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Modelling sequences using pairwise relational features

Rudy Sicard∗, Thierry Artières

LIP6, Université Paris 6, 104 Avenue du Président Kennedy, 75016 Paris, France

We propose a new framework for the modelling of sequences that generalizes popular models such as hidden Markov models. Our approach relies on 
the use of relational features that describe relationships between observations in a sequence. The use of such relational features allows implementing 
a variety of models from traditional Markovian models to richer models that exhibit robustness to various kinds of deformation in the input signal. 
We derive inference and training algorithms for our framework and provide experimental results on on-line handwriting data. We show how the 
models we propose may be useful for a variety of traditional tasks such as sequence classification but also for applications more related to diagnosis 
such as partial matching of sequences.

1. Introduction

A number of models have been proposed for sequence processing,

recognition and segmentation. In order to make learning tractable

these models generally rely on a number of simplifying assump-

tions, this is the case of one of the most popular models for sequence

processing, namely hidden Markov models (HMM). A number of ex-

tensions of HMM have been proposed to take into account depen-

dencies between observations in a sequence. One may cite among

others regressive HMMs [16] and trajectory models [14]. These sys-

tems allow taking into account local temporal dependencies between

observations.

Recently, conditional models have been proposed to overcome

some of the major drawbacks of HMM and more generally of gener-

ative models, conditional random fields (CRF) is one of these models

[12] which has been recently used in the handwriting field [19]. The

nature of these conditional models avoids making any restrictive

assumption about the input data distribution; no simplifying

assumption is required. Although these models have been shown to

outperform more traditional generative models like HMM in a few

information retrieval tasks such as part-of-speech tagging, they are

not so well adapted to real-valued sequence recognition tasks such

as on-line handwriting recognition. Also, conditional models are

learned in a discriminative way that fits well a classification task but

may not be adapted for other tasks of interest in sequence processing
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and in on-line handwriting in particular, such as diagnosis tasks.

Diagnosis covers a wide range of applications; it aims at giving an

accurate evaluation about the quality of a sequence with respect to

a model.

The goal of this study is to develop efficient models of sequential

data for various tasks such as sequence recognition and segmenta-

tion but also for more general sequence analysis tasks such as par-

tial recognition, rejection, diagnosis. The main idea of this work is

to take into account relationships between all the observations in

the input sequence. Rather than assuming independence between

observations, we consider pairwise relational features between all

pairs of observations and assume these are independent. A pairwise

relational feature is any feature defined over a pair of observations.

We focused on pairwise features and did not consider in this work

triple-wise or higher order relational features since it increases dras-

tically algorithmic complexity. Hence without ambiguity we will use

relational features for pairwise relational features. Our modelling

leads to a generative model whose distribution on input sequences

is rather close to random fields. The choice of relational features and

of the choice of a probability distribution to model these may lead

to various models, traditional models such as HMM are special cases

of this modelling scheme.

Relational features have also been used in the image process-

ing field, e.g. for image segmentation. For instance, Markov random

fields are a popular technology for integrating relationship among

neighbouring pixels in order to smooth pixel labelling [10].

Although we describe experiments on on-line handwritten sig-

nals this work is not dedicated to such signals and could be applied

to a variety of sequences and signals as well as to fixed dimen-

sional data. In the context of handwriting relational features may
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correspond to position and spatial features. Using spatial informa-

tion has proved to be useful to improve recognition accuracy [13].

It is often used with simplifying constraints [6] or as a post process-

ing step [13] except in the case of Asian character recognition [5,23]

and simple drawings analysis [7] where ad hoc methods have been

investigated. These latter methods are ad hoc in that they are ded-

icated to handwriting. They often rely on spatial relational features

exploiting the two-dimensional characteristic of handwriting. Usual

features characterize the relative spatial positions (on the left, on the

right, below, touching, etc.) of the different parts in a drawing. The

application of our modelling framework to handwriting will allow us

to show how spatial information may increase the system's robust-

ness to noisy signals, extra strokes or temporal ordering variations.

We present the motivations and the principle of our approach

in Section 2. Then we discuss in Section 3 how our formalism may

be used to implement a variety of models for sequence processing

tasks. Next we detail inference and training algorithms in Section 4.

Finally in Section 5 we report experimental results gained on on-line

handwriting data. We first investigate the behaviour of our mod-

elling framework and the robustness of the modelling with respect

to various deformations in the input signal. Then we show how our

models may be used for recognition of complete or partial sequences.

Note that a shorter description of this work has been published

in [18]. Compared to this previous version, the present work first

describes in more detail learning and inference algorithms and sec-

ond includes additional experimental results.

2. Relational modelling for sequences: motivations and principle

Usual models for sequence processing include generative models

such as HMMs and discriminative models such as CRF models. Dis-

criminative models usually lead to increased accuracy in particular

for classification tasks, while generative models may be preferred

when dealing with diagnosis or modelling tasks, or with segmenta-

tion tasks.

Usually generative models are used to implement a joint proba-

bility distribution p(x, y) over first a sequence of observations x, and

second, its segmentation, y, which is a sequence of labels (i.e. states).

This joint distribution is most often factorized in two terms, the like-

lihood of x, given the segmentation y, and the probability of y:

p(x, y) = p(x|y) × p(y) (1)

We consider in this study a rather classical modelling of the seg-

mentation probability p(y). Besides, we propose a new framework

for using relational features in the definition of the likelihood term.

We first present the use of relational features in the definition of

p(x|y), then we discuss the definition of p(y).

2.1. Likelihood of a sequence using relational features

The probability p(x|y) of a sequence of T observations x= x1 . . . xT
conditionally to a state sequence (i.e. a segmentation) y = y1 . . . yT
may be written as

p(x|y) =

T
∏

t=1

p(xt|x
t−1
1 , y) (2)

where xt−1
1 stands for x1 . . . xt−1. Distributions such as p(xi|x

i−1
1 , y)

being difficult to estimate, one traditionally introduces inde-

pendence assumptions to simplify inference and learning. For

instance, in HMM, one assumes conditional independence so that

p(xt|x
t−1
1 , y) = p(xt|yt). Such assumptions lead to efficient algorithms

but fail at taking into account complex and long range dependencies.

A number of attempts have been made for proposing richer models

by considering specific temporal local dependencies. A family of

such models consists, for instance, of segmental and trajectory mod-

els where one state emits globally a sequence of observations rather

than emitting a sequence of successive independent observations

[14].

We investigate here another alternative which consists of using

as much relational features (i.e. features that describe relationships

between observations) as possible for approximating p(xt|x
t−1
1 , y). We

are interested in approximations that may be expressed as a product

of potential functions of the following form:

p(xt|x
t−1
1 , y) ≈

1

Z(y, xt−1
1 )

f (xt , yt)
t−1
∏

j=1

g(xt , xj, yt , yj) (3)

where f and g may be any arbitrary potential functions and Z(y, xt−1
1 )

is a normalization factor that ensures the above quantity is a prob-

ability.

Function f encodes local dependencies between an observation

xt and the corresponding state variable yt while function g encodes

dependencies between pairs of observations and the corresponding

states. Such a pairwise modelling appears as an efficient alterna-

tive for estimating complex probabilistic distributions over a set of

variables. It is an interesting trade-off between expressive power

and tractability. It allows taking into account dependencies between

the predicted variable xt and multiple observed variables x1 . . . xt−1

through the dependencies of xt with each one of these observed

variables.

Hence, the form in Eq. (3) is quite general and exhibits more

expressive power than traditional models (e.g. HMM). Using Eqs. (2)

and (3) the probability of a sequence may be rewritten as

p(x|y) ≈
1

Z(y)

T
∏

t=1

⎡

⎣f (xt , yt)
t−1
∏

j=1

g(xt , xj, yt , yj)

⎤

⎦ (4)

The model in Eq. (4) exhibits some similarity with well-known pair-

wise Markov random fields that have been popularized in the image

segmentation and recognition processing field [10]. Pairwise Markov

random fields exploit g functions of the form g(yt , yj) between pairs

of labels only and observations are handled through f functions only.

For instance in image processing tasks xt is a local feature

describing a pixel (e.g. grey level) and g functions are used to in-

troduce smoothing constraints on labels of neighbouring pixels (yt
and yj).

The main difficulty in Eq. (4) lies in the normalization factor Z(y)

that may lead to complex and even intractable algorithm for in-

ference. This term may, however, be computed in particular cases,

for instance if all potential functions are Gaussian functions. In this

work we consider locally normalized potential functions so that

the model in Eq. (4) may be rewritten as a generative model as

follows:

p(x|y) ≡ p(s, r|y) =

T
∏

t=1

⎡

⎣p(st|yt) ×

t−1
∏

j=1

p(rt,j|yt , yj)

⎤

⎦ (5)

where s and r are two sets of features that are derived from x. The

representation (s, r) of an input sequence x may be viewed as a dual

representation of it. It is composed of:

• s=(s1, . . . , sT ) is a sequence of local feature vectors, where st stands

for a vector of local features. Although there may be many other

choices we systematically use in our implementation st = xt .

• r = {rt,j}1� t,j� T consists of a matrix of relational feature vectors

encoding pairwise relationships between all pairs of observations

xt and xj. rt,j stands for a vector of relational features that charac-

terizes the relationship between xt and xj, for instance rt,j =xt −xj.
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Fig. 1. Graphical representation of a dynamic pairwise relational model as in Eq. (6).

Nodes y correspond to labels (states), nodes s to local feature vectors and nodes r to

relational feature vectors. The model is represented unfolded for an input sequence

of length 4.

As we will see, various models may be implemented depending on

the definition of local feature vectors and of relational feature vec-

tors. To make things more concrete, a simple possibility may consist

of choosing st = xt and rt,j = xt − xj, we examine other choices in

Section 3.

2.2. Joint probability

We consider in this study only simple forms of the segmentation

probability p(y) (see Section 3.2). We considered two cases only. Ei-

ther we assume that p(y) is constant (i.e. segmentation are equiprob-

able), or we assume y obeys a first order Markov process (as in

HMMs). In this latter case p(y) rewrites
∏T

t=1 p(yt|yt−1) and the joint

probability in Eq. (5) may be expressed as

p(x, y) = p(s, r, y) =

T
∏

t=1

⎡

⎣p(st|yt) × p(yt|yt−1) ×

t−1
∏

j=1

p(rt,j|yt , yj)

⎤

⎦ (6)

with the convention that p(y1|y0)=p(y1). Fig. 1 illustrates the model

in Eq. (6) as a dynamic Bayesian network that has been unfolded for

an input sequence of size 4.

Other choices are possible for p(y). Although we will derive the

inference and learning algorithms in Section 5 in the particular case

of a constant probability function (i.e. all events are equiprobable)

p(y), our approach and derivations stand whenever the prior p(y)

may be factorized into a product of terms involving a pair of state

variables (yt , yj), i.e. p(y) may be written as a product of functions

g(yt , yj), which is the case in the two particular cases we consider

(uniform and Markovian).

3. Implementing various models

Various models may be implemented depending on prior choices

concerning the form of the segmentation probability p(y), the def-

inition of local feature vectors st and of relational feature vectors

rt,j, and the family of parametric probability distributions for these

feature vectors (e.g. p(rt,j|yt , yj)).

First note that models may be built that use one kind of features

only by using a uniform distribution over the features one wants to

omit (local or relational). For instance one may build standard HMM

by completely ignoring relational modelling which may be done by

assuming that p(rt,j|yt , yj) is uniform whatever yt and yj.

In the following we first discuss the choices concerning funda-

mental components of the models (definition of relational feature

vectors, etc). Then we detail how some classical models as well as

new ones, may be built within our framework.

3.1. Prior and structural choices

3.1.1. Relational modelling

Two main choices determine the nature of the likelihood in Eq.

(5), the choice of relational features and the related probability dis-

tribution, and the set of relational feature vectors actually exploited

in the model. We first discuss how limited relational modelling may

be defined through the use of a subset of relational feature vectors

only, and then we detail the definition of relational feature vectors.

3.1.1.1. Range of relational modelling. The formulation in Eq. (5)

makes use of all relational feature vectors between all pairs of ob-

servations, it is a general case. But one may choose to exploit a

subset only of all these relational feature vectors. This subset may

be defined according to a predetermined range of dependencies

between observations or it may depend on the segmentation.

First one may decide to define a model that exploits a subset of

relational feature vectors only, which correspond to pairs of obser-

vations that are close to each other. For instance a relational model

of range k takes into account relational features rt,j between observa-

tions ot and oj whose indexes differ from less than k, i.e. |t− j|<= k.

This may be done by assuming that p(rt,j|yt , yj) is constant if |t−j|> k.

Also, one may define the subset of relational features to consider

as a function of the segmentation y. For instance one may decide to

exploit intra-state dependencies only by assuming that p(rt,j|yt , yj) is

constant if yt � yj.

3.1.1.2. Relational features. Delta relational feature vectors: A first in-

tuitive choice for rt,j consists of using delta relational feature vectors

based on the difference between observations vectors, e.g. rt,j=xt−xj.

Delta features have been shown to be very efficient and have been

popularized in the field of speech recognition, but their uses were

limited to delta features between successive observations. These

delta features were implicitly used in standard Gaussian HMMs by

transforming, in the preprocessing step, observation feature vectors

xt (e.g. cepstral feature vectors) in what we call here local feature

vectors st of the form st = ( xt
xt−xt−1

). Our framework allows generaliz-

ing this delta modelling by exploiting delta feature vectors between

non-successive observations that may have been emitted in different

states. Of course, one may use non-linear delta relational features

instead of linear ones, e.g. quadratic delta relational features such as

rt,j = (
xt−xj

(xt−xj)
2 ) where (xt − xj)

2 stands for the vector of the squares of

the components of (xt − xj).

In our experiments we used Gaussian distribution for delta re-

lational feature vectors, hence p(rt,j|yt , yj) ≡Nyt ,yj (rt,j) whereNyt ,yj

stands for a Gaussian distribution associated with the pair of labels

(yt , yj), whose parameters are a mean relational feature vector �r
yt ,yj

and a covariance matrix �r
yt ,yj

.

Concatenated relational feature vectors: A more general choice

consists of choosing concatenated relational feature vectors rt,j to be

defined as the concatenation of observations vectors xt and xj, i.e.

rt,j = ( xtxj
). Using such feature vectors allows building richer mod-

els and include delta relational feature vectors as a special case.

This comes from the fact that one can extract xt and xj from ( xtxj
),
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a byproduct being that one can compute xt − xj. Let note 1p the

identity p × p matrix and 0p the null p × p matrix, with p being the

dimension of the feature vectors xt , and let define

P1 = (1p0p) =

⎛

⎜

⎝

1 0 0 0
. . .

. . .

0 1 0 0

⎞

⎟

⎠

and

P2 = (0p1p) =

⎛

⎜

⎝

0 0 1 0
. . .

. . .

0 0 0 1

⎞

⎟

⎠

Then, xt = P1 × rt,j and xj = P2 × rt,j and one can implement delta

relational feature vectors as a special case by defining

p(rt,j|yt , yj) ≡Nyt ,yj (P1 × rt,j − P2 × rt,j) (7)

Using such relational feature vectors allows building models, for

instance predictive models [11]. As above one may use richer

(e.g. non-linear) concatenated relational features including

powers of input observations, for instance one may use concate-

nated quadratic relational features such as

rt,j =

⎛

⎜

⎜

⎝

xt
(xt)

2

xj

(xj)
2

⎞

⎟

⎟

⎠

3.1.2. Segmentation probability

As we said previously, we investigated only two choices for the

segmentation probability in our experiments, whichwe present now.

A first possibility is to consider that p(y) is uniform, which leads

to what we call relational models. Such models take into account the

temporal ordering of the observations through relational modelling

only. Consequently in such models, the segmentation of an observa-

tion sequence is driven by relational features between observations

rather than by their temporal order. This may be very interesting in

some pattern matching problems and in diagnosis problems as we

will see in the experimental section (see Section 5).

Second, we considered a standard choice in Markovianmodelling,

where y is assumed to obey a first order Markov process, and is then

modelled with a Markov chain. In particular, this allows implement-

ing standard models such as HMMs and predictive models.

3.2. Examples of models

We detail now how to build various models within our frame-

work.

3.2.1. Hidden Markov models (HMMs)

In order to build a HMM model we choose local features as st =

xt and we assume Gaussian (or Gaussian mixtures) distributions,

p(st|yt)=Nyt (st). The model uses no relational modelling at all and

the segmentation probability is assumed to be given by a Markov

chain. Hence, one gets the usual HMM joint probability:

p(x, y) ≡ p(s, y) =
∏

t

p(st|yt) × ayt−1 ,yt (8)

In our terminology, this model is a local model since it does not

exploit relational modelling and it is a sequential model since it

exploits the temporal ordering of observations, through the use of

transition probabilities.

3.2.2. Pure relational models (PRM)

One may also build pure relational models (PRM) that do not

make use of local information at all (e.g. by using an uniform

distribution on local feature vectors s) and of temporal order of

observations (by using uniform p(y)). Consider a model that ex-

ploits extensive relational modelling (i.e. relational feature vectors

for all pairs of observations) with delta relational feature vectors. If

we choose to model these relational feature vectors with Gaussian

distributions, i.e. p(rt,j|yt , yj) ≡Nyt ,yj (rt,j), then

p(x, y) ∝

T
∏

t=1

t−1
∏

j=1

Nyt ,yj (rt,j) (9)

Such a model exploits all the available relational information to seg-

ment an input sequence without taking into account the temporal

order of observations at all. We call it a PRM. As we will see this

modelling is well suited to diagnosis tasks.

3.2.3. Hybrid relational models (HRM)

Based on the above ideas one may define a variety of models

depending on the choice of local and relational features, and on the

choice of corresponding distributions. The above subsections have

only shown some of the models that fit in our framework. Of course

it is possible to merge previous ideas, we give an example now. For

instance one may simultaneously use local features in a HMM-like

fashion as in Section 3.2.1, and delta relational features as in Section

3.1.1.2. At the end, the likelihood of an input sequence is defined as

p(x|y) =

T
∏

t=1

⎡

⎣N
l
yt
(st)

t−1
∏

j=1

N
r
yt ,yj

(rt,j)

⎤

⎦ (10)

whereNl
yt

stands for the Gaussian distribution over local features

andNr
yt ,yj

stands for the Gaussian distribution over relational fea-

tures.

It may happen that one wants to put more weight on local or

relational features, hence an alternate model consists of computing

p(x|y) =

⎡

⎣

T
∏

t=1

N
l
yt
(st)

⎤

⎦

wl

×

⎡

⎣

T
∏

t=1

t−1
∏

j=1

N
r
yt ,yj

(rt,j)

⎤

⎦

wr

(11)

where wl and wr are real values that allow weighting the relative

contributions of local and relational features to the final likelihood.

Such a modelling may be combined with various assumptions on

the segmentation probability, which may be assumed uniform, or

modelled with a Markov chain.

4. Algorithms

To improve the clarity of the presentation of ideas we consider

all along this section that the segmentation probability p(y) is uni-

form. Note, however, that, as we said previously, all the following

derivations stand for any factorized form of p(y). We first present

the inference algorithm, then we discuss the training algorithm in

the supervised case and in the unsupervised case.

4.1. Inference and segmentation

Given an input observation sequence x, the segmentation step

consists of finding the best label sequence ŷ, i.e. the one that maxi-

mizes P(y|x). This is performed though inference in a Bayesian net-

work corresponding to the Bayesian model expressed in Eq. (6) (cf.

Fig. 1). It is an inference problem which is NP-hard in our case

because of the existence of, eventually many, loops in the Bayesian

network [21].
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There are a number of algorithms for performing inference in

Bayesian networks, such as belief revision (BR) and belief propaga-

tion (BP) to name most popular ones [15]. BR aims at finding the

maximum a posteriori solution (MAP) for ŷ. It is an exact algorithm

for loop-less networks but its behaviour formore complex (i.e. loopy)

networks is less appealing [21], e.g. its convergence is not warranted.

Besides, although BP does not explicitly provide an approximation

for ŷ, and despite it is an exact algorithm for loop-less networks

only, BP is known to exhibit interesting properties for loopy net-

works [22], and to be more robust than BR for such networks. This

is why we chose to use BP for inference.

BP aims at calculating marginal distributions for every random

variable in the network, i.e. yt since other variables s and r are known

(computed from the input sequence x). The product of the marginal

distributions may be used as an approximation of the probability

P(y|x). Noting qt(·) the marginal distribution for random variable yt ,

one may use

P(y|x) ≈ q(y) =
∏

qt(yt) (12)

with qt(yt = l) =
∑

y:yt=lq(y).

Actually, it may be shown that this approximation of P(y|x) is the

best factorized approximation (i.e. in a product form like
∏

ht(yt)),

according to the Kullback–Leibler divergence criterion [4]:

q(y) = argmax
h(y) such that h(y)=

∏

ht(yt)

KL(P(y|x)‖h(y)) (13)

where KL(P(y|x)‖h(y)) denotes the Kullback–Leibler divergence

between the true distribution and its approximation h(y).

Note that if the features and the probability distributions are

chosen as in Section 3.2.1 in order to implement a HMM, BP pro-

duces the same result as the forward–backward algorithm, since it

is well-known that this latter dynamic programming algorithm is an

instance of BP [22].

Also, note that in the general case (infinite range of relational

modelling) the complexity of this BP algorithm is proportional to

T2L2 where T stands for the sequence's length and L stands for the

number of states.

4.2. Learning algorithm

Let �l be the set of parameters of the probability distribu-

tion of local feature vectors in state l, and let �l,m be the set of

parameters of the probability distribution of relational feature vec-

tors given a pair of states, l andm. Wewill abusively use the following

notation:

p(st|yt = l) = p(st|�l) (14)

p(rt,j|yt = l, yj = m) = p(rt,j|�l,m) (15)

Also, we will note � the set {�l/l=1 . . . L} (with L the number of states

in the model), � the set {�l,m/l,m = 1 . . . L}, and � = (�,�).
We first examine in Section 4.2.1 the supervised case where the

training data set is fully labelled, i.e. one has at his disposal the true

sequence of states corresponding to any sequence of observations.

Then we generalize to the unsupervised case and make use of the

inference algorithm described in previous section to derive an EM

learning algorithm.

4.2.1. Supervised case

Assume that the training set includes a complete labelling of

observation sequences. The learning set includes a set of pairs, each

consists of an observation sequence x and its corresponding label

sequence y, where x and y have the same length. Using superscript

to index the number of a training sample, we note X = {x1, . . . , xN}

the set of N training observation sequences and Y = {y1, . . . , yN}

the set of corresponding label sequences, and Tk the length of the k

th training sequence xk (and yk). Also we note dk = (sk, rk) the dual

representation of xk (as discussed in Section 2.1) and D={d1, . . . , dN}.

Then

p(�|D,Y) =
p(D,Y|�)p(�)

p(D,Y)
(16)

with

p(D,Y|�) = p(D|Y ,�) × p(Y|�) (17)

and

p(D|Y ,�) =

N
∏

k=1

p(sk, rk|yk,�,�) (18)

Besides, using Eq. (5)

p(D|Y ,�) =

N
∏

k=1

Tk
∏

t=1

⎡

⎣p(skt |�ykt
) ×

∏

j� t

p(rkt,j|�ykt ,y
k
j
)

⎤

⎦ (19)

where skt is the t th term in sequence sk. Let further assume that

one uses a prior on model parameters and that this prior may be

factorized as

p(�) =

L
∏

l=1

⎡

⎣p(�l)
L

∏

m=1

p(�l,m)

⎤

⎦ (20)

Then, using Eqs. (19) and (20)

p(�|D,Y) ∝

L
∏

l=1

⎡

⎣p(�l)
N

∏

k=1

Tk
∏

t=1

p(skt |�l)
�(ykt ,l)

⎤

⎦

×

L
∏

l=1

L
∏

m=1

⎡

⎣p(�l,m)
N

∏

k=1

Tk
∏

t=1

∏

j� t

p(rkt,j|�l,m)
�(ykt ,l)�(y

k
j
,m)

⎤

⎦

(21)

where we use the delta notation �(a, b) = 1 if a = b and �(a, b) = 0

otherwise.

Based on Eq. (21) the parameters of all potential functions may

be learned independently in order to maximize p(�|D,Y) so that any

learning method relying on the parameter's posterior probability can

be used. In our implementation we used the MAP criterion with

standard scale invariant priors for Gaussian distribution parameters

[2]. Hence optimal parameter values are chosen according to

�̂l = argmax
�l

p(�l)
∏

k,t

p(ski |�l)
�(ykt ,l) (22)

�̂l,m = argmax
�l,m

p(�l,m)
∏

k,t,j

p(rkt,j|�l,m)
�(ykt ,l)�(y

k
j
,m)

(23)

4.2.2. Unsupervised case

Most often the label sequences of training sequences are un-

known, the only labelling information for a sequence is a single class

label. For instance in handwriting recognition, the label information

corresponding to an observation sequence consists of the name of

the corresponding character. In such a case, computing the param-

eter posterior probability requires summing over all possible seg-

mentations Y:

p(�|D) =
∑

Y

p(�,Y|D) (24)
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Fig. 2. EM algorithm for a relational model.

This formulation comes with a problem; the summation over Y is

intractable and makes model parameters dependent on each other.

A popular solution to overcome this problem is to rely on an EM-like

algorithm, alike in HMM training. Following the derivation in [20,3],

we derive an EM algorithm that maximizes the expected logarithm

of the parameters posterior probability. Below, we provide some

details on how the algorithm can be instantiated for our model. As

usual, an iteration of the EM algorithm consists of an estimation

step, and then of a maximization step. The algorithm is illustrated

in Fig. 2.

In the �th iteration, the E-step consists of computing a distri-

bution over hidden variables (Y), given observed variables (D) and

model's current set of parameters (as computed in previous itera-

tion) �̂
�−1

. Next the M-step consists of choosing as the new set of

model's parameters, �̂
�
, the parameters that maximize the expected

log posterior probability P(�/D,Y), where the expectation is taken

over Y with the approximated distribution p(Y|�̂
�−1

,D).

As usual in EM like algorithms, what is actually needed in the M-

step are the marginal distributions and not the complete distribution

p(Y|�̂
�−1

,D). This is an important point since this means we can use

our inference algorithm (detailed in previous section in the E-step)

whose result is precisely the marginal distributions.

We show now that, like in the supervised case, the only required

quantities are marginals p(Y|�̂
�−1

,D) and that the parameters corre-

sponding to each state can be estimated independently. First note

that maximizing EY [logp(�|Y ,D)] is equivalent to maximizing its

exponential Q�
	
(�) = exp(EY [logp(�|Y ,D)]). Furthermore

Q�
	(�) = exp

∑

Y

p(Y|�̂
�−1

,D) × logp(�|Y ,D)

=
∏

Y

p(�|Y ,D)p(Y|�̂
�−1

,D) (25)

Since p(�|Y ,D) = p(D|Y ,�) × p(Y|�) × p(�)/p(D,Y), and assuming for

simplicity that p(Y|�) is uniform, we get

Q�
	(�) =

∏

Y

(

p(D|Y ,�) × p(Y|�) × p(�)

p(D,Y)

)p(Y|�̂
�−1

,D)

= Z(D) × p(�) ×
∏

Y

p(D|Y ,�)p(Y|�̂
�−1

,D) (26)

where we used that
∑

Y p(Y|�̂
�−1

,D) = 1 and that

∏

Y

p(�)p(Y|�̂
�−1

,D)
= p(�)

∑

Y p(Y|�̂
�−1

,D)
= p(�)

Then, based on �̂
�−1

, one can compute marginals

p(ykt = l|�̂
�−1

,D) =
∑

yk:ykt =l

p(yk|�̂
�−1

,D)

and p(ykt =l, yk
j
=m|�̂

�−1
,D). Finally, Q�

	
(�) may be put in the following

form:

Q�
	(�) =

L
∏

l=1

⎡

⎣p(�l)
N

∏

k=1

Tk
∏

t=1

p(skt |�l)
q�−1(ykt =l)

⎤

⎦

×

L
∏

l=1

L
∏

m=1

p(�l,m)
N

∏

k=1

Tk
∏

t=1

∏

j<t

p(rkt,j|�l,m)
q�−1(ykt =l,yk

j
=m)

(27)

where q�−1(ykt = l) stands for p(ykt = l|�̂
�−1

,D) and q�(ykt = ql, y
k
j

=

qm) stands for p(ykt = l, yk
j

= m|�̂
�−1

,D). It follows that the optimal

parameters � and � (with respect to a MAP criterion) are given by

�̂l = argmax
�l

p(�l)
∏

k,t

p(skt |�l)
q�(ykt =l) (28)

�̂l,m = argmax
�l,m

p(�l,m)
∏

k,t,j

p(rkt,j|�l,m)
q�(ykt =l,yk

j
=m)

(29)

Note that these terms are computed frommarginal distributions that

are approximated using the inference algorithm described in Section

4.1.

5. Experiments

As discussed in Section 3, various models may be implemented

from our framework that may fit with different applications, we give

a few examples below. Except if indicated, all the following exper-

iments have been performed on on-line handwritten signals of the

international benchmark Unipen database [8]. An on-line handwrit-

ing signal is a temporal signal representing the successive positions

of the pen (sampled at 100–200Hz), gathered with an electronic

tablet.

All the following experiments have been performed on digit

recognition in a writer-dependent mode (samples in training set

and the test set are written by the same writer). We only kept sig-

nals from the 12 writers who wrote at least 32 samples per digit in

order first to get acceptable training set sizes (up to 20 samples per

digit) and test set sizes (at least 10 samples per digit), and second

to fairly compare to previous works [1,13]. In all our experiments

(except for results in Fig. 7) we actually performed four experiments

per writer by randomly choosing 22 training samples per digit and

testing on the remaining samples (10 minimum and about 20 in

average), and we report averaged results over these four experi-

ments and over all the writers.

5.1. What does a relational model learn?

Here, to explore the modelling of relational features, we investi-

gate what has been learned by a PRM for the handwritten digit 7.

The model has three states and has been learned with three training

samples similar to the one in Fig. 3, bottom.

Fig. 3, top, illustrates the distributions over delta relational fea-

tures. It is a 3 × 3 matrix whose boxes illustrate the � parameters

corresponding to pairs of states (i.e. Gaussian distribution parame-

ters). Hence, the box on the l th row and the m th column illustrates

values of parameter �l,m = (�l,m,�l,m). The mean vector �l,m is an

average displacement vector between observations in states l and

m, it is represented by a straight line starting from the centre of the

box. The ellipse that is centred at the end of this average displace-

ment vector represents the dispersion modelled by the covariance

matrix �l,m. For example in box (1, 3) one can see that observations

corresponding to the third state are on the bottom and slightly on

6



Fig. 3. Illustration of the distributions over relational features (top) in a three

states purely relational model of digit 7 that has been learned with three training

samples of the digit 7 similar to the one shown (bottom), whose labelling (segment

associated to each of the three states) is shown.

the right of observations in the first state, with a high horizon-

tal variability and a low vertical variability. Note that a self-state

relation distribution (boxes of the diagonal) represents the deviation

of observations in the state, hence a null mean displacement vec-

tor, but the variability indicates the global orientation of the set of

observations in that state. For instance the second state mainly rep-

resents a vertical stroke while states one and three represent hori-

zontal strokes. Hence these distributions allow modelling both the

respective position of strokes (part of the drawing) with respect to

each other but also the respective positions of observations within

a part of the drawing.

5.2. Handwriting quality and robust segmentation

Evaluating the quality of an input handwriting signal may be

used for different purposes. First it may be used to design a rejection

mechanism in a handwriting recognition engine. One wants to reject

parts of an input sequence (e.g. words in a sentence) because of low

confidence on the recognition decision or because these parts may

correspond to out-of-vocabulary words. Rejection mechanisms are

often very simple and consist of comparing likelihoods to thresholds.

There are situations where more accurate diagnoses are required.

A second application is to evaluate the quality of handwriting in

order to detect potential problems in childhood. Hence, there is to-

day some interest in automating handwriting or hand draw diag-

nosis tools [7,9,17]. For such tasks, it is necessary to have a smart

analysis method for detecting poorly written or drawn part. In order

to do so one has to detect parts of letters that are badly written or

not written at all, to detect additional strokes, etc. Also, one has to

identify absolute and relative problems such as when two letters do

not have the same height, or when an “o” is not written clockwise

(i.e. in a non standard temporal ordering), or when a dot of an “i” is

far too high or big, etc. Such information may be gathered from the

Fig. 4. Example of a test sample (right) that is correctly segmented by a model

learned on sample written in reverse order (on the left). The segmentations of both

samples into states, as computed by the model, are indicated with states' index.
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Fig. 5. Percent of points for which segmentation of the original and of the corrupted

test sample differs, as a function of the level of perturbation N.

segmentation path. Robust segmentation is then required to design

automated diagnosis systems able to determine fine grain and ac-

curate information about the quality of a handwriting signal. Un-

fortunately, standard models (e.g. HMM) are very sensitive to ex-

tra strokes and noisy parts in an input signal. For instance, an extra

stroke usually perturbs the segmentation of remaining strokes of an

input signal.

We present here an illustration (Fig. 4) and some experiments

(Fig. 5) that show the robustness of relational modelling. As we show,

the use of relational features brings much robustness to the segmen-

tation of correct parts of an input signal. In the case of handwriting,

the relational model that we described in Section 2 is interesting in

that it allows identifying partial writings of letters as well as unex-

pected additional strokes.

We observed that relational modelling is robust against drawing

order variations and may recognize a letter whatever the temporal

order used. Fig. 4 illustrates this with an example. A model of digit

“8” with seven states has been learned from a set of training samples

that are similar to the sample on the left of the figure. On the right is

shown the best segmentation of a test sample that has been drawn

in reverse order as computed by this model (with the inference

algorithm described in Section 4.1). Segments of observations that

are associated to states according to the inference algorithm are
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delimited with filled circles and are labelled with the number of

the state. It may be seen that although the test sample (order

5, 6, 7, 1, 2, 3, 4) was not drawn in the same way as training samples

were (order 1, 2, 3, 4, 5, 6, 7, 8), the model has been able to correctly

segment the test sample. As suggested by this example, a relational

model can perform robust segmentation and is rather insensitive

to noisy information such as extra additional strokes, variations in

temporal order, etc.

We investigated in Fig. 5 the robustness of the segmentation

found by a relational model to perturbations in the ordering of

the strokes drawn. We performed experiments with our subset of

UNIPEN as described in the beginning of Section 5 (12 writers, 22

training samples, at least 10 testing samples, repeated 4 times),

where all test samples were artificially corrupted. Given an input

signal consisting of a sequence of a few strokes (separated by pen-

up moves), the signal is corrupted by combining a number of three

elementary steps: permuting two strokes, reversing the drawing

order of a stroke, splitting a stroke into two parts in order to obtain

two new strokes. These perturbations introduce a high level of noise

in the temporal order of the writings.

We made the noise level vary by corrupting handwriting sam-

ples with a varying number of perturbation steps. We built a test

database of samples that have been corrupted with N perturbations

of each one of the three elementary steps. For a level N corruption,

N “cuts” are first applied, then N “permutations” steps and finally N

“reverse” steps. Fig. 4 shows the difference between the segmenta-

tion obtained on the original test sample and on the corrupted one,

as a function of N. The curve corresponds to the percentage of points

for which the two segmentations differ. One may see that the first

level of perturbation (N = 1) introduces around 4% error then this

rate increases slowly to 9% for N = 10. Considering the corruption

level these results show that relational models are rather insensitive

to temporal perturbation.

5.3. Recognition

Of course, our models may also be used for character recognition

by training a model for each class (i.e. digit). Previous section has

shown that our models may score with high likelihood an input

sequence which is not complete with respect to the model (e.g. all

states are not visited), which can be responsible of misrecognition.

In order to perform recognition, one has to add a mechanism able

to handle this completeness information. This is done by estimating

during training probabilities that each state is observed. This allows

computing the probability that a particular segmentation fits well

the model. At recognition time, the score of a class is computed as

the product of the likelihood computed by the model and of the

probability of the correctness of the segmentation.

In a first series of experiments, we compare a number of standard

hybrid systems using Gaussian distributions and exploiting rough

observation features, the position of the pen and the direction of the

trajectory (estimated with finite differences). These systems use dif-

ferent relational feature ranges. The first system is a standard HMM

with a null range (no relational features) while next systems use

increasing values of the range. In all systems, HMMs are five states

left-right models. Table 1 shows that relational model significantly

outperform HMM with the same topology and reduce errors rates

by about 30% comparing to standard HMMs.

Fig. 6 provides another view of these results. As the range of

relational modelling increases, recognition accuracy increases up to

a maximum value that is reached for a range of about 10 (average

sequence length is around 30). On the one hand, it shows that tak-

ing into account dependencies between distant observations (on the

time axis, up to a third of the length of the sequence) may be effi-

ciently used for recognition. On the other hand, either the model is

Table 1

Recognition rate for digit recognition of standard HMMs, of hybrid relational models

(HRM) with increasing range, and of pure relational models (PRM).

System # states Range of relational features Accuracy

HMM 5 1 97.2

HRM 5 3 97.6

HRM 5 5 98.0

HRM 5 10 98.3

HRM 5 20 98.1

HRM 5 ∞ 98.2

PRM 5 ∞ 66.0
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Fig. 6. Recognition accuracy of hybrid relational models using an increasing range

for relational features.
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Fig. 7. Performances of the relational model of size 5 and the SHMM system for

different training sizes.

unable to capture longer range relationships (modelling long-term

dependencies is known to be difficult), or such longer range rela-

tionships are useless for recognition. A deeper analysis of this topic

(e.g. through additional experiments with other characters) would

be necessary to conclude about this phenomenon.

In a second series of experiments, we evaluate the capacity of

our systems to provide acceptable performance with few training

samples. In these experiments we compare to the segmental HMMs

(SHMM) of [13,1], which were specifically designed for this kind of

situation. We compare in Fig. 7 the accuracy of SHMM and of HRM as

a function of the number of training samples per digit. We observe

that relational model have better performance than the SHMM sys-
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Table 2

Accuracy of systems dedicated to on-line handwriting (with a specific preprocessing)

on a digit recognition task: segmental HMMs (SHMM) [13], standard HMMs, and

hybrid relational models (HRM).

System # states Range Accuracy

SHMM Automatic – 98.3

HMM 5 1 98.2

HMM 10 1 98.3

HRM 5 ∞ 98.5

HRM 10 ∞ 98.8

HRM Manual ∞ 99.0

tem, for moderate training size. Only for very small training sizes,

the SHMM system is better. This was expected since our model is

completely statistical and uses no prior knowledge, which is not the

case of the SHMM system.

In a third series of experiments we investigated the relative im-

portance of relational features and of local features for recognition.

We compare in Fig. 8 the performance of HRM when weighting dif-

ferently, at training and at recognition time, the local feature like-

lihoods and the relative features likelihood. We do this by imple-

menting the model of Eq. (11) and by making wl vary while linking

wr and wr through wl + wr = 1.

When wr = 0 only local features are used while when wr = 1

only relational features are used. It is interesting to note that the

combination of local and relational features is useful for a large range

ofwr values. Depending on theweight considering relational features

may help reducing the error-rate to up to 45% over the performance

of standard models exploiting local features only.

Finally in a last series of experiments we compare the perfor-

mances of more complex Markovian model, the SHMM [13,1]. These

models are dedicated to the on-line handwriting signal, they use

spatial relation features and can be trained with very few training

samples. We provide comparative results of HRM that are more ded-

icated to handwriting signals in that they make use of the same

dedicated preprocessing to the handwriting signal as in [13,1] (the

preprocessing takes into account pen-up and pen-down moves and

use a more detailed coding of trajectory direction angle). We do not

detail this preprocessing of the signal here since the main idea is to

fairly compare a mature system [13,1] with our new approach. As

may be seen in Table 2, HMMs and SHMMs perform similarly while

HRM allow reaching higher recognition rates, whatever the number

of states in digit models.

6. Conclusion and discussion

We presented a new modelling framework for sequences that

overcomes classical drawbacks of HMM concerning independence

assumption between successive observations. This framework ex-

plicitly models long range dependencies between observations in a

sequence by using pairwise relational features characterizing the re-

lation between each pair of observations. This strategy allows build-

ing a variety of models that exploit both local and relational features,

it includes HMM as a special case. We provided a detailed derivation

of inference and learning algorithms for these models. We showed

experimentally their intrinsic interest through on-line handwriting

experiments for tasks such as partial matching, diagnosis, sequence

recognition and segmentation. In particular we showed first that

our framework allows building systems that may outperform tuned

HMM based systems for classification tasks. Also we showed how

introducing relational features may bring much robustness to defor-

mations in the input signal such as extra parts, unusual temporal

ordering. A side effect of this is that our models may be used to de-

tect extra parts, deformed parts, and missing parts in a drawing. This

is a very new and original feature that may be exploited to build

accurate and smart diagnosis systems for e.g. handwriting quality

evaluation and disease detection.

There are natural extensions to this work. A first extension is to

use segmental models. In SHMMs emission probability functions are

defined on segments of observations rather than on isolated obser-

vations. These models have been shown to increase modelling accu-

racy. A segmental extension of relational models would allow taking

into account relational features between segments associated to dif-

ferent states, which seems intuitively appealing. Secondly we plan

to exploit higher order relational features (e.g. triple-wise relational

features) which requires designing more efficient algorithms in or-

der to deal with large sized applications. Finally we aim at apply-

ing this approach and its potential extensions to other application

fields such as textual data analysis. Our framework could actually fit

well with tasks such as information extraction where many items

has to be put in correspondence (name, location, date, event), or in

post-tagging where grammatical hints between words (concordance

rules. . .) could be successfully exploited.
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