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A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated
activities. The integration of biomechanical knowledge of human hands into product design process starts to play an
increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high
level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific
evaluation tools to support product and system development through simulation. This type of support is urgently required in
many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so
forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar
contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact
behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method.
The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled
by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approach.
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1. Introduction

In today’s well-developed professional operations and

competitive market place, it is vital to put stakeholders at

the heart of the design of a new product, system or process

in order to develop most suitable man–machine interfaces

(MMI). This is especially the case when skilful hand

manipulation is required to handle delicate objects of

interests. One such an example is the medical surgical

operations on a patient (Misra et al. 2010), where a surgeon

needs to utilise and interact with medical instruments with

good MMI in order to perform the highest possible quality

operations for patients. In these applications, it is

appropriate and desirable to model human hands in order

to gain a deeper understanding of the hand operations. To

model such a hand, it is appropriate to deploy proven

methods and tools such as finite element (FE) method to

integrate biomechanical knowledge into the existing design

process to produce an efficient solution with better MMI.

The aim of our work is to study the contact pressure

between the hand and an object when operators handle the

object using hand-held tools or planning and training aids,

such as a haptic device, by developing a nonlinear 3D FE

model of the hand and to derive optimised procedures for

analyses. The precise pressure map of the contacts and the

dynamic change of these pressures are the critical focal

points of the study as an accurate computer-simulated

representation would provide a powerful tool to study

contacts for many ergonomic-centred studies for product,

system and process development. In these applications, it is

very important and interesting to evaluate the magnitudes

and to determine the locations of these high pressures

(Thalmann and Thalmann 1995), which require realistic

modelling of the deformation of soft tissues. This problem

can be very complex and challenging because of the

presence of two principles of strongly nonlinear phenom-

ena: contact and hyperelasticity.

Problems involving unilateral contact and friction are

among the most difficult ones in mechanics. The treatment

of contact conditions leads to variational inequalities.

A large number of algorithms to solve these problems by the

FE method have been presented in the literature (Alart and

Curnier 1991; Simo and Laursen 1992). In this paper, the

so-called bi-potential method is used as the basis of the

approach. The novel aspect of our approach is the extension

of the above approach to dynamic contact problems

by using an appropriate time integration algorithm (Feng

et al. 2006, 2007).

This paper is structured as follows. In Section 2, the

solution method of contact problems is outlined. The FE

formulation of large hyperelastic deformation including

anisotropic effects is presented in Section 3. In Section 4,
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different steps of how to generate a 3D hand model from

medical image are explained. This model is then used to

interact with a deformable object and the results are shown

in Section 5. Finally, some conclusions are drawn from this

study.

2. Methods

2.1 Contact modelling

2.1.1 Definition

Let us consider two deformable bodies in potential

contact, and the two potential contact surfaces are noted G

and G0. Let x ¼ wðX; tÞ be the current position vector at an

instant t [ It. The orthogonal projection of x on the body

surface G0 is defined by x0. The contact distance vector (or

gap vector) is defined by

g ¼ x2 x0 ¼ hn; ð1Þ

where h is the oriented contact distance (Figure 1). The

displacement vector u, the velocity vector _u and the

contact stress vector r can be uniquely decomposed into a

normal part and a tangential part as follows (Figure 1):

u ¼ ut þ unn; un ¼ u�n; ð2Þ

_u ¼ _ut þ _unn; _un ¼ _u�n; ð3Þ

r ¼ rt þ rnn; rn ¼ r�n: ð4Þ

The unilateral contact law is characterised by a

geometric condition of non-penetration, a static condition

of no-adhesion and a mechanical complementary con-

dition. These three conditions, known as the Signorini

conditions, can be formulated as

h $ 0; rn $ 0; hrn ¼ 0: ð5Þ

In general, at any time t [ It, the potential contact

surfaces G can be split into two disjoint parts: þG, where

the body is in contact with G0, and 2G, where the body is

separated from G0. In the case of dynamic contact, the

Signorini conditions can be formulated, on þG, via the

relative velocity

_un $ 0; rn $ 0; _unrn ¼ 0 on þG: ð6Þ

The bodies are separated when _un . 0 and remain in

contact for _un ¼ 0.

Formulation (6) of the Signorini conditions can be

combined with the sliding rule to derive the complete

frictional contact law for the contacting part þG. This

complete law specifies possible velocities of bodies that

satisfy the unilateral contact conditions and the sliding

rule. In this work, the classical isotropic Coulomb friction

rule is used. The set of admissible forces, denoted by

Coulomb’s convex cone Km, is defined by

Km ¼ r [ R3 such that jrtj2 mrn # 0
� �

: ð7Þ

On the contacting surface þG, the sliding rule can be

combined with the Signorini conditions to obtain the

frictional contact law that specifies possible scenarios on

the contact area (stick, slip and separation). Two

overlapped ‘if . . . then . . . else’ statements can be used to

write it in a compact form:

if rn ¼ 0 then _un $ 0 ! separating

else if r [ intKm then _un ¼ 0 and 2 _ut ¼ 0; ! sticking

else ðr [ bdKm and rn . 0Þ

_un ¼ 0 and ’ _l . 0 such that 2 _ut ¼ _l r t
jr tj

n o
; ! sliding

end if

; ð8Þ
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Figure 1. Description of contact problem.



where ‘intKm’ and ‘bdKm’ denote the interior and the

boundary of Km, respectively.

It is noted that the minus sign before _ut means

that the frictional force is opposite to the sliding velocity

in the isotropic friction case. The complete form of

the frictional contact law involves three possible

states, which are separating, contact with sticking and

contact with sliding. Only the last state produces energy

dissipation.

2.1.2 Numerical solution

The numerical treatment of the contact constraints is based

on two main strategies: the penalty method and the

regularisation method (the Lagrange multipliers). Both

approaches have their advantages and their drawbacks.

These methods can be easily implemented in an existing

FE code, but the choice of good parameters is often

difficult (Chamoret et al. 2004).

In this paper, we have chosen to use an original

approach, the bi-potential method.

De Saxcé and Feng (1998) have shown that the

contact law (8) is equivalent to the following differential

inclusion:

2 _ut 2 ð_un þ mj2 _utjÞn
� �

[ ›
[
Km

r;

where
[
Km

ðrÞ ¼
0; if r [ Km

þ1 otherwise:

8<
:

ð9Þ

Then, the following contact bi-potential can be defined:

bcð2 _u; rÞ ¼
[
R2

ð2_unÞ þ
[
Km

ðrÞ þ mrnj2 _utj: ð10Þ

In order to avoid non-differentiable potentials that

occur in nonlinear mechanics, such as in contact

problems, it is convenient to use the augmented

Lagrangian method (Alart and Curnier 1991; Simo and

Laursen 1992). For the contact bi-potential bc, given

by (10), the modified augmented surface traction t is

defined by

t ¼ rþ @ 2 _ut 2 ð_un þ mj2 _utjÞn
� �

; ð11Þ

where @ . 0 is a numerical parameter that is determined

to ensure numerical convergence. It can be shown that r

is the projection of t onto the closed convex Coulomb’s

cone:

r ¼ proj ðt;KmÞ: ð12Þ

For the numerical solution of the implicit Equation

(12), the Uzawa or Newton algorithm can be used (Joli and

Feng 2008).

2.2 Anisotropic hyperelastic constitutive law

2.2.1 Anisotropic hyperelasticity

To investigate the internal deformation and the stress of

biological soft tissues, such as ligaments, tendons or

arterial walls, anisotropic hyperelastic constitutive laws

are often used in the framework of an FE analysis (Weiss

et al. 1996; Almeida and Spilker 1998; Rüter and Stein

2000). The most used strain energy functions take a power

law form (Schröder et al. 2005) or present an exponential

behaviour (Fung et al. 1979; Holzapfel et al. 2000). More

recently, Balzani et al. (2006) have proposed polyconvex

strain energy functions combining an exponential form

with a power law to take care of the tissues behaviour in

the low load domain. More realistic models have also been

recently developed to capture the inter-fibre angle change

in addition to the contribution of the fiber–matrix shear

interaction of the strain energy (Peng et al. 2006). In

general, the anisotropy can be represented via the

introduction of a so-called structural tensor, which allows

a coordinate-invariant formulation on the constitutive

equations (Boehler 1987; Spencer 1987; Zheng and

Spencer 1993). It is usually assumed that anisotropy is

due to collagen fibres behaviour (Gasser et al. 2006), while

the ground substance, or matrix, behaves in an isotropic

manner, so the energy densities modelling transversely

isotropic and orthotropic soft tissues are separated into

isotropic and anisotropic parts (Weiss et al. 1996; Balzani

et al. 2006)

W ¼ W iso þ
Xn
a¼1

Wa
ani: ð13Þ

Each anisotropic density Wa
ani refers to a preferred

direction of the material. The number of fibre families n

is generally set to 1 to model tissues as ligaments or

tendons, whereas it is set to 2 to represent the behaviour of

arterial walls.

In continuation, C ¼ FTF is the right Cauchy–Green

deformation tensor and F is the transformation gradient

defined by

F ¼
›x

›X
¼ Iþ

›u

›X
; J ¼ det ðFÞ . 0; ð14Þ

where X, x and u represent the reference position, the

current position and the displacement vector of a material

point, respectively.

According to Zhang–Rychlewski’s theorem (Zhang

and Rychlewski 1990), the condition of material symmetry

is satisfied if structural tensors are additionally included in

the strain energy density representation. Transversely,

isotropic densities can then be expressed with the three

invariants I1, I2 and I3 of the right Cauchy–Green

deformation tensor C and the two additional mixed

invariants J4 and J5 (Boehler 1987; Spencer 1987; Zheng



and Spencer 1993)

I1 ¼ tr ðCÞ; I2 ¼ tr ðcofðCÞÞ; I3 ¼ det ðCÞ

J4 ¼ tr ðCMÞ; J5 ¼ tr ðC2MÞ;
ð15Þ

where cofðCÞ denotes the cofactor matrix of C and M is

the so-called structural tensor representing the transverse-

isotropy group and referring to a preferred direction a of

the material

M ¼ a^ a: ð16Þ

It is noted that (15) and (16) give

J4 ¼ tr FTF a^ a
� �

¼ Fak k
2: ð17Þ

The double brackets represent the usual Euclidian norm.

The square root of J4 represents thus the stretch in the fibre

direction.

In the case of hyperelastic materials, there exists an

elastic potential function W, which is a scalar function of

the strain tensors. The second Piola–Kirchhoff stress

tensor S and the corresponding Cauchy stress tensor s are

given by

S ¼
›W

›E
¼ 2

›W

›C
; s ¼

1

J
FSFT : ð18Þ

In this relation, E is the Green–Lagrangian strain tensor

that given by the classical relation:

E ¼
1

2
C2 Ið Þ; ð19Þ

where I is the second-order unit tensor.

To uncouple the deviatoric part to the dilatational part

of the response, the volume preserving part �F ¼ J21=3F of

the deformation is introduced (Weiss et al. 1996). The

modified invariants related to �C ¼ �FT �F ¼ J22=3C are

expressed from (15) by

�I1 ¼ I1I
21=3
3 ; �I2 ¼ I2I

22=3
3 ;

�J
a
4 ¼ Ja4I

21=3
3 ; �J

a
5 ¼ Ja5I

22=3
3 :

ð20Þ

The exponential type HGO density adopted in this work

uses these modified invariants as follows:

W ¼ �Wð�I1; �J
a
4Þ þ UðJÞ; ð21Þ

UðJÞ ¼
k

2
J 2 1ð Þ2; �Wð�I1; �J

a
4Þ ¼ W isoð�I1Þ

þ
X2

a¼1

Wanið�J
a
4Þ;W isoð�I1Þ ¼ c1ð�I1 2 3Þ;

ð22Þ

Ja4 , 1 : Wanið�J
a
4Þ ¼ 0; ð23Þ

Ja4 $ 1 : Wanið�J
a
4Þ ¼

k1

2k2

exp k2ð�J
a
4 2 1Þ2

� �
2 1

� �
: ð24Þ

The anisotropic energy density Wani is case sensitive with

respect to J4 because the case J4 , 1 represents the

shortening of the fibres, which is assumed to generate no

stress. The proof of convexity of (23) and (24) with respect

to F is given by Schröder et al. (2005) and Peng et al.

(2006). The non-collagenous matrix of the media is

modelled by the neo-Hookean isotropic density W iso

defined by (22). It is noted that the volumetric–isochoric

split of the above HGO model does only hold for (quasi)

incompressible deformations. An extension to compres-

sible deformations would require that the volumetric part

of the strain energy function includes a dependency on the

structural tensor. This is proved recently by Guo et al.

(2008), where a simple compressible anisotropic analytical

model is developed. The parameter values c1, k1 and k2 of

the material have been chosen as similar to those

mentioned in Balzani et al. (2006) in order to fit the

model with experimental data: c1 ¼ 10:2069, k1 ¼ 0:0017

and k2 ¼ 882:847 kPa. These parameters are assumed to

be independent of the fibre orientation. This hypothesis is

consistent since the fibre properties are assumed to be

independent of their orientation.

The dilatational component UðJÞ defined by Equation

(22) represents a penalty term added to the FE model to

account for the incompressible behaviour of the material.

The parameter k was chosen equal to 105. We remind

finally that by deriving W from Equation (18) and

introducing the matrix of cofactors of C, cofðCÞ ¼ I3C
2T ,

it is conventionally obtained

S¼2
›W

›I1

Iþ
›W

›I2

I1I2Cð Þ þ
›W

›I3

cof Cð Þ

�

þ
›W

›J1
4

Ma1

þ
›W

›J2
4

Ma2

þ
›W

›J1
5

CMa1

þMa1

C
� 	

þ
›W

›J2
5

CMa2

þCMa2
� 	


: ð25Þ

In our particular case, Equation (25) is reduced to

S ¼ 2
›W

›I1

Iþ
›W

›I3

cof Cð Þ þ
›W

›J1
4

Ma1

þ
›W

›J2
4

Ma2

� 

: ð26Þ

The derivatives of the density energy W with respect to

the invariants are described by Peyraut et al. (2010). The

stress tensor (26) and the first derivatives of the energy

density with respect to the invariants will be used to

evaluate the tangent modulus. These moduli are useful to

implement hyperelastic models in an FE code. The

implementation of the HGO model in the in-house FE

code FER is presented in Section 2.2.2.

2.2.2 FE implementation of the HGO model

The HGO model has been implemented and tested in

the FE code FER/Impact. This code is implemented



using Cþþ object-oriented programming language. In

the context of large hyperelastic displacement and

rotations, the Green–Lagrangian strain tensor is used

to describe the nonlinear strain–displacement relation-

ship:

E ¼ BL þ
1

2
BNLðuÞ

� �
u; ð27Þ

where BL is the matrix that relates the linear strain term to

the nodal displacements and BNLðuÞ is the matrix that

relates the nonlinear strain term to the nodal displace-

ments. The incremental form of the strain–displacement

relationship is

dE ¼ ðBL þ BNLðuÞÞdu: ð28Þ

Using Equations (18) and (28), the incremental form of the

stress dS can be linked to the incremental form of the strain

dE as follows:

dS ¼
›2W

›E2
: dE ¼ D : dE ¼ D : ðBL þ BNLðuÞÞdu; ð29Þ

where D denotes the constitutive tangent matrix. This

fourth-order tensor is obtained from the derivative of W

(Schröder et al. 2005). Using the principle of virtual

displacement, the virtual work dU is given as

dU ¼ duTM €uþ duTA _u

þ

ð
V0

dETS dV 2 duTFext 2 duTR ¼ 0;
ð30Þ

where V0 is the volume of the initial configuration, Fext

is the vector of external loads, R is the contact reaction

vector, M is the mass matrix, A is the damping

matrix, _u is the velocity vector and €u is the acceleration

vector.

The damping implemented in the FE code FER is a

Rayleigh damping; it means the damping matrix A is a

linear combination of the stiffness and mass matrix.

Substituting (28) into Equation (30), we obtain

dW ¼ duT M €uþ A _u

�

þ

ð
V0

ðBL þ BNLðuÞÞ
TS dV0 2 Fext 2 R

�
¼ 0:

ð31Þ
The vector of internal forces is defined by

Fint ¼

ð
V0

ðBL þ BNLðuÞÞ
TS dV : ð32Þ

Since du is arbitrary, it can be deduced from (31),

M €uþ A _uþ Fint 2 Fext 2 R ¼ 0: ð33Þ

The initial conditions associated with the dynamic

Equation (33) are

_u ¼ _u0 and u ¼ u0: ð34Þ

Dynamic Equation (33) can be integrated between time t

and t þ Dt by using an explicit algorithm:

utþDt ¼ Dt 2M21 Ft
ext 2 Ft

int þ RtþDt
� �

þ 2ut 2 ut2Dt: ð35Þ

It is possible to use special FE Q1P0 (Scovazzi et al.

2008) to achieve the element integration by separating

the contributions from spherical and deviatoric stress.

However, in the current version of FER, the integration

of internal forces is the same as for the spherical and

deviatoric parts, using 27 Gauss points for hexahedral

elements and only 1 Gauss point for tetrahedral

elements.

It should be noted that the contact reactions R are

evaluated with the bi-potential method presented in

Section 2.1. All the approaches presented in Sections 2.1

and 2.2 have been implemented in the FE code FER.

3. FE model

3.1 Creation of the hand model

The geometrical creation of the hand model is an integral

part of the FE modelling. This geometrical representation

is based on the geometric 3D reconstruction of slices of a

hand obtained by a CT scanner. A tomodensitometry

examination of the hand was performed on an adult

subject for medical purposes with no relation with this

study. No abnormalities were found by the medical staff.

The acquisition of the 3D geometry was performed

without injection with 2D reconstructions. Resolution of

2D slices was 0.7 mm. For the reconstruction, almost 300

slices in transversal plane were used. Figure 2 illustrates

one CT slice of the hand. In order to distinguish the bones

from the soft tissues, the slices processing was performed

by using a grey-level processing, using the Scan2Mesh,

which is a tool allowing 3D reconstruction, included in

the HyperWorks package (Altairq).

In specifying the space between slices, the size of the

pixels in each direction and the precision of the mesh, a 3D

triangular mesh was generated and imported in Hyper-

Mesh v9.0 software (Altairq) for a step of surface

reconstructions as illustrated in Figure 3 and for a step of

3D meshing as illustrated in Figure 4.

The hand includes wrist’s and fingers’ bones and the

skin. In order to have a continuous meshing between every

components, solids containing bones and skin have been

created, and Boolean operations have been used, as

presented in Figure 5.



Then an automatic mesh of the three components is

performed by allowing a continuous mesh (without

interfaces) between wrist’s and fingers’ bones and the skin.

Finally, the global mesh of the hand has 17,700

four-node tetra elements: 1700 elements in wrist’s bones,

2000 elements in fingers’ bones and 14,000 elements for

the skin.

The final mesh of the hand includes (Figure 6):

. Eight bones of the wrist (carpsal): the scaphoid,

lunate, triquetral pisiform, trapezium, trapezoid,

capitate and hamate.
. Five metacarpsal.
. 14 phalanges: distal phalanges, middle phalanges

and proximal phalanges.

3.2 Description of the impact problem

The numerical example presented in this section shows

how a hand gets into contact with an object. It is a very

useful first step to simulations of hand and hand-held tool

interactions to improve design.

Our work consists in setting up a finite model of a hand

as biofidelic as possible. The creation of this kind of model

needs many investigations and leads to extremely

complicated FE model, generally CPU time consumer.

The hand is composed of different components (cartilage,

tendons, ligaments and muscles). The influence of these

individual components may be essential to the overall

response of the hand. Our model is a first step in the

creation of a hand model: no cartilage, no tendons, no

ligaments and no muscles are taken into account. Actually,

the behaviour of skin and all soft tissues is processed by

the HGO model presented in Section 2.2.

The object is considered as linear elastic. Discrepan-

cies exist concerning the elasticity of the cortical bone.

Age dependency has been demonstrated, which varies

between 10 and 15 GPa (Rho et al. 1997; Wang et al. 2002;

Kemper et al. 2005; Buchanan and Ural 2010). Wrist’s and

finger’s bones are considered as linear elastic with typical

cortical bones’s properties: E ¼ 10; 000 MPa, n ¼ 0:22

and r ¼ 2150 kg=m3.

The hand sizes corresponding to L1 ¼ 159:23, L2 ¼

230:12 and L3 ¼ 77:68 mm are shown in Figure 7,

whereas the block ones are shown in Figure 8. The hand

mesh is described in Figure 6 with 5794 nodes and 17,700

Figure 2. CT slice of the hand.

Figure 3. STL meshing of the hand with tria before the
reconstruction of the surfaces.

Figure 4. Surface reconstruction based on STL meshing: wrist
and fingers.



tetrahedral elements. Besides, the parallelepipedic block

has 1040 nodes and 4684 tetrahedral elements.

3.3 Numerical strategy

The treatment of contact conditions leads to variational

inequalities. Various algorithms could be employed to

solve contact problems. In this paper, we have chosen to use

an original approach, the bi-potential method, which has

been successfully applied for the modelling of frictional

contact problems in static cases. This paper presents the

application of this method for dynamic analysis of impact

problems with friction between an hyperelastic body and an

elastic one (Feng et al. 2006).

We want to model an operator’s hand at work, but its

movement control depends on the rigidity of the hand

gesture. We assume that the hand manipulates the block

using an initial speed equal to v0 ¼ 2 m=s in the x-direction

(Figure 8). The transient dynamic calculation is managed

by an explicit scheme shown in Section 2.2.2 to cut down

computational cost. This choice is justified by the highly

nonlinear feature of the case, as it deals with the dynamic

contact and impact in 3D anisotropic hyperelasticity. The

explicit resolution of contact problem is much more

efficient than the implicit one because it is well adapted to

speed and acceleration discontinuities when a sudden

contact status change occurs. Accordingly, the decision of

using an explicit contact FE model appears rational.

Solid containing the
“skin” component

Solid containing the
“finger’s bones” component

Solid containing the 
“wrist’s bones” component

Figure 5. Description of the creation of the mesh.

Figure 6. Final mesh of the hand.



It has been shown that non-linearity can cause

divergence using an implicit FE code (Horii et al. 1993).

An explicit analysis requires the identification of a critical

time step to ensure the stability of the temporal scheme

(Newmark 1959). This critical time step is related to the

characteristic element size and material properties.

A critical value can be defined as the time required such

that the pressure wave travels through only one elastic

element:

Dt ¼

ffiffiffiffi
r

E

r
Lmin; ð36Þ

Lmin is the characteristic dimension of the smallest mesh

element, r is the density and E is the Young modulus. The

magnitude of Lmin is 1025m in the case of this study.

A time step has been chosen approximatively equal to

1027s. The analysis was carried out using the FE code

FER.

Figure 9 shows the stress on a cross-sectional plane on

the bones as well as on the soft tissue.

3.4 Results

Figure 10 shows the evolution over time of the von Mises

stress at different steps of computation: t ¼ 0:002,

t ¼ 0:003, t ¼ 0:004 and t ¼ 0:005 s. Since stresses begin

in the contact areas between the hand and the block, it is

possible to track the spread of the contact areas during the

time.

4. Discussion and future work

Our main interest and motivation for this research are to

develop a simplistic yet sufficiently accurate model that

can describe hand motion and its contacts during reach and

grasp operations. Many grasping models (Kim et al. 2009;

Bae and Armstrong 2011; Carbone and González 2011)

have already been developed but none of them use a 3D

total deformable hand model, which means there are

limitations to these models in terms of modelling

deformity during contacts. Contrary to the above models,

this research shows precisely the dynamic stress and its

L1

L2

L3

Figure 7. Hand sizes.

L4 = 70 mm

L5 = 380 mm

L6 = 200 mm

x

z

u0

Figure 8. Problem description.



changes for any part of the hand or finger and this

represents a step advancement in hand modelling. In this

research, the FE method has been chosen to model these

phenomena to overcome the above deficiency. This

approach has presented a big challenge for two main

reasons. From a mechanical point of view, multiple

nonlinearities must be taking into account in geometrical,

material, frictional contact and impact modelling. From a

biomechanical point of view, a much better knowledge of

the hand’s biomechanical capability as well as limitation

must be understood in order to develop a closer

representation of a real hand. On that basis, this model,

in fact, is only a first step to create a more realistic hand

model. The main purpose of this paper is to validate a

process of converting a CT scan to a 3D FE model and then

performing a simulation on this model considering the

nonlinear phenomena such as contact and hyperelasticity.

The paper is not focused on the detailed structures of the

hand tissues. Authors believe that based on the current

modelling techniques and methods, it is very difficult to

generate a numerical model that can represent 100%

complexity of the hand for a speed critical application if

possible. The proposed model is simplistic from the

biomechanical point of view, but the model is sufficient

from a functional and mechanical point of view and for

many applications similar to the case study. The cartilage,

tendons, ligaments and muscles do not play an important

individual role and can reasonably be lumped or simplified

into one model. The next step of our work will be

concerned with a detailed biomechanical modelling of the

movements of reaching and grasping, linking to different

tissues. The idea is to combine soft tissue with appropriate

comportment law (Natali et al. 2006; Evans 2009) and an

articulated model for the skeleton. Figure 11 shows the

first evolution of the model with an example of movement

of grasping tool. This model takes into account ligaments

modelled as springs, and the use of anisotropic

hyperelasticity is the next step. In addition, experimental

work has been done for the tendons, especially for patients

with arthritis conditions. These experimental data are

being analysed and processed to form a model to take

account of tendons and the models presented in this paper

in another paper.

5. Conclusion

The main purpose of this paper is to present an FE solution

of large deformation contact/impact problems with

Coulomb friction and anisotropic hyperelastic bodies.

This problem includes multiple nonlinearities: geometri-

cal, material, frictional contact and impact. The above

numerical results demonstrate that the proposed algor-

ithms for the local analysis of frictional contact and impact

problems, and for the global resolution of nonlinear

equation related to anisotropic hyperelastic materials, are

able to handle bioengineering applications. The aniso-

tropic hyperelastic HGO material modelling soft tissues

behaviour and the bi-potential method used to solve the

contact problem were implemented in the in-house FE

code FER. These implementations are detailed in the

paper. To demonstrate the efficiency of FER to deal with

the nonlinear topics considered in this paper, a numerical

example is presented. This example concerns the

Figure 9. Von Mises stress.



contact/impact of a human hand on a deformable

rectangular block. The modelling of the hand includes

the bones and the soft tissues’ behaviours. Our work paves

the way to modelling surgery environment by using the FE

simulation. However, including such model in the context

of virtual reality (for example to train surgeons to good

practise and adequate gestures) is still a challenging task as

the computation time does not meet the requirement for

the real-time application. Contact detection in a reduced

basis (generally used by model reduction techniques to

drastically save computation time) is also another open

issue.
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