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A new integral formulation is presented, enabling the computation of resistive, inductive and capacitive effects considering both
conductors and dielectrics in the frequency-domain. The considered application here allows us to neglect any propagation effects and
magnetic materials. In this paper, we will show how to improve the unstructured-PEEC (U-PEEC) approach to consider dielectric
materials, keeping the same benefits. Results obtained with this formulation are compared to experimental data.
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I. INTRODUCTION

Electromagnetic problems coupled with external circuit can
be efficiently solved using the partial element equivalent circuit
(PEEC)[1]. It is an integral equation based method, transform-
ing a meshed electromagnetic device into a circuit of lumped
elements R-L-C and sources. The classical PEEC is limited,
because only structured mesh are supported. This limitation has
recently been overcome by using facets element[2] for general
meshes. This major improvement enables the treatment of more
complex geometries.

The PEEC is used for a wide range of frequency, from
low-frequency application[3] to telecommunication devices as
antennas[4]. Most of these applications only consider conduc-
tive materials, and deals with different type of geometrical
regions (volume or surface).

The contribution of this paper is to extends the PEEC method
taking into account capacitive effects in presence of dielectric
materials. In this paper, the dielectric material is associated
to a volume mesh. We also have developed a variant of the
formulation where the dielectric mesh can be limited to its
boundary. This alternative will be presented in the full paper.

II. FORMULATION

Let us define the following regions: ΩJ and ΩD contains
respectively the conductors and the dielectrics, and Ω = ΩJ ∪
ΩD. Their borders are defined as ΓJ = ∂ΩJ and ΓD = ∂ΩD.

Let us consider a problem with conductors, dielectrics and
without any magnetic material. We have the following behavior
laws 

J = σE in ΩJ ,

D = εE = ε0E + P in ΩD,

B = µ0H

and according to Maxwell’s equation we get
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where A and V are the magnetic vector potential and the scalar
electric potential respectively.

The formulation limited to resistive and inductive
conductors[2] uses J as unknown. Its solenoidality was
imposed with a circuit solver. In this new formulation
considering dielectrics, a new unknown Jt is choosen:

Jt = J +
∂D

∂t
= (σ + jωε)E (5)

and thanks to (2), we have divJt = 0 in the whole problem.
Then, we are discretizing Jt using the same facet elements
interpolation as in [2] to overcome the structured mesh restric-
tion.

The integral equation consists in matching electrical behav-
ior law everywhere in the materials. From (3) and (4), we can
write

E(P) = −∂A
∂t

(P)−∇V (P) (6)

and using the behavior law defined in (5), we have in the
frequency domain:

Jt(P)

σ + jωε
= −jωA(P)−∇V (P). (7)

Thus, the use of a standard Galerkin projection in the
frequency-domain leads to the following matrix system

([Rt] + jω[Lt]) {I} = {δV } (8)
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Fig. 1. Example of a primal and dual mesh with capacitive external branches.

with [Rt] and [Lt] are the resistive sparse-matrix and the
inductive dense-matrix respectively. The right-hand-side vector
is the voltage of the dual mesh branches (see Fig. 1), where the
dual mesh represents the equivalent electrical circuit. We can
notice that Vi is the averaged voltage on element i(or averaged
voltage on border facets of Γext )[2]. Ij is the current flowing
trough the facet j.

The equation (8) corresponds to incomplete circuit equa-
tions. Actually, the capacitive effects are yet not taken into
account, so we have to add some capacitive branches linking
the border facets of Γext to a common node ∞, as shown on
the Fig. 1. We suppose V∞ = 0. So,
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Finally, the equation to solve is(

[Rt] + jω[Lt] +
1

jω
[Pt]

)
{I} = {δV }. (12)

In practise, we use a circuit solver to ensure the current
conservation. This solver does not need any geometrical in-
formation, so the conservation is ensured for any geometry
and discretization.

For high frequencies, we used an equivalent thin shell model
for the conductors[5] to facilitate the consideration of the skin
effect in the thickness.

III. NUMERICAL EXAMPLE

We have tested our formulation on a real device (see Fig. 2),
made of two layers of copper 35µm-thick separated by a layer
of dielectric FR4 with a thickness of 1.47mm (Fig 2).

The device is meshed using 1, 143 hexahedrons which leads
to 3, 940 degree of freedom. Here, the mesh is light enough to
compute the solution using a direct solver. The Lower Upper
(LU-factorization) solution takes about 15 seconds on a Dell
Precision M4800 with an Intel(R) Core(TM) i7-4800MQ CPU

@2.70GHz and 32Go RAM.

Fig. 2. Picture and dimensions of the studied device.

Fig. 3. Impedance modulus versus frequency. In blue: The reference (mea-
surements), in red: the simulation results.

In addition, this formulation allows us to solve large scale
problems using compression techniques, as the H-matrices[6],
on the dense integral matrices [Lt] and [Pt].

The impedance measurements without any connection be-
tween conductors (opened-circuit) and simulation are com-
pared on the Fig. 3.

We can see that the frequency of almost all peaks match
pretty well, until high frequency effects appear. On the other
hand, the amplitude of the peaks does not match exactly.

IV. CONCLUSION

We have presented a new formulation to consider conductors
and dielectrics with a very few restrictive hypothesis. Thanks
to the circuit solver, it can be applied to any geometry and
external electrical circuit can easily be added.
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