δ{2 ď L 0 , Lemma 3.5. i) implies that " 1 `ℓ ď θpφ q pM q qq ď 1 `ℓ `τ pr q `ℓ1 q; 1 ´ℓ ´τ pr q ´ℓ1 q ď θpφ q pm q qq ď 1 ´ℓ.

This implies that 1 `δ{4 ď θpφ q pM q qq ď 1 `δ{2 and 1 ´δ{2 ď θpφ q pm q qq ď 1 ´δ{4, which proves (d).

Step 4 : we prove (c). Recall that Step 3 implies that 1 ď θpφ q pM q qq ď 1 `δ{2 ď 1 `L0 , so either δ ´pr q `ℓ1 q ă ´L0 and θpφ q´1 pM q qq ă 1 ´L0 , or θpφ q´1 pM q qq ă 1 `δ ´pr q `ℓ1 q. Since L 0 ą δ and r q `ℓ1 ą ρ 0 ě 2δ, we obtain in both cases that θpφ q´1 pM q qq ă 1 ´δ, which completes the proof of (c).

Step 5 : we prove (b). Either ´ℓ `pr q ´ℓ1 q ą L 0 , so θpφpm q qq ą L 0 ě δ, or θpφpm q qq ą ´ℓ `pr q ´ℓ1 q ą ´ℓ `ρ0 ą 2δ ´ℓ " 7δ{4 ą δ. In both cases, this proves (b).

Thus we obtain Conditions (a), (b), (c) and (d) in Lemma 3.4 provided Conditions (3.11), (3.12), (3.13) and (3.14) are satisfied, hence the proposition holds true if we set r 0 :" 2 ¨p40C 0 ρ 2 0 q 4{5 , (3.15a)

δ 0 " min ˆL0 ; ρ 0 2 ; r 5{4 0 2ρ 1{4 0 ˙" min ˆL0 ; ρ 0 {2; 20 ¨25{4 ρ 7{4 0 C 0 ˙, (3.15b) 
where C 0 is the constant in Lemma 3.5. iv). Thus the constants r 0 and δ 0 depend only on V and the proof of the proposition is complete.

Lemma 3.7. Assume N and q are positive real numbers. Then the following holds true.

i) For all e ą 0, we have T V {N 2 peq " N T V pN 2 eq;

ii) for all r P R, we have N 2 P V {N 2 p0, rq " P V p0, N rq;

iii) e q,N " 1 N 2 e q{N,1 and r q,N " 1 N r q{N,1 ; iv) for each integer k ě 0, we have

T pkq V {N 2 pe q,N q " N 2k`1 T pkq V pe q{N,1 q " p´1q k β k q 4k`1 N 2k
uniformly as q{N tends to infinity, where β k is a positive constant (which depends only on k);

v) with ∆ N T pr 2 , r 1 q " T V {N 2 pP V {N 2 p0, r 1 qq ´TV {N 2 pP V {N 2 p0, r 2 qq, we have 0 ă ∆T N pr 2 , r 1 q ď C 0 N 7{4 r 1 pr 2 ´r1 q pr 1 ´ρN q 5{4 , provided ρ N ă r 1 ă r 2 ď 3ρ N ,
where C 0 is a positive constant (which depends only on V ).

Proof. The first two conditions follow directly from the formulas (3.1) and (3.9). iii) We use i) to compute T V pe q{N,1 q " q{N " T V {N 2 pe q,N q{N " T V pN 2 e q,N q, so e q{N,1 " N 2 e q,N for T V is one to one. In a similar way, we use ii) to compute P V p0, N r q,N q " N 2 P V {N 2 p0, r q,N q " N 2 e q,N e q{N,1 " P V p0, r q{N,1 q, so N r q,N " r q{N,1 since the function P V p0, ¨q is one to one, and this proves iii).

iv) It follows from i) that

T pkq V {N 2 pe q,N q " N d k de k |e"e q,N `TV pN 2 eq ˘" N 2k`1 T pkq V pN 2 e q,N q " N 2k`1 T pkq V pe q{N,1 q
and this completes the proof of the equality in iv). Furthermore, since e q{N,1 tends to zero as q{N tends to infinity, Statement iii) implies that

N 2k`1 T pkq V pe q{N,1 q " N 2k`1 pe q{N,1 q k`1 4 ˆ´1 2 k ˙ż `8 0 dx p1 `x4 q k`1{2 and q{N " T V pe q{N,1 q " 1 e 1{4 q{N,1 ż `8 0 dx p1 `x4 q 1{2 .
This implies iv) with

β k " ´k´1 2 k ¯ż `8 0 dx p1 `x4 q k`1{2 N ˆż `8 0 dx p1 `x4 q 1{2 ˙4k`1 . 
v) follows from Lemma 3.5. iv). This holds true because this asumptions on r 1 , r 2 and ii) imply that ρ 0 ă N r k ď 3ρ 0 , k " 1, 2, and

T V {N 2 pP V {N 2 p0, r k qq " N T V ´N 2 P V {N 2 p0, r k q ¯" N T V pP V p0, N r k qq, so 0 ă ∆ N pr 1 , r 2 q " N ∆pN r 1 , N r 2 q ď C 0 r 1 pr 2 ´r1 qN 3´5{4 `r1 ´ρN ˘5{4 ,
which proves v) and completes the proof of the lemma.

Local form of G q

Here and in the following unless mentioned otherwise, the numbers ℓ, ℓ 1 , N 0 and q 1 are as in Proposition 3.3, assuming q ě q 1 0 N and N ě N 0 . We abreviate G " G N,µ " Φ µW N ˝ΦP V {N 2 (see Section 3.1) and B q " B q pℓ, ℓ 1 q. Proposition 3.8. In B q Ă A, the iterated map G q coincides with F q,N,µ :" Φ µW N ˝ΦA q,N , where A q,N prq :" ż P V {N 2 p0,rq e q,N `q ´TV {N 2 phq ˘dh on B q .

Proof. We abreviate φ " Φ P V {N 2 and V N " V {N 2 . For pθ, rq P R 2 satisfying P V N pθ, rq ą 0, let Ψpθ, rq " pτ, hq denote the time-energy coordinates with τ "

ż θ 0 du b 2 `PV N pθ, rq ´VN puq ˘; h " P V N pθ, rq.
Note that Ψ ˝φ ˝Ψ´1 pτ, hq " pτ `1, hq and Ψpm `θ, rq " Ψpθ, rq ``m T V N phq, 0 ˘, for all m P Z and h " P V N pθ, rq. Since V N is constant on B L 0 , we have τ "

ż θ 0 du b 2 `PV N pθ, rq ´VN pθq ˘" θ r , for |θ| ď L 0 .
Since we have φ q pB q q Ă B δ{2 Ă B L 0 and φ q preserves P V N , which is an increasing function depending only on r in B L 0 , there exist a continuous function θ q : B q Ñ p´L 0 , L 0 q and a constant integer m 0 P Z such that φ q pθ, rq " pm 0 `θq pθ, rq, rq on B q Ă R 2 . Furthermore, we have m 0 " 1 as it may be checked at a q,N , since we have φ q pa q,N q " p1, r q,N q and θ q pa q,N q " 0. Therefore, we have proved that φ q coincides on B q with φ q pθ, rq " p1 `θq pθ, rq, rq, so Ψ ˝φq pθ, rq " `θq pθ, rq{r `TV N phq, h ˘, with h " P V N pθ, rq.

Since we also have Ψ ˝φq pθ, rq " Ψpθ, rq `pq, 0q " pθ{r `q, hq, this implies that θ q pθ, rq " θ `rpq ´TV N phqq " θ ´Br A q,N prq.

Thus, on the one hand, φ q coincides on B q with the time-1 flow Φ Aq of the system " θ 1 " ´Br A q,N prq; r 1 " 0 " B θ A q,N prq.

On the other hand, we have φ k pB q q X B δ{N " ∅, so G k " φ k for 1 ď k ď q ´1, and G q " Φ µW N ˝φq on B q . From these two conclusions, the proposition follows.

The Taylor expansion of G q at a q

This section carries out the first step in the proof of the existence of invariant curves in B q for the map G q " F q,N,µ . The goal is to prove that we can find complex coordinates in which a q,N is mapped to zero and F q,N,µ takes the form

F q,N,µ pzq " λ ´z `n ÿ k"2 P k pzq `εpzq ¯. (3.16)
This is achieved in Proposition 3.13 and Corollary 3.14 below. Here n is an arbitrary large integer (but not depending on q, N and µ), P k is a homogeneous polynomial of degree k for 2 ď k ď n and the error term ε is small enough up to n derivatives. Note that the change of coordinates need not be symplectic in our setting.

Asymptotic behaviours of A q,N on B q .-To achieve (3.16) in a quantitative way, we must control the derivatives of the map A q,N near a q,N . For that purpose, it is convenient to introduce the following notation.

Notation. Here E denotes any set of parameters; for f 1 : E Ñ R `and f 2 : E Ñ R `, we write f 1 " O E pf 2 q, or f 1 ppq " O E pf 2 ppqq, or f 1 ppq " Opf 2 ppqq uniformly for p P E, if there exists a constant C ą 0 (which does not depend on p) such that @p P E, f 1 ppq ď Cf 2 ppq.

We write

f 1 - E f 2 , or f 1 ppq - E f 2 ppq, or f 1 ppq -f 2 ppq uniformly for p P E, if we have f 1 " O E pf 2 q and f 2 " O E pf 1 q.
We recall that for q ě q 1 0 N , B q is contained in the annulus

␣ r q`1,N ď r ď r q´1,N ( Ă A.
Proposition 3.9. We have

@n ě 0, p´1q n T pnq V {N 2 `PV {N 2 p0, rq ˘-E 1 q 4n`1 {N 2n ; (3.17) @n ě 1, ˇˇA pnq q,N prq ˇˇ" O E 1 `q4n´3 {N 3n´2 ˘; (3.18) @n ě 2, p´1q n A pnq q,N prq - En q 4n´3 {N 3n´2 , (3.19)
where E n " ␣ pq, N, rq | q ě q n N, N ě N 0 , r q`1,N ď r ď r q´1,N ( and q n ě q 1 0 , for n ě 1, is a positive constant which depends only on V . Furthermore, for n ě 2, we have A pnq q,N pr q,N q " p´1q n β n´1 ρ n 0 q 4n´3 {N 3n´2 , as q{N tends to infinity, where β n´1 is a positive constant as defined in Lemma 3.7 iv).

Proof. ' We set q 1 ě maxp2; q 1 0 q and we prove (3.17). -First we assume that N " 1. A direct computation shows that p´1q n T pnq V phq ą 0 for h ą 0. Furthermore, Lemma 3.7 iv) implies that T pnq V peq " p´1q n β n T V peq 4n`1 , as e tends to zero. This shows that there exist two positive constants c n and d n , for each n ě 1, such that @e P p0; e 0 q, c n T V peq 4n`1 ď p´1q n T pnq V peq ď d n T V peq 4n`1 , with e 0 " P V pa q 1 ´1,1 q.

Moreover, if r q´1,1 ď r ď r q`1,1 then we have e q`1,1 ď P V p0, rq ď e q´1,1 ď e 0 . Since we have T V pe q´1,1 q " q ´1 -qq `1 " T V pe q`1,1 q " q `1 uniformly for pq, 1, rq P E 1 , it follows that @n ě 0, T pnq V pP V p0, rqqq 4n`1 uniformly for pq, 1, rq P E 1 .

-For N ě N 0 and q ě q 1 N , we use Lemma 3.7; we observe that if we assume that r q´1,N ď r ď r q`1,N then we have r q{N `1,1 ď r pq`1q{N " N r q`1,N ď N r ď N r q´1,N " r pq´1q{N,1 ď r q{N ´1,1 . Therefore, if e " P V {N 2 p0, rq " P V p0, N rq{N 2 then we have e q{N `1,1 ď N 2 e ď e q{N ´1,1 , hence Lemma 3.7 iv) and the discussion above when N " 1 show that

T pnq V {N 2 peq " N 2n`1 T pnq V pN 2 eq -N 2n`1 T pnq V pN 2 e q{N,1 q -q 4n`1 {N 2n
uniformly for pq, N, rq P E 1 . This proves (3.17).

' We prove (3.18). First we assume that N " 1. We set T 0 prq " q ´TV pP V p0, rqq and T k ptq "

´T pkq V pP V p0, rqq, for k ě 1; we observe that |T 0 | ď 1 and the point above shows that p´1q k`1 T k prq -q 4n`1 uniformly for pq, 1, rq P E 1 . An immediate induction over p ě 1 shows that

A p2p´1q q,1 prq " p´1 ÿ k"0 C k,2p´1 r 2k`1 T p`k´1 prq ; A p2pq q,1 prq " p ÿ k"0 C k,2p r 2k T p`k´1 prq, (3.20) with ˇˇˇˇˇC k,2p`1 " C k,2p `p2k `2q C k`1,2p if p ě 1 and 0 ď k ď p ´1, C k,2p`2 " C k,2p`1 `p2k `1q C k,2p`1 if p ě 1 and 1 ď k ď p, C p´1,2p´1 " C p,2p " 1 if p ě 1.
Furthermore, we have r 2k p´1q p`k T p`k´1 prq -r 2k`1 p´1q p`k T p`k´1 prq -q 4p`4k´3 (3.21) uniformly for pq, 1, rq P E 1 , since we have ρ 0 ď r ď 2ρ 0 . Since we have q ě q 1 ě 2 on E 1 , it follows that q 4p`4k´3 " O E 1 pq 4p`4k 0 ´3q for 0 ď k ď k 0 and p ě 1, hence ˇˇA p2pq q,1 prq ˇˇ" O E 1 pq 8p´3 q and ˇˇA p2p´1q q,1 prq ˇˇ" O E 1 pq 8p´7 q for p ě 1, which proves (3.18) on E 1 X tN " 1u. Since we have pq, N, rq P E 1 if and only if pq{N, 1, r{N q P E 1 , this extends immediatly to (3.18) for any N ě N 0 according to Lemma 3.10 bellow.

' We prove (3.19). First we assume that N " 1. It follows from (3.21) and (3.20) above that there exist positive constants c k,ℓ and d k,ℓ (depending only on V ) such that

p´1 ÿ k"0 c k,2p´1 p´1q p`k q 4pp`kq´3 ď A p2p´1q q,1 prq ď p´1 ÿ k"0 d k,2p´1 p´1q p`k q 4pp`kq´3 ; (3.22a) p ÿ k"0 c k,2p p´1q p`k q 4pp`kq´3 ď A p2pq q,1 prq ď p ÿ k"0 d k,2p p´1q p`k q 4pp`kq´3 . (3.22b)
This implies that 1 2 d p´1,2p´1 q 8p´7 ď ´Ap2p´1q

q,1 prq ď 2c p´1,2p´1 q 8p´7 , for q ě q 2p´1 ; 1 2 c p,2p q 8p´3 ď A p2pq q,1 prq ď 2d p,2p q 8p´3 , for q ě q 2p ; where q 2p ě q 2p´1 ě q 1 are large enough (depending only on V ). Therefore we have proved that ´Ap2p´1q

q,1 prq -q 8p´7 and A p2pq q,1 prq -q 8p´3 uniformly for pq, 1, rq in E 2p´1 or E 2p respectively, which is (3.19) on tN " 1u. This extends immediatly to (3.18) for any N ě N 0 according to Lemma 3.10 bellow.

' Since we have C p´1,2p´1 " C p,2p " 1 in (3.21), we obtain with (3.20) that A 2p q,1 pr q,1 q " r 2p

q,1 T 2p´1 pr q,1 q and A 2p´1 q,1 pr q,1 q " r 2p´1 q,1 T 2p´2 pr q,1 q as q tends to infinity. But Lemma 3.7 iv) shows that T n´1 pr q,1 q " ´T pn´1q pP V p0, r q,1 qq " p´1q n β n´1 q 4n´3 . Since Proposition 3.3 shows that r q,1 " ρ 0 as q tends to infinity, we obtain that A pnq q,1 pr q,1 q " p´1q n ρ n 0 β n´1 q 4n´3 when N " 1. The announced equivalent for general N ě 1 follows using Lemma 3.10 bellow and this completes the proof of the proposition. Lemma 3.10. We have A q,N prq " 1 N A q{N,1 pN rq. Proof. Using Lemma 3.7, we compute A q,N prq " ż P V {N 2 p0,rq e q,N pq ´TV {N 2 phqq dh "

ż P V {N 2 p0,rq e q,N q pq ´N T V pN 2 hqq dh " 1 N ż N 2 P V {N 2 p0,rq N 2 e q,N ´q N ´TV phq ¯dh " 1 N ż P V p0,N rq e q{N,1 ´q N ´TV phq ¯dh " 1 N A q{N,1 pN rq.
This proves the formula of the lemma.

Lineart part of F q,N,µ .-We recall that B q denotes a q-adapted box with respect to P V {N 2 and B δ{N , as it appears in Propostion 3.3.

Proposition 3.11. Set σ q,N p θ R q " pθ, r q,N `Rq. There exist a constant α q,N and a function S q,N pRq satisfying for all µ ą 0 and pθ, Rq P σ ´1 q,N pB q q ˇˇˇˇσ ´1 q,N ˝Fq,µ,N ˝σq,N `θ R ˘" ´1 α q,N ´µ 1´µα q,N ¯`θ R ˘`S q,N pRq `1 ´µ ˘, S q,N p0q " S 1 q,N p0q " 0. and the following estimates hold true.

α q,N - E 2 q 5 N 4 ; |S q,N pRq| - E 0 R 2 q 5 N 4 ; ˇˇS 1 q,N pRq ˇˇ- E 1 |R | q 9 N 7 ; |R | " O E 1 pq 3 {N 5 q ; @n ě 2, p´1q n`1 S pnq q,N pRq - En q 4n`1 {N 3n`1 ;
with E n " tpq, N, Rq | q ě q 1 N, N ě N 0 , p0, r q,N `Rq P B q u and q n a positive constants which depend only on V , for n ě 1. Furthermore, we have α q,N " β 1 ρ 2 0 q 5 N 4 , S p2q q,N p0q " ´β2 ρ 3 0 q 9 N 7 and S p3q q,N p0q " β 3 ρ 4 0 q 13 N 10

as q{N tends to infinity.

Proof. ' Proposition 3.8 shows that Φ A q,N pB q q " φ q pB q q Ă B δ{p2N q , so µW N pθq " 1 2 µθ 2 on Φ A q,N pB q q. This implies that F q,N,µ coincides on B q with F q,N,µ pθ, rq " ´θ `A1 q,N prq, r ´µ`θ `A1 q,N prq ˘¯.

Setting α q,N :" A 2 q,N pr q,N q and S q,N pRq :" A 1 q,N pr q,N `Rq ´A1 q,N pr q,N q ´αq,N R, (3.23) the anounced formula for F q,N,µ follows from a direct computation.

' We prove the estimates of the proposition. Since we have σ q,N pθ, Rq P B q , it follows that r q`1,N ď r q,N `R ď r q´1,N . Now we apply Proposition 3.9:

-with n " 2, Estimate (3.19) shows that α q,N " A 2 q,N pr q,N q -q 5 {N 4 .

-For ℓ ě 0, we have S q,N pRq " R 2 2 A 2 q,N pr q,N `η0 Rq; S 1 q,N pRq " R A 3 q,N pr q,N `η1 Rq; S pℓq q,N pRq " A pℓ`1q q,N pr q,N `ηℓ Rq, for ℓ ě 2; for some 0 ă η ℓ ă 1 (depending on R), hence Estimates (3.18) shows that S q,N pRq -R 2 q 5 N 4 ; ˇˇS 1 q,N pRq ˇˇ-|R| q 9 N 7 ; p´1q ℓ`1 S pℓq q,N pRq -

q 4ℓ`1 N 3ℓ`1 , for ℓ ě 2.
Since we have |R| ď ℓ 1 and ℓ 1 -N 3 {q 5 according to Proposition 3.3, the proof of the announced estimates is complete.

' At last, we observe that α q,N " A 2 q,N pr q,N q, S 2 q,N p0q " A 3 q,N pr q q and S p3q q,N p0q " A p4q q,N pr q,N q.

Therefore these quantities as q{N tends to infinity may be estimated immediately from the last estimate of Proposition 3.9, which completes the proof of the proposition.

Lemma 3.12. We have α q,N " N α q{N,1 and S q,N pRq " N S q{N,1 pN Rq.

Proof. We have α q,N " A 2 q,N pr q,N q. Therefore Lemma 3.10 and Lemma 3.7 iii) imply that α q,N " N A 2 q{N,1 pN r q,N q " N A 2 q{N,1 pr q{N,1 q " N α q{N,1 .

In a similar way, Lemma 3.10 implies that S q,N pRq " A 1 q,N pr q,N `Rq ´A1 q,N pr q,N q ´αq,N R

" N A 2 q{N,1 pN r q,N `N Rq ´N A 2 q{N,1 pN r q,N q ´N α q{N,1 R " N A 2 q{N,1 pr q{N,1 `N Rq ´N A 2 q{N,1 pr q{N,1 q ´N α q{N,1 R " N S q{N,1 pN Rq.
This proves the second identity of the lemma and the proof is complete.

Diagonalization of the lineart part and Taylor expansion

Notation. For n P N ˚and β ą 0, we set

E β :" ␣ pq, N, µq | 0 ă µα q,N ă 1 and q ě βN, N ě N 0 ( , (3.24a) E β,n :" ! pq, N, µq P E β | µα q,N ă 1 pn `1q 2 ) (3.24b)
(with the notation of Proposition 3.11 for α q,N ). Unless mentioned otherwise, we shall abreviate f 1 -f 2 if there exists a positive constant β (not depending on q, N , µ) satisfying

f 1 - E β,n f 2 .
Notation. Let λ P C satisfy the following two conditions λ `λ´1 " 2 ´µα q,N , λ " exppiγ 0 q with ´π 3 ă γ 0 ă 0.

(3.25) so we have |λ p ´1| -|λ ´1| uniformly on E β,n for 1 ď p ď 2n `2 (see Lemma 3.15 below).

It follows immediately from (3.25) that 1´λ " 2 sin 2 pγ 0 {2q´i sin γ 0 and |λ ´1| 2 " µα q,N " p1´cos γ 0 q 2 `sin 2 γ 0 " 2p1´cos γ 0 q, hence sin 2 γ 0 " µα q,N p1 ´µα q,N {4q and (3.24a) implies that ? 3 2 |λ ´1| ď ´sin γ 0 ď |λ ´1| , so ´sin γ 0 -|λ ´1| " ? µα q,N .

Notation. For all z P C we set Ψpzq " σ q,N ˝ψpzq with σ q,N pθ, Rq " pθ, r q,N `Rq and

ψpzq " B ˆz z ˙P R 2 , B " ´α λ´1 α λ´1
1 1 ¯and α " α q,N .

Proposition 3.13. Assume n ě 2 and set ω " q 4 {N 3 . Then there exists a positive constant β ą 0 such that for each pq, N, µq P E β there exist ρ ą 0 and κ ą 0, a ν P R, for 2 ď ν ď n, a function g : r´2ρ ; 2ρs Ñ R satisfying the following properties. i) Dp0; ρq Ă Ψ ´1pB q q and ρ -|λ´1| qω ;

ii) Ψ ´1 ˝Fq,N,µ ˝Ψpzq " λ ˆz `i |λ ´1| gpz `zq ˙on Dp0; ρq;

iii)

Ψ ‹ pdr ^dθq " κ 2i dz ^dz and κ-|λ´1| µ -ωq{N |λ´1| ; iv) gpxq " n ř ν"2 a ν x ν `εpxq, where " p´1q ν a ν -ω ν´1 , for 2 ď ν ď n, ˇˇε pkq pxq ˇˇ" O E pω n |x| n`1´k q, for 0 ď k ď n,
with E " tpx, q, N, µq | |x| ď 2ρ, pq, N, µq P E β u and E β as in (3.24a).

Proof. we abreviate F " F q,N,µ , S q,N " S and α " α q,N . i) We recall that |λ ´1| " ? αµ, so ˇˇ2Re p αz λ´1 q ˇˇď 2 a α{µ |z|. This shows that @pℓ, ℓ

1 q P R 2 `, |z| ă min ˆℓ 2 c µ α , ℓ 1 2 ˙ñ ψpzq P p´ℓ, ℓq ˆp´ℓ 1 , ℓ 1 q.
Proposition 3.3 and Proposition 3.11 show that ℓ -1 N , ℓ 1 -N 3 q 5 " 1 qω and αq 5 N 4 , so

ℓ 2 c µ α - ? αµ ℓ α -|λ ´1| N 3 q 5 " |λ ´1| 1 qω .
Therefore, with ρmin ´|λ´1| qω ; 1 qω ¯" |λ´1| qω , we obtain i).

ii) Since ´α λ´1 1 ¯and ´α λ´1 1 ¯are two eigenvectors of the operator B corresponding to the eigenvalues λ and λ, we obtain by a direct computation that

Ψ ´1 ˝F ˝Ψpzq " λz `Spz `zq ψ ´1`1 ´µ ˘.
We notice that ψpiλq " ipλ ´λq ´´α Since p´1q ν´1 S pνq p0q-q 4ν`1 {N 3ν`1 , ´sin γ 0 -|λ ´1|, αq 5 {N 4 , we have

|λ´1| 2 1 ¯" ´2 sin γ 0 ´´1 µ 1 ¯" 2 µ sin γ 0 `1 ´µ ˘, hence ψ ´1`1 ´µ ˘"
p´1q ν a ν - En q 4ν`1 N 3ν`1 µ |λ ´1| 2 " q 4ν`1 N 3ν`1 1 α - q 4ν`1 N 3ν`1 N 4 q 5 " q 4ν´4 N 3ν´3 " ω ν´1 .
Thus all that remains is to prove the estimates on εpxq. Notice that ψpρq P B q pℓ, ℓ 1 q, so 2ρ ď ℓ 1 . Furthermore, for 0 ď j ď n, the derivative R pjq pxq is the remainder of the Taylor expansion at zero of S pjq pxq up to order n ´j. Therefore the Taylor expansion theorem and Proposition 3.11 show that for x P r´2ρ; 2ρs we have

ˇˇR pn`1´jq pxq ˇˇď |x| n`1´j pn `1 ´jq! max |x|ď2ρ ˇˇS pn`1q pyq ˇˇ-|y| n`1´j q 4pn`1q`1 N 3pn`1q`1 .
Moreover the estimates |sin γ 0 | -|λ ´1| and αq 5 {N 4 imply that

µ |λ ´1| |sin γ 0 | - µ |λ ´1| 2 " 1 α - N 4 q 5 , hence ˇˇε pjq pxq ˇˇ" O E pq 4n {N 3n |x| n`1´j q,
and the proof of iv) is complete.

Corollary 3.14 (Taylor expansion). Assume n ě 0; we set ω " q 4 {N 3 . Then for each pq, N, µq P E β,n , there exist λ P C (with λ " exppiγ 0 q and ´π{3 ă γ 0 ă 0), ρ ą 0, a ν P R, for 2 ď 2ν ď 2n `2 and a function ε : r´2ρ ; 2ρs Ñ C satisfying pΨ ´1 ˝Fq,N,µ ˝Ψqpzq " λ ´z `i |λ ´1| ii) p´1q ℓ a ℓ -ω ℓ´1 , for 2 ď ℓ ď 2n `2;

iii) 2a 2 2 `3a 3 |λ ´1| Rpλq -ω 2 uniformly on E β,n , with Rpλq " i 1 `λ 1 ´λ 2 `λ `2λ 2 1 `λ `λ2 .
Proof. We prove iii), wich is the only condition which does not follow directly from Proposition 3.13. Let pq, N, µq be in E β,n , so 0 ă αµ ă 1{pn `1q 2 . Let 0 ă α 0 ă π 6 satisfy sinpα 0 q " 1 2n `2 .

Since αµ " |λ ´1| 2 and ´sinpγ 0 {2q " 1 2 |λ ´1| ă 1 2n`2 , we obtain that ´γ0 {2 ă α 0 , so cospα 0 q |λ ´1| ă cospγ 0 {2q |λ ´1| " ´sinpγ 0 q ă |λ ´1|

As q{N tends to infinity, Proposition 3.11 and (3.27) show that

a 2 2 " µ 2 S 2 p0q 2 16 sin 2 γ 0 |λ ´1| 2 " µ 2 S 2 p0q 2 16 cos 2 p γ 0 2 q |λ ´1| 4 " S 2 p0q 2 16α 2 cos 2 p γ 0 2 q " pβ 2 {β 1 q 2 16 cos 2 p γ 0 2 q ρ 2 0 ω 2 , ´a3 " µS 3 p0q ´12 sin γ 0 |λ ´1| " µS 3 p0q 12 cosp γ 0 2 q |λ ´1| 2 " S 3 p0q 12α cosp γ 0 2 q " β 3 {β 1 12 cosp γ 0 2 q ρ 2 0 ω 2 ,

Now we compute

Rpλq " ´cosp γ 0 2 q sinp γ 0 2 q

1 `4 cos γ 0 1 `2 cos γ 0 , hence |λ ´1| Rpλq " 2 cosp γ 0 2 q 8 cos 2 p γ 0 2 q ´3 4 cos 2 p γ 0 2 q ´1 .
Since we have cos 2 p γ 0 2 q ě 1 ´`1 2n`2 ˘2 ě 15 16 for n ě 1, it follows that for q{N large enough we have 72 11

" 4 ¨18 11 ď 2 |λ ´1| Rpλq cosp γ 0 2 q " 4 8 cos 2 p γ 0 2 q ´3 4 cos 2 p γ 0 2 q ´1 ď 20 3 , hence ´18 11 β 2 2 ´β1 β 3 ¯ρ2 0 ω 2 8β 2 1 ď 1 2 ´72 11 β 2 2 16 ´3β 1 β 3 12 ¯ρ2 0 ω 2 β 2 1 cosp γ 0 2 q ď 2a 2 2 |λ ´1| Rpλq `3a 3 ď 5a 2 2 12 -ω 2 .
This holds true and implies the lemma because we can evaluate 18β 

λ j ¯" p´1 ÿ j"0 cospjγ 0 q ě p´1 ÿ j"0 cos ˆjπ 2n `2 ˙ě 1.

Normalisations

The goal of this section is to prove that we can find nearly symplectic coordinates in which F q,N,µ takes the form

F q,N,µ pzq " λz exp `2πi |z| 2 `εpzq ˘, (3.29)
where the error term ε is a real valued function and is small enough up to enough derivatives. For this purpose, our first step is to specify a suitable change of coordinates in which F q,N,µ appears as a Birkhoff's normal form up to some order, namely

F q,N,µ pzq " λz `1 `n ÿ p"1 b p |z| 2p ˘`r εpzq. (3.30)
Note that the change of coordinates does not need to be symplectic in our setting.

Notations and statements

To achieve (3.30) and (3.29) in a quantitative way, we must deal with smooth functions on D ‹ p0, τ q " tz P C | 0 ă |z| ď τ u (but not necessarily smooth at zero) and control their behaviour near zero. To this end we introduce the following notations.

Notation. In the following, we use the operators B " 1 2 pB s `iB t q and B " 1 2 pB s ´iB t q, with z " s `it and ps, tq P R 2 . Assume τ ą 0 and k P N. A smooth function f : D ‹ p0, τ q Ñ C is said to be controlled up to the k derivatives, by C ě 0 at order ℓ P R, and we write f P O k pℓ; C, τ q or f pzq " O k pℓ; C, ρq if @z P D ‹ p0, τ q, ˇˇB α Bβ f pzq ˇˇď C |z| ℓ´α´β , for all pα, βq P N 2 such that α `β ď k.

Notation. For pk, mq P N 2 , ρ ą 0, two sets E and E 1 satisfying E Ă E 1 ˆC, two function f 1 : E Ñ C and f 2 : E 1 Ñ R `, and a function ρ : E 1 Ñ R `, we write f 1 p¨, zq " O k,E 1 pm; f 2 , ρq if there exists two constants C ě 0 and c ą 0 satisfying

@x P E 1 , E 1 ˆDp0; cρpxqq Ă E, and f 1 px, zq " O k pm; Cf 2 pxq, cρpxqq.
All the properties of the spaces O k we need are listed in Appendix A. At last, we need to introduce analogous definitions in polar coordinates.

Notation. Assume ρ ą 0, ℓ P R and k P Z. We recall that T " R{Z.

• A smooth function f : p0; ρs ˆT Ñ C is said to be controlled up to k derivatives, by C ě 0 at order ℓ P R, and we write f P O T k pℓ; C, τ q or f pr, θq " O T k pℓ; C, ρq if ˇˇB α r B β θ f pr, θq ˇˇď Cr ℓ´α , for 0 ă r ď ρ, θ P T and α `β ď k.

• For two sets E and E 1 satisfying E Ă E 1 ˆR`ˆT , two functions f 1 : E Ñ C and f 2 : E 1 Ñ R `, and a function ρ : E 1 Ñ R `, we write f 1 p¨, r, θq " O T k,E 1 pℓ; f 2 , ρq if there exists two constants C ě 0 and c ą 0 satisfying

@x P E 1 , E 1 ˆp0; cρpxqs ˆT Ă E and f 1 px, r, θq " O T k pℓ; Cf 2 pxq, cρpxqq.
Basically, we can can rephrase Proposition 3.13 iv) as follows gpz `zq "

n ÿ ν"2 a ν pz `zq ν `On,E β,n pn `1; ω n , ρq, (3.31)
where E β,n is defined by (3.24b). The constants n and β do not depend on pq, N, µq.

Here we introduce E β,n rather than E β (see (3.24b)) for suitable estimates on the non resonant part of the conjugation of the transformation F q,N,µ to its Birkhoff's normal form (see Proposition 3.16 below). The constant β ą 0 is chosen so q{N is large enough for appropriate estimates of a 2 and a 3 (see Corollary 3.14.iii) above).

v) b 1 -|λ ´1| ω 2 and |b j | " O E β,n p|λ ´1| ω 2j q for 2 ď j ď n; vi) ˇˇΦ ´1pzq ˇˇ-|z| on Dp0; ρ 1 q; vii) |φ ν | " O E n,β pω |ν|´1 q for 2 ď |ν| ď 2n `2;

Herman normal form

This is the quantitative version of (3.29). We first state this result in complex coordinates.

Proposition 3.17. Assume 2 ď k ď 2n. Then there exist a diffeomorphism ψ from Dp0; ρ 1 q into a set containing Dp0; ρ 2 q and a function ε : Dp0; ρ 2 q Ñ R with the following properties.

i) ψ ˝h ˝ψ´1 pzq " λz exp `2πi |z| 2 `εpzq ˘;

ii) ε is a real valued function and εpzq " O k,n p2n; |λ ´1| ´n , ρ 2 q;

iii)

ρ 1 -ρ, ρ 2 -ρω a |λ ´1| and |ψpzq| -|z| ω a |λ ´1|.
We also give an equivalent result in polar coordinates, in order to apply the invariant curve theorem.

Proposition 3.18 (Herman normal form).

There exist ρ 1 ą 0, a diffeomorphism Ψ from p0; ρ 1 q ˆT into Dp0; ρq and a function ε : p0; ρ 1 q ˆT Ñ R with the following properties.

i) Ψ ´1 ˝h ˝Ψpr; θq " ´r `εpθ, rq; γ 0 2π `θ `r¯;

ii) ε is a real valued function and εpr, θq " O T k,n pn `1; |λ ´1| ´n , ρ 1 q;

iii) ρ 1 -|λ ´1| 

Proof of Proposition 3.16

Proof. We construct a polynomial Φ of degree 2n `2 such that Φ ˝h is of the form

Φ ˝h " λΦ `1 `i n ÿ ℓ"1 b ℓ |Φ| 2ℓ ˘`Op|z| 2n`3 q. (3.34)
Taking the ℓ-homogeneous part of this, for 2 ď ℓ ď 2n `2, this is equivalent to From this, we obtain that pλ ´λ2 qφ 2,0 " iλ |λ ´1| a 2 ; pλ ´1qφ 1,1 " 2iλ |λ ´1| a 2 ; pλ ´λ

λrΦs ℓ pzq ´rΦs ℓ pλzq " rhs ℓ `ℓ´1 ÿ j"2 " rΦs j ˝hȷ ℓ ´iλ pℓ´1q{2 ÿ j"1 b j " Φ |Φ| 2j ȷ ℓ . ( 3 
2 qφ 0,2 " iλ |λ ´1| a 2 , hence $ & % φ 2,0 " ia 2 |1 ´λ| {p1 ´λq, φ 1,1 " 2ia 2 λ |1 ´λ| {pλ ´1q, φ 0,2 " ia 2 λ 3 |1 ´λ| {pλ 3 ´1q.
This shows in particular that if |ν| "

2 then |φ ν | -|a 2 | -ω.
Computation of b 1 . Equation (3.35) implies that λrΦs 3 pzq ´rΦs 3 pλzq " rhs 3 `"rΦs 2 ˝hȷ

3 ´iλb 1 " Φ |Φ| 2j ȷ 3 .
Therefore, we obtain that λrΦs 3 pzq ´rΦs 3 pλzq " iλ |1 ´λ| a 3 pz `zq 3 `"rΦs 2 pλz `iλ |1 ´λ| a 2 pz `zq 2 q

ȷ 3 ´iλb 1 z |z| 2 .
Taking the p2, 1q part of this, we obtain that

iλb 1 " 3iλ |1 ´λ| a 3 `"rΦs 2 pλz `iλ |1 ´λ| a 2 pz `zq 2 q ı 2,1 with " rΦs 2 pλz `iλ |1 ´λ| a 2 pz `zq 2 q ı 2,1 " φ 2,0 λ 2 2i |1 ´λ| p2a 2 q `φ1,1 |1 ´λ| p´ia 2 q `φ0,2 λ2 |1 ´λ| p´2ia 2 q, " ´2a 2 2 λ |1 ´λ| 2 1 `λ 1 ´λ 2 `λ `2λ 2 1 `λ `λ2 .
This with Corollary 3.14 iii) implies that

b 1 |λ ´1| " 3a 3 `2a 2 2 |λ ´1| Rpλq -ω 2 .
Computation of rΦs 3 . With ν " pp, qq P N 2 satisfying p `q " 3 and ν ‰ p2, 1q, Equation (3.35) implies that

λrΦs ν ´λp´q rΦs ν " rhs ν `"rΦs 2 ˝hȷ ν " iλ |λ ´1| a 3 `3 ν ˘zν `"rΦs 2 ˝hȷ ν " iλ |λ ´1| a 3 `3 ν ˘zν `φ2,0 λ 2 `2zi |λ ´1| a 2 pz `zq 2 ˘ν `2φ 1,1 Re `zi |λ ´1| a 2 pz `zq 2 ˘ν `φ0,2 λ2 `´2zi |λ ´1| a 2 pz `zq 2 ˘ν.
Since |λ p´q ´λ| " ˇˇλ p´q´1 ´1ˇˇě |λ ´1| and |p ´q ´1| ď 4, Lemma 3.15 implies that

|φ ν | " O E β,n pa 2 2 q " O E β,n pω 2 q.
We now compute φ 2,1 . We write

BΦpzq " 1 `2φ 2,0 z `φ1,1 z `2φ 2,1 |z| 2 `3φ 3,0 z 2 `φ1,2 z2 `Op|z| 3 q, BΦpzq " 2φ 0,2 z `φ1,1 z `2φ 2,1 |z| 2 `3φ 0,3 z2 `φ2,1 z 2 `Op|z| 3 q.

Therefore Constraint ii) of the proposition implies that

0 " pJpΦqq 1,1 pzq " |z| 2 ˆ4 |φ 2,0 | 2 `|φ 1,1 | 2 `4Re pφ 2,1 q ´4 |φ 0,2 | 2 ´|φ 1,1 | 2 ˙.
This with Constraint iii) shows that φ 2,1 " |φ 0,2 | 2 ´|φ 2,0 | 2 . In particular, it implies that

|φ 2,1 | " O E β,n pω 2 q.
Estimates of Φ and b k . We compute rΦs p by induction over p. Let assume that 4 ď p ď 2n`2 and that we have computed rΦs ďp´1 . We also assume that ˘.

|φ µ | " O E β,n pω |µ|´1 q if |µ| ď p ´1 and |b k | " O E β,n p|λ ´1| ω 2k q if 2k ď p ´2.
-For 1 ď ℓ ă pp ´1q{2, we have

" Φ |Φ| 2ℓ ‰ ν " z ν ˆÿ ν ¯φν 0 ℓ ź i"1 φ ν i φν i`ℓ ˙, (3.37)
where the summation index ν ¯above runs over all the tuples ν ¯" pν 0 , ν 1 , . . . , ν 2l q P pN 2 q 2ℓ`1 satisfying the condition ν " ν 0 `ℓ ÿ j"1 pν j `ν j`ℓ q, with pr, sq " ps, rq for all pr, sq P N 2 .

Thus each term in the sum in (3.37) belongs to

O E β,n `ωn N ˘, with n N " |ν 0 | ´1 `ℓ ÿ j"1 p2 |ν j | ´2q " |ν| ´p1 `2ℓq. Since |b ℓ | " O E β,n `|λ ´1| ω 2ℓ ˘, it follows that b ℓ " Φ |Φ| 2ℓ ‰ ν is of the form cpν, Φ, ℓqz ν , with |cpν, Φ, ℓq| " O E β,n `|λ ´1| ω |ν|´1
˘.

-For µ P N 2 satisfying 2 ď |µ| ď p ´1, we estimate the term

" rΦs µ `λpz `i |λ ´1| ÿ m a m pz `zq m q ˘ȷν " φ µ " `λpz `i |λ ´1| ÿ ν 1 a |ν 1 | `|ν 1 | ν 1 ˘zν 1 q ˘µȷ ν ,
where m in the sum in the left hand side runs over the intergers satisfying 2 ď m ď N 0 " p ´|µ| `1 and ν 1 P N 2 in the sum of the right hand side runs over the couple satisfying 2 ď |ν 1 | ď N 0 . A direct computation shows that the right hand side of this equality is of the form

φ µ λ µ z ν ÿ pµ 0 ,µ ¯q ź ν 1 PN ˆi |λ ´1| a |ν 1 | `|ν 1 | ν 1 ˘˙µ ν 1 ,
where N denote the set of the couples ν 1 P N 2 satisfying |ν 1 | ě 2 and the index in the sum above runs over all the tuples pµ 0 , µ ¯q, with µ 0 P N 2 and µ ¯" pµ ν 1 q P pN 2 q N satisfying

µ 0 `ÿ ν 1 PN µ ν 1 ¨ν1 " ν and µ 0 `ÿ ν 1 PN µ ν 1 " µ,
with pr, sq ¨pr 1 , s 1 q " prr 1 `ss 1 , rs 1 `r1 sq for all pr, s, r 1 , s 1 q P N 4 . Note that we have µ ν 1 ‰ 0 for at leat one index ν 1 since otherwise we should have ν " µ 0 " µ, which is impossible since |µ| ă p " |ν|. On the other hand, we have µ ν 1 ‰ 0 for at most |µ| ď p ´1 ď 2n `1 indices ν 1 . This implies that

ź ν 1 PN |λ ´1| µ ν 1 " O E β,n p|λ ´1|q.

Furthermore, we have ˇˇa |ν

1 | ˇˇ" O E β,n pω |ν 1 |´1 q, so ź ν 1 PN ˇˇa |ν 1 | ˇˇµ ν 1 " O E β,n ˆź ν 1 PN pω |ν 1 |´1 q |µ ν 1 | ˙" O E β,n `ω|ν|´|µ| ˘. Since we have |φ µ | " O E β,n pω |µ|´1 q, it follows that ˇˇˇφ µ λ µ ÿ pµ 0 ,µ ¯q ź ν 1 PN ˆi |λ ´1| a |ν 1 | `|ν 1 | ν 1 ˘˙µ ν 1 ˇˇˇ" O E β,n p|λ ´1| ω |ν|´1 q.
Therefore, we obtain that

|λ ´λν | |φ ν | " O E β,n p|λ ´1| ω |ν|´1 q. With Lemma 3.15, this shows that |φ ν | " O E β,n pω |ν|´1 q (if ν ‰ pℓ 0 `1, ℓ 0 q when p " 2ℓ 0 `1).
-If p " 2ℓ 0 `1 and ν 0 " pℓ 0 `1, ℓ 0 q then (3.36) shows that

iλb ℓ 0 z |z| 2ℓ 0 " rhs ν 0 `p´1 ÿ ℓ"2 " rΦs ℓ ˝hȷ ν 0 ´iλ ℓ 0 ´1 ÿ ℓ"1 b ℓ " Φ |Φ| 2ℓ ȷ ν 0 , hence |b ℓ 0 | " O E β,n p|λ ´1| ω |ν 0 |´1 q " O E β,n p|λ ´1| ω 2ℓ 0 q.
Furthermore, a direct computation shows that |z| ´2ℓ 0 `JpΦq ˘pℓ 0 ,ℓ 0 q " 2pℓ 0 `1qRe pφ ν 0 q `ÿ r 1 `s"ℓ 0 `1 r`s 1 "ℓ 0 `1 pr,sq‰p1,0q, pr 1 ,s 1 q‰p1,0q prr 1 ´ss 1 q `φr,s φ r 1 ,s 1 ˘.

Since in the sum above we have ˇˇφ r,s φ r 1 ,s 1 ˇˇ" O E β,n pω r`s`r 1 `s1 ´2q " O E β,n pω 2ℓ 0 q, Constraints ii) and iii) show that |φ ν 0 | " O E β,n pω 2ℓ 0 q. Thus we have proved the announced estimates at the rank p, and so at any order, and the proof of the points ii), iii), v) and vii) of the proposition is complete.

Estimate of Φ ´1. We shall apply the (inverse) axiom of Lemma A.1 (see Appendix A) to the polynomial Φ with ε " |λ ´1| p a 3{2 ´1q{q, C " 0 and τ ď ρ satisfying

}BΦ ´1} τ `› ›B Φ › › τ ď ε. (3.38)
Note that ε ď a 3{2 ´1, so 2ε `ε2 ď 1{2. Furthermore, we may choose τρ. Indeed, we have

}BΦ ´1} τ `› ›B Φ › › τ " ÿ 2ď|ν|ď2n`2 |ν| |φ ν | τ |ν|´1 " 2n`1 ÿ ℓ"1 O E β,n `pωτ q ℓ ˘" O E β,n `ωτ ˘if ωτ ď 1.
We recall that ρ -|λ´1| qω , so ωρ -|λ´1| q . This implies that there exists τ ą 0 verifying (3.38) with τ ď ρ and τρ.We set ρ 1 " p1 ´εqτ , so ρ 1 -ρ. The (inverse) axiom of Lemma A.1 shows that Φ ´1 exists from Dp0; ρ 1 q into Dp0; ρq and that there exists Qpq, N, µqpzq, a polynomial in z of degree 2n `2 and valuation 2, satisfying

# Φ ´1pzq " z `Qpzq `Ok,E β,n p2n `3; ε{ρ 2n`2 , ρq, }BQ} ρ `› ›B Q › › ρ " O E β,n pεq.
(3.39) At last, (3.38) implies that p1 ´εq |z| ď |Φpzq| ď p1 `εq |z| on Dp0, τ q and this completes the proof of vi) in the proposition.

Estimate of the reminder. We have shown that there exists a polynomial Φ of degree 2n `2 that verifies (3.34). We set

P pzq " λz ˆ1 `i n ÿ ℓ"1 b ℓ |z| 2ℓ ˙and V pzq " λ ˆz `i |λ ´1| 2n`2 ÿ m"2 a m pz `zq m ˙,
so Φ ˝hpzq " P ˝Φpzq `Op|z| 2n`3 q and hpzq " V pzq `Ok,n p2n `3; |λ ´1| ω 2n`2 , ρq.

-We prove in two steps that Φ ˝h ´P ˝Φ belongs to O k,n p2n `3; |λ ´1| ω 2n`2 , ρq.

˝Step 1. We estimate Φ ˝h. We write h " V `ε0 and Φ ˝h " Φ ˝V `ż 1 0 ˆBΦpV `tε 0 q ¨ε0 `BΦpV `tε 0 q ¨ε0 ˙dt.

(3.40)

The (Z-product) and the (restriction) axioms of Lemma A.1 imply that V pzq " O k p0; pk `1q 2n`1 }V } ρ , ρq and ε 0 pzq " O k p0; |λ ´1| ω 2n`2 ρ 2n`3 , ρq.

Since we have |a m | ρ m " O E β,n pω m´1 ρ m q and ωρ " O E β,n p1q, it follows that V and ε 0 both lie in O k,n p0; ρ, ρq. Therefore the (product) axiom shows that

φ ν pV `tε 0 q ν 1 " O k,E 1 β,n p0; |φ ν | ρ |ν|´1
, ρq uniformely for pq, N, µ, tq P E 1 β,n " E β,n ˆr0; 1s, with ν " pν 1 , ν 2 q and ν 1 " pν 1 ´1, ν 2 q or ν 1 " pν 1 , ν 2 ´1q.

This implies that BΦ ˝pV `tε 0 q and BΦ ˝pV `tε 0 q belong to O k,E 1 β,n p0; 1, ρq, since we have

|φ ν | ρ |ν|´1 " O E β,n `pωρq |ν|´1 ˘" O E β,n p1q.
From this, since ε 0 pzq " O k p2n `3; |λ ´1| ω 2n`2 , ρq, (3.40) and the (product) axiom show that Φ ˝h " Φ ˝V `Ok,n p2n `3; |λ ´1| ω 2n`2 , ρq.

Furthermore, the (Z-product) axiom shows that

rΦ ˝V s ě2n`3 pzq " ÿ 2ď|ν|ď2n`2 |φ ν | ÿ m O k p|m| ; pk `1q |m|´1 |λ ´1| pm ˇˇa m ˇˇ, ρq,
where the indices in the sum runs over all the tuples m " pm ℓ q P pN 2 q |ν| satisfying m ℓ " p1, 0q if 

|m ℓ | " 1, 1 ď |m ℓ | ď 2n `2 for 1 ď ℓ ď |ν|
p m " cardtℓ | |m ℓ | ą 1u ; ˇˇa m ˇˇ" ź ℓ,|m ℓ |ą1 |a m ℓ | `|m ℓ | m ℓ ˘.
We have p m ě 1 and |m| ď p2n `2q 2 , so the (restriction) axiom shows that

O k p|m| ; pk `1q |m|´1 |λ ´1| pm ˇˇa m ˇˇ, ρq Ă O k,E β,n p2n `3; |λ ´1| ˇˇa m ˇˇρ |m|´p2n`3q , ρq.
A direct computation shows that ˇˇa m ˇˇ" O E β,n pω |m|´|ν| q, so

|φ ν | ˇˇa m ˇˇ" O E β,n pω |m|´1 ρ |m´p2n`3q| q " O E β,n ppωρq |m|´p2n`3q ω 2n`2 q " O E β,n pω 2n`2 q.
From this, it follows that rΦ ˝V s ě2n`3 lies in O k,n p2n `3; |λ ´1| ω 2n`2 , ρq. Thus we have proved that Φ ˝h " rΦ ˝V s ď2n`2 `Ok,n p2n `3; |λ ´1| ω 2n`2 , ρq.

˝Step 2. We estimate P ˝Φ. The (Z-product) axiom shows that

P ˝Φpzq " rP ˝Φs ď2n`2 pzq `n ÿ ℓ"1 |b ℓ | ÿ ν O k ˆ|ν| ; ˇˇφ ν ˇˇpk `1q |ν|´1 , ρ ˙,
where the index in the sum runs avor all the ν " pν 0 , . . . , ν 2ℓ q P pN 2 q 2ℓ`1 such that |ν| ě 2n `3, with |ν| " 2ℓ ř j"0 |ν j |, and where

ˇˇφ ν ˇˇ" 2ℓ ź j"0 ˇˇφ ν j ˇˇĂ O E β,n ˆ2ℓ ź j"0 ω |ν j |´1 ˙" O E β,n ˆω|ν|´p2ℓ`1q ˙.
Since we have |b ℓ | " O k p|λ ´1| ω 2ℓ q, we obtain that |b ℓ | ˇˇφ ν ˇˇ" O k p|λ ´1| ω |ν|´1 q. This implies that

|b ℓ | O k ´|ν| ; ˇˇφ ν ˇˇpk `1q |ν|´1 , ρ ¯Ă O k,n `|ν| ; |λ ´1| ω |ν|´1 , ρ Ă O k,n `2n `3; |λ ´1| ω |ν|´1 ρ |ν|´p2n`3q , ρ Ă O k,n `2n `3; |λ ´1| ω 2n`2 pωρq |ν|´p2n`3q , ρ Ă O k,n `2n `3; |λ ´1| ω 2n`2 , ρ ˘.
Thus we have proved that P ˝Φpzq " rP ˝Φs ď2n`2 pzq `Ok,n `2n `3; |λ ´1| ω 2n`2 , ρ ˘.

Since rP ˝Φs ď2n`2 " rΦ ˝hs ď2n`2 by construction of Φ, we obtain that Φ ˝hpzq " P ˝Φpzq `Ok,n `2n `3; |λ ´1| ω 2n`2 , ρ ȃnd this completes the proof of the announced estimate of Φ ˝h ´P ˝Φ.

-Now we may compute the estimate of the reminder Φ ˝h ˝Φ´1 ´P . Equation (3.39), the (Z-product) and (restriction) axioms imply that

Φ ´1pzq " O k,n p1; 1, ρq.
Thus the (product) axiom shows that

pΦ ˝h ´P ˝Φq ˝Φ´1 pzq " O k,n `2n `3; |λ ´1| ω 2n`2 , ρ ˘,
which proves i) in Proposition 3.16 and this ends the proof of the proposition.

Proof of Proposition 3.17

Proposition 3.17 follows immediately from the Birkhoff normal form of h (Proposition 3.16) with Lemma 3.19 and Lemma 3.20. Through the whole section, we assume that 2n ě k ě 1, |b m | " O E β,n p|λ ´1| ω 2m q for 1 ď m ď n and ωρ -|λ ´1| {q. We also recall that λ p ‰ 1 for 1 ď p ď 2n `2 and Φ is a diffeomorphism satisfying |Φpzq| -|z| and Φ ˝h ˝Φ´1 pzq " λzV p|z| 2 q `Ok,n p2n `3, |λ ´1| ω 2n`2 , ρq, with V psq " 1

`i n ÿ m"1 b m s m .
Lemma 3.19. If h is symplectic on a neighbourhood of zero and the Taylor expansion of the Jacobian JpΦq " |BΦ| 2 ´ˇB Φ ˇˇ2 does not contain any power of the form |z| 2ℓ , for 1 ď ℓ ď n, then we have JpΦqpzq " 1 `Op|z| 2n`2 q and Φ ˝h ˝Φ´1 pzq " λz exp

ˆi n ÿ ℓ"1 γ ℓ |z| 2ℓ `Ok,n `2n `2; |λ ´1| ω 2n`2 , ρ ˘˙,
where γ ℓ P R for each pq, N, µq P E β,n and |γ ℓ | " O Ẽn p|λ ´1| ω 2ℓ q for 1 ď ℓ ď n.

In particular, we have γ 1 " b 1 .

Proof. we split the proof of the lemma into 4 steps. Steps 1, 2 and 4 follow Moser's arguments.

Step 1: We set gpzq " λzV p|z| 2 q; we check that Jpgqpzq is a polynomial in |z| 2 . Indeed, we have Bgpzq " λpV p|z| 2 q `|z| 2 V 1 p|z| 2 qq and Bgpzq " λz 2 V 1 p|z| 2 q, so

Jpgqpzq " |Bgpzq| 2 ´ˇB gpzq ˇˇ2 " |V | 2 p|z| 2 q `2 |z| 2 Re pV V 1 qp|z| 2 q " d dx | x"|z| 2 x |V pxq| 2 .
Step 2: We prove that JpΦqpzq " 1 `Op|z| 2n`2 q. Since Φpzq " O k,n p1; 1, ρq, we have pΦ ˝hqpzq " gpΦpzqq `Ok,n p2n `3; |λ ´1| ω 2n`2 , ρq.

Since h is symplectic, we have JpΦ ˝hq " JpΦq ˝h and from the form of Φ ˝h above, it follows that JpΦq ˝f " pJpgq ˝Φq ¨JpΦq `Op|z| 2n`2 q, (3.41)

We write

JpΦqpzq " 1 `Jp pzq `Op|z| p`1 q and d dx `x |V pxq| 2 ˘" 1 `αx q `Opx q`1 q, where J p is an homogeneous polynomial of degree p ď 2n `1, α P R and 0 ă q ď n `1, so Jpgqpzq " 1 `α |z| 2q `Op|z| 2q`2 q " JpgqpΦpzqq `Op|z| 2q`1 q.

Since hpzq " λz `Op|z| 2 q, (3.41) implies that 1 `Jp pλzq " p1 `α |z| 2q `Op|z| 2q`1 qq ¨p1 `Jp pzqq `Op|z| p`1 q.

(3.42)

Now we use the hypothesis that J p does not contain any power of |z| 2 :

-If 2q ą p then (3.42) implies that J p pzq " J p pλzq, so J p " 0;

-If 2q " p then (3.42) implies that J p pλzq´J p pzq " α |z| 2q , so J p " α " 0;

-If 2q ă p then (3.42) implies that α |z| 2q " Op|z| 2q`1 qq, so α " 0.

In any case we obtain that J p " 0 if p ď 2n`1, so JpΦqpzq " 1`Op|z| 2n`2 q. Furthermore, we should note that this also implies that Jpgqpxq " 1 `Op|x| n`1 q.

Step 3: we prove the existence of the complex coefficients γ ℓ , for 1 ď ℓ ď n.We have z ´1 " O k p´1; k!, ρq. Therefore the (product) axiom shows that Φ ˝h ˝Φ´1 pzq " λz `V p|z| 2 q `ε0 pzq ˘, with ε 0 pzq " O k,n p2n `2; |λ ´1| ω 2n`2 , ρq.

Set Lpzq " log p1 `zq, where log denotes the principal value of the logarithm; we estimate Lp´1 `V p|z| 2 q `ε0 pzqq. Since

|b m | " O E β,n p|λ ´1| ω 2m q Ă O E β,n p1q and ωρ " O E β,n p|λ ´1| {qq, we have ˇˇ´1 `V p ˇˇz 2 ˇˇq `ϵ0 pzq ˇˇ" O E β,n p|λ ´1| pωρq 2 q " O E β,n p|λ ´1| 3 {q 2 q.
Therefore, up to changing ρ to ρ 1 , with ρ 1 ď ρ and ρ 1 -ρ small enough, we may assume that ˇˇV p ˇˇz 2 ˇˇq `ϵ0 pzq ´1ˇˇď 1{2 on Dp0; ρq. Thus log pV p ˇˇz 2 ˇˇq `ϵ0 pzqq is well defined.

Moreover, we have ˇˇB 2n`2 Lpzq ˇˇď p2n `2q!2 2n`2 on Dp0, 1{2q. Therefore the (Taylor expansion) axiom shows that

Lpzq " 2n ÿ ℓ"0 p´1q ℓ ℓ `1 z ℓ`1 `L1 pzq, with L 1 pzq " O k,n p2n `2; 1, 1{2q.
Since |b m | " O E β,n p|λ ´1| ω 2m q and ωρ " O E β,n p1q, we have V p|z| 2 q `ε0 pzq " 1 `Ok,n p1; |λ ´1| ω, ρq.

Since 2n `2 ě k, we may apply the (composition) axiom, which shows that L 1 pV p|z| 2 q `ε0 pzq ´1q " O k,n p2n `2; |λ ´1| 2n`2 ω 2n`2 , ρq. Now we write L 0 " L ´L1 and P pzq " V p|z| 2 q ´1; we estimate L 0 pP pzq `ε0 pzqq. Since P pzq " O k,n p0; |λ ´1| , ρq and ε 0 pzq " O k,n p2n `2; |λ ´1| ω 2n`2 , ρq, the (product) axiom shows that pP pzq `ϵ0 pzqq ℓ " P ℓ pzq `Ok,n p2n `2; |λ ´1| ℓ ω 2n`2 , ρq.

Furthermore, we have

pP pzqq ℓ " piq ℓ nℓ ÿ j"ℓ |z| 2j ÿ mPN j b m ,
where the summation index m " pm 1 , . . . , m ℓ q P N j Ă N ℓ above runs over all the tuples satisfying ř ℓ q"1 m q " j and where b m " ś ℓ q"1 b mq . Therefore we have ˇˇb m ˇˇ" O E β,n p|λ ´1| ℓ ω 2j q for m P N j , so the (restriction) axiom shows that there exist γ j,ℓ P C for each pq, N, µq P E β,n satisfying |γ j,ℓ | " O Ẽn p|λ ´1| ℓ ω 2j q and pP pzqq ℓ " i n ÿ j"ℓ γ j,ℓ |z| 2j `Ok, Ẽn p2n `2; |λ ´1| ℓ ω 2n`2 , ρq. Thus, setting γ j " j ř ℓ"1 p´1q ℓ´1 ℓ γ j,ℓ , it follows from the estimates above that

ˇˇˇˇˇˇ| γ j | " O Ẽn p|λ ´1| ω 2j q; L 0 pP pzq `ε0 pzqq " i n ř j"1 γ j |z| 2j `Ok,n p2n `2; |λ ´1| ω 2n`2 , ρq.
In particular, we have λzp1 `ib 1 |z| 2 q `Op|z| 5 q " λz exppiγ 1 |z| 2 `Op|z| 4 qq, so ib 1 " iγ 1 .

Step 4: all that remains is to check that γ ℓ P R. We have Jpgqpxq " d dx px |V pxq| 2 q " 1 `Opx n`1 q, so |V pxq| 2 " 1 `Opx n`1 q and ˇˇˇe xp `n ÿ

j"1 iγ ℓ |z| 2ℓ ˘ˇˇˇ2 " V p|z| 2 q `Op|z| 2n`2 q " 1 `Op|z| 2n`2 q.
This last estimate holds true if and only if Re piγ ℓ q " 0 for 1 ď ℓ ď n, which means that γ ℓ P R. This ends the proof of the existence of the coefficients γ j with the announced properties and the proof of the lemma is complete.

Lemma 3.20. There exist ρ 1 ą 0 and ρ 2 ą 0, with ρ 1 ď ρ, a function ε : Dp0; ρ 2 q Ñ R and a diffeomorphism φ from Dp0; ρ 1 q into an open set that contains Dp0;

ρ 2 q satisfying i) ρ 1 -ρ -ρ 2 { ? b 1 and |φpzq| -|z| ? b 1 uniformely on E β,n ˆDp0; ρ 1 q;
ii) pφ ˝Φ ˝h ˝Φ´1 ˝φ´1 qpzq " λz expp´2πi |z| 2 `εpzqq on Dp0;

ρ 2 q; iii) εpzq " O k,n `2n, |λ ´1| ´n , ρ ? b 1 ˘. Proof. Lemma 3.19 shows that Φ ˝h ˝Φ´1 pzq " λz exp ´i n ÿ ℓ"1 γ ℓ |z| 2ℓ `ε0 pzq ¯, with ε 0 P O k, Ẽn p2n `2, |λ ´1| ω 2n`2 , ρq. With φ 0 pzq " z ´1`n ÿ ℓ"2 γ ℓ γ 1 |z| 2ℓ´2 `1 γ 1 Im `ε0 pzq{|z| 2 ˘¯1{2
, this is equivalent to the equation Φ ˝h ˝Φ´1 pzq " λz exp ´iγ 1 |φ 0 pzq| 2 `Re `ε0 pzq ˘¯.

(3.43)

We estimate Φ ˝h ˝Φ´1 ˝φ´1 0 pzq. We set ε 1 pzq " p1{γ

1 q Im p|z| ´2 ε 0 pzqq. Since z ´1 " O k p´1; k!, ρq, the (product) axiom shows that ε 1 pzq " O k,n p2n; ω 2n , ρq Ă O k p0; pρωq 2n , ρq. Since ρω " O E β,n p1q and |γ ℓ {γ 1 | " O E β,n pω 2ℓ´2 q , it follows that n ÿ ℓ"2 |γ ℓ | |γ 1 | |z| 2ℓ´2 `ˇε 1 pzq ˇˇ" O E β,n ppρωq 2 q.
This implies that there exists ρ 1 ď ρ such that ρ 1 -ρ and

n ÿ ℓ"2 |γ ℓ | |γ 1 | |z| 2ℓ´2 `ˇε 1 pzq ˇˇď 1 2 on Dp0; ρ 1 q.
In particular, φ 0 pzq is well defined for z P Dp0, ρ 1 q. Furthermore, the (Taylor) axiom shows that ? 1 `z " ř k ℓ"0 `1{2 ℓ ˘zℓ `Ok,n pk `1; 1, 1{2q, so, by composition, there exist coefficients c ℓ P R, 1 ď ℓ ď n and a real values reminder ε 2 such that

´1 `n ÿ ℓ"2 γ ℓ |z| 2ℓ´2 γ 1 `ε1 pzq ¯1 2 " 1 `n´1 ÿ ℓ"1 c ℓ |z| 2ℓ `ε2 pzq, with " |c ℓ | " O E β,n pω 2ℓ q, ε 2 pzq " O k,n p2n; ω 2n , ρ 1 q.
(3.44) Thus we have proved that

φ 0 pzq " z `n´1 ÿ ℓ"1 c ℓ z |z| 2ℓ `Ok,n p2n `1; ω 2n , ρ 1 q. (3.45)
We write φ 0 pzq " P 0 pzq `zε 2 pzq; up to shrinking ρ 1 (keeping ρ 1 -ρ), we may assume that there exist c ą 0 and C ą 0 such that c -1, zε 2 pzq " O k p2n `1; Cω 2n , ρ 1 q and

}BP 0 ´1} ρ 1 `› ›B P 0 › › ρ 1 `Cpρ 1 q 2n ω 2n ď cω 2 ρ 2 ď 1 8 .
It follows with the (inverse) axiom applied with ε " cω 2 ρ 2 that φ 0 is a diffeomorphism from Dp0, ρ 1 q onto an open set that contains a disk of the form Dp0, ρ 2 q, such that ρ 2 -ρ and there exists a polynomial Q of degree 2n and valuation 2 such that φ ´1 0 pzq " z `Qpzq `Ok,n p2n `1; ε{pρ 2 q 2n , ρ 2 q, with }Q} ρ 2 " O E β,n pρ 2 εq.

Q is a sum of monomials of the form d ν z ν , with 2 ď |ν| ď 2n, and we have

|d ν | ρ 2|ν| ď }Q} ρ 2 " O E β,n pρ 23 ω 2 q, so |d ν | " O E β,n pρ 23´|ν| ω 2 q and d ν z ν " O k,n p2; ρ 2 ω 2 , ρ 2 q.
In a similar way, since we have ρ 2 -ρ and ε " O E β,n pρ 2 ω 2 q, the (restriction) axiom shows that O k,n p2n `1;

ε{pρ 2 q 2n , ρ 2 q Ă O k,n p2; ω 2 ρ 2 ρ 2n´1 {ρ 2n , ρ 2 q " O k,n p2; ω 2 ρ 2 , ρ 2 q. Since ρω " O E β,n p1q, we obtain that φ ´1 0 pzq " z `Ok,n p2; ω 2 ρ 2 , ρ 2 q " z `Ok,n p2; ω, ρ 2 q " O k,n p1; 1, ρ 2 q. (3.46)
This with (3.43) and the (composition) axiom shows that

Φ ˝h ˝Φ´1 ˝φ´1 0 pzq " λφ ´1 0 pzq exp ˆiγ 1 |z| 2 `ε3 pzq ˙, (3.47) 
with

ε 3 pzq " Re pε 0 ˝φ´1 0 pzqq " O k,n `2n `2; |λ ´1| ω 2n`2 , ρ ˘. (3.48) 
We should also note that the (restriction) axiom shows that

iγ 1 |z| 2 `ε3 pzq " O k,n p0; ω 2 ρ 2 , ρq Ă O k,n p0; 1, ρq.
Since exppzq " ř k ℓ"0 z ℓ {ℓ! `Ok,n pk `1; 1, 1q, this implies that exppiγ 1 |z| 2 `ε3 pzqq " 1 `Ok,n p0; ω 2 ρ 2 , ρq Ă O k,n p0; 1, ρq. From this, (3.47) and (3.46), one can deduce that Φ ˝h ˝Φ´1 ˝φ´1 0 pzq " O k,n p1; 1, ρq.

(3.49)

We estimate φ 0 ˝Φ ˝h ˝Φ´1 ˝φ´1 0 pzq. We write f 0 pzq " Φ˝h˝Φ ´1 ˝φ´1 0 pzq and P 0 pzq " zP 1 pzq, with P 1 pzq " 1`ř n ℓ"1 c ℓ |z| 2ℓ and φ 0 pzq " z `P1 pzq `ε2 pzq ˘. Since P 1 depends only on |z| and |f 0 | pzq " ˇˇφ ´1 0 pzq ˇˇexppε 3 pzqq, we have P 1 pf 0 pzqq " P 1 pφ ´1 0 pzqe ε 3 pzq q.

Since |λ ´1| ω 2n`2 ρ 2n`2 " O E β,n p1q, (3.48) shows with the (P -composition) and (restriction) axioms that exppε 3 pzqq " 1 `Ok,n p2n `2; |λ ´1| ω 2n`2 , ρq. Therefore the (product) axiom and (3.46) imply that φ ´1 0 pzqe ε 3 pzq " φ ´1 0 pzq `Ok,n p2n `3; |λ ´1| ω 2n`2 , ρq.

From this and the estimates |c ℓ | " O E β,n pω 2ℓ q, one may check that P 1 pφ ´1 0 pzqe ε 3 pzq q " P 1 pφ ´1 0 pzqq `ε5 pzq, with ε 5 pzq " O k,n p2n `4; |λ ´1| ω 2n`4 , ρqq Ă O k,n p2n; ω 2n , ρq.

(3.50)

Since P 1 is real valued, so is ε 5 . Moreover, (3.44), the (composition) axiom and (3.46) imply that ε 2 ˝φ´1 0 pzq " O k,n p2n; ω 2n , ρ 1 q;

(3.51) the estimate |c ℓ | " O E β,n pω 2ℓ q and (3.46) imply that

c ℓ ˇˇφ ´1 0 pzq ˇˇ2ℓ " O k,n p2ℓ; ω 2ℓ , ρq Ă O k,n p0; pωρq 2ℓ , ρq.
Thus we obtain that P 1 pφ ´1 0 pzqq `ε2 ˝φ´1 0 pzq " 1 `Ok,n p0; pρωq 2 , ρq. Since ρω " O E β,n p1q, we may assume that pP 1 `ε2 q ˝φ´1 0 pzq does not vanish, up to shrinking ρ 2 (keeping ρ 2 -ρ), and

`pP 1 `ε2 q ˝φ´1 0 pzq ˘´1 " 1 `Ok,n p0; pρωq 2 , ρ 2 q Ă O k,n p0; 1, ρq. (3.52)
From this discussion, it follows that

φ 0 ˝f0 pzq " f 0 pzq ´P1 `φ´1 0 pzqe ε 3 pzq ˘`ε 4 pzq " λφ ´1 0 pzq exp `iγ 1 |z| 2 `ε3 pzq ˘´P 1 `φ´1 0 pzq ˘`ε 5 pzq `ε4 pzq " λφ ´1 0 pzq exp `iγ 1 |z| 2 `ε3 pzq ˘´P 1 `φ´1 0 pzq ˘`ε 2 ˝φ´1 0 pzq `ε6 pzq " λφ ´1 0 pzq `P1 `ε2 ˘`φ ´1 0 pzq ˘exp `iγ 1 |z| 2 `ε3 pzq ˘`1 `ε7 pzq " λz exp `iγ 1 |z| 2 `ε3 pzq ˘`1 `ε7 pzq with ε 4 " ε 2 ˝f0 , ε 6 " ε 5 `ε4 ´ε2 ˝φ´1 0 and ε 7 " ε 6 ¨`pP 1 `ε2 q ˝φ´1 0 ˘´1
. Since P 1 , ε 2 , ε 3 and ε 5 are real valued, so is ε 7 . Furthermore, the (composition) axiom applied to (3.44) and (3.49) shows that ε 4 lies in O k,n p2n; ω 2n , ρq, and so ε 6 according to (3.50) and (3.51). With the (product) axiom, this estimate of ε 6 and (3.52) imply that ε 7 pzq " O k,n p2n; ω 2n , ρq.

Since log p1 `zq " ř k´1 ℓ"0 p´1q ℓ {pℓ `1qz ℓ`1 `Ok,n pk `1; 1, 1{2q, the (P -composition) shows that we may set ε 8 pzq " log p1 `ε7 pzqq, up to shrinking ρ 2 (keeping ρ 2 -ρ), so ε 8 is real valued and ε 8 pzq " O k,n p2n; ω 2n , ρq and φ 0 ˝f0 pzq " λz exp `iγ 1 |z| 2 `ε9 pzq ˘, with ε 9 pzq " ε 3 pzq `ε8 pzq " O k,n p2n; ω 2n , ρq according to (3.48) and the (restriction) axiom; we note that ε 9 is real valued.

Definition of φ. We set φ 1 pzq " z a γ 1 {2π on a disk of the form Dp0; cρ{ ? γ 1 q with c ą 0 small enough (keeping c -1) so ε " ε 9 ˝φ´1 1 is well defined; we set φ " φ 1 ˝φ0 . Thus we have φ ˝Φ ˝h ˝Φ´1 ˝φ´1 pzq " φ 1 ˝φ0 ˝f0 ˝φ´1 1 pzq " λz exp `´2πi |z| 2 `εpzq ˘.

Since we have z

a 2π{γ 1 " O k, Ẽn p1; 1 ? γ 1 , ρ ? γ 1 q " O k, Ẽn p1; 1 ω |λ ´1| ´1 2 q, ρ ? γ 1 q, the (com- position) axiom shows that εpzq " ε 9 pz a 2π{γ 1 q " O k, Ẽn p2n; 1{|λ ´1| n , ρ ? γ 1 q
and this completes the proof of the lemma.

Proof of Proposition 3.18

We now focus on the tranformation of h in polar coordinates, as stated in Proposition 3.18.

Proof. i) We consider the diffeomorphism ψ of Proposition 3.17 and set Ψ " ψ ´1 ˝p, with ppr, θq " ? r expp2πiθq. Since ψ ´1 is a diffeomorphism from Dp0; ρ 2 q onto its image, so is ψ from p0; ρ 2 2 s ˆT. This proves the point 1 of the corollary, with ρ 1 " ρ 2 2 and εpr, θq " r `expp2ε ˝ppr, θqq ´1˘. ii) The function ε is real valued by construction. We now estimate ε. Proposition 3.17 shows that ρ 2 -ρω |λ ´1| 1{2 , so ρ 2n 2 |λ ´1| ´n -pρωq 2n " O E β,n p1q. Therefore, up to shrinking ρ 2 (keeping ρ 2 -ρω |λ ´1| 1{2 ), we may assume that 2εpDp0; ρ 2 qq Ă Dp0; 1q. The (P -composition) axiom of Lemma A.1, applied to exppzq ´1 " P pzq `Ok,n p2n; 1, 1q composed with 2εpzq " O k,n p2n; C 1 {ρ 2n 2 , ρ 2 q, where C 1 " |λ ´1| ´n ρ 2n 2 and P pzq "

2n´1 ÿ ℓ"1 z ℓ {ℓ!,
shows that expp2εpzqq " 1 `Ok,n p2n; C 01 {ρ 2n 2 , ρ 2 q, with

C 01 " C 2n 1 `}P } C 1 " O E β,n ˆ2n ÿ ℓ"1 C ℓ 1 ˙" O E β,n pC 1 q, since C 1 " O E β,n p1q.
Thus we have proved that expp2εpzqq ´1 " O k,n p2n; |λ ´1| ´n , ρ 2 q, hence the (Z-product) axiom of A.1 applied twice shows that |z| 2 `expp2εpzqq ´1q " O k,n p2n `2; |λ ´1| ´n , ρ 2 q.

Applying the (T-composition) axiom of Lemma A.2 to this map composed with p, the estimate of ε of the lemma follows, with ρ 1 " ρ 2 2 . iii) We already know that ρ 1 " ρ 2 2 -ρ 2 ω 2 |λ ´1| -|λ ´1| This implies the last estimate of the proposition since p `p0; rs ˆT˘" Dp0; ? rqzt0u and the proof of Proposition 3.18 is complete.

The invariant curve theorem

The following statement is taken from [START_REF] Herman | Sur les courbes invariantes par les difféomorphismes de l'anneau[END_REF], VII.11.3 and VII.11.11.A.1.

Theorem (Herman [He02]). Assume δ ą 0 and set A δ " T ˆr´δ, δs. Let γ P R and Γ ą 0 satisfy 0 ă Γ ď inf qě1, pPZ ␣ q |qγ ´p|u.

(3.53)

Then there exist two constants c 1 ą 0 and C 2 ě 0 such that for any embedding F : A δ Ñ A of the form F pθ, rq " pθ `γ `r, r `φpθ, rqq, with φ P C 4 pA δ q satisfying the essential circle intersection property and

max 1ďi`jď4 › › ›B i r B j θ φ › › › C 0 pA δ q ď c 1 Γ 2 , (3.54)
there is an unique function ψ P W 3,2 pTq and a diffeomorphism f P C 1 pTq with rotation number γ such that F pθ, ψpθqq " `f pθq, ψ `f pθq ˘˘and we have

}ψ} W 3,2 pTq ď C 2 Γ ´1 max 1ďi`jď4 › › ›B i r B j θ φ › › › C 0 pA δ q . (3.55)
If δ{Γ ě 0.123 then c 1 " 14 and C 2 " 0.097 are suitable for any γ satisfying (3.53).

This theorem requires a few comments.

1) We recall that F : A δ Ñ A satisfies the essential circle interection property provided that each simple essential curve C Ă A δ (homotopy equivalent to the circle tr " 0u) satisfies F pC q X C " ∅. In our case, since F q,N,µ is symplectic and fixes a q , this condition is automatically fulfilled.

2) Here W 3,2 pTq denotes the Sobolev space of all distributions ψ P D 1 pTq X L 2 pTq with derivatives D k ψ in L 2 pTq for 0 ď k ď 3, endowed with the norm

}ψ} W 3,2 pTq " ˆ› › D 3 ψ › › 2 L 2 pTq `ˇˇp ψp0q ˇˇ2 ˙1{2 , with p ψp0q " ż 1 0 ψptq dt.
In particular, it is standard to prove that W 3,2 pTq embeds in C 0 pTq (see Proposition IV.3.7 in [START_REF] Herman | Sur les courbes invariantes par les difféomorphismes de l'anneau[END_REF] ) and

› › ›ψ ´p ψp0q › › › C 0 pTq ď 1 12 ? 210 › › D 3 ψ › › L 2 pTq .
Since here f pθq " θ`γ `ψpθq is a diffeomorphism of the circle with rotation number γ, one can prove that f ´γ has a fixed point (see [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF]). This implies that ψ should vanished at some point x 0 P T. Therefore we have ˇˇψp0q ˇˇ" ˇˇψpx 0 q ´ψp0q ˇˇď › › ›ψ ´ψp0q

› › › C 0 pTq , hence }ψ} C 0 pTq ď 2 › › ›ψ ´p ψp0q › › › C 0 pTq ď 1 6 ? 210 › › D 3 ψ › › L 2 pTq ď 1 6 ? 210 }ψ} W 3,2 pTq .
(3.56)

3) One says that the number γ P R is of constant type with Markoff constant at least Γ exactly when it satisfies (3.53). All we need to know about it is the following result (see IV.3.5 in [START_REF] Herman | Sur les courbes invariantes par les difféomorphismes de l'anneau[END_REF]).

Lemma 3.21 (Herman). There exists a constant c ą 0 such that for all 0 ă η ă 1{2, if ra, bs Ă r0, 1s satisfies |b ´a| ě η then ra, bs contains infinitely many numbers of constant type with Markoff constant at least cη.

Notice that we may shrink c as we need; in the following, we shall take 1{c ě 0.123 in order to apply Herman's theorem.

Conclusion of the proof of Theorem F

Now we have all the ingredients to prove Theorem F, which follows immediately from the following proposition. We recall that B q,N is a q-adapted box for G N,µ and that G q N,µ " F q,N,µ on B q,N . The set E β,n which appears in the statement is the one defined in (3.24b) on p. 49. Proposition 3.22. There exists a real number η 0 ą 0 and, for each pq, N, µq P E β,n , a disc Ω q,N,µ Ă B q,N satisfying the following conditions. i) If µq 5 {N 4 ă η 0 then F q,N,µ pΩ q,N,µ q " Ω q,N,µ ; ii) area `Ωq,N,µ ˘-µ N 2 .

Proof. We set n ě 8, k " 4, ω " q 4 {N 3 ; we recall that the number α q,N introduced in Proposition 3.11 (on p. 47) satisfies α q,N -q 5 {N 4 , and λ " exppiγ 0 q satisfies λ `λ´1 " 2 ´µα q,N and |λ ´1| " µα q,N .

' Since 2n `2 ě k, Proposition 3.13 applied to F q,N,µ and 2n `2 shows that for each pq, N, µq P E β,n there exist ρ ą 0 and a map Ψ 0 from a disk Dp0; ρq into B q,N such that Ψ ´1 0 ˝Fq,N,µ ˝Ψ0 pzq " λ ˆ2n`2 ÿ ν"2 a ν pz `zq ν `Ok,n `2n `3, ω 2n`2 , ρ ˘˙, with p´1q ν´1 a ν -ω ν´1 and ρ -|λ´1| qω . Since 2n ě k " 4, we may apply Proposition 3.18: for each pq, N, µq P E β,n , there exist ρ 1 ą 0 and a map Ψ 1 from T ˆp0; ρ 1 q into Dp0; ρ q,N,µ q satisfying

Ψ ´1 1 ˝Ψ´1 0 ˝Fq,N,µ ˝Ψ0 ˝Ψ1 pθ, rq " ˆγ0 2π `θ `r, r `εpr, θq ˙,
where εpr, θq " O T k pn `1; |λ ´1| ´n , ρ 1 q and ρ 1 -|λ ´1| 3 {q 2 . ' Since |γ 0 | -|λ ´1| -µq 5 {N 4 , we may choose η 0 ą 0 small enough so ρ 1 `|γ 0 | 2π ă 1. Lemma 3.21 shows that there exists r 0 P rρ 1 {3; 2ρ 1 {3s such that γ " γ 0 2π `r0 is of constant type with Markoff constant Γ ě cρ 1 {3. We set Ψ 2 pθ, r 1 q " pθ, r 0 `r1 q and δ " ρ 1 {3, so Ψ 2 defines an embedding from A δ into T ˆp0; ρ 1 q such that F pθ, r 1 q :" Ψ ´1 2 ˝Ψ´1 1 ˝Ψ´1 0 ˝Fq,N,µ ˝Ψ0 ˝Ψ1 ˝Ψ2 pθ, r 1 q " ˆγ `θ `r1 , r 1 `εpθ, r 1 q ˙, with εpθ, r 1 q " εpr 0 `r1 , θq.

' We apply Herman's theorem of Section 3.6 to F on A δ with c 1 " 14, C 2 " 0.097 and Γ " cρ 1 {3. These constants c 1 and C 2 are suitable because δ{Γ " 1 c ě 0.123, so we have

max 1ďi`jď4 › › ›B i r B j θ ε› › › C 0 pA δ q ď max 1ďi`jď4 › › ›B i r B j θ ε› › › C 0 pp0;ρ 1 qˆTq " O E β,n p|λ ´1| ´n ρ 1n´3 q.
Since we have |λ ´1| -µq 5 {N 4 , |λ ´1| ´n ρ 1n´3 -|λ ´1| 2n´9 {q 2n´6 and Γ 2 -ρ 12 -|λ ´1| 6 {q 4 and since we assume n ě 8, we may choose η 0 ą 0 small enough so (3.54) is satisfied for all pq, N, µq P E β,n verifying µq 5 {N 4 ď η 0 .

θ " 0 θ " 1 r " r 0 r " r 0 ´δ 2 ě δ 2 " ρ 1 6 r " r 0 `δ 2 ď 5ρ 1 6 r " δ r " 2δ r " 3δ " ρ 1
Herman's theorem shows that there exists a map ψ : T Ñ R such that C " tpθ, ψpθqqu is globally invariant by hpθ, rq " `γ `θ `r1 , r 1 `εpθ, r 1 q ˘and (3.55) holds true. This with (3.56) implies that

}ψ} C 0 pTq " O E β,n ˆΓ´1 max 1ďi`jď4 › › ›B i r B j θ ε› › › C 0 pA δ q ˙" O E β,n p|λ ´1| ´n ρ 1n´4 q.
Since |λ ´1| ´n ρ 1n´4 -|λ ´1| 2n´12 {q 2n´8 , δ -|λ ´1| 3 {q 2 and n ě 8, we may choose η 0 ą 0 small enough so }ψ} C 0 pA δ q ď δ{2 for all pq, N, µq P E β,n verifying µq 5 {N 4 ď η 0 .

Thus we have proved that the Jordan curve C " tΨ 1 ˝Ψ2 pθ, ψpθqqu is invariant by Ψ ´1 0 ˝Fq,N,µ ˝Ψ0 . Since ρ 1 {3 ď r 0 ď 2{3ρ 1 and }ψ} C 0 pTq ď ρ 1 {6, we have ρ 1 {6 ď r 0 `ψpθq ď 5ρ 1 {6 on T, so the estimate of Ψ 1 in Proposition 3.18 shows that area

`IntpC q ˘- ρ 1 ω 2 |λ ´1| - |λ ´1| 2 q 2 ω 2 .
Therefore Ω q,N,µ " Ψ 0 pIntpC qq is invariant by F q,N,µ and the point iii) in Proposition 3.13 indicates that

areapΩ q,N,µ q -κ |λ ´1| 2 q 2 ω 2 - |λ ´1| qωN - µα q,N qωN " µ N 2 ;
this completes the proof of the proposition.

Coupling devices, multi-dimensional periodic domains, wandering domains

At this point of the paper, it only remains to be proven Theorem C stated in Section 1.2 and Part (ii) of Theorem D stated in Section 1.3. Both proofs will make use of a "coupling lemma" which is the object of Section 4.1.

Coupling devices

We quote here almost exactly Lemma 3.2 of [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF], which was itself a simple adaptation of a result already present in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]. Though very simple, this coupling lemma plays a crucial role in our constructions.

Lemma 4.1. Let m, m 1 ě 1 be integers. Let F : A m ý and G : A m 1 ý be two diffeomorphisms, and let f : A m Ñ R and g : A m 1 Ñ R be two Hamiltonian functions which generate complete vector fields. Suppose moreover that we are given q ě 1 integer and V Ă A m 1 such that V is qperiodic for G (i.e. V " G q pV q) and the "synchronization conditions" gpx 1 q " 1, dgpx 1 q " 0, gpG s px 1 qq " 0, dgpG s px 1 qq " 0, 1 ď s ď q ´1, (4.1) hold for all x 1 P V . Then f b g generates a complete Hamiltonian vector field and the diffeomorphism F :" Φ f bg ˝pF ˆGq : A m`m 1 ý satisfies F ℓq`s px, x 1 q " ´F s ˝`Φ f ˝F q ˘ℓpxq, G ℓq`s px 1 q ¯, x P A m , x 1 P V , (4.2) for all integers ℓ, s P Z such that 0 ď s ď q ´1.

We have denoted by f b g the function px, x 1 q Þ Ñ f pxqgpx 1 q, and by F ˆG the product diffeomorphism px, x 1 q Þ Ñ `F pxq, Gpx 1 q ˘.

Proof. See the proof of Lemma 3.2 in [MS04, p. 1631]. The point is that Φ f bg px, x 1 q " `Φgpx 1 q f pxq, Φ f pxq g px 1 q ˘, x P A m , x 1 P A m 1 , (as proved in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF], using the invariance of both f and g by the Hamiltonian vector field generated by f b g), so the synchronization conditions (4.1) easily imply (4.2).

Notice that, under the assumptions of Lemma 4.1, the union Ṽ :" V \ GpV q \ . . . \ G q´1 pV q (4.3) is a disjoint union because, for any s P t1, . . . , q ´1u, the synchronization conditions (4.1) say that V Ă g ´1p1q and G s pV q Ă g ´1p0q. Thus any x 1 P Ṽ can be written x 1 " G s px 1 0 q with uniquely determined s P t0, 1, . . . , q ´1u and x 1 0 P V ; then (4.2) shows that F s `F ´spxq, x 1 0 ˘" px, x 1 q and that with k `s " ℓ 1 q `s1 . In particular, the set A m ˆṼ is invariant under F and the second projection makes G ˇˇṼ a factor of F ˇˇA m ˆṼ . Note also that (4.2) yields

F k px, x 1 q " ´F s 1 ˝`Φ f ˝F q ˘ℓ1 ˝F ´spxq, G k px 1 q ¯, x P A m , x 1 P Ṽ , Φ f G A m F A m 1 V U GpV q G q´1 pV q
F q ˇˇA m ˆV " `Φf ˝F q ˘ˆ`G q ˇˇV ˘. (4.4)
Assuming furthermore that there is a subset U Ă A m which is periodic or wandering for Φ f ˝F q , we easily obtain that U ˆV Ă A m`m 1 is periodic or wandering for F. This is essentially the content of the folowing two corollaries.

Corollary 4.2. Let F " Φ f bg ˝pF ˆGq : A m`m 1 Ñ A m`m 1 with m, m 1 , F , G, f , g, q and V Ă A m 1 as in Lemma 4.1 (in particular V is q-periodic for G and the synchronization conditions (4.1) hold). Assume now that the diffeomorphism Φ f ˝F q admits a p-periodic subset U Ă A m , with a certain integer p ě 1. Assume moreover that there exist sets B Ă B ˚Ă A m and B 1 Ă B 1 ˚Ă A m 1 such that U Ă B, pΦ f ˝F q q k pU q X B ˚" ∅ for 1 ď k ď p ´1, (4.5)

V Ă B 1 , G k pV q X B 1 ˚" ∅ for 1 ď k ď q ´1. (4.6)
Then the product set U ˆV Ă A m`m 1 is ppqq-periodic for the diffeomorphism F and

U ˆV Ă B ˆB1 , F k pU ˆV q X pB ˚ˆB 1 ˚q " ∅ for 1 ď k ď pq ´1. (4.7)
Proof. Let ψ :" Φ f ˝F q . By (4.4), F pq pU ˆV q " ´ψp pU q, G pq pV q ¯" U ˆV and this ppqq-periodic set is obviously contained in B ˆB1 . Suppose that k P Z and F k pU ˆV qXpB ˚ˆB 1 ˚q ‰ ∅. We thus can find px, x 1 q P U ˆV such that z :" F k px, x 1 q P B ˚ˆB 1 ˚. By (4.2), the second projection of z is G k px 1 q, in view of (4.6) this implies that k P qZ, say k " ℓq. But, again by (4.2), the first projection of z is thus ψ ℓ pxq, and (4.5) then implies ℓ P pZ. Therefore k P pqZ and (4.7) is proved.

Corollary 4.3. Let F " Φ f bg ˝pF ˆGq : A m`m 1 Ñ A m`m 1 with m, m 1 , F , G, f , g, q and V Ă A m 1 as in Lemma 4.1 (in particular V is q-periodic for G and the synchronization conditions (4.1) hold).

Assume now that the diffeomorphism Φ f ˝F q admits a wandering subset U Ă A m . Then the product set U ˆV Ă A m`m 1 is wandering for the diffeomorphism F.

See Figure 1.

Proof. Let W :" U ˆV . We show that F k pW q X W " ∅ for arbitrary k P Zzt0u.

Suppose first that k R qZ. Then V X G k pV q " ∅ as already observed in (4.3). Thus x 1 P V implies G k px 1 q R V , whence F k px, x 1 q R W for all x P A m by (4.2), i.e. F k pA m ˆV q X pA m ˆV q " ∅. In particular, F k pW q X W " ∅ when k R qZ.

Suppose now that k " ℓq with ℓ P Zzt0u. We have F k pW q " `pΦ f ˝F q q ℓ pU q, V by (4.4) and U is wandering for Φ f ˝F q , hence pΦ f ˝F q q ℓ pU q X U " ∅, therefore F k pW q X W " ∅ again.

Proof of Part (ii) of Theorem D (periodic domains in

A n´1 )

Overview of the method

For n ě 3, we must construct an arbitrarily close to integrable system in P α,L 2 `Φ 1 2 pr 2 2 `¨¨¨`r 2 n q possessing a periodic polydisc of arbitrarily large period in A n´1 ; the Gromov capacity of this polydisc must be bounded from below as in (1.23) and "localization conditions" of the form (1.24)-(1.25) must hold for its orbit. The near-integrable system will be obtained by applying Corollary 4.2 with m " 1 and m 1 " n ´2. The period of the polydisc will be of the form Q " pq, with p :" ℓp j`2 , ℓ P N arbitrarily large, q :" p j`3 ¨¨¨p j`n (recall that pp j q jě1 is the prime number sequence), so that Q will be an integer multiple of N j :" p j`2 p j`3 ¨¨¨p j`n , and the deviation of the system from Φ 1 2 pr 2 2 `¨¨¨`r 2 n q will be Op1{N 2 j q. To apply Corollary 4.2, we must define a system F , a function f and a p-periodic domain U for Φ f ˝F in the first factor, A, and a system G, a function g and a q-periodic domain V for G in the second factor, A n´2 .

On the first factor, we will make use of Theorem F (in a way very similar to the proof of Theorem D(i) in Section 3.2) to produce a system Ψ P P α,L 1 `Φ 1 2 r 2 2 ˘possessing a p-periodic disc Ũ in A, whose area admits a suitable bound from below and whose orbit is suitably localized. A simple rescaling of the action variable r 2 by the factor q will then yield a system of the form ψ " Φ f ˝F q with f P G α,L pTq small,

F P P α,L 1 `Φ 1 2 r 2 2 ˘, (4.8) 
possessing a p-periodic disc U . The smallness of ∥f ∥ α,L will be controlled by the choice of the "tuning parameter" µ at the moment of using Theorem F.

On the second factor, we will use a near-integrable system of the form G " G r3s ˆ¨¨¨ˆG rns P P α,L 1 `Φ 1 2 pr 2 3 `¨¨¨`r 2 n q ˘(4.9)

where, for each κ, G rκs P P α,L 1 `Φ 1 2 r 2 κ ˘has a p j`κ -periodic disc V rκs with area suitably bounded from below and orbit suitably localized. Since p j`3 , . . . , p j`n are pairwise coprime and their product is q, we shall have V " V r3s ˆ¨¨¨ˆV rns q-periodic for G. Lemma B.5 of the Appendix B.4 will then yield a "bump function" g P G α,L pA n´2 q satisfying the synchronization conditions relative to V and G.

According to Corollary 4.2, the polydisc U ˆV will thus be ppqq-periodic for Φ f bg pF ˆGq, which will be the desired near-integrable system. Notice that ∥g∥ α,L will be exponentially large, so we need to choose properly the tuning parameter µ in the first step, so as to compensate the largeness of ∥g∥ α,L by the smallness of ∥f ∥ α,L and ensure δ α,L `Φfbg ˝pF ˆGq, Φ 1 2 pr 2 2 `¨¨¨`r 2 n q ˘" Op1{N 2 j q. (4.10) 4.2.2 A p-periodic polydisc for a near-integrable system of the form Φ f ˝F q in A Let α ą 1 and L ą 0 be real. We give ourselves reals ρ 0 ą 2, L 0 , θ ‹ ą 0 such that L 0 ă 1 2 ´θ‹ , δ :" 1 and, as in Section 3.2, by means of Lemma B.5 we pick 1-periodic functions V , pW M q M PN ˚in G α,L pRq which satisfy the assumptions (i)-(v) of Theorem F. In particular,

W M pθq :" 1 2 η M pθq `distpθ, Zq ˘2, }W M } α,L ď C 0 exp ´cpα, Lq M 1 α´1 ¯for all M P N ˚, (4.11 
) with some positive reals C 0 and cpα, Lq.

We get C 1 , C 2 , C 3 , C 4 ą 0 fulfilling the conclusions of Theorem F: setting

P V {M 2 pθ, rq :" 1 2 r 2 `1 M 2 V pθq, G M,µ :" Φ µW M ˝ΦP V {M 2
for every integer M ě 1 and real µ ą 0 (as in (3.1)-(3.2)), Theorem F says that G M,µ has a p-periodic disc D p,M,µ for each integer p ě C 1 M provided µ ă C 2 M 4 {p 5 , with area areapD p,M,µ q ě C 3 µ M 2 (4.12) and orbit localized as in (3.4).

Let n ě 3, j ě 1 and ℓ ě C 1 be integers, and q :" p j`3 ¨¨¨p j`n , N j :" p j`2 q, p :" ℓp j`2 , (4.13) so that Q :" pq " ℓN j is an arbitrary multiple ě C 1 N j of N j . We define µ j,ℓ :" min " C 2 2ℓ 5 p j`2 , 1 p2p j`2 q n exp ´´pn ´1qcpα, Lqp2p j`2 q 1 α´1 ¯*.

(4.14)

Notice that µ j,ℓ ă C 2 p 4 j`2 {p 5 . We may thus consider the map

G p j`2 ,µ j,ℓ " Φ µ j,ℓ Wp j`2 ˝Φ 1 2 r 2 `p´2 j`2 V (4.15)
which has a well-defined p-periodic disc Ũj,ℓ :" D p,p j`2 ,µ j,ℓ .

Lemma 4.4. Let σ : pθ, rq P A Þ Ñ pθ, qrq P A.

Then, for any Hamiltonian function of the form pθ, rq P A Þ Ñ hprq `vpθq with hpqrq " q 2 hprq, one has σ ´1 ˝Φh`v ˝σ " Φ qph`q ´2vq .

Proof. This is a simple scaling property of the Hamiltonian flow already used in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]. Since σ is not symplectic but conformal-symplectic, one needs to rescale the action variable r and the time: the identity σ ´1 ˝Φtph`vq ˝σ " Φ qtph`q ´2vq is easily checked by differentiating both sides with respect to t.

Applying Lemma 4.4 with hprq " 1 2 r 2 , we get

σ ´1 ˝Φ 1 2 r 2 `p´2 j`2 V σ " F q j , F j :" Φ 1 2 r 2 `1 N 2 j V (4.16)
and, with h " 0, σ ´1 ˝Φµ j,ℓ Wp j`2 σ " Φ f j,ℓ , f j,ℓ :" q ´1µ j,ℓ W p j`2 . (4.17)

Therefore, the map Φ f j,ℓ ˝F q j " σ ´1 ˝Gp j`2 ,µ j,ℓ ˝σ (4.18) has a p-periodic disc U j,ℓ :" σ ´1p Ũj,ℓ q. Inequality (4.12) entails areapU j,ℓ q ě C 3 µ j,ℓ q p 2 j`2 (4.19) and, because of (3.4), U j,ℓ Ă B 1{p2p j`2 q XA 4{N j , pΦ f j,ℓ ˝F q j q k pU j,ℓ qXB 1{p j`2 " ∅ for 1 ď k ď p ´1. (4.20)

A q-periodic polydisc for a near-integrable system G in A n´2

We now need a near-integrable system G " G j of the form (4.9) possessing a q-periodic polydisc in A n´2 . We shall take each factor of the form described in for κ " 3, . . . , n (4.24) and, since p j`3 , . . . , p j`n are pairwise coprime and their product is q,

V j :" E p j`3 ,ν r3s j ˆ¨¨¨ˆE p j`n ,ν rns j Ă B 1{2p j`3 ˆ¨¨¨ˆB 1{2p j`n (4.25)
will be a q-periodic polydisc for G j whose iterates are polydiscs satisfying Let us set

G k j pV j q X `B1{p j`3 ˆ¨¨¨ˆB 1{p j`n ˘" ∅ for 1 ď k ď q ´1. ( 4 
B p :" ␣ `xxy, 1 p `y˘ˇˇ| x| ď 1 8p , |y| ď 1 8p 2 ( " O p `" ´1 8p , 1 8p ‰ ˆ" ´1 8p 2 , 1 8p 2 ‰ .
We will sometimes omit the canonical projection x ¨y : R Ñ T in our notations and consider Hence, for each r ą 0, E prq :" P ´␣ `X Y ˘P R 2 | X 2 `Y 2 ă r 2 ( ¯is a filled ellipse of area πr 2 , centred at the origin and invariant by A. We choose E p,ν :" O p `E pr p,ν q, r p,ν :" 1 8 `ν 2p ˘1{2 .

Using sin γ ą pνp{2q 1{2 and sin γ ą 1 ´cos γ, the property O p `E pr p,ν q Ă B p is easily checked and the desired conclusions are fulfilled, including (4.22).

Applying Corollary 4.2

From now on, taking advantage of the Prime Number Theorem, we assume that the parameter j is large enough so that p j`2 ă p j`3 ă ¨¨¨ă p j`n ď 2p j`2 (4.30) (this is the interest of having taken successive prime numbers for our n ´1 pairwise coprime integers). Recall that the other parameter is ℓ ě C 1 , so that Q " pq is an arbitrary multiple ě C 1 N j of N j . On the one hand, in A m " A, we have a p-periodic disc U j,ℓ for the map Φ f j,ℓ ˝F q j defined by (4.16)-(4.17), satisfying the localization condition (4.20). On the other hand, in A m 1 " A n´2 , we have a q-periodic polydisc V j for the map G j defined by (4.24), with localization conditions (4.25)-(4.26). We can thus apply Corollary 4.2 with g j :" η p j`3 b ¨¨¨b η p j`n (4.31)

B :" B 1{p2p j`2 q X A 4{N j , B 1 :" B 1{2p j`3 ˆ¨¨¨ˆB 1{2p j`n , B ˚:" B 1{p j`2 , B 1 ˚:" B 1{p j`3 ˆ¨¨¨ˆB 1{p j`n
and get a map Ψ :" Φ f j,ℓ bg j ˝pF j,ℓ ˆGj q " Φ f j,ℓ bg j ˝Φν r3s j Wp j`3 `¨¨¨`ν

rns j Wp j`n ˝Φ 1 2 pr 2 2 `¨¨¨`r 2 n q`1 N 2 j V (4.32) possessing a Q-periodic polydisc D :" U j,ℓ ˆVj Ă B ˆB1 , (recall that Q " pq), with Ψ k pDq X pB ˚ˆB 1 ˚q " ∅ for 1 ď k ď Q ´1.
The last two properties coincide with (1.24)-(1.25), since all iterates of D are in fact polydiscs (in view of (4.2) and (4.24)).

To end the proof of Theorem D(ii), we just need to check that (i) the map Ψ, which clearly belongs to

P α,L 2 `Φ 1 2 pr 2 2 `¨¨¨`r 2 n q ˘, is indeed close to integrable, namely δ α,L `Ψ, Φ 1 2 pr 2 2 `¨¨¨`r 2 n q ˘ď C 0 `n ´2 `∥V ∥ α,L N 2 j , ( 4.33) 
(ii) the Gromov capacity of D is not too small, namely

C G pDq ě C min " 1 Q 5 N 4´2 n´1 j , N ´2´2 n´1 j exp ´´c N 1 pn´1qpα´1q j ¯*, (4.34) with C :" min ␣ C 2 C 3 2 , π 256C 0 , 2 ´n´1 C 3 ( and c :" 2 1 α´1 pn ´1qcpα, Lq.
Indeed, this will yield (1.19) and (1.23), up to an obvious change of notation for the constants "C 2 " and "C 3 ", by taking for c a large enough function of c, α and n.

Proof of (i). In view of (4.17) and (4.31), we can estimate the norm of f j,ℓ b g j thanks to (4.11) and (B.16):

∥f j,ℓ b g j ∥ α,L ď q ´1µ j,ℓ C 0 exp ´p 1 α´1 j`2 `¨¨¨`p 1 α´1 j`n
which, by (4.14) and (4.30), is ď C 0 p2p j`2 q n q ď C 0 N 2 j . In view of (4.32) and the choice of ν r3s j , . . . , ν rns j in (4.24), this yields (4.33).

Proof of (ii). Since N j " p j`2 q and q " p j`3 ¨¨¨p j`n , (4.30) yields p n´1 j`2 ă N j ă p2p j`2 q n´1 , whence 1 2 N

1 n´1 j ă p j`2 ă N 1 n´1 j , N n´2 n´1 j ă q ă 2 N n´2 n´1 j .
Now, by (1.16), C G pDq " min ! areapU j,ℓ q, areapE p j`3 ,ν r3s j q, . . . , areapE p j`n ,ν rns j q ) . In view of (4.22), for 3 ď κ ď n,

areapE p j`κ ,ν rκs j q " π 128 ν rκs j p j`κ ě π 256C 0 1 N 2 j p j`2 exp ´´cpα, Lq p 1 α´1 j`2 ě π 256C 0 1 N 2`1 n´1 j exp ´´cpα, Lq N 1 pn´1qpα´1q j ¯,
while (4.19) yields areapU j,ℓ q ě mintA, Bu with

A :" C 2 C 3 2 ℓ 5 p 3 j`2 q " C 2 C 3 N 2 j q 2 2Q 5 ě C 2 C 3 2 1 Q 5 N 4´2 n´1 j
and B :"

C 3 2 n p n`2 j`2 q exp ´´pn ´1qcpα, Lqp2p j`2 q 1 α´1 ¯larger than C 3 2 n`1 N 2`2 n´1 j exp ´´2 1 α´1 pn ´1qcpα, Lq N 1 pn´1qpα´1q j ¯,
whence (4.34) follows.

The proof of Theorem D(ii) is now complete.

Proof of Theorem C (lower bounds for wandering domains in A n )

Overview of the proof

Here is the more precise statement which, as explained in Section 1.3, implies Theorem C.

Theorem C'.

Let n ě 2 be integer. Let α ą 1 and L ą 0 be real, and let hprq :" 1 2 pr 2 1 `¨¨¨`r 2 n q. Then there exist a positive real c ˚and a sequence pΦ j q jě0 of exact symplectic diffeomorphisms of A n which belong to P α,L 2 phq if n " 2 and to P α,L 3 phq if n ě 3, such that each Φ j admits a wandering polydisc W j Ă A n 3 and

ε j :" δ α,L pΦ j , Φ h q Ý ÝÝ Ñ jÑ8 0 and C G pW j q ě exp ´´c ˚´1 ε j ¯1 2pn´1qpα´1q ¯. (4.35)
The rest of Section 4.3 is devoted to the proof of Theorem C'.

The idea is as follows. Each near-integrable system Φ j and wandering polydisc W j will be obtained by means of Corollary 4.3 in the form Φ j :" Φ f bg ˝pF ˆGq, W j :" U ˆV , (4.36) where G :" Ψ j,q j : A n´1 ý, V :" D j,q j Ă A n´1 (4.37) will be provided by Theorem D, with a suitably chosen large integer q j , and the function g will be chosen so as to satisfy the synchronization conditions (4.1) for the orbit of D j,q j , while Then there exist a real C 0 ą 0 such that, for each integer q ě 1, the diffeomorphism Φ

F :" Φ 1 2 r 2 1 : A ý, f :" 1 q j U, U :" W q j Ă A ( 
1 q U ˝`Φ 1 2 r 2 ˘q of A admits a wandering disc W q Ă A 3 such that areapW q q " C 0 q . (4.40)
We give the proof of Proposition 4.6 in Section 4.3.2. Then, in Section 4.3.3, we indicate how to choose q j and check that Φ j and W j have all the desired properties.

Standard maps with wandering discs in A-Proof of Proposition 4.6

To prove Proposition 4.6, we first consider the so-called "standard map" S :" Φ U ˝Φ 1 2 r 2 : A ý i.e. S pθ, rq " `θ `r, r ´U 1 pθ `rq ˘, pθ, rq P T ˆR.

Since S pθ, r `1q " S pθ, rq, by passing to the quotient, S induces a map S ˚: T ˆT ý.

Our assumption on U entails that the origin `x0y, x0y ˘of T 2 is a fixed point of S ˚, in a neighbourhood of which S ˚is linear:

S ˚`xxy, xyy ˘" `xx `yy, x´xy ˘, x P r´ρ 2 , ρ 2 s, y P r´ρ 2 , ρ 2 s.
The eigenvalues being e ˘i π 3 , the origin is an elliptic fixed point surrounded by invariant ellipses. Let W ˚denote any invariant filled ellipse contained in the projection onto T 2 of r´ρ 2 , ρ 2 s ˆr´ρ 2 , ρ 2 s, and let C 0 :" areapW ˚q. We define W to be the lift of W ˚in A which contains the point O :" `x0y, 0 ˘. Since U 1 p0q " ´1, one sees that S k pOq " `x0y, k ˘for all k P Z, hence the orbit of W under S consists of pairwise disjoint filled ellipses centred at the points S k pOq:

S k pW q " `x0y, k ˘`W, k P Z.
for the map

Φ j :" Φ 1 q j U bg j ˝`Φ 1 2 r 2 1 ˆΨj,q j ˘.
If n " 2, then Ψ j,q j P P α,L 1 pΦ 1 2 pr 2 2 `¨¨¨`r 2 n q q, hence Φ j P P α,L 2 pΦ 1 2 pr 2 1 `r2 2 `¨¨¨`r 2 n q q. If n " 3, then Ψ j,q j P P α,L 2 pΦ 1 2 pr 2 2 `¨¨¨`r 2 n q q, hence Φ j P P α,L 3 pΦ 1 2 pr 2 1 `r2 2 `¨¨¨`r 2 n q q. In all cases,

ε j :" δ α,L pΦ j , Φ 1 2 pr 2 1 `r2 2 `¨¨¨`r 2 n q q ď ∥ 1 q j U b g j ∥ α,L `δα,L `Ψj,q j , Φ 1 2 pr 2 2 `¨¨¨`r 2 n q ˘ď 1 `C2 N 2 j .
We conclude by bounding from below the Gromov capacity of W j which, according to (1.16), is C G pW j q " min ␣ areapW q j q, C G pD j,q j q ( .

We have q j ď 2∥U ∥ α,L N 2 j ∥g j ∥ α,L and, by (B.16) and (4.30),

∥g j ∥ α,L ď exp ´cpα, Lq `p 1 α´1 j`2 `¨¨¨`p 1 α´1 j`n ˘¯ď exp ´pn ´1qcpα, Lqp2p j`2 q 1 α´1 ¯.
Since p n´1 j`2 ă N j , we thus can find C, c ą 0 independent of j such that

q j ď C exp ´c N 1 pn´1qpα´1q j ¯.
(4.42) By (4.40), this yields

areapW q j q ě C 0 C exp ´´c N 1 pn´1qpα´1q j ¯.
On the other hand, C G pD j,q j q ě C 3 min

" 1 q 5 j N 4´2 n´1 j , exp ´´cN 1 pn´1qpα´1q j ¯*
and, again by (4.42), one can find C 1 , c1 ą 0 independent of j such that

1 q 5 j N 4´2 n´1 j ě C 1 exp ´´c 1 N 1 pn´1qpα´1q j ¯.
We end up with

C G pW j q ě min ␣ C 0 C , C 3 C 1 , C 3 ( exp ´´maxtc, c1 , cuN 1 pn´1qpα´1q j ānd
thus can find c ˚ą 0 independent of j such that (4.35) holds. This concludes the proof of Theorem C'.

(Taylor Expansion) Assume 0 ă η ă 1 and n ě k. If f is holomorphic on Dp0, τ q and B n f P O 0 p0; C, τ q then f pzq " T n f pzq `Ok pn; C{pn ´kq!, τ q, with T n f pzq "

n´1 ř ℓ"0 1 ℓ! B ℓ f p0q z ℓ ;
(Inverse) Assume m ą k ě 1. Then there exists two constant β m ě 0 and B m ě 0 such that if Φpzq " z `P pzq `Ok pm; C, τ q, where P is a polynomial of degree m ´1 and valuation 2 satisfying }BP } τ `› ›B P › › τ `Cτ m´1 ď ε, with 2ε `ε2 ď 1{2, then Φ is a diffeomorphism from Dp0, τ q onto a set containing Dp0, τ p1 ´εqq such that Φ ´1 is of the form Φ ´1pzq " z `Qpzq `Ok pm; B m ε{τ m´1 , τ p1 ´εqq,

where Q is a polynomial of degree m ´1 with valuation 2 and }Q} τ ď β m ετ .

Proof. The proof of the axioms from (restriction) to (Z-product) follows directly from the definition or by easy inductions over k.

' We prove the (Polynomial) axiom. Let's write

P pzq " rP s ďn´1 `ÿ nď|ν|ďm a ν z ν .
Since z and z belong to O k p1; 1, τ q, the (Z-product) axiom implies by an easy induction that z ν " O k p|ν| ; pk `1q |ν|´1 , τ q. Therefore, for ν P N 2 satisfying m ě |ν| ě n, the (restriction) axiom shows that

z ν " O k `|ν| ; pk `1q |ν|´1 , τ ˘Ă O k `n; pk `1q m´1 τ |ν|´n , τ ˘.
This implies that rP s ěn " O k pn; pk `1q m´1 C{τ n , τ q, with C ď ř nď|ν|ďm |a ν | τ |ν| , so C ď }P } τ , and the proof of the axiom is complete.

' We prove the (Lipschitz) axiom. Assume that Bf P O k pn; C 1 , τ q and Bf P O k pn; C 2 , τ q. This implies that |df pzq ¨Z| " ˇˇBf pzqZ `Bf pzqZ ˇˇď pC 1 `C2 q |z| n |Z| .

Therefore the derivative of h is bounded by pC 1 `C2 qτ n on Dp0, τ q, so f extends to a Lipschitz-continuous function on this disc. Furthermore, we obtain that

|f pzq ´f p0q| ď C 1 `C2 n `1 |z| n`1 ď C 0 |z| n`1 , with C 0 " C 1 `C2 if n " 0 and C 0 " maxpC 1 , C 2 q if n ě 1.
By the (primitive) axiom, this completes the proof of the (Lipschitz) axiom.

' We prove the (composition) axiom by induction over k. The condition on f pDp0; τ 1 qq shows that h ˝f is well defined on Dp0; τ 1 q and since n ě 0, we have |h ˝f pzq| ď C 0 pC 1 |z| m q n " C 0 C n 1 |z| nm . Thus we obtain that h˝f P O 0 pnm; α 0 C 0 C n 1 , τ 1 q, with α 0 ď 1, and the axiom is proved for k " 0. Now we write P pzq " ř |ν|ďn a ν z ν and we note that } rQ ν s ďn } ρ ď p}Q} ρ q |ν| , so This with (A.1) implies the (P -composition) axiom.

P
' The (Taylor expansion) axiom directly follows from the Taylor expansion theorem, which shows that ˇˇˇˇB j f pzq ´n´1´j ÿ ℓ"0

1 ℓ! B ℓ f p0qz ℓ ˇˇˇˇď |z| n´j pn ´jq! C.
' The proof of the (inverse) axiom proceeds in several steps. We first prove the existence of the diffeomorphism, then we estimate its derivatives.

Existence of Φ ´1. Assume that |w| ď τ p1 ´εq and set φ w pzq " w ´Φpzq `z. This implies that }dφ w pzq} ď }BP } τ `› ›B P › › τ `2Cτ m´1 ď 2ε ď 1{2 and |φ w pzq| ď |w| `Cτ m ď |w| `ετ ď τ on Dp0, τ q. Therefore φ w : Dp0, τ q Ñ Dp0, τ q is p2εq-Lipschitz. By Picard's theorem, it follows that the equation φ w pzq " z, so Φpzq " w, has an unique solution z P Dp0, τ q if w P Dp0, τ p1 ´εqq. Thus Dp0, τ p1 ´εqq lies in ΦpDp0, τ qq, so Φ ´1 is a diffeomorphism from Dp0, τ p1 ´εqq into Dp0, τ q.

We now prove by induction over k ě 0 the existence of a constant β k,m and of Q such that such that Φ ´1pzq " z `Qpzq `Ok pm; β k,m ε{τ m´1 , τ p1 ´εqq. We set Φ 0 pzq " Φpzq ´z " w ´z, Ψpwq " Φ ´1pwq " z and Ψ 0 pwq " Ψpwq ´w.

The boot strapping equation. We write the derivatives of Ψ ˝Φpzq " z as # 1 " pBΨq ˝Φ ¨BΦ `pB Ψq ˝Φ ¨BΦ, 0 " pBΨq ˝Φ ¨BΦ `pB Ψq ˝Φ ¨BΦ.

Therefore we have

ˆBΨ BΨ ˙˝Φ " ˆ1 `BΦ 0 BΦ 0 BΦ 0 1 `BΦ 0 ˙´1 ˆ1 0 ˙" 1 JpΦq ˆ1 `BΦ 0 ´BΦ 0 ˙, (A.2)
where JpΦq " |1 `BΦ 0 | 2 ´ˇB Φ 0 ˇˇ2 " 1 `2Re pBΦ 0 q `|BΦ 0 | 2 ´ˇB Φ 0 ˇˇ2 . We now estimate the right hand side of Equation (A.2). First we observe that BΦ 0 and BΦ 0 are bounded on Dp0; τ q by }BP } τ `Cτ m´1 and › ›B P › › τ `Cτ m´1 respectively, so they both lie in O 0 p0; ε, τ q. It follows that JpΦq " 1 `O0 p0; 2ε `ε2 , τ q Ă 1 `O0 p0; 1{2, τ q.

We have BΦ 0 " BP `Ok´1 pm ´1; C, τ q and BΦ 0 " BP `Ok´1 pm ´1; C, τ q, so the (Pproduct) shows that Therefore the polynomial J 0 " 2Re pBP q `P0 ´P1 has degree m ´2 and satisfies

|BΦ
JpΦq " 1 `J0 `Ok´1 `m ´1; C 1 {τ m´1 , τ ˘,

with }J 0 } τ ď 2 }BP } τ `}BP } 2 τ `› ›B P › › 2 τ ď 2 }BP } τ `ε2
and C 1 ď 2Cτ m´1 `C0 `C1 0 ď 2Cτ m´1 `C2 0 .

Here we have Therefore the (P -composition) axiom applied to p1 `zq ´1 ´1 and JpΦq ´1 shows that there exist a polynomial J 1 of degree m ´2 and a constant C 2 such that 1{JpΦq " 1 `J1 `Ok´1 `m ´1; C 2 {τ m´1 , τ ˘, with `C1 `}J 0 } τ ˘ℓ.

C 2 0 ď C 0 `C1 0 ď 2k m´1 Cτ m´1 `}BP } τ `› ›B P › › τ ˘`2 k C 2 τ 2m´2 `k2m´2 `}BP } 2 τ `› ›B P › › 2 τ ď ˆkm´1 `}BP } τ `› ›B P › › τ ˘`2 k{2 Cτ m´1
}J 1 } τ ď m´2 ÿ ℓ"1 }J 0 } ℓ τ ď 2 }J 0 } τ ď 2p2ε `ϵ2 q and C 2 ď 2
Note that C 1 `}J 0 } τ ď 2Cτ m´1 `C2 0 `2 }BP } τ `ε2 ď 2ε `maxp2 k , 1 `k2m´2 q ε 2 . If k ě 2 then C 1 `}J 0 } τ ď k 2m´2 pε `ϵ2 q. If m ą k " 1 then C 1 `}J 0 } τ ď 2pε `ϵ2 q. It follows in both cases that C 2 ď 2 kpk´1q 2 2 m`1 pm ´1q!m p3m´4qpm´1q pε `ϵ2 q ď 2 m 2 `m`2 2 pm ´1q!m p3m´4qpm´1q pε `ϵ2 q ď D m ε, with D m " 2 pm`1q 2 2 pm ´1q!m p3m´4qpm´1q .

If we set Q 0 " J 1 `BP `rJ 1 BP s ďm´2 and Q 1 " ´BP ´rJ 1 BP s ďm´2 then the estimates above, the (P -product) axiom and Equation (A.2) imply that pBΨq ˝Φ " 1 `Q0 pzq `Ok´1 pm ´1; D 1 m ε{τ m´1 , τ q, (A.3) p BΨq ˝Φ " Q 1 pzq `Ok´1 pm ´1; D 2 m ε{τ m´1 , τ q, (A.4)

where }Q 0 } τ ď }J 1 } τ `}BP } τ `}J 1 } τ }BP } τ ď 2p2ε `ε2 q `ε `2εp2ε `ε2 q ď 13 2 ε and

}Q 1 } τ ď › ›B P › › τ `› ›B P › › τ }J 1 } τ ď 2 › ›B P › › τ ď 2ε
, as long as we have

D 1 m ε ě Cτ m´1 `C2 `2k´1 C 2 Cτ m´1 `km´2 `}BP } τ C 2 `Cτ m´1 }J 1 } τ ˘`k 2pm´1q }BP } τ }J 1 } τ ě ε `Dm ε `2k´1 D m ε 2 `km´2 D m ε 2 `k2pm´2q 2ϵp2ϵ `ϵ2 q
ě `p1 `Dm `k2pm´2q q `Dm p2 k´1 `km´2 q{4 ˘ε,

D 2 m ε ě Cτ m´1 `2k´1 Cτ m´1 C 2 `km´2 p › ›B P › › τ C 2 `}J 1 } τ Cτ m´1 q `k2pm´2q }J 1 } τ › ›B P › › τ ě ε `2k´1 D m ε 2 `km´2 D m ε 2 `k2pm´2q 2ϵp2ϵ `ϵ2 q.
Therefore we may take D 1 m " D 2 m `Dm " 1 `m2pm´2q `Dm `1 `p2 m´1 `mm´2 q{4

˘. This with the (Lipschitz) axiom implies that Φ ´1pzq " z `O1 p2; B 2 0 ε, τ p1 ´εqq, with B 2 0 " p1 `4εqp}Q 0 } τ {ε `D1 m q ď 13 `2D 1 m .

Computation of β

Now we set β 2 m " 0. Given 2 ď ℓ ď m ´1, we assume that there exist B ℓ m ě 0, β ℓ m ě 0 and a polynomial of degree ℓ ´1 and valuation 2 satisfying }q ℓ } τ ď β ℓ m τ ε and Φ ´1pzq " z `qℓ pzq `Ominpℓ´1,kq `ℓ; B ℓ m ε{τ ℓ´1 ; p1 ´εqτ ˘. Note that Equations (A.3) and (A.4), the (polynomial) and (restriction) axioms imply that " pBΨq ˝Φ " 1 `rQ 0 s ďℓ `Ominpk,ℓq´1 `ℓ; pminpk, ℓq ℓ´1 }Q 0 } τ `D1 m εq{τ ℓ , τ ˘, p BΨq ˝Φ " rQ 1 s ďℓ `Ominpk,ℓq´1 `ℓ; pminpk, ℓq ℓ´1 }Q 0 } τ `D2 m εq{τ ℓ , τ ˘.

The (P -composition) axiom and Equations (A.3) and (A.4) imply that there exist C 0ℓ ě 0 and C 1ℓ ě 0, two polynomials R 0ℓ and R 1ℓ of degree ℓ ´1 satisfying " BΨ " 1 `R0ℓ `Ominpℓ,kq´1 pℓ; C 0ℓ {τ ℓ , p1 ´εqτ q, BΨ " R 1ℓ `Ominpℓ,kq´1 pℓ; C 1ℓ {τ ℓ , p1 ´εqτ q, Let apply the (Lispschitz) axiom to Ψpzq ´qℓ`1 pzq, where q ℓ`1 denotes the polynomial of degree ℓ and valuation 2 such that Bq ℓ`1 " R 0ℓ and Bq ℓ`1 " R 1ℓ . We obtain that Ψpzq " z `qℓ`1 pzq `Ominpℓ,kq `ℓ `1; maxpC 0ℓ , C 1ℓ q{τ ℓ , p1 ´εqτ ˘.

with
Since }q ℓ`1 } τ ď `}R 0ℓ } τ `}R 1ℓ } τ ˘τ , we may set β ℓ`1 m " p2`1 3 2 qp1`β ℓ m {4q m´2 and B ℓ`1 m " maxpC 1 0ℓ , C 1 1ℓ q. This proves the (inverse) axiom by induction over m, with β m " β m m and B m " B m m .

We have also used the following properties of the space O T k . Since the proofs follow easily from the definitions and are very similar to those of the spaces O k , we omit them.

B.2 A lemma on the flow of a Gevrey near-integrable Hamiltonian

Lemma B.3. Let n ě 1, α ě 1, L, R 0 ą 0, and h P G α,L pB R 0 q. Let R, Λ be such that

0 ă R ă R 0 , 0 ă Λ ă `1 `24α L ´2α ∥h∥ L,R 0 ˘´1{α L 2 ¨p2nq pα´1q{α .
(B.5)

Then there exist ε 0 , C ą 0 such that, for any u P G α,L pA n R 0 q with ∥u∥ L,R 0 ă ε 0 and any t P r0, 1s, the time-t map Φ tph`uq : A n R Ñ A n R 0 is well-defined and satisfies Proof. a) Let n, α, L, R 0 , R, Λ be as in the hypothesis, let h P G α,L pB R 0 q. We set

|||Φ
L 1 :" Λ `L 2 , K :" max ! 2 ¨23α pL ´Λq ´2α ∥h∥ L,R 0 , 1 ) . (B.7)
Let u P G α,L pA n R 0 q and ε :" ∥u∥ L,R 0 . We shall work in the phase space R n ˆBR 0 , denoting the variables by x " pθ; rq " pθ 1 , . . . , θ n ; r 1 , . . . , r n q " px 1 , . . . , x 2n q.

We can consider that h and h `u generate Hamiltonian vector fields Xh and Xh`u which are defined on R n ˆBR 0 and 1-periodic in each of the first n variables. The flow of Xh is Φth pθ; rq " pθ `t∇hprq; rq.

(B.8)

It is Z n -equivariant, in the sense that Φth pθ `ℓ; rq " Φth pθ; rq `pℓ; 0q for any ℓ P Z n . We shall study the flow over the time-interval r0, 1s of the vector field Xh`u pθ; rq " `∇hprq `∇rrs upθ; rq; ´∇rθs upθ; rq ˘, pθ; rq P R n ˆBR 0 , (B.9)

as the solution of a fixed-point equation in a complete metric space for which the contraction principle applies. We shall find a unique solution Φtph`uq : R n ˆBR Ñ R n ˆBR 0 , t P r0, 1s, which is a Z n -equivariant lift to R n ˆBR 0 of the flow of X h`u in A n R 0 . b) Let V :" `Gα,Λ pA n R q ˘n. For any ψ P V , we write ψ " pψ 1 , . . . , ψ n q, ∥ψ∥ V :" ∥ψ 1 ∥ Λ,R `¨¨¨`∥ψ n ∥ Λ,R .

Let W :" V ˆV . For any η P W , we write η " `ηrθs ; η rrs ˘" pη 1 , . . . , η n ; η n`1 , . . . , η 2n q, ∥η∥ W :" 1 K ∥η rθs ∥ V `∥η rrs ∥ V .

Let E :" C 0 `r0, 1s, W ˘. For any ξ P E, we set ∥ξ∥ E :" max tPr0,1s ∥ξptq∥ W .

We get a Banach space pE, ∥¨∥ E q.

Let us denote by φ the "unperturbed" flow over r0, 1s, i.e.

φptq :" Φth , t P r0, 1s defined by (B.8). For every ξ P E and t P r0, 1s, φptq `ξptq can be considered as a Z n -equivariant map R n ˆBR Ñ R n ˆRn (identifying functions on A n R with functions on R n ˆBR which are 1-periodic in the first n variables). We thus can view φ `E :" t φ `ξ | ξ P E u as a complete metric space (with the distance distpφ `ξ, φ `ξ˚q :" ∥ξ ˚´ξ∥ E ) where the flow Φtph`uq is to be found. More specifically, we restrict ourselves to the closed ball Let us first check that, with our choice of ρ, the formula FpΨqptq :" Id `ż t 0 Xh`u ˝Ψpτ q dτ, t P r0, 1s (B.12) defines a functional F : B ρ Ñ φ `E. Assume Ψ " φ `ξ P B ρ . In view of (B.9), the components of Xh`u belong to G α,L 1 pA n R 0 q. We thus only need to check that, for each τ P r0, 1s, Ψpτ q maps A n R in A n R 0 and its components satisfy N Λ,R `Ψj pτ q ˘ď L 1α {p2nq α´1 so as to apply Proposition B.1. The first condition is met because Ψ rrs pτ q " r `ξrrs pτ q and the components of ξ rrs pτ q " `ξn`1 pτ q, . . . , ξ 2n pτ q ˘satisfy 2n ÿ j"n`1 ∥ξ j pτ q∥ 2 C 0 pA R q ď ∥ξpτ q∥ 2 W ď ∥ξ∥ 2 E ď ρ 2 ď pR 0 ´Rq 2 by (B.11). The second condition is met because, for any 1 ď j ď 2n, on the one hand N Λ,R `ξj pτ q ˘ď ∥ξ j pτ q∥ Λ,R ď ρ, and on the other hand N Λ,R `φj pτ q ˘" Λ α for j ě n `1, while for j ď n, by (B.4) and (B.1), N Λ,R `φj pτ q ˘ď Λ α `τ N Λ,R ´Bh Br j ď Λ α `Λα pL 1 ´Λq α Bh Br j L 1 ,R ď Λ α `1 `22α pL ´Λq ´2α ∥h∥ L,R ˘" L 1α p2nq α´1 ´β, which is ď L 1α p2nq α´1 ´ρ by (B.11). d) Let us now check that FpB ρ q Ă B ρ . For Ψ " φ `ξ P B ρ , we write FpΨq " φ `η and observe that, in view of (B.8) and (B.9), for each t P r0, 1s, η rθs ptq " ż t 0 `gpτ q `∇rrs u ˝Ψpτ q ˘dτ, η rrs ptq " ´ż t 0 ∇ rθs u ˝Ψpτ q dτ with gpτ qpθ; rq :" ∇h `r `ξrrs pτ qpθ; rq ˘´∇hprq, τ P r0, 1s.

We already checked that Proposition B.1 applies to Bh Br i ˝Ψpτ q and Bu Bx j ˝Ψpτ q. It yields where Φh`u , Φu : R n ˆRn Ñ R n ˆRn are the lifts of Φ h`u , Φ u obtained by flowing along the lifts to R n ˆRn of the corresponding vector fields (which are complete in this case) and |||ϕ||| Λ,R 1 :" ∥ϕ 1 ∥ Λ,R 1 `¨¨¨`∥ϕ 2n ∥ Λ,R 1 for a map ϕ : R n ˆRn Ñ R n ˆRn . We set

Bu

ε ˚:" min ! ε 0 , R 0 ´R C ˚, Λ 2 ¨p2nq α´1 C ˚), L ˚:" 2 ´1 α p2nq ´α´1 α `1 `24α L ´2α ∥h∥ L,R ˘´1 α Λ.
Let m ě 1 and Ψ P P α,L m pΦ h q be such that δ α,L m pΨ, Φ h q ă ε ˚. Let ε be such that δ α,L m pΨ, Φ h q ă ε ă ε ˚.

We shall prove that there is a lift ξ : A n Ñ R n ˆRn of Ψ ´Φh such that |||ξ||| L˚,R ď C ˚ε, which is sufficient to prove the proposition. Let us choose u 0 , u 1 , . . . , u m P G α,L pA n q such that Ψ " Φ um ˝¨¨¨˝Φ u 1 ˝Φh`u 0 and ∥u 0 ∥ L,8 `∥u 1 ∥ L,8 `¨¨¨`∥u m ∥ L,8 ă ε.

We observe that the formulae ξ r0s :" Φh`u 0 ´Φ h , ξ rj`1s :" ξ rjs ``Φ u j`1 ´Id ˘˝pΦ h `ξrjs q (B.14) inductively define ξ r0s , ξ r1s , . . . , ξ rms : A n Ñ R n ˆRn so that ξ rms is a lift of Ψ ´Φh . Assume that (B.15) holds for a given j ă m. We observe that ||| Φu j`1 ´Id||| Λ,R 1 ď C ˚∥u j`1 ∥ L,8 by (B.13), because ∥u j`1 ∥ L,8 ď ε ă ε 0 . We can apply Proposition B.1 to check that the components of `Φ u j`1 ´Id ˘˝pΦ h `ξrjs q belong to G α,L˚p A n R q and bound their norms, because the inequality and L), which is ď Λ α 2p2nq α´1 `C˚ε ă Λ α p2nq α´1 . We thus get ||| `Φ u j`1 ´Id ˘˝pΦ h `ξrjs q||| L˚,R ď ||| Φu j`1 ´Id||| Λ,R 1 ď C ˚∥u j`1 ∥ L,8 , which implies (B.15) for the index j `1 by virtue of (B.14).
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 1 Figure 1: Coupling of a wandering domain U in A and a periodic domain V in A n´1
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  max `2k , k 2m´2 ˘ε2 . Now we estimate 1{JpΦq. The (Taylor expansion) axiom shows ℓ z ℓ `Ok´1 pm ´1; 2 m pm ´1q!{pm ´kq!, 1{2q.

  B ρ :" t φ `ξ | ∥ξ∥ E ď ρ u, with ρ :" 2 α`1 ε pL ´Λq α , ε ă ε 0 :" pL ´Λq α 2 α`1 min ! R 0 ´R, β, pL ´Λq α 2 2α K ) (B.10) with β :" L 1α p2nq α´1 ´´1 `22α pL ´Λq ´2α ∥h∥ L,R ¯Λα (the positiveness of β is ensured by (B.5) because L ´Λ ą L{2). Observe that ρ ď mintR 0 ´R, βu. (B.11) c) The flow Ψptq " Φtph`uq that we are searching is characterised by Ψp0q " Id and dΨ dt ptq " Xh`u ˝Ψptq, or Ψptq " Id `ż t 0 Xh`u ˝Ψpτ q dτ.

  It is thus sufficient to check that|||ξ rjs ||| L˚,R ď C ˚`∥u 0 ∥ L,8 `∥u 1 ∥ L,8 `¨¨¨`∥u j ∥ L,8 ˘(B.15) for 0 ď j ď m.In view of (B.14), inequality (B.15) holds for j " 0 by (B.13), because ∥u 0 ∥ L,8 ď ε ă ε 0 and L ˚ă Λ, R ă R 1 .

  0 pA n q ď |||ξ rjs ||| L˚,R ď C ˚ε ă R 0 ´R ensures that Φ h `ξrjs maps A n R in A n R 0 , and, for 1 ď i ď n, both L α ˘are ď L α ˚`2 4α L α L2α ∥h∥ L,R `|||ξ rjs ||| L˚,R (applying (B.4) between L ˚and L˚`L 2 and (B.1) between L˚`L

  2

  We rewrite this at the point `θptq, rptq, t ˘, using the fact that the Jacobian matrix of G t at `θptq, rptq ˘is the inverse Jacobian matrix of F ηptqA at pθ, rq, whose first n The fact that t Þ Ñ F ηptqA is a Hamiltonian isotopy is standard result of basic symplectic topology, however the explicit formula (2.13) for the non-autonomous Hamiltonian function f is new. This explicit formula was needed to obtain the estimate (2.14).

	by (2.19), hence (2.17) is proved.	
	Remark 2.7.	
	lines are given by (C.6), thus	
	d r1s G t `θptq, rptq r1s ˘" ´1n `ηptqd r1s ∇ r2s A `θ, rptq ˘¯´1	,
	d r2s G	

rptq ˘r1 ptq. (2.19) On the other hand, with the notation G t :" F ´1 ηptqA , the formula (2.13) yields ∇ r1s f pθ, r, tq " η 1 ptq t ´dr1s G r1s t pθ, rq ¯∇r1s A `G r1s t pθ, rq, r ∇r2s f pθ, r, tq " η 1 ptq∇ r2s A `G r1s t pθ, rq, r ˘`η 1 ptq t ´dr2s G r1s t pθ, rq ¯∇r1s A `G r1s t pθ, rq, r for any pθ, r, tq. r1s t `θptq, rptq ˘" d r1s G r1s t `θptq, rptq ˘dr2s ∇ r2s A `θ, rptq ˘, and ∇ r1s f `θptq, rptq, t ˘" η 1 ptq ´1n `ηptqd r2s ∇ r1s A `θ, rptq ˘¯´1 ∇ r1s A `θ, rptq ˘" ´r1 ptq by (2.18), and ∇ r2s f `θptq, rptq, t ˘" η 1 ptq∇ r2s A `θ, rptq ˘`ηptqd r2s ∇ r2s A `θ, rptq ˘r1 ptq " θ 1 ptq

  It is a refined version of the Nekhoroshev theorem for analytic or Gevrey Hamiltonians in the case of an m-quasi-convex integrable part, i.e. in the case of a function hprq satisfying the condition (2.26). The article[START_REF] Bounemoura | Improved exponential stability for nearintegrable quasi-convex Hamiltonians[END_REF] is the last of a series of attempts to obtain the largest possible exponents a in the stability time exp ´const ´1

	1 2pN ´1qα ´δ α with a parameter δ P `0,	1 2N pN ´1q ˘(and not
	1 2pN ´1qα ´δ as is written there), and we introduced σ " 2pN ´1qδ.	

ε ¯a¯a nd b in the corresponding confinement radius const ε b , after the original work of Nekhoroshev in 1977 for analytic steep Hamiltonians, the refinement by Lochak-Neishtadt and Pöschel in 1992-94 for analytic quasi-convex Hamiltonians (which gave the exponents a " b " 1 2N as in (iii) in the case α " 1), and the first Gevrey stability theorem by Marco-Sauzin in 2002 still in the quasi-convex case (which gave the exponents a " 1 2N α and b " 1 2N as in (iii) in the case α ě 1).

  iλµ 2 sin γ 0 . Using (3.26) and the Taylor expansion Spxq "

				n ř ν"2	1 ν! S pνq p0qx ν `Rpxq, we set
	a ν "	µS pνq p0q 2ν! |λ ´1| sin γ 0	and εpxq "	µRpxq 2 |λ ´1| sin γ 0	n ν"2 , so gpxq " ÿ	a ν x ν `εpxq.	(3.27)
	This implies ii), with	gpzq "	µ 2 |λ ´1| sin γ 0	Spzq.	(3.26)
	iii) We have Ψ ‹ pdr ^dθq " 1 2i det `ψp1q; ψpiq ˘dz ^dz and

detpψp1q; ψpiqq -ˇˇˇR e `α λ´1 ˘Re `iα

λ´1 1 0 ˇˇˇ" ´α sin γ 0 |λ ´1| 2 .

Since ´sin γ 0 -|λ ´1| " ? αµ and α -qω{N , this proves iii). iv)

  .35) Computation of rΦs 2 . Since hpzq " λz `iλ |λ ´1| a 2 pz `zq 2 `Op|z| 3 q, we have rhs 2 " iλa 2 |λ ´1| pz `zq 2 , so (3.35) implies that λrΦs 2 pzq ´rΦs 2 pλzq " iλa 2 |λ ´1| pz `zq 2 .

  At last, we observe that ψp0q " 0. Therefore the diffeomorphism ψ ´1 maps any Jordan curve with 0 in the interior onto a Jordan curve with 0 in the interior. But the estimate of ˇˇψ ´1pzq ˇˇabove implies that the Jordan curve ψ ´1pBDp0,

	|ppr, θq| "	?	r and Proposition 3.17 shows that	3 {q 2 . Furhermore, we have
			ˇˇψ ´1pzq ˇˇ-	ω	a	|z| |λ ´1|	, hence |Ψpr, θq| -	ω	? a |λ ´1| r	.
									?	rqq lies between two circles
	centered at zero with radii comparable to 1 ω	a r{ |λ ´1|. Therefore we have
			areapψ ´1pDp0;	?	rqqq -	ˆ?r ω a |λ ´1|	˙2 "	r ω 2 |λ ´1|	.

  ˆR, in which W p " 1 2 θ 2 in the coordinates pθ, rq, whence for k " p According to (4.29), if E is a filled ellipse centred at the origin and invariant by A and O

	because, by (4.27), Φ	1 2 pk`1qr 2	pB p q lies away from the support of W p . Now, (4.28) says
	that Φ	1 2 pr 2	pB p q is contained in B 1 4p	and this is a part of A which we may identify with
	"	´1 4p , 1 4p	‰ ˆR Ă R A p,p,ν " Φ νWp ˝Φ 1 2 r 2	˝Ap´1,p,ν " Φ νWp ˝Φ 1 2 pr 2 ˇˇBp " Φ	1 2 νθ 2	˝Φ 1 2 pr 2 ˇˇBp .
	We thus end up with
			A k,p,ν `Op `px, yq ˘" O p	`ˇˇˇˇ`x x `kpy `1 p qy, y ˘if 0 ď k ď p ´1, `xx `pyy, y ´νpx `pyq ˘if k " p.	(4.29)
			Let us consider the linear transformation A : R 2 Ñ R 2 defined by
							A	ˆx y ˙:"	y ´νpx `pyq ˆx `py ˙" ˆ1 ´ν 1 ´νp p	y ˙ˆx ˙.
								P	ˆX Y	˙:"	p sin γ 1	´1 `cos γ sin γ ˆp 0	1 2 r 2 and B 1 2p Y ˙ˆX ˙.	in the sense of
	Definition 3.1 of Section 3.4.1. Indeed, for O p `px, yq P B p , we have Φ th	`Op `px, yq ˘"
	`xx	`t`1 p	`y˘y , 1 p	`y˘a nd a straightforward computation shows that
	1 ď t ď p ´1 ñ 1 2p ă ´1 8p `1 p ´1 8p 2 ď x	`t`1 p	`y˘ď 1 8p `pp ´1q `1 p `1 8p 2 ˘ă 1 ´1 2p ,
	hence					1 ď t ď p ´1 ñ Φ	1 2 tr 2 `Op `px, yq ˘R B 1 2p	,	(4.27)
	while the first component of Φ ph	`Op `px, yq ˘is xx `1 `pyy " xx `pyy and |x `py| ď 1 4p ,
	hence					Φ	1 2 pr 2 `Op `px, yq ˘P B 1 4p	.	(4.28)
			We now observe that the restrictions to B p of Λ p,ν and its iterates up to the pth
								A k,p,ν :" Λ k p,ν ˇˇBp ,	k " 0, . . . , p
	are affine in the coordinates px, yq, and even linear for the pth iterate. Indeed, one checks
	by induction on k P t0, . . . , p ´1u that A k,p,ν " Φ	1 2 kr 2 ˇˇBp : this clearly holds for k " 0 and,
	assuming it for 0 ď k ď p ´2, we have
							A k`1,p,ν " Φ νWp ˝Φ 1 2 r 2	˝Φ 1 2 kr 2 ˇˇBp " Φ	1 2 pk`1qr 2 ˇˇBp

px, yq as local coordinates near O p . We first note that B p is a p-adapted box for hprq " p `E Ă B p , then O p `E is a p-periodic disc for Λ p,ν which satisfies (4.23). Elementary linear algebra shows that A " P ˆcos γ sin γ ´sin γ cos γ ˙P ´1, where 0 ă γ :" arccos `1 ´νp 2 ˘ă π 3 (recall that 0 ă νp ă 1) and

  Let 0 ă ρ ă 1{2 and let U P C 8 pTq be a function such that

			4.38)
	stem from		
	Proposition 4.6. U 1 `xxy ˘" ´1 `x	for x P r´ρ, ρs.	(4.39)

  ˝f " ÿ |ν|ďn a ν rQ ν s ďn `Ok ˆn `1; ÿ }P } pk`1q n }Q} ρ `2k C 1 , ρ rQ ν s ďn and }R} ρ ď ÿ |ν|ďn |a ν | p}Q} ρ q |ν| " }P } }Q} ρ .

			|ν|ďn	|a ν |	`pk `1q n }Q} ρ ρ n`1	`2k C 1	˘|ν|	, ρ	"
	R `Ok ˆn `1;	1 ρ n`1 ˙,		
	with R "	ÿ					

|ν|ďn a ν

  0 | 2 " P 0 `Ok´1 `m ´1; C 0 τ m´1 , τ ˘; ´ˇB Φ 0 ˇˇ2 " P 1 `Ok´1 `m ´1;

				C 1 0 τ m´1 , τ	˘,
	with }P 0 } τ ď }BP } 2 τ , }P 1 } τ ď	› ›B P	› › 2 τ ,
	C 0 ď 2k m´1 Cτ m´1 }BP } τ	`2k´1 C 2 τ 2m´2 `k2m´2 }BP } 2 τ ,
	and C 1 0 ď 2k m´1 Cτ m´1 › ›B P	› ›	τ	`2k´1 C 2 τ 2m´2 `k2m´2 › ›B P	› › 2 τ .

  It follows that |Ψpwq ´w| " |z ´w| ď 2ε |z| ď 2εp1 ´2εq ´1 |w| ď 4ε |w|. Therefore we have |Ψpwq| ď p1 `4εq |w| ď 2 |w|. Furthermore, Equations (A.3) and (A.4) imply that

		"	pBΦq ˝Ψ " 1 `O0 `1; p}Q 0 } τ p BΦq ˝Ψ " O 0 `1; p}Q 1 } τ `D2 `D1 m εq{τ, τ m εq{τ, τ ˘.	˘,
	Thus we obtain that	
	"	BΦ " 1 `O0 `1; p1 `4εqp}Q 0 } τ BΦ " O 0 `1; p1 `4εqp}Q 1 } τ `D2 `D1 m εq{τ, p1 ´εqτ m εq{τ, p1 ´εqτ ˘.	˘,

m and B m . We have |z ´w| " |Φ 0 pzq| ď p}BP } τ `› ›B P › › τ `2Cτ m´1 q |z| ď 2ε |z| , so p1 ´2εq |z| ď |w|.

  }R 0ℓ } τ ď }Q 0 } τ `}q ℓ } τ ď p1 `βℓ m εq m´2 }Q 0 } τ ď 13 2 p1 `βℓ m {4q m´2 ε and }R 1ℓ } τ ď }Q 1 } τ `}q ℓ } τ ď 2p1`βℓ m {4q m´2 ε, and where ετ `minpk, ℓq ℓ´1 pτ `}q ℓ } τ q ˘ℓ `}rQ 0 s ďℓ } 2 minpk,ℓq´1 B ℓ m τ ε`minpk,ℓq ℓ´1 pτ `}q ℓ } τ q

	C 0ℓ ď 2	ℓpℓ´1q 2	τ ℓ minpk, ℓq ℓ´1 }Q 0 } τ	`D1 m ε	`Bℓ
		ď 2	ℓpℓ´1q 2	`13
						ď C 1 0ℓ ε
	with C 1 0ℓ " 2	ℓpℓ´1q 2	`13 2 minpk, ℓq ℓ´1 `D1 m ˘`B ℓ m {4 `minpk, ℓq ℓ´1 p1 `βℓ m {4q ˘ℓ
						`13 2	ˆ2minpk,ℓq´1 B ℓ m {4 `minpk, ℓq ℓ´1 p1 `βℓ m {4q ˙ℓ.
	In a similar way, we obtain that C 1ℓ ď C 1 1ℓ ε, with
	C 1 1ℓ " 2	ℓpℓ´1q 2	`2 minpk, ℓq ℓ´1 `D2 m ˘`B ℓ m {4 `minpk, ℓq ℓ´1 p1 `βℓ m {4q ˘ℓ
						`2ˆ2 minpk,ℓq´1 B ℓ m {4 `minpk, ℓq ℓ´1 p1 `βℓ

m 2 minpk, ℓq ℓ´1 `D1 m ˘`B ℓ m ε `minpk, ℓq ℓ´1 p1 `βℓ m εq ˘ℓε `ˆ2 minpk,ℓq´1 B ℓ m ε `minpk, ℓq ℓ´1 p1 `βℓ m εq ˙ℓ }Q 0 } τ m {4q ˙ℓ.

  tph`uq ´Φth ||| Λ,R ď C∥u∥ L,R 0 (B.6)(with the notation (1.6)). The numbers ε 0 and C can be chosen as depending on h only through ∥h∥ L,R 0 and being respectively decreasing and increasing functions of this quantity. In fact |||Φ tph`uq ´Φth ||| Λ,R ď Ct∥u∥ L,R 0 for all t P r0, 1s (as can be seen by applying (B.6) to th and tu themselves).

	Remark B.4.

  (by (B.1), recalling that ∥u∥ L,R 0 " ε). If 1 ď i ď n, we can also apply Proposition B.1 to `sξ rrs pτ q ˘ds, ξ rrs pτ qF , whence ∥g i pτ q∥ Λ,R ď ř n j"1 ∥ B 2 h Br i Br j ∥ L 1 ,R 0 ∥ξ n`j pτ q∥ Λ,Rand∥gpτ q∥ V ď Br i Br j L 1 ,R 0 ˙∥ξ n`j pτ q∥ Λ,R ď 2 3α ∥h∥ L,R 0 ρ pL ´Λq 2αby (B.1). Therefore, recalling that K ě 1, we get 1 K ∥η rθs ptq∥ Λ,R `∥η rrs ptq∥ Λ,R ď 2 3α ∥h∥ L,R 0 ρ

		Bx j	˝Ψpτ q	Λ,R	ď	Bu Bx j L 2n ÿ j"1	Bu Bx j L 1 ,R 0	ď	2 α ε pL ´Λq α
	g i pτ q "	Bh Br i	`r `ξrrs pτ q ˘´Bh Br i `r n prq " Bż 1 0 ∇ Bh Br i ÿ ˆn ÿ B 2 h	
			j"1	i"1			
						KpL ´Λq 2α	`2α ε pL ´Λq α .

1 ,R 0 for 1 ď j ď 2n, τ P r0, 1s whence ∥η rθs ptq ´gptq∥ V `∥η rrs ptq∥ V ď Both summands are ď ρ{2, by our choices of K and ε 0 , (B.7) and (B.10), whence ∥η∥ E ď ρ and FpΨq P B ρ as desired.

We call domain an open connected subset of A n .

We also often call them "near-integrable systems" to emphasize that we are interested in the discrete dynamical systems consisting in iterating these maps. When we say "near-integrable", the exact symplectic character is understood.

Notice that it is the exactness of near-integrable systems which makes the existence of such examples not obvious. If exactness is relaxed, then one trivially gets arbitrarily close to integrable symplectic maps with wandering domains by considering Ψε : pθ, rq P A Þ Ñ pθ `r, r `εq P A, with small ε ą 0, and Wε :" Tˆs0, εr.

When we use the word "disc", unless otherwise specified, we mean any bounded and simply connected domain in A or in R 2 .

We insist on being able to take the period of the elliptic island arbitrarily large. If this requirement were dropped, a much simpler construction would be available-see the auxiliary Proposition 4.5.

Up to sign, the function A corresponds to what is called "generating function of type V " in [McDS95] §9.2.

Notation. From now on, unless mentioned otherwise, we shall abreviate O k,n :" O k,E β,n . In the following, h " hp¨, q, N, µq denotes any family of symplectic maps from Dp0; ρq into C. We assume that for 2n `2 ě k ě 1 we have hpzq " λ ´z `i |λ ´1| 2n`2 ÿ ℓ"2 a ℓ pz `zq ℓ ¯`O k,n p2n `3, |λ ´1| ω 2n`2 , ρq, (3.32)

where ω " q 4 {N 3 , ρ ą 0, λ " exppiγ 0 q, a ν P C satisfy all the conditions in Corollary 3.14.

Birkhoff normal form

The next proposition is a the quantitative version of (3.30). It recalls a classical result of normal form theory. We construct polynomial coordinates in which the symplectic map h is put in its Birkhoff normal form up to a reminder of arbitrarily high order. The proof follows Moser's strategy and is inductive in its nature: a sum of homogeneous polynomials is used to normalize the Taylor expansion of h order by order. But for our purpose, we need to achieve this keeping a quantitative track of the operations involved. Therefore we provide below a complete proof of the statement. Before proceeding to the precise statement, we need to introduce a few more notations. We shall consider a coordinates change of the form u " Φpzq " z `ÿ ν φ ν z ν , where z pν 1 ,ν 2 q " z ν 1 z ν 2 (3.33)

Here the index ν " pν 1 , ν 2 q P N 2 in the sum above runs over all the couples such that 2 ď |ν| ď 2n `2, with |ν| " ν 1 `ν2 . For such polynomial, we denote by rΦs ν the νcomponent φ ν z ν " φ ν 1 ,ν 2 z ν 1 z µ 2 . By extension, for any smooth function F , we denote by rF s ν the ν-component of its Taylor expansion at zero. For any integer p, it is also convenient to denote by rF s p its p-homogeneous part. Thus, for p ě 2, we have rΦs p pzq " ÿ |ν|"p φ ν z ν and rf s p pzq " i |λ ´1| a p pz `zq p . Proposition 3.16 (Birkhoff normal form). Assume 2n `2 ě k ě 2. Then for each pq, N, µq P E β,n there exist ρ 1 ą 0, b j P C for 1 ď j ď n, and φ ν P C for 2 ď |ν| ď 2n `2 satisfying the following conditions.

i) The polynomial Φ in (3.33) defines a diffeomorphism from a neighbourhood of zero onto a set that contains Dp0, ρ 1 q and

In particular, W is a wandering disc for S .

We now obtain a wandering disc for

for any integer q ě 1, by means of the scaling σ : pθ, rq P A Þ Ñ pθ, qrq P A.

Indeed, Lemma 4.4 with hprq " 1 2 r 2 and v " 0 yields σ ´1 ˝Φ 1 2 r 2 ˝σ " Φ 1 2 qr 2 and, with h " 0 and v " U , σ ´1 ˝ΦU ˝σ " Φ q ´1U , whence S q " σ ´1 ˝S ˝σ and W q :" σ ´1pW q is a wandering disc for S q . Clearly, areapW q q " C 0 {q and the proof of Proposition 4.6 is complete.

Remark 4.7. The diffeomorphism S is "dynamically far" from the integrable map Φ 1 2 r 2 . Indeed, S cannot possess any essential invariant curve C , otherwise the orbit of each point in the complement AzC would be contained in a single connected components of AzC , and this is not the case for the orbit of p0, 0q. As a consequence, S q has no essential invariant curve. However, when q Ñ 8, S q is a small perturbation of the integrable map Φ 1 2 qr 2 . This is not in contradiction with the KAM theorem: the torsion of Φ 1 2 qr 2 tends to infinity when q Ñ 8, which makes the KAM threshold tend to 0.

Proof of Theorem C'

Let n ě 2 be integer. Let α ą 1 and L ą 0 be real.

On the one hand, Theorem D yields reals c, C 1 , C 2 , C 3 ą 0 and a sequence pΨ j,q q in P α,L pΦ 1 2 pr 2 2 `¨¨¨`r 2 n q q such that δ α,L pΨ j,q , Φ

, where N j " p j`2 ¨¨¨p j`n is arbitrarily large, and each Ψ j,q for q arbitrary integer multiple of N j not smaller than C 1 N j has a q-periodic polydisc D j,q Ă A n´1 satisfying (1.21) or (1.23). In view of the localization conditions (1.22) or (1.24)-(1.25) satisfied by the orbit of D j,q independently of q, we define g j :" η p j`2 b ¨¨¨b η p j`n (making use of the "bump functions" of Lemma B.5), so that g j satisfies the synchronization conditions (4.1) for the orbit of D j,q under Ψ j,q . On the other hand, choosing ρ :" 1{6 and U P G α,L pTq satisfying (4.39) (e.g. U pθq :" η 3 pθqp´x`1 2 x 2 q, where x is the lift of θ in p´1 2 , 1 2 s), we get from Proposition 4.6 a wandering disc W q Ă A for Φ 1 q U ˝`Φ 1 2 r 2 ˘q for each integer q ě 1. We take j large enough so that (4.30) holds (thanks to the Prime Number Theorem), and define q j :" M j N j , M j :"

where r s denotes the integer part. Applying Corollary 4.3 with the data (4.37)-(4.38), we obtain a wandering domain W j :" W q j ˆDj,q j

Appendices A Algebraic operations in O k

For ℓ P R, we denote by rℓs P Z the integral part such that rℓs ď ℓ ă rℓs `1. For all ν " pν 1 , ν 2 q P N 2 , we set |ν| "

If P is a polynomial of the form P pzq " ř

Lemma A.1. Assume pn, m, ℓ, ℓ 1 , ℓ 2 q P N 2 ˆR3 . Then the spaces O k of Section 3.5.1 satisfy the following axioms.

(Restriction) O k pℓ; C, τ q Ă O k´1 pℓ; C, τ q X O k pℓ ´1; Cτ, τ q;

(Derivative) If f P O k pℓ; C, τ q then B α Bβ f P O k´α´β pℓ ´α ´β; C, τ q for all pα, βq P N 2 such that α `β ď k;

(Polynomial) If P is a polynomial of degree m and if 0 ď n ď m then we have P " rP s ďn´1 `Ok pn; pk `1q m´1 }P } τ {τ n , τ q;

(P-product) If f pzq " P pzq`O k pn `1, C{τ n`1 , τ q and g " Qpzq`O k pn `1, C 1 {τ n`1 , τ q, where P et Q are two polynomials of degree n, then we have pf gqpzq " Rpzq `Ok pn `1; C 2 {τ n`1 , τ q, where C 2 ď pk `1q n p}P } τ C 1 `}Q} τ Cq `2k CC 1 `pk `1q 2n }P } τ }Q} τ and R is a polynomial of degree n satisfying }R} τ ď }P } τ }Q} τ ;

, ρq, where P and Q are polynomial of degree n with Qp0q " 0 and f pDp0, ρqq Ă Dp0; τ q then there exist a polynomial R of degree n and a constant C 01 satisfying }R} ρ ď }P } }Q} ρ and

Assume that k ě 1, so Bhpf q and Bhpf q are in O k´1 ppn ´1qm; α k´1 C 0 C n´1 1 , τ 1 q. nI that case the (product) axiom shows that

#

Bph ˝f q " Bhpf q ¨Bf `Bhpf q ¨Bf P O k´1 pnm ´1;

This implies that h ˝f P O k pnm; α k C 0 C n 1 , τ 1 q, with α k ď maxpα 0 , 2 k α k´1 q and the (composition) axiom follows immediately.

' We prove the (P -composition) axiom. We write h " P `ε0 and f " Q `ε1 , so h ˝f " P ˝f `ε0 ˝f . Note that 1 P O k p0; 1, ρq, so the Z-product axiom shows that z ν " O k p|ν| ; pk `1q |ν| , ρq for ν P N 2 . Now we write

Thus we obtain that f pzq " O k `1;

, ρ ˘and the (composition) axiom implies that

Now we estimate P ˝f . For 1 ď j ď ℓ ď n we have Q j " O k p0; pk `1q nj }Q} j ρ , ρq, so

We can decompose Q ℓ " rQ ℓ s ďn `rQ ℓ s ąn in its part of degree n and its part of valuation

Lemma A.2. Assume pk, m, n, ℓ, ℓ 1 , ℓ 2 q P N 3 ˆR3 . Then the spaces O T k satisfy the following axioms.

(T-Derivative) If p P O T

k pℓ; C, τ q then B α r B β θ p P O k´α´β pℓ ´α; C, τ q for all pα, βq P N 2 such that α `β ď k;

B Estimates on Gevrey maps

We begin with preliminaries on the composition of Gevrey functions (Section B.1) and the flow of a Gevrey near-integrable Hamiltonian (Section B.2), then we prove Proposition 1.7 in Section B.3. In all this part we omit the index α in the Gevrey norms, writing for instance ∥ ¨∥L,R instead of ∥ ¨∥α,L,R . We end Appendix B with a reminder of a result on Gevrey "bump" functions proved in [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF] (Section B.4), used in Section 3.2 as well as in Sections 4.2 and 4.3.3.

B.1 Reminder on Gevrey maps and their composition

Let n ě 1, L, R ą 0, and φ P G α,L pA n R q. We first recall the analogue of the Cauchy inequalities for the Gevrey norms (1.4): if 0 ă Λ ă L, then all the partial derivatives of φ belong to G α,Λ pA n R q and, for each k P N,

To state the result on composition, we introduce a new notation:

`N L,R pφq. Then, Proposition A.1 of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] yields Proposition B.1. Let n ě 1, R, R 0 ą 0, Λ, L ą 0, and consider a map ϕ : A n R Ñ A n R 0 , the 2n components of which belong 7 to G α,Λ pA n R q and satisfy

Then, for any Y P G α,L pA n R 0 q, we have Y ˝ϕ P G α,Λ pA n R q and ∥Y ˝ϕ∥ Λ,R ď ∥Y ∥ L,R 0 .

When testing inequalities (B.3) to apply this result, the following may be useful:

pµ`mq! α ∥B pµ`mq φ∥ C 0 pA n R q over all multiindices µ, m with |µ| " 1 and using pµ `mq! ě m!, we get N Λ,R pφq ď Λ α ř µ ∥B µ φ∥ Λ,R and we conclude by (B.1). 7 In fact, the first n components are of the form φ : A n R Ñ T and, for them, what we mean is that there is a lift φ : R n ˆBR Ñ R such that φ|F n R P G α,Λ pF n R q, with F n R :" r´1, 1s n ˆBR; observe that N Λ,R pφq stays well-defined. e) Similar computations show that F induces a contraction on B ρ : Let Ψ " φ `ξ, Ψ " φ `ξ P B ρ , and FpΨq " φ `η, Fp Ψq " φ `η. We get ηrθs ptq ´ηrθs ptq " ż t 0 `Gpτ q `U rθs pτ q ˘Bτ, ηrrs ptq ´ηrrs ptq " ´ż t 0 U rrs pτ q Bτ, with G i pτ q " Bh Br i `r `ξ rrs pτ q ˘´Bh Br i `r `ξrrs pτ q ˘, i " 1, . . . , n U j pτ q " Bu Bx j˘n ˝Ψpτ q ´Bu Bx j˘n ˝Ψpτ q, j " 1, . . . , 2n (where j ˘n stands for j `n if j ď n, for j ´n else). We obtain f ) Finally, we get a unique fixed point Ψ P B ρ for the functional F, which encodes the flow of Xh`u . The difference ∆ptq :" Ψptq ´φptq, when viewed as a map A n R Ñ R 2n , is a lift of the difference of flows Φ tph`uq ´Φth and

B.3 Proof of Proposition 1.7

Let n, α, L, R, R 0 ą 0 and h be as in the hypothesis of Proposition 1.7. Let R 1 :" R`R 0 2 . Lemma B.3 yields ε 0 , Λ, C ˚ą 0 such that Λ ď L{2 and, for any u P G α,L pA n q,

B.4 Gevrey bump fuctions

We call "bump function" a function on T which vanishes identically outside a given interval I and whose value is 1 at each point of a given subinterval of I (so this is in fact a "flat-top bump function"). Of course, such a function can only exist in a non-quasianalytic functional space. Dealing with Gevrey functions on T, we use the notation (2.1) and quote without proof Lemma 3.3 of [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF] on the existence of Gevrey bump functions on T: Lemma B.5. Let α ą 1 and L ą 0. Then there exists a real cpα, Lq ą 0 such that, for each real p ą 2, the space G α,L pTq contains a function η p which satisfies 

Notice that, intuitively, higher values of p must produce a larger norm, since the graph gets steeper between 1 2p and 1 p for instance, which makes the derivatives reach higher and higher values. In fact, one can prove that an exponential bound such as (B.16) is optimal.

C Generating functions for exact symplectic C 8 maps

In this appendix we fix n ě 1 integer and review the classical formalism of generating functions of mixed sets of variables to define exact symplectic local diffeomorphisms of A n .

The coordinates in T n ˆRn will be denoted indifferently pθ, rq, or pθ 1 , . . . , θ n , r 1 , . . . , r n q, or simply px 1 , . . . , x 2n q. For instance, the Liouville 1-form which gives rise to the exact symplectic structure on T n ˆRn can be written λ "

We denote the partial gradient operators by

and view d r1s :" `B1 ¨¨¨B n ˘and d r2s :" `Bn`1 ¨¨¨B 2n ˘as matrix-valued differential operators acting on vector-valued functions.

Recall that x ¨y : R n Ñ T n denotes the canonical projection.

Lemma C.1. Let Ω, Ω 1 Ă T n ˆRn be open, and denote by Ω and Ω 1 their lifts in R n ˆRn . Suppose that A P C 8 pΩ 1 q satisfies the property:

The map pθ, r 1 q Þ Ñ pθ, rq " `θ, r 1 `∇r1s Apθ, r 1 q ˘is a diffeomorphism from Ω 1 onto Ω. (C.2) Denote by F r2s the second group of components of the inverse diffeomorphism, so that, for each pθ, rq P Ω, r 1 " F r2s pθ, rq ô pθ, r 1 q P Ω 1 and ∇ r1s Spθ, r 1 q " r, (C.3) where Spθ, r 1 q :"

Define F r1s pθ, rq :" θ `∇r2s A `θ, F r2s pθ, rq ˘P R n for pθ, rq P Ω, so that

Then F " `F r1s , F r2s ˘: Ω Ñ R n ˆRn is C 8 and induces an exact symplectic local diffeomorphism F A " `@F r1s D , F r2s ˘: Ω Ñ A n . The inverse Jacobian matrix of F A at an arbitrary point pθ, rq P Ω is a block matrix

where the partial derivatives of A are evaluated at pθ, r 1 q " `θ, F r2s pθ, rq ˘.

We shall see in the course of the proof that

where Σ P C 8 pΩq is defined by Σpθ, rq :" Σ`θ , F r2s pθ, rq ˘, Σpθ, r 1 q :"

By abuse of language, we will call any function A satisfying (C.2) a generating function for Ω 1 (although it is the function Spθ, r 1 q that is usually called generating function).

Remark C.2. It is easy to check that, if F " F A , then the set of all possible generating functions of F coincide with the set of all functions

Proof of Lemma C.1. The Jacobian matrix of the diffeomorphism mentioned in (C.2) can be written as the block matrix

The hypothesis entails that the matrix d r2s ∇ r1s Spθ, r 1 q is invertible for each pθ, r 1 q P Ω 1 ; notice that its transpose is d r1s ∇ r2s Spθ, r 1 q.

The definition (C.3) of the map F r2s shows that it is C 8 on Ω, with

where it is understood that the partial derivatives of F r2s are evaluated on pθ, rq and those of S on pθ, r 1 q " `θ, F r2s pθ, rq ˘. Moreover, F r2s can be equally viewed as a C 8 function on Ω (it is Z n -periodic in θ because ∇ r1s S is). By (C.5), F r1s is C 8 on Ω and

We have F r1s pθ`ℓ, rq " F r1s pθ, rq`ℓ for all ℓ P Z n , thus

A bit of calculus shows that the Jacobian matrix of F , which is ˜dr1s

so F and hence F A are local diffeomorphisms, and (C.6) is proved. Let us denote by F 1 , . . . , F 2n the components of F , so that (C.3) and (C.5) entail

for pθ, rq P Ω and i " 1, . . . , n, and F ˚λ "

Let us define S P C 8 pΩq by Spθ, rq :" S `θ, F r2s pθ, rq ˘. Applying the chain rule and inserting (C.8), we get d S "

Thus F ˚λ ´λ " dχ, with χpθ, rq :"

F n`i pθ, rqF i pθ, rq ´Spθ, rq

where χpθ, r 1 q " ř n i"1 r 1 i pB n`i Sqpθ, r 1 q ´Spθ, r 1 q. Inserting (C.4), we see that χ P C 8 pΩq is Z n -periodic in θ and induces the function Σ P C 8 pΩq defined by (C.7).

Lemma C.3. Let Ω Ă

A n be open and connected. Let F : Ω Ñ T n ˆRn be an exact symplectic C 8 local diffeomorphism of the form F pθ, rq " `θ `xf pθ, rqy, F r2s pθ, rq ˘, pθ, rq P Ω, where f, F r2s P C 8 pΩ, R n q. Assume that the map pθ, rq Þ Ñ pθ, r 1 q " `θ, F r2s pθ, rq ˘(C.9)

Then there exists a generating function A P C 8 pΩ 1 q for Ω such that F " F A . It can be obtained as follows: let Φ : Ω 1 Ñ Ω denote the inverse of the diffeomorphism (C.9) and set β :"

then β is an exact C 8 1-form on Ω 1 and any A P C 8 pΩ 1 q such that β " dA satisfies F " F A .

Proof. The 1-form β can be written as

because Φ r1s pθ, r 1 q " θ entails Φ ˚λ " ř n i"1 Φ n`i dθ i and F ˝Φpθ, r 1 q " `xθ `f ˝Φpθ, r 1 qy, r 1 ȇntails Φ ˚pF ˚λq " pF ˝Φq ˚λ " ř n i"1 r 1 i dpθ i `fi ˝Φq. Since F is exact symplectic, the 1-form F ˚λ ´λ is exact, and the formula (C.11) shows that β is thus exact too.

D Proof of Lemma 2.5 D.1 Set-up

Let us give ourselves an integer n ě 1, reals α ě 1, R, R 0 , L 0 ą 0 such that R ă R 0 , and a function η P G α,L 0 pr0, 1sq. We assume that η is not identically zero (otherwise there is nothing to be proved). We set

) , (D.1)

Given ψ " pψ 1 , . . . , ψ n q P G α,L 0 pA n R 0 , R n q such that ε :"

we define for each t P r0, 1s a C 8 map

Our aim is to prove that Ψ t induces a C 8 diffeomorphism from T n ˆBR 0 onto its image Ω t , to check that A n R Ă Ω t and to study the inverse map.

D.2 Diffeomorphism property

Let t P r0, 1s. The Jacobian matrix of Ψ t at an arbitrary pθ, rq P A n R 0 is the block matrix ˆ1n 0 M 1 n `N ˙, where M :" ηptqd r1s ψpθ, rq and N :" ηptqd r2s ψpθ, rq, with the notations of Appendix C.

The matrix norm of N subordinate to the Euclidean structure of R n is ď ř 1ďi,jďn |N i,j |, and N i,j " ηptqB n`j ψ i pθ, rq, thus this matrix norm is less than 1 by (D.1) and (D.3) (because

) and 1 n `N is invertible. Therefore, by the Implicit Function Theorem, Ψ t is a C 8 local diffeomorphism on A n R 0 . Suppose that pθ, rq and pθ ˚, r ˚q have the same image by Ψ t . Then θ ˚" θ and r ˚´r " ´ηptq `ψpθ, r ˚q ´ψpθ, rq ˘" ´ηptq ż 1 0 d r2s ψ `θ, p1 ´sqr `sr ˚˘pr ˚´rq ds, whence ∥r ˚´r∥ ă ∥r ˚´r∥ by the above remark on the matrix norm of ηptqd r2s ψ, thus r ˚" r. Therefore, Ψ t is injective on A n R 0 and induces a C 8 diffeomorphism from T n ˆBR 0 onto an open subset Ω t of A n .

D.3 Study of the inverse map

We can write Ψ ´1 t pθ, r 1 q " `θ, r 1 `χpθ, r 1 , tq ˘, with χ " pχ 1 , . . . , χ n q and χ i p ¨, ¨, tq P C 8 pΩ t q for each i. Given pθ, r 1 , tq P A n ˆr0, 1s, the point pθ, r 1 q belongs to Ω t if and only if there exists u P R n such that r 1 `u P B R 0 and u " ´ηptqψpθ, r 1 `uq. This vector u is then unique and is χpθ, r 1 , tq. We must prove that A n R Ă Ω t , that the restriction of the functions χ i to A n R ˆr0, 1s belong to G α,L pA n R ˆr0, 1sq, and that their Gevrey norms satisfy (2.9). All this follows from Sub-Lemma. Consider the Banach space V :" `Gα,L pA n R ˆr0, 1sq ˘n, with the norm

Let B :" t u P V | ∥u∥ V ď ε∥η∥ α,L 0 u. Then, for any u P B, the formula vpθ, r 1 , tq :" ´ηptqψ `θ, r 1 `upθ, r 1 , tq ˘(D.5)

makes sense for all pθ, r 1 , tq P A n R ˆr0, 1s and defines a vector-valued function v " Fpuq, which belongs to B. Moreover, the functional F : B Ñ B satisfies

Indeed, the contraction F has a unique fixed point, which is nothing but χ |A n R ˆr0,1s . Proof of Sub-Lemma. Let u P B. For each pθ, r 1 , tq P A n R ˆr0, 1s, we have ∥upθ, r 1 , tq∥ ď ř ∥u i ∥ C 0 pA n R ˆr0,1sq ď ∥u∥ V ď ε ˚∥η∥ α,L 0 ď R 0 ´R by (D.1) and (D.3), thus U pθ, r 1 , tq :" `θ, r 1 `upθ, r 1 , tq ˘P A n R 0 . (D.6) Therefore, the function v : A n R ˆr0, 1s Ñ R n is well-defined as v " ´η ¨pψ ˝U q. For each i " 1, . . . , n, we can apply Proposition A.1 of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] to the composition ψ i ˝U : the function ψ i ˝U belongs to G α,L pA n R ˆr0, 1sq and ∥ψ i ˝U ∥ α,L,R ď ∥ψ i ∥ α,L 0 ,R 0 because 2 α`1 p2n`1q α´1 by (D.2), and for k " n `j with 1 ď j ď n, the left-hand side is ď L α `∥u j ∥ α,L,R ď L α `ε∥η∥ α,L 0 , and ε∥η∥ α,L 0 ď L α 0 2 α`1 p2n`1q α´1 ). Therefore, by the algebra norm property, v i P G α,L pA n R ˆr0, 1sq and ∥v i ∥ α,L,R ď ∥η∥ α,L 0 ∥ψ i ∥ α,L 0 ,R 0 , hence v P B.

Let us now suppose that we are given u, u ˚P B and consider the difference between v ˚:" Fpu ˚q and v :" Fpuq. We have v i ´vi " ř n j"1 M i,j pu j ´uj q for each i " 1, . . . , n, with M i,j pθ, r 1 , tq :" ´ηptq ż 1 0 B n`j ψ i ˝Us pθ, r 1 , tq ds, j " 1, . . . , n, where, for each s P r0, 1s, U s pθ, r 1 , tq :" `θ, r 1 `p1 ´squpθ, r 1 , tq `su ˚pθ, r 1 , tq ˘P A n R 0 by (D.6).

On the one hand B n`j ψ i P G α,L 0 {2 pA n R 0 q and n ÿ j"1