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Functional inequalities for Gaussian convolutions of compactly
supported measures: explicit bounds and dimension dependence

Jean-Baptiste BARDET, Nathaël GOZLAN, Florent MALRIEU and Pierre-André ZITT

July 9, 2015

Abstract

The aim of this paper is to establish various functional inequalities for the convolution of a com-
pactly supported measure and a standard Gaussian distribution on Rd . We especially focus on getting
good dependence of the constants on the dimension. We prove that the Poincaré inequality holds with
a dimension-free bound. For the logarithmic Sobolev inequality, we improve the best known results
(Zimmermann, JFA 2013) by getting a bound that grows linearly with the dimension. We also establish
transport-entropy inequalities for various transport costs.

Keywords: logarithmic Sobolev inequality, transport-entropy inequality, Poincaré inequality
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1 Introduction

Poincaré or logarithmic Sobolev inequalities have been extensively studied in the past decades to quantify
long time behavior of Markov processes or investigate the concentration of measure property, which plays
a key role for example in the topic of large random matrices.

We refer to [Ané+00; Led01b; Roy07; BGL14] for a comprehensive introduction to this subject. Let us
briefly recall some well-known facts about these functional inequalities to motivate the present study.

A probability measure ν on Rd satisfies a Poincaré inequality with constant C if, for any smooth
function f from Rd to R, ∫

Rd
f 2dν−

(∫
Rd

f dν

)2

≤C
∫
Rd

∣∣∇ f
∣∣2dν.

We denote by CP (ν) the smallest constant such that this inequality holds.
Similarly, ν satisfies a logarithmic Sobolev inequality with constant C if, for any smooth function f

from Rd to R, ∫
Rd

f 2 log( f 2)dν−
(∫
Rd

f 2dν

)
log

(∫
Rd

f 2dν

)
≤C

∫
Rd

∣∣∇ f
∣∣2dν,

and we denote by CLS(ν) the smallest constant such that this inequality holds.
If ν is the Gaussian distribution Nd (x,Γ) on Rd with mean x and covariance matrix Γ then the values

of these optimal constants are known:

CP (ν) = 1

2
CLS(µ) = maxSpec(Γ).

The Bakry-Émery criterion ensures that if ν has the density e−V on Rd and Hess(V ) ≥ ρId then

CP (ν) ≤ 1

ρ
and CLS(µ) ≤ 2

ρ
.
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More generally, the inequality 2CP (ν) ≤ CLS(ν) always holds. These two functional inequalities do not
hold if the support of ν is not connected — one can find a non constant function whose gradient is zero
ν-almost surely.

The present paper focuses on the case when the probability measureν onRd is given by the convolution
µ?Nd (0,δ2Id ) where the support of µ is included in the centered ball of Rd with radius R. This question
has been investigated recently in [Zim14a; Zim13; WW13]; we present here several improvements and
related questions.

Let us fix some notation first.

• X and Z are two independent random variables with respective distribution µ and N (0, Id );

• γδ is the density of the Gaussian measure Nd (0,δ2Id );

• p is the density of the law µ?γδ of the random variable S = X +δZ ;

• Cd (δ,R) is the supremum over all probability measures µ supported in the closed Euclidean ball
Bd (0,R) of the optimal constants in the logarithmic Sobolev inequality for µ?γδ.

This notation is mainly consistent with [Zim14a], except that our δ is the standard deviation of the Gaussian
rather than its variance, and we denote the dimension by d .

Zimmermann’s results [Zim14a; Zim13] may be summed up as follows.

Theorem 1.1 (Bounds on logarithmic Sobolev inequality constants,[Zim14a]). The convolution of a com-
pactly supported measure and a Gaussian measure satisfies a logarithmic Sobolev inequality. Moreover,
there exist universal constants (Ki )1≤i≤4 such that:

• In dimension 1,

C1(δ,R) ≤ K1
δ3R

4R2 +δ2 exp

(
2

R2

δ2

)
+K2(δ+2R)2.

In particular in the low variance case δ≤ R,

C1(δ,R) ≤ K3
δ3

R
exp

(
2

R2

δ2

)
.

• In dimension d, Cd (δ,R) is finite. In the low variance case δ≤ R, it satisfies:

Cd (δ,R) ≤ K4R2 exp

(
20d +5

R2

δ2

)
.

The proofs in [Zim14a] rely on two main ideas. The one-dimensional case is treated by explicit
computations on Hardy-like criteria taken from [BG99]. In higher dimension the author applies the
Lyapunov function approach of [CGW10]. The constants Ki are explicit but quite large (for example K4

may be taken equal to 289). Let us also mention the alternate approach of [Zim14b] in dimension 1 by
measure transportation, that unfortunately yields even worse constants. In a related note, [WW13] answer
various related questions on functional inequalities for convolutions, and give many qualitative results
under relaxed assumptions, both on the support of X and on the distribution of the mollifier Z , but
without exhibiting explicit constants.

We follow here the focus of [Zim14a] on quantitative estimates on the constants and their dependence
on the dimension d . Our first result concerns the Poincaré inequality.
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Theorem 1.2 (Dimension free Poincaré inequality). If µ is supported in the closed Euclidean ball Bd (0,R)
then µ?γδ satisfies a Poincaré inequality and

CP (µ?γδ) ≤ δ2 exp

(
4

R2

δ2

)
.

The next result is an improvement on the bounds of Theorem 1.1.

Theorem 1.3 (Bounds on the logarithmic Sobolev constants).

• In the large variance case δ > R, the logarithmic Sobolev constants are bounded uniformly in the
dimension:

Cd (δ,R) ≤ δ4

δ2 −R2 .

• In dimension 1, for any δ, R,

C1(δ,R) ≤ 4δ2 exp

(
8

π

R2

δ2

)
.

• In the small variance case δ≤ R, the logarithmic Sobolev constant admits the following dimension-
dependent bound:

Cd (δ,R) ≤
(
K1d +K2

R2

δ2

)
R2 exp

(
4

R2

δ2

)
(1)

where K1, K2 are universal constants.

The stronger bound in dimension 1 is obtained as a corollary of a bound that holds in any dimension
(with a strong dependence on d). Its proof uses a trick by Miclo to apply the classical Holley-Stroock
perturbation argument, and is much less technical than the ones in [Zim14a; Zim14b].

For the logarithmic Sobolev constant, the dependence in the dimension drops from exponential to
linear: this enhancement would translate into weaker dependence assumptions in the applications to
random matrices considered in [Zim14a].

In view of these results, it seems natural to conjecture as in [Zim14a] that Cd (δ,R) may admit a
dimension free bound. Let us give some partial results in this direction.

The first is a dimension free bound for a transport-entropy inequality. We recall that if k :Rd ×Rd →R+

is a cost function, then the optimal transport cost related to this k, is defined, for all probability measures
ν1 and ν2, by

Tk (ν1,ν2) = inf
π

∫
k(x, y)dπ(x, y),

where the infimum is taken over the set of all couplings π between ν1 and ν2. Let T2,4 and T2 denote the
transportation costs associated to (x, y) 7→ ‖x − y‖2

4 and (x, y) 7→ |x − y |2 (here and in the whole paper, | · |
denotes the Euclidean norm).

Theorem 1.4 (Transportation-entropy inequality). Let µ be a probability measure on Rd supported in
Bd (0,R). The probability µ?γδ satisfies the following transport-entropy inequalities: for any probability
measure ν on Rd ,

T2,4(ν,µ?γδ) ≤C (R,δ)H(ν|µ?γδ),

T2(ν,µ?γδ) ≤
p

dC (R,δ)H(ν|µ?γδ),

where C (R,δ) = c ′δ2
(
1+ R2

δ2

)
exp

(
4R2

δ2

)
for some universal constant c ′.
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Let us remark that the factor
p

d in this last result is better than the linear factor d that follows by
deducing T2 from the logarithmic Sobolev inequality (1) by Otto-Villani’s theorem (see [OV00; BGL01]).

Finally, we are able to get bounds on the logarithmic Sobolev constant in several restricted cases.

Theorem 1.5 (Partial results).

• The quantity Cd (δ,R) may be bounded only in terms of δ and R in the region δ> R/
p

2.

• If µ is radially symmetric, then

CLS(µ?γδ) ≤ 4δ2 exp

(
8

π

R2

δ2

)
.

• If µ is a uniform discrete probability measure on N ≥ 3 points,

CLS(µ?γδ) ≤ δ2 +3log(N )δ2 exp

(
4

R2

δ2

)
.

• The logarithmic Sobolev inequality restricted to log-convex functions holds with a constant that does
not depend on the dimension.

To prove or disprove the conjecture, one is tempted to guess the measure µ that leads to the worst
logarithmic Sobolev constant. A natural candidate, proposed in [Zim14a, Example21], is the two-point
measure 1/2(δRe1 +δ−Re1 ) (where e1 denotes the first basis vector). Note that this candidate is easily seen to
satisfy a logarithmic Sobolev inequality with a bounded constant, either by the bound on discrete measures
or by a simple tensorization argument of a one-dimensional convolution with a (d − 1)-dimensional
Gaussian law. To build a counterexample one would have to consider measures with a number of points
that grows with the dimension.

Outline of the paper. The paper is organized as follows. In Section 2 we use the perturbation idea
of Holley-Stroock, by rewriting the potential of µ?γδ as a sum of a convex function and a bounded
perturbation, proving the first two items of Theorem 1.3. In Section 3, viewing µ?γδ as a mixture of
Gaussian measures we prove the Poincaré and transportation inequalities (Theorems 1.2 and 1.4) and
establish the bound for discrete measures (third item of Theorem 1.5). Theorem 1.2 yields the final
bound on logarithmic Sobolev constants (the third item in Theorem 1.3) as an easy corollary. The various
remaining results in Theorem 1.5 are proved in Section 4.

2 Perturbation arguments

2.1 Large variance

The density p of µ?γδ is given explicitly by :

p(z) =
∫
Rd

1

(2πδ2)d/2
exp

(
−|z −x|2

2δ2

)
µ(d x) = 1

(2πδ2)d/2
exp

(
−

( |z|2
2δ2 +Wδ(z)

))
where

Wδ(z) =− log
∫
Rd

exp

(
z · x

δ2 − |x|2
2δ2

)
µ(d x)

=− log
∫
Rd

exp
( z · x

δ2

)
ν(d x)− logCν
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for Cν =
∫
Rd exp(−|x|2/(2δ2))µ(d x) and ν(d x) =C−1

ν exp(−|x|2/(2δ2))µ(d x). Let us compute the Hessian of
(−Wδ):

∂zi (−Wδ)(z) = 1

δ2 E(X̃i ) and ∂2
zi z j

(−Wδ)(z) = 1

δ4 Cov(X̃i , X̃ j )

where the distribution of X̃ is proportional to exp(z · x)dν. Therefore, for any unit vector v ,

0 ≤ Hess(−Wδ)v · v ≤ 1

δ4 Var(v · X̃ ).

Since v · X̃ lives in [−R,R], its variance is bounded by R2, so

Hess(− log(p)) ≥
(

1

δ2 − R2

δ4

)
Id .

Remark 1. This bound is slightly better than the one given in [Zim14a] where the variance of v · X̃ is
bounded by 2R2.

In particular, if δ> R, p is log-concave and the Bakry-Émery criterion yields:

CLS(µ?γδ) ≤ δ4

δ2 −R2 .

This proves the first item in Theorem 1.3.

2.2 A perturbation argument

It turns out we can get a (dimension dependent) bound on the logarithmic Sobolev constant with a very
short proof, using the following trick to decompose the logarithm of the density p as a sum of a convex
function and a bounded perturbation.

Let ad = E [|Z |] be the expected value of the norm of a standard Gaussian random variable Z in
dimension d . Note that ad has an explicit expression (we will use below that a1 =

p
2/π) and is in any case

smaller than
p

d .

Lemma 2.1 (Miclo’s trick, [Led01a; Roy07]). Suppose the function W : Rd → R may be written as W =
Wc +Wl where Hess(Wc ) ≥ ρId , and Wl is l -Lipschitz with respect to the Euclidean distance.

Then for any σ> 0, one can write W as a sum Uc +Ub where Hess(Uc ) ≥
(
ρ− l a1

σ

)
Id and Ub is bounded

by lσad .
In particular the measure Z−1

W exp(−W ) satisfies a logarithmic Sobolev inequality and

CLS
(
Z−1

W exp(−W )
)≤ 4

ρ
exp

(
4

ρ
l 2a1ad

)
.

By way of comparison, it is known (see [AS94; Aid98]) that if µ0 = exp(−V0)d x satisfies a logarithmic
Sobolev inequality, then ν= exp(−V )d x satisfies a defective logarithmic Sobolev inequality, as soon as
the gradient ∇(V −V0) satisfies some exponential integrability condition. This defective inequality can be
used together with the Poincaré inequality to obtain the logarithmic Sobolev inequality. This strategy is
used in [WW13] (see in particular [WW13, Lemma 2.3] for a precise statement of the perturbation result).
It is more general, since it only supposes a logarithmic Sobolev inequality for the unperturbed measure,
and replaces a boundedness assumption by an integrability condition. The trade-off is that the constants
are not explicit.

Since the statement of Lemma 2.1 in [Led01a; Roy07] contains a typo in the convexity bound, let us
provide a detailed proof.
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Proof. Let σ > 0 and Uσ be the following regularized version of Wl : Uσ(x) = E [Wl (x +σZ )], where Z is
a standard d-dimensional Gaussian random variable. Let Uc = Wc +Uσ and Ub = Wl −Uσ. Since Wl is
l-Lipschitz,

|Ub(x)| = |E [Wl (x)−Wl (x +σZ )]| ≤ lσE [|Z |] ≤ lσad .

Therefore Ub is bounded.
We now turn to the convexity bound. It is enough to prove that, for any unit vector v in Rd , HessUσv ·

v ≤ l c1
σ . First we compute the derivatives of Uσ:

∂iUσ(x) = (2πσ2)−d/2 1

σ2

∫
Rd

Wl (y)(yi −xi )exp

(
−

∣∣x − y
∣∣2

2σ2

)
d y

= (2πσ2)−d/2 1

σ2

∫
Rd

Wl (x + z)zi exp

(
− |z|2

2σ2

)
d z

∂i jUσ(x) = (2πσ2)−d/2 1

σ2

∫
Rd
∂ j Wl (x + z)zi exp

(
− |z|2

2σ2

)
d z.

Now,

HessUσv · v = (2πσ2)−d/2 1

σ2

∫
Rd

(v ·∇Wl (x + z))(v · z)exp

(
− |z|2

2σ2

)
d z .

Since Wl is l-Lipschitz,

|HessUσv · v | ≤ (2πσ2)−d/2 l

σ2

∫
Rd

|v · z|exp

(
− |z|2

2σ2

)
d z.

By rotation invariance of the standard Gaussian distribution, we get

|HessUσv · v | ≤ l

σ2 E [σ|Z1|] ≤ l a1

σ
.

This implies that Hess(Wc +Uσ) ≥ (ρ− l a1
σ )Id , as claimed.

The final claim is a direct consequence of the obtained decomposition with σ= 2l a1/ρ, the Holley–
Stroock perturbation Lemma and the Bakry–Émery criterion (see [Roy07]).

Let us now use this lemma to prove the one-dimensional bound in Theorem 1.3. Write − log(p) as

− log(p(z)) =
( |z|2

2δ2 + d

2
log(2πδ2)

)
+Wδ(z).

The first term is δ−2-convex. Since

∇Wδ(z) =− 1

δ2

∫
Rd x exp

( z·x
δ2

)
ν(d x)∫

Rd exp
( z·x
δ2

)
ν(d x)

,

and ν(Bd (0,R)) = 1, Wδ is R/δ2-Lipschitz on Rd . Lemma 2.1 then yields

CLS(µ?γδ) ≤ 4δ2 exp
(
4a1ad R2δ−2) .

This gives a first dimension dependent bound that is not comparable to the one from Theorem 1.1. In
dimension 1, since a1 =

p
2/π, we get the bound claimed in the second item of Theorem 1.3.
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3 Mixture arguments

3.1 Poincaré inequality

In this section we denote by γx,δ the distribution Nd (x,δ2Id ). Recall that µ?γδ = ∫
Rd γx,δdµ(x). The

variance of a function f under the mixture µ?γδ can be classically decomposed as

Varµ?γδ( f ) =
∫
Rd

Varγx,δ( f )dµ(x)+Varµ

(
x 7→

∫
f dγx,δ

)
= A+B.

Since γx,δ satisfies the Poincaré inequality with constant δ2, the first term A is bounded by

δ2
∫
Rd

∫
Rd

∣∣∇ f
∣∣2dγx,δdµ(x) = δ2

∫
Rd

∣∣∇ f
∣∣2d(µ?γδ) .

For the second term B let g : x 7→ ∫
Rd f dγx,δ. Duplicating variables yields

B = 1

2

Ï
Rd×Rd

(g (x)− g (y))2dµ(x)dµ(y).

Now

(g (x)− g (y))2 =
(∫
Rd

f dγx,δ−
∫
Rd

f dγy,δ

)2

=
(∫
Rd

f

(
1− dγy,δ

dγx,δ

)
dγx,δ

)2

=
(
Covγx,δ

(
f ,

(
1− dγy,δ

dγx,δ

)))2

≤ Varγx,δ( f )Varγx,δ

(
1− dγy,δ

dγx,δ

)
by Cauchy-Schwarz inequality. For the first factor we reapply the Poincaré inequality for the Gaussian
measure γx,δ. The second factor is the χ2 divergence between the Gaussian distributions γx,δ and γy,δ. An

easy computation shows that this divergence is
(
exp

(∣∣x − y
∣∣2/δ2

)
−1

)
; since

∣∣x − y
∣∣ is bounded by 2R, we

get

(g (x)− g (y))2 ≤ δ2(exp
(
4R2/δ2)−1

)∫
Rd

∣∣∇ f
∣∣2dγx,δ.

Reintegrating with respect to µ yields

B ≤ δ2(exp(4R2/δ2)−1
)∫
Rd

∣∣∇ f
∣∣2d(µ?γδ),

so that the measure µ?γδ satisfies a Poincaré inequality with a constant

CP (µ?γδ) ≤ δ2 exp(4R2/δ2) .

3.2 A mild dependence on d for logarithmic Sobolev constants via Lyapunov functions

The proof of the logarithmic Sobolev inequality in dimension greater than 1 in [Zim14a] is based on a
criterion from [CGW10]. This criterion uses a Lyapunov function approach to prove a so-called defective
logarithmic Sobolev inequality, which can then be strengthened using the Poincaré inequality. In [Zim14a],
this Poincaré inequality is itself obtained by Lyapunov criteria, with constants depending exponentially on
the dimension. Simply plugging our dimension-free Poincaré inequality in the argument of [CGW10] gives
a much better bound.

Let us first recall the criterion, in the form used in [Zim14a], where the constants are explicitly written.
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Theorem 3.1 (Logarithmic Sobolev inequality via Lyapunov functions, [CGW10]). Suppose that V satisfies

Hess(V ) ≥−K Id

with K ≥ 0, and there exists a “Lyapunov function”, that is, a function W ≥ 1 such that

∆W −〈∇V ,∇W 〉 ≤ (b − c|x|2)W (2)

for some positive constants b, c.
Suppose that ν= Z−1

V exp(−V )d x satisfies a Poincaré inequality with constant CP (ν). Let A and B be
defined by

A = 2

c

(
ε−1 +K /2

)+ε,

B = 2

c

(
ε−1 +K /2

)(
b + c

∫
Rd

|x|2dν(x)

)
.

Then ν satisfies a logarithmic Sobolev inequality and CLS(ν) ≤ A+ (B +2)CP (ν).

Zimmermann proves in [Zim14a] that (2) holds with b = d/(8δ2)+R2/(32δ4) and c = 1
64δ4 for the

function W (x) = exp
( 1

64δ4

)
. Using the bound K ≤ R2/δ4 and choosing ε= 2/K , this proves that, for δ≤ R,

thanks to the bound on the Poincaré constant,

CLS(µ?γδ) ≤
(
K1d +K2

R2

δ2

)
R2 exp

(
4

R2

δ2

)
for some universal constants K1, K2, which is the general bound announced in Theorem 1.3.

3.3 A bound for uniform discrete measures

Suppose in this section that µ is a uniform probability measure on N points in Bd (0,R):

µ= 1

N

N∑
i=1

δxi .

The distribution of S = X + Zδ is a mixture of N Gaussian laws with respective means xi and common
covariance matrix δ2Id . Poincaré and logarithmic Sobolev inequalities for mixtures of two measures
have been studied by Chafaï and Malrieu in [CM10]; Schlichting and Menz [Sch12; MS14] have used and
generalized their results to prove Eyring-Kramers formulæ. The decomposition of the variance used in
Section 3.1 has the following analogue for entropies:

Entµ?γδ
(

f 2)= ∫
Rd

Entγx,δ

(
f 2)dµ(x)+Entµ

(
x 7→

∫
Rd

f 2dγx,δ

)
. (3)

To bound the second term, we use the following result, that is essentially a consequence of the discrete
logarithmic Sobolev inequality for the complete graph proved by Diaconis and Saloff-Coste in [DS96].

Theorem 3.2 (Upper bound for the entropy when µ is discrete, [Sch12]). Let µ = ∑N
i=1 Ziµi be a finite

mixture of measures. Let Z? = min1≤i≤N (Zi ). Then for any f ,

Entµ

(
i 7→

∫
Rd

f 2dµi

)
≤ 1

Λ(Z?,1−Z?)

(
N∑

i=1
Zi Varµi ( f )+Varµ

(
i 7→

∫
Rd

f dµi

))
,

where Λ(p, q) = (p −q)/(log p − log q).
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Proof. This follows from [Sch12, Corollary 2.18], using the result from [DS96] instead of the alternate
[Sch12, Lemma 2.13].

Coming back to the decomposition (3), we can use the Gaussian logarithmic Sobolev inequality on the
first term and Theorem 3.2 on the second term to get:

Entµ?γδ( f 2) ≤ 2δ2
∫
Rd

∣∣∇ f
∣∣2dµ(x)+ 1

Λ(1/N , (N −1)/N )

(
1

N

N∑
i=1

Varγδ,xi
( f )+Varµ

(
i 7→

∫
Rd

f dγδ,xi

))
.

The last bracket is the variance Varµ?γδ( f ), which is bounded thanks to the Poincaré inequality. Since
1

Λ(p,1−p) ≤
log(1/p)

1−2p , we finally get

CLS(µ?γδ) ≤ 2δ2 +3log(N )δ2 exp(4R2/δ2).

3.4 Dimension free transport-entropy inequality for the `4 norm

We now adapt the arguments of Section 3.1 to prove that the measure µ?γδ satisfies a transport-entropy
inequality with a constant depending only on R and δ. It is more convenient in this section to state and
prove all intermediate results for δ= 1. In the final result we come back to the general case by an immediate
scaling argument.

The first step is to establish a weighted version of the Poincaré inequality.

Lemma 3.3 (Weighted Poincaré inequality for Gaussian measures). For all x ∈Rd , the Gaussian measure
γx,1 satisfies the following weighted Poincaré inequality: for all C 1 function f ,

Varγx,1 ( f ) ≤ c(1+|x|2)
∫
Rd

d∑
i=1

1

1+u2
i

(∂i f (u))2 dγx,1(u) ,

where c is a positive universal constant.

Proof. Let us first establish the result for the standard Gaussian distribution γ = N (0,1) in dimension
d = 1. According to the well known Muckenhoupt criterion for Hardy type inequalities (see e.g. [Ané+00,
Theorem 6.2.1]), the inequality∫ ∞

0

(
f (u)− f (0)

)2 dγ(u) ≤ c
∫ ∞

0

1

1+u2 f ′(u)2 dγ(u)

holds for all C 1 function f : [0,∞) →R, with the constant

c = sup
y≥0

∫ ∞

y
e−u2/2 du

∫ y

0
(1+u2)eu2/2 du <∞.

Similarly, for any C 1 function f on (−∞,0], it holds∫ 0

−∞
(

f (u)− f (0)
)2 dγ(u) ≤ c

∫ 0

−∞
1

1+u2 f ′(u)2 dγ(u) .

Therefore, if f is now C 1 function on R, one has

Varγ( f ) ≤
∫
R

( f (u)− f (0))2 dγ(u) ≤ c
∫
R

1

1+u2 f ′(u)2 dγ(u) .
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Applying this inequality to f (u) = g (x +u), u ∈R, yields

Varγx,1 (g ) ≤ c
∫
R

1

1+ (v −x)2 g ′(v)2 dγx,1(v) .

Since 1+ v2 ≤ 1+2(v −x)2 +2x2 ≤ 2(1+x2)(1+ (x − v)2), the claim holds for the Gaussian measure γx,1 in
dimension 1.

To prove the general case, just remark that, for any x ∈Rd , γx,1 is the product of the (one dimensional)
measures γ1,xi . The classical tensorization property for Poincaré–type inequalities yields

Varγx,1 (g ) ≤ 2c max
i

(1+x2
i )

∫
R

d∑
i=1

1

1+ v2
i

(∂i g (v))2 dγx,1(v) ,

which completes the proof.

This result extends to mixture of Gaussian measures.

Proposition 3.4 (Weighted Poincaré inequality for µ?γ1). Let µ be a probability measure on Rd supported
in Bd (0,R). The probability µ?γδ satisfies the following weighted Poincaré inequality: for all C 1 function f
on Rd ,

Varµ?γ1 ( f ) ≤C (R)
∫
Rd

d∑
i=1

1

1+u2
i

(∂i f (u))2 d(µ?γ1)(u) , (4)

with C (R) = c(1+R2)e4R2
for some universal constant c.

Proof. According to Lemma 3.3, for all x ∈Rd such that |x| ≤ R, it holds

Varγx,1 ( f ) ≤ c(1+R2)
∫
R

d∑
i=1

1

1+u2
i

(∂i f (u))2 dγx,1(u)

for all C 1 function f on Rd . Inserting these weighted Poincaré inequalities into the proof given in Sec-
tion 3.1 immediately yields the desired bound.

We now arrive at a first transportation-entropy inequality.

Theorem 3.5. Let µ be a probability measure on Rd having its support in Bd (0,R). The probability µ?γ1

satisfies the following transport-entropy inequality: for any probability measure ν on Rd ,

Tk (ν,µ?γ1) ≤ c ′(1+R2)exp(4R2)H(ν|µ?γ1) ,

where c ′ is a universal constant and Tk is the optimal transport cost related to the cost function

k(x, y) = min
(|x − y |2; |x − y |)+min

(‖x − y‖4
4,‖x − y‖2

4

)
, ∀x, y ∈Rd .

Before proving this result, let us show how to deduce Theorem 1.4 as a corollary. The Euclidean and `4

norms on Rd satisfy:
∀z ∈Rd , ‖z‖4 ≤ |z| ≤ d 1/4‖z‖4 .

This gives the following lower bound on the cost k:

k(x, y) = min
(|x − y |2; |x − y |)+min

(‖x − y‖4
4,‖x − y‖2

4

)
≥ min

(‖x − y‖2
4;‖x − y‖4

)+min
(‖x − y‖4

4,‖x − y‖2
4

)
≥ ‖x − y‖2

4.
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By Theorem 3.5 we get

T2,4(ν,µ?γ1) ≤Tk (ν,µ?γ1) ≤ c ′
(
1+R2)exp

(
4R2)H(ν|µ?γ1);

where we recall that T2,4 is the transportation cost associated to (x, y) 7→ ‖x − y‖4. The inequality for a
general δ follows by a simple scaling argument. The inequality for the Euclidean cost T2 is proved in the
same way, by bounding k(x, y) from below by d−1/2

∣∣x − y
∣∣2. This concludes the proof of Theorem 1.4.

Proof of Theorem 3.5. We proceed in two steps.

1. A transport-entropy inequality with an intricate cost. Let us define three functions α, ω and T by

∀u ∈R, ω(u) = sign(u)

(
|u|+ u2

2

)
;

∀u ∈R, α(u) = min(u2; |u|) ;

∀x ∈Rd , T (x) = (ω(x1), . . . ,ω(xd )) .

According to [Goz10, Theorem 4.6], the weighted Poincaré inequality (4) implies (and is actually
equivalent to) the following transport cost inequality: for all probability measure ν on Rd ,

Tk̃ (ν,µ?γ1) ≤ H(ν|µ?γδ),

where the cost function k̃ is defined by

k̃(x, y) =α
(

1

D

∣∣T (x)−T (y)
∣∣) , ∀x, y ∈Rd (5)

and where D = c ′′
p

C (R) for some universal constant c ′′.
For the sake of completeness, let us give the short proof of the implication we need. Let us begin by

showing that the measure µ̃ := T#(µ?γ1) satisfies the usual Poincaré inequality with the constant 2C (R).
Indeed, if f is a C 1 function, applying the weighted Poincaré inequality (4) to g = f ◦T and using the
elementary bound (ω′(v))2 ≤ 2(1+ v2) yields:

Varµ̃( f ) ≤C (R)
∫ d∑

i=1

1

1+ v2
i

ω′(vi )2(∂i f )2(T (v))d(µ?γ1)(v)

≤ 2C (R)
∫ ∣∣∇ f

∣∣2(u)d µ̃(u).

According to a well known result by Bobkov, Gentil and Ledoux [BGL01, Corollary 5.1] showing the
equivalence between the Poincaré inequality and a transport inequality involving a quadratic-linear cost,
the probability µ̃ satisfies the following: for any probability measure ν on Rd ,

Tρ(ν, µ̃) ≤ H(ν|µ̃),

where the cost function ρ :Rd ×Rd →R+ is defined by

ρ(x, y) =α
(

1

D

∣∣x − y
∣∣) , x, y ∈Rd ,

where D = c ′′
p

C (R) for some universal constant c ′′. Let ν be a probability measure on Rd and let (X̃ , Ỹ ) be
an optimal coupling between ν̃ := T#ν and µ̃ (for the transport cost Tρ) and denote by X = T −1(X̃ ) and
Y = T −1(Ỹ ). Then (X ,Y ) is a coupling between ν and µ?γ1 and it holds

E
[
k̃(X ,Y )

]= E [
ρ(T (X ),T (Y ))

]= E [
ρ(X̃ , Ỹ )

]=Tρ(ν̃, µ̃) ≤ H(ν̃|µ̃) = H(ν|µ?γ1),

11



where the last equality comes from the fact that if ν¿µ?γ1, then ν̃¿ µ̃ with

d ν̃

d µ̃
(u) = dν

d(µ?γ1)

(
T −1(u)

)
, ∀u ∈Rd .

This concludes the first step.

A lower bound on the cost function k̃. We now bound k̃(x, y) from below by the more convenient cost
function k(x, y). According to [Goz10, Lemma 2.6], |ω(u)−ω(v)| ≥ω(|u − v |/2), for all u, v ∈R. Therefore,
for all x, y in Rd : ∣∣T (x)−T (y)

∣∣2 =∑
i

∣∣ω(xi )−ω(yi )
∣∣2

≥∑
i
ω

( ∣∣xi − yi
∣∣

2

)2

=∑
i

(
1

2

∣∣xi − yi
∣∣+ 1

8

∣∣xi − yi
∣∣2

)2

≥ 1

4

∑
i

∣∣xi − yi
∣∣2 + 1

64

∑
i

∣∣xi − yi
∣∣4

≥ 1

32

(
1

2

∣∣x − y
∣∣2 + 1

2
‖x − y‖4

4

)
.

Using the inequality α(au) ≥α(a)α(u) for all a,u ∈R ([Goz10, Lemma 2.6]) and the concavity of the
function u 7→α(

p
u), u ∈R+, this leads to the following bound on the cost function k̃:

k̃(x, y) ≥α
(

1

D
p

32

(
1

2

∣∣x − y
∣∣2 + 1

2
‖x − y‖4

4

)1/2
)

≥ 1

2
α

(
1

D
p

32

)(
α(|x − y |)+α(‖x − y‖2

4)
)

,

Finally, it is easy to check that α
(

1
D
p

32

)
≥ c ′′′

C (R) for some universal constant c ′′′, which completes the

proof.

Remark 2. If one could improve the conclusion in the result by Bobkov, Gentil, Ledoux and conclude that
µ̃ satisfies the transport inequality with the cost function

(x, y) 7→
d∑

i=1
α

(
1

D

∣∣xi − yi
∣∣)

instead of ρ, then one would conclude that µ satisfies Talagrand’s inequality, with respect to the Euclidean
norm, with a dimension free constant.

4 Special cases and extensions

4.1 Spherically symmetric measures

We prove in this section the following claim of Theorem 1.5:

12



Theorem 4.1. If µ is a spherically symmetric measure with support in Bd (0,R), then µ?γδ satisfies a
logarithmic Sobolev inequality and

CLS(µ?γδ) ≤ 4δ2 exp

(
8

π

R2

δ2

)
.

Let us recall that µ?γδ is the law of the random variable S = X +δZ . By assumption, the law µ of X is
spherically symmetric, that is, invariant by any vectorial rotation of Rd . Since Z has the same invariance,
this implies that the density p(z) of S only depends on the norm of z, thus we can write:

p(z) = p(|z|e1) =
∫
Rd

1

(2πδ2)d/2
exp

(
− 1

2δ2

(
(|z|−x1)2 +

d∑
i=2

x2
i

))
dµ(x1, x2, . . . , xd ) .

Denoting, for all r ∈R,

p̂δ(r ) =
∫
R

1

(2πδ2)1/2
exp

(
− (|z|−x1)2

2δ2

)
d µ̂1(x1)

the density of the convolution of γδ with the first marginal µ̂1 of the measure

1

(2πδ2)(d−1)/2
exp

(
− 1

2δ2

d∑
i=2

x2
i

)
dµ(x1, x2, . . . , xd ) ,

one has p(z) = p̂δ(|z|).
Since the one-dimensional measure µ̂1 is supported in the interval [−R,R], the method from Section 2.2

apply. Using Lemma 2.1, with σ= 2Ra1, we obtain a decomposition

− log(p̂δ(r )) = wσ(r )+wb(r ) ,

where wσ : R→R is 1/(2δ2)-convex and wb : R→R is bounded by 2(Ra1/δ)2.
Since the measure µ̂1 is symmetric, the function p̂δ is even, so that wσ and wb constructed in the proof

of Lemma 2.1 are even too.
This entails a decomposition of p on Rd as a sum

− log(p(z)) =Wσ(z)+Wb(r )

by taking Wσ(z) = wσ(|z|) and Wb(z) = wb(|z|). The function Wb is of course bounded by 2(Ra1/δ)2.
We prove in Lemma 4.2 below that Wc is convex. The conclusion follows by the same reasoning as in
Section 2.2.

Lemma 4.2. Let w : R→R be a C 2, even, and ρ-convex function. Then W : Rd →R defined by W (z) = w(|z|)
for all z ∈Rd is also C 2 and ρ-convex.

Proof. Let us denote N (z) = |z|. For any z 6= 0, one computes

∇N (z) = 1

|z| z

Hess N (z) = 1

|z|
(

Id − 1

|z|2 zzT
)

By composition with w , one deduces, for any z 6= 0,

∇W (z) = w ′(|z|)
|z| z

HessW (z) = w ′′(|z|)
|z|2 zzT + w ′(|z|)

|z|
(

Id − 1

|z|2 zzT
)

.
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These two quantities converge respectively to 0 and w ′′(0)Id when z → 0. By a classical continuation
lemma, this implies that W is C 2 with ∇W (0) = 0 and HessW (0) = w ′′(0)Id .

By assumption, w ′′(|z|) ≥ ρ for any z ∈Rd . Furthermore, for any z 6= 0, w ′(|z|)
|z| ≥ ρ (since the assumptions

imply that 0 is a minimum of w). Finally, noting that zzT and
(
Id − 1

|z|2 zzT
)

are the orthogonal projections

on Vect(z) and z⊥, one gets that HessW (z) ≥ ρId for any z ∈Rd .

4.2 Dimension free log-Sobolev for δ ∈ (R/
p

2,R)

The first item of Theorem 1.3 states that for δ> R, the probability measure µ?γδ satisfies a logarithmic
Sobolev inequality with an explicit, dimension free, constant. In this section, we improve on this result by
proving the first point of Theorem 1.5.

The proof of the following result relies on the connections between functional inequalities and con-
centration of measure inequalities. The well known Herbst argument shows that the logarithmic Sobolev
inequality implies a Gaussian concentration of measure phenomenon. More precisely, if µ is a probability
measure on Rd satisfying the logarithmic Sobolev inequality with a constant CLS , then for any 1-Lipschitz
function f :Rd →R, it holds

µ
(

f ≥ m + t
)≤ e−t 2/CLS , ∀t ≥ 0,

where m = ∫
f dµ (see e.g. Theorem 5.3 of [Led01b]). On the other hand, a recent result by E. Milman

[Mil10] shows that conversely under some curvature assumptions a sufficiently strong Gaussian concen-
tration of measure inequality implies back the logarithmic Sobolev inequality. It appears that in the range
of parameters R/

p
2 < δ< R the measure µ?γδ is sufficiently concentrated to apply Milman’s result.

Theorem 4.3. Suppose that R/
p

2 < δ < R, then µ?γδ satisfies a logarithmic Sobolev inequality with a
constant depending only on R and δ and not on d.

Proof. Let us examine the concentration properties of X +δZ where X and Z are independent random
variables with respective laws µ and Nd (0, Id ). If f : Rd → R is a 1-Lipschitz function, then denoting by
m = E [

f (X +δZ )
]
, it holds for any t ≥ 0

P
[

f (X +δZ ) ≥ m + t
]= EX

[
P

[
f (X +δZ ) ≥ m + t |X

]]
≤ EX

[
exp

(
− 1

2δ2

[
t +m −EZ

[
f (X +δZ )

]]2
+

)]
where the second inequality follows from the concentration inequality satisfied by δZ (which is for instance
a consequence of the fact that γδ satisfies the logarithmic Sobolev inequality with the constant 2δ2). Now,
for any x ∈ Bd (0,R),∣∣m −EZ

[
f (x +δZ )

]∣∣= ∣∣EX
[
EZ

[
f (X +δZ )− f (x +δZ )

]]∣∣≤ EX [|X −x|] ≤ 2R.

Therefore EZ
[

f (X +δZ )
]≤ 2R +m almost surely, hence

P
[

f (X +δZ ) ≥ m + t
]≤ exp

(
− 1

2δ2 [t −2R]2
+
)

.

In particular, for any 0 < ε< 1, it holds

P
[

f (X +δZ ) ≥ m + t
]≤ exp

(
− ε

2δ2 t 2
)

, ∀t > 2R

1−p
ε

:= tε.

On the other hand, the density of the law of X +δZ is of the form e−Vδ , with a function Vδ such that
HessVδ ≥ 1

δ2 − R2

δ4 =−κδ. In this range of parameters, κδ > 0. According to Theorem 1.2 of [Mil10], as soon

as ε
2δ2 ≥ 1

2κδ (which means that R/δ<p
1+ε), the probability measure µ satisfies a Gaussian isoperimetric

inequality, which in turn implies the logarithmic Sobolev inequality with a constant depending only on
the parameters ε,R,δ.
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4.3 Dimension free log-Sobolev for log-convex functions

Recall the following results by Maurey.

Theorem 4.4 ([Mau91, Theorem 3]). Let X be a bounded random variable such that |X | ≤ R a.s. Then X
satisfies the so called convex τ-property :

E
[

eQ4R2 f (X )
]
E

[
e− f (X )

]
≤ 1,

for any convex function f :Rd →R, where Qs f (x) = infy∈Rd

{
f (y)+ |x−y|2

4s

}
, s > 0.

On the other hand, the Gaussian random variable δZ with law Nd (0,δId ) satisfies the following
τ-property

E
[

eQδ2 f (δZ )
]
E

[
e− f (δZ )

]
≤ 1,

for any function f :Rd →R ([Mau91, Theorem 2]).
By the tensorization property of the convex τ-property ([Mau91]), one concludes that (X ,δZ ) satisfies

the following τ-property

E
[

eQ̃ f (X ,δZ )
]
E

[
e− f (X ,δZ )

]
≤ 1,

for any convex function f :Rd ×Rd →R, where

Q̃ f (x1, x2) = inf
(y1,y2)∈Rd×Rd

{
f (y1, y2)+ 1

16R2

∣∣x1 − y1
∣∣2 + 1

4δ2

∣∣x2 − y2
∣∣2

}
.

In particular, applying the inequality above to f (x1, x2) = g (x1 +x2), and using the fact that

inf
y1+y2=y

{
1

16R2

∣∣x1 − y1
∣∣2 + 1

4δ2

∣∣x2 − y2
∣∣2

}
= 1

4C (δ,R)

∣∣x1 +x2 − y
∣∣2,

with C (δ,R) = δ2 +4R2, one concludes that X +δZ satisfies

E
[

eQC g (X+δZ )
]
E

[
e−g (X+δZ )

]
≤ 1,

for any convex function g :Rd →R.
According to [Goz+14], this inequality is equivalent to the following transport type inequality

T 2(ν1,ν2) ≤C (δ,R)
(
H(ν1|µ?γδ)+H(ν2|µ?γδ)

)
,

for all probability measures ν1,ν2 on Rd , where H( · |µ?γδ) denotes the relative entropy functional and

T 2(ν1,ν2) = inf
X1∼ν1, X2∼ν2

E
[ |X1 −E [X2|X1] |2 ]

.

It is also shown in [Goz+14] that this transport inequality implies the following logarithmic Sobolev
inequality

Entµ?γδ(e f ) ≤ 8(δ2 +4R2)
∫

|∇ f |2e f dµ?γδ,

for any convex function f :Rd →R. This proves the fourth item of Theorem 1.5.
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