O ' Hanlon

Riordan

John O'hanlon

Adrian O'riordan
email: a.oriordan@cs.ucc.ie

Extending Barista for Easier Source Code Querying of Java Programs on the Eclipse Platform

Keywords: Source code querying, program analysis, programming idioms, design patterns, open source, Eclipse plugins

This paper describes a software development tool for automating the process of source code querying of Java programs together with an initial evaluation. It contains a catalogue of source code queries and streamlines the querying process. The GUI-driven Eclipse plugin called PwSOUL enables Java programmers to more easily check their source code for potential bugs, and find common programming idioms and design patterns. The tool should be useful to software developers as an aid for tasks such as debugging, refactoring, and software evolution and maintenance. A key aim of this work was to cut the effort required by a developer to run a suite of source code queries by simplifying and automating user actions. PwSOUL simplifies and automates aspects of Barista, an existing Eclipse plugin for Java runtime source code querying and query scheduling that uses an example-based extension of a program query language called SOUL. The main features of PwSOUL are a catalogue of 32 source code queries, and a GUI to aid navigation and automate the process of running queries and returning results.

INTRODUCTION

Software renovation (also called software modernization) is a fast emerging field of research and development in software engineering [START_REF] Seacord | Modernizing legacy systems: software technologies, engineering processes, and business practices[END_REF]. Software developers spend a lot of time on tasks such as debugging, refactoring, and software evolution and maintenance so any tool support for such tasks is welcome. IDEs and stand-alone tools offer increasing levels of support for debugging, refactoring, profiling, and source code control to aid in these tasks. For example, a popular technique for code restructuring is object-oriented refactoring, where a series of, often small changes are made in object-oriented code with the aim of improving modularity and separating out orthogonal concerns [START_REF] Fowler | Refactoring: Improving the Design of Existing Code[END_REF]. Many IDEs, such as Eclipse with the Java development tools (JDT), support a form of semi-automated refactoring based on these ideas.

Finding problem code such as locating source code that could be a source of errors or a good candidate for restructuring or modification are areas less well supported by popular tools. Program analysis offers many possibilities to help find candidate code and to aid if not automate renovation. Two relevant applications of program analysis are source code mining and source code querying. Source code mining entails searching code repositories for patterns to find bugs or poor code [START_REF] Williams | Automatic mining of source code repositories to improve bug finding techniques[END_REF]. Research on automated bug detection has shown that different tools tend to detect different problems [START_REF] Rutar | A comparison of bug finding tools for Java[END_REF] and defects found correlate strongly with defects found in code reviews but less so with defects found in testing [START_REF] Wagner | An evaluation of two bug pattern tools for java[END_REF]. The rest of this paper focuses on the related technique of source code querying in which query languages, often derived from database query languages or logic programming, are used to search relations between source code elements with the same goal of finding bugs and programming idioms [START_REF] Hajiyev | Codequest: Scalable source code queries with datalog[END_REF].

Barista is an Eclipse plugin that allows querying of Java source code from within Eclipse developed at the Software Languages Lab at Vrije Universiteit Brussel (VUB) [START_REF] Roover | A logic meta-programming foundation for example-driven pattern detection in objectoriented programs[END_REF]. Barista uses a logic metaprogramming language called SOUL (Smalltalk Open Unification Language) which as the name suggests was originally developed to query Smalltalk programs using Intensional Views Environment (IntensiVE), a tool suite for VisualWorks Smalltalk. We built on this approach by creating PwSOUL (Programming with SOUL), which works in tandem with Barista. The main goals were to build an easy to use GUI-driven Eclipse plugin so that Java programmers can more easily check their source code for potential bugs, and show common programming idioms and design patterns, without developers necessarily having the skills to write such queries or know the syntax and semantics of source code queries.

PwSOUL includes queries for detecting three facets of Java program code: programming idioms, design patterns and bug patterns. Programming idioms are recurring expressions or constructs in program code [START_REF] Coplien | Idioms and patterns as architectural literature[END_REF]. They usually express a simple programming task such as initialization, looping, or exception handling that forms part of an algorithm. They are usually programming language dependent such that C++ and Java have different idioms; nevertheless, similar languages can exhibit similar idioms. Well established in software engineering design patterns are general reusable solutions to commonly occurring problems. Design patterns are more highlevel and involve more complex algorithms than programming idioms. The types of bugs PwSOUL detects are potential runtime or logical errors, problems not trapped by syntax checkers. Bug patterns relate to the concepts of code smells in object-oriented refactoring and antipatterns [START_REF] Brown | AntiPatterns: refactoring software, architectures, and projects in crisis[END_REF].

BACKGROUND AND RELATED WORK

In this section, we briefly review static and dynamic program analysis and more specifically source code querying tools for Java.

Static and Dynamic Program Analysis

Program analysis can be static or dynamic. Static program analysis of source code or object code/bytecode does not entail running the actual code. Dynamic program analysis in contrast executes either the source code or generated intermediate code on a real or virtual machine. There are problems that are not amenable or not easily amenable to static analysis. If one considers the various ways that a method is invoked in Java one can gain an appreciation of the issues: invocation as a method call, callIt(); or with a object reference, obj.callIt(); or using the this or super reference; or by alias, aliasToObj.callIt(); or with a reference to an interface (that implements its class), interfRef.callIt(). The order of instruction execution or runtime type or value also affects behaviour. Runtime Java tools usually reason with the bytecode representation or an AST (Abstract Syntax Tree) representation of the source code. Griswold et al. describe a syntactic pattern matching approach that was influential and ASTLOG a Prolog-like language that uses pattern matching to process ASTs [START_REF] Griswold | Fast, flexible syntactic pattern matching and processing[END_REF]. Runtime analysis is often very costly in terms of compute time [START_REF] Nielson | Principles of Program Analysis[END_REF].

Code Querying Tools for Java Programmers

There are already many good developer tools available to Java developers either as part of an IDE or as standalone tools. Common Java development tools fulfil functions such as build automation (e.g. Ant, Ivy), debugging (e.g. jdb, JSwat), source code control (e.g. Subversion), profiling (e.g. VisualVM), and unit testing (e.g. JUnit). Another class of tools help check whether code meets specified criteria for example adherence to coding conventions (e.g. Checkstyle).

Code analysis tools either reason over the source code or the compiled bytecode. FindBugs1 is a popular open source tool for finding potential errors in Java code available as a standalone tool or as an IDE plugin that performs a static analysis of Java bytecode. With FindBugs you have to create a Java test class and invoke a visitor method to inspect each application class. Soot2 is a popular tool for bytecode optimization. PDM3 is a rule-based system for static analysis of source code with rules categorized into problem areas such as potential bugs and antipatterns such as duplicated code and suboptimal code. Again, a Java developer needs to create a new class to launch the checks. SemmleCode is a static analysis tool that queries using a language called .QL, an object-oriented query language derived from the declarative logic programming language Datalog. It is now part of a proprietary software system for software quality and metrics 4 . JTL 5 (Java Tools Langauge) uses a simply 3/8 typed relational database for program representation, rather than ASTs. DeepWeaver-1 is a runtime program analysis tool that supports querying and code modification using weaves, a similar concept to that of aspect in aspect-oriented software development [5]. Querying is Prolog-based with predicates over properties of Java bytecode, using Soot in the implementation. Jtest is a proprietary tool that includes some Java runtime error detection [START_REF] Xie | Tool-assisted unit test selection based on operational violations[END_REF]. Its BugDetective module explores execution paths using runtime rules to detect a range of errors related to exceptions, file I/O, threads, database access, networking, security and Servlets among others.

Urma and Mycroft evaluated seven Java-specific source code query languages including SOUL, and JTL, SemmleCode and PMD of those mentioned above as to their power at expressing queries for common code idioms [START_REF] Shi | Reverse engineering of design patterns from java source code[END_REF]. They found that only SOUL and SemmleCode/.QT could specify all queries.

EXTENDING Barista

This section describes the template-based SOUL queries for Java we developed and the PwSOUL tool. A subsection first describes Barista and SOUL, and then we detail the new Java queries and PwSOUL.

Barista and SOUL

The SOUL metalanguage manipulates program elements combined with logical connectives. Pattern detection uses a logical resolution procedure. De Roover developed an example-based extension of SOUL, a template query language for Java program querying [START_REF] Roover | A logic meta-programming foundation for example-driven pattern detection in objectoriented programs[END_REF][START_REF] Roover | A Logic Meta Programming Foundation for Example-Driven Pattern Detection in Object-Oriented Programs[END_REF]. The example-based approach enables queries to resemble code excerpts. Results are quantized and ranked using a fuzzy logic for query conditions. The example-based approach provides a familiar representation for developers who may want to tweak a query or write a new one. Note that JTL also supports an example-based representation whereas SemmleCode uses an object-based SQL-like representation.

Barista enables SOUL interactions from within Eclipse JDT. Barista has an extension mechanism but we developed PwSOUL are a separate plugin. Barista is the communication bridge between the Eclipse IDE and SOUL as SOUL is running on a Smalltalk virtual machine. Barista consists of three separate Eclipse plugins: Barista-Core, Barista-UI and Arabica (not discussed) and the Cava library provides predicates for quantifying over Java projects in Eclipse. SOUL uses the Eclipse JDT Core infrastructure to access Java runtime information, specifically queries quantify over org.eclipse.jdt.core.dom.ASTNode and its subclasses. Cava embodies a unification procedure and uses Soot for whole-program analysis.

Java Pattern Queries

We provide a set of 32 build-in queries for programming idioms, design patterns and bug detection. All queries are in the SOUL template query language. The queries are not comprehensive merely a preliminary set of queries for common idiomatic occurrences in Java code.

The following queries were among those implemented to detect Java code idioms: for loop, while loop, enhanced for loop, if statement, if else statement, do while loop, type narrowing, class getter, class setter, file read, file write, file open-read-file close, file open-write-file close, visit ArrayList, creation of JFrame, and creation of JApplet. The set of design pattern queries is as follows: Composite, Decorator, Factory, Iterator, Observer, Prototype, Singleton, Template and Visitor. The bug detection queries are for locating possible runtime errors: they include read/write after close, read/write after connection close (socket), null pointer invocation, no default constructor, using the wrong equals (== instead of equals), no setter, no getter, close in catch block, and close split from get stream. Note that the queries may return examples of valid source code (false positives) that the programmer had intended.

Here are a few examples of queries. Details of the SOUL template syntax are available online 6 . This is the query to detect class setters:

5/8
We used the Visual Swing for Eclipse UI builder 7 (itself an Eclipse plugin) to design a Swing user interface for PwSOUL. Access to PwSOUL functionality is by means of a new menu in Eclipse JDT. From here the PwSOUL Selection Menu window can be launched, see Figure 2. This gives three options: Bug Detection Menu, Idiom Menu, and Design Pattern Menu for the three types of pre-written queries.

Figure 2: PwSOUL Selection Menu

Each option takes the user to a window with a list of program queries along with drop down menus for selecting the active project from the Eclipse workspace (see Figure 3). When a programmer selects a query, information explaining what the query does is displayed. Determining the current active Eclipse JDT project entails getting the active editor IEditorPart in the active workbench. Other projects appear as a list of Eclipse IProjects from the IWorkspaceRoot. After clicking the view query button the query is ready to run. PwSOUL runs queries by calling the IBarista.query() method in the Barista plugin. The query itself is passed as one of the arguments. A drawback of many existing tools is that new Java code is required, such as implementing the visitor pattern, or at least need to be generated. This is not necessary in Barista or PwSOUL. The query results passed back appear on the right in the query results window as per Barista, see Figure 4. The function in Barista to prepare queries is bypassed in PwSOUL. PwSOUL enables the user to run multiple queries at once unlike in Barista. Another change from Barista is that the project queried will be automatically opened in the project explorer in Eclipse using SWTWorkbenchBot. Results are marked in the code (with the Barista 1 shows that PwSOUL found at least one instance of every design pattern query. It is not possible to give accurate recall statistics without performing a detailed manual inspection of the code base.

CONCLUSIONS AND FUTURE WORK

We achieved the main goals of the project: to create a set of useful Java program queries and to create a tool, as an Eclipse plugin, to enable programmers to run these queries. The extensibility and flexibility of Eclipse and the expressiveness of SOUL made this possible. The widespread use of code querying will depend on the availability of easy to use tools.

The next step is to make PwSOUL more widely available and to solicit feedback from Java developers. Other possible enhancements are expanding the catalogue of queries, adding a reporting feature, and enabling querying of just one or more source files (classes) as opposed to an entire project. Further integration with testing tools (JUnit) and Eclipse JDT's refactoring supports is another avenue for future work. An extensive evaluation of query speeds and query coverage should help refine the existing queries and identify bottlenecks. The slowest queries in our evaluation took more than two minutes to run which may be too long for some impatient developers.

Figure 3 :

 3 Figure 3: Idiom Query Window

Table 1 .

 1 Comparison of design pattern detection in JHotDraw (* Version 5.1 of JHotDraw) Differences in pattern detection are clear from Table 1. For instance, Shi and Olsson detected 34 instances of the factory pattern where other experiments reported low numbers. Manual inspection of code shows that these are true positives missed by the other tools. Table

	Design Pattern	PwSOUL PINOT Tsantalis et al. *	Guéhéneuc et al. *
	Factory	2	34	2	3
	Singleton	4	0	2	2
	Composite	1	4	1	1
	Decorator	2	5	3	1
	Observer	5	9	5	2
	Template Method	2	2	5	2
	Visitor	1	1	1	0

http://findbugs.sourceforge.net/

http://www.sable.mcgill.ca/soot/

http://pmd.sourceforge.net/

http://semmle.com/

http://openjtl.sourceforge.net/

http://soft.vub.ac.be/SOUL/home/query-syntax/

https://code.google.com/p/visualswing4eclipse/

http://www.jhotdraw.org/

http://www.campwoodsw.com/sourcemonitor.html

http://www.cs.ucdavis.edu/~shini/research/pinot/results/jhotdraw_results.html

ACKNOWLEDGEMENTS

We would like to thanks Coen De Roover (VUB) who generously answered any questions we had about Barista and SOUL.

if jtClassDeclaration(?class){ class ?className { private ?fieldDeclarationType ?fieldName; ?modList ?returnType ?methodName(?type ?var){ ?fieldName = ?var; } } }

In this example the variable ?className will be bound to classes containing a method ?methodName and a private field ?fieldName. A match has to exhibit all properties exemplified by the code snippet, but can have additional properties.

Here is the bug pattern query for invocation with a null pointer: Here is the query for the singleton design pattern: jtClassDeclaration(?singleton, ?interpretation) { class ?singletonName { static ?singleton ?uniqueInstance = new ?singleton(); ![public ?singleton(?paramList){}]; public static ?singleton::jtType ?instance() { return ?uniqueInstance; } } }

PwSOUL Plugin

The software required to run PwSOUL is complex and needs the following installed: Eclipse IDE for Java Developers, Smalltalk Visualworks, Barista, Penumbra, JavaConnect, and the Cava library. JavaConnect is a Smalltalk library that allows interaction between Java and Smalltalk VMs. Penumbra is a Visualworks Smalltalk application that allows the Eclipse application to be accessible from within Smalltalk. The Software Languages Lab at Vrije Universiteit Brussel (VUB) provides a pre-built Oracle VM VirtualBox virtualization image with all the necessary software simplifying deployment.

INITIAL EVALUATION

We carried out a small-scale evaluation to assess both query coverage and query speeds. Dynamic code analysis can be very slow. We used the open source project JHotDraw 6.0 beta 1 8 as the code base. JHotDraw is an open source Java GUI framework for technical graphics that is widely used as a test-bed in software engineering research. JHotDraw consists of approximately 70K lines of code consisting of 584 classes and approximately 20K Java statements (metrics computed by SourceMonitor 9).

When testing query speed we used a Dell Optiplex 980 with 4GB of memory running Windows 7 and Eclipse 4.2. In these preliminary results, the query speeds vary greatly. Some preliminary results are reported here, first for three bug patterns: Write after close took 3.62 seconds; Connection closed took 6.64 seconds; and Null pointer invocation took 126.22 seconds. Basic Idiom queries were slower owing to the large number of matches: for example For loop took 587.45 seconds (64 instances returned); Getter took 18.54 seconds (69 matches); and Setter took 249.17 seconds (60 matches).

We also checked the query coverage for the design pattern queries since there are existing published results on the number of design pattern instances detected in JHotDraw by various pattern mining tools. Shi and Olsson report on design pattern detection using a static code analysis tool called PINOT [START_REF] Seacord | Modernizing legacy systems: software technologies, engineering processes, and business practices[END_REF]. They also used version 6.0 of JHotDraw. Detailed results for Shi and Olsson do not appear in the paper but are available online 10 .Tsantalis et al. report on pattern detection using a design pattern detection tool that uses similarity scoring [START_REF] Tsantalis | Design pattern detection using similarity scoring[END_REF] and Guéhéneuc et al. using a fingerprinting technique [START_REF] Gueheneuc | Fingerprinting design patterns[END_REF]. An important caveat here is that these last two experiments used an older version (5.1) of JHotDraw. Results for comparative purpose appear in Table 1 below. Note these numbers represent true positives (data on false negatives appear in some of these papers also).