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ABSTRACT  Safety issues in nuclear power plant involve complex bubbly flows. To predict the 

behavior of these flows, the two-fluid approach is often used. Nevertheless, this model induces a 

natural diffusion of interfaces, which results in a poor accuracy in the calculation of the local 

parameters. Therefore, to simulate large interfaces such as slugs or free surfaces, located methods have 

been developed using the single-fluid model. In this paper, the two approaches have been coupled in 

the CMFD code NEPTUNE_CFD to simulate adiabatic separated flows. The averaged momentum 

balance equations are solved for each field and are followed by an artificial compression step, which 

fixes the interface thickness and ensures mass conservation. Moreover, since the two-fluid model 

allows the existence of relative velocities at the interface, a drag force is used to cancel them. This 

article proposes also a new formulation for this force, to take into account the physical properties of the 

flow. To validate this approach, an analytical test case with a static bubble has been simulated with a 

mesh refinement test. Then, the simulation of the Kelvin-Helmholtz instability has been performed to 

highlight the effect of the modification of the drag force. The sheared interface is particularly sensible 

to this force, which has an important influence on the flow parameters such as the interface velocity. 

Finally, these developments have been compared to three other codes by simulating the Rayleigh-

Taylor instability. 

 

NOMENCLATURE 

 

Roman letters: 

C - Circularity 

𝐶𝑑  - Drag coefficient 

 𝑑𝑝 m Characteristic length scale 

 𝑑𝑝𝑑𝑖𝑠𝑝  m Diameter of the dispersed bubbles/droplets 

I kg. m
-2

.s
-2

 Interfacial momentum transfer 

k m
−1

 Wavenumber 

L m Perimeter 

n - Unit interface normal vector 

T Pa Viscous stress tensor 

U m/s Average interface velocity 



 

 

Greek letters: 

∆𝑥  m 
Cube root of the cell 

volume 

𝜅  m
−1

 Interface curvature  

Γ W/ m
3
 Interfacial mass transfer 

𝜔 s
−1

 Pulsation 

σ  N/m Surface tension coefficient 

𝛺  m
3
 Volume element 

𝜏 s Characteristic time scale 

 

 

INTRODUCTION 

 

Many situations in nuclear power plant are characterized by liquid vapor interfaces. Whereas these 

flows are well controlled at normal conditions, they could threaten the integrity of the reactor pressure 

vessel and conduct to a contamination of the environment with radioactive nuclei in case of 

hypothetical accidents. Therefore, important investigations are carried out to understand these complex 

flows.  

 

Bubbly flows occurring in nuclear power plant are often modelled with an Eulerian dispersed 

description within the two-fluid model of Ishii [1975]. In this method, the bubbles are small enough to 

be considered spherical. Thus, interfacial forces such as drag force, lift force, wall lubrication, virtual 

mass and turbulent dispersion force are implemented between the continuous field and these dispersed 

bubbles [e.g., Mimouni et al. 2011]. This approach seems then inappropriate to simulate larger and 

deformable bubbles. In fact, the interface location cannot be accurate due to the numerical diffusion. 

Therefore, large interfaces are usually simulated through located approaches using single-fluid models 

such as front tracking [e.g., Unverdi and Tryggvason 1992], level-set [e.g., Sussman et al. 1994] or 

Volume Of Fluid (VOF) [e.g., Hirt and Nichols 1981]. The VOF approach has been extensively used 

for the simulation of two-phase flows because mass conservation is ensured. Nevertheless, its low 

order of accuracy conducted the researchers to find alternatives. Thus, Unverdi and Tryggvason [1992] 

demonstrated the usefulness of the front tracking method on film boiling simulations. But, the 

algorithm has been criticized for its difficulty to follow topology changes at vapor-liquid interfaces. 

More recently, the level set methods have become interesting for their high order of accuracy. 

Nevertheless, research has been necessary to deal with their problem of mass conservation, highlighted 

by Enright et al. [2002]. Thus, Olsson and Kreiss [2005] proposed a conservative scheme to solve the 

advection equation of the level set function. 

 

In recent works, these two approaches have been combined to take advantages of both of them. The 

fluid motion is simulated within the two-fluid model whereas interfaces are located with a conservative 

level set method. The balance equations are solved for each field using the interfacial properties, 

accurately evaluated thanks to the level set method. Thus, Štrubelj [2009] implemented this method in 

his in-house code to simulate different stratified flows. His comparison with other codes highlighted 

the effect of the method on the interface smearing. Lately, Zuzio et al. [2013] applied the method to a 

primary atomization process.  

 

This method have become crucial over the last decades with the development of a new approach to 

simulate more accurately complex flows, which can contain at the same time bubbles with a large 

Subscripts and superscripts: 

𝑖𝑛𝑡  Interface 

i Space direction 

j Cell index 

k Phase index 



range of sizes and free surfaces. This approach, called the multifield approach, is based on the concept 

of a four field and a two-fluid model [e.g., Lahey and Drew 2001]. In this context, the accurate location 

of the large interfaces is crucial since the flow properties are highly influenced by these structures.  

 

In this paper, we adapt the above method in the CMFD code NEPTUNE_CFD [e.g., Mimouni et al. 

2014]. For this purpose, the interface sharpening equation developed by Olsson and Kreiss [2005] is 

implemented. Furthermore, a new drag force expression is proposed to take more into account the flow 

properties such as the fluid viscosity.  

 

In this article, we will first describe the equations of the two-fluid model in the case of two separated 

phases. The different relevant forces necessary for the simulation of this kind of flow will also be 

exposed. To validate this approach, a static bubble will be simulated with different mesh refinements. 

Then, a simulation of the Kelvin-Helmholtz instability in the Thorpe’s experiment configuration [e.g., 

Thorpe 1969] will be performed to highlight the effect of the drag force. Finally, these new 

developments implemented in the code NEPTUNE_CFD will be compared to other codes with the 

simulation of the Rayleigh-Taylor instability.  

 

COMPUTATIONAL MODEL 
 

Two-fluid model  The code NEPTUNE_CFD is based on an Eulerian approach with a finite volume 

discretization. The flow motion is followed using the two-fluid model of Ishii [1975] extended to n-

phase. In this model, the density, the viscosity and the local velocity are defined for each field in each 

cell j. 

 

This study is restricted to incompressible, laminar and adiabatic cases. Thus, no thermal energy is 

exchanged and no turbulence models are used. The following governing equations are solved for each 

phase k: 

 

 The mass balance equation : 

 

 𝜕𝑡𝜀𝑘
∗𝜌𝑘 + 𝜕𝑥𝑖

 𝜀𝑘
∗𝜌𝑘𝑢𝑖,𝑘 = 𝛤𝑘  (1) 

 

 The momentum equation in each space direction i : 

 

 
𝜕𝑡(𝜀𝑘

∗𝜌𝑘𝑢𝑖,𝑘) + 𝜕𝑥𝑗
 𝜀𝑘

∗𝜌𝑘𝑢𝑖,𝑘𝑢𝑗 ,𝑘 = 𝜕𝑥𝑗
 𝜀𝑘

∗𝑇𝑖𝑗 ,𝑘 − 𝜀𝑘
∗𝜕𝑥𝑗

𝑃 

                                                                           + 𝜀𝑘
∗𝜌𝑘𝑔𝑖 + 𝐼𝑖,𝑘 + 𝐹𝑖,𝑘  

(2) 

 

where 𝐹𝑖,𝑘denotes the extra source terms such as surface tension or drag models, which will be 

introduced further. 

Conservation of volume, mass and momentum leads to three others equations: 

 

  𝜀𝑘
∗ = 1

𝑘

 (3) 

 

  𝛤𝑘 = 0

𝑘

 (4) 

 

  𝐼𝑘 = 

𝑘

1

𝛺
  𝜍 𝜅𝑖𝑛𝑡

𝑖𝑛𝑡

𝑛𝑖𝑛𝑡 𝑑𝑆 (5) 

    



These equations do not allow to close the system. Therefore, in the code NEPTUNE_CFD, the 

assumption of a common pressure for all fields is made:  

 

 ∀k, Pk = P (6) 

 

Finally, models are used for the interfacial transfers. 

 

Surface tension  Clift et al. [1978] highlighted the necessity of surface tension forces to deal with 

flows containing large interfaces. Because the interface has a finite thickness in our approach, the 

choice is made to use the Continuum Surface Force (CSF) model proposed by Brackbill et al. [1992]: 

 

 𝑭𝑪𝑺𝑭  =  𝜍κ𝐧 (7) 

                               

with n the interface normal vector:  

 

 𝒏 =
∇𝜀𝑘

∗

||∇𝜀𝑘
∗||

 (8) 

 

and κ the local curvature: 

 

 κ =  − ∇.  
∇𝜀𝑘

∗

  ∇𝜀𝑘
∗  

  (9) 

 

However, since the code NEPTUNE_CFD is based on the two-fluid model, the Continuum Surface 

Force has to be splitted between the two fields. Therefore, the expression of the volumetric force 

becomes [e.g., Bartosiewicz et al. 2008]: 

 

 𝑭𝑪𝑺𝑭  = βk𝜍κ∇𝜀𝑘
∗dV (10) 

 

The coefficient βk  is chosen equal to 𝜀𝑘
∗ . In fact, Štrubelj [2009] compared this formulation to a mass 

formulation by simulating a pressure jump over a droplet interface. In this test case, the density ratio is 

large and surface tension plays a dominant role. He showed that the differences between the two 

models were minimal but the volume averaging still gave better results.  

 

Drag force  In the two-fluid model, the drag force is crucial. Contrary to the single fluid approach, 

with this model, two different velocities are defined, one for each phase. Therefore, at the interface, 

these two velocities can have two different values. The role of this force is then to ensure the equality 

of these velocities at the interface. The usual expression is [e.g., Strubelj 2009]: 

 

 𝐅𝐃𝐫𝐚𝐠 =  𝜀𝑙
∗𝜀𝑔

∗
𝜀𝑙

∗𝜌𝑙 + 𝜀𝑔
∗𝜌𝑔

𝜏
(𝒖𝒍 − 𝒖𝒈) (11) 

 

In a first approach, τ was taken equal to 1.10
−7 

s. Nevertheless, Denèfle [2014] simulated the 

experiment of Raymond and Rosant [2000] with this drag force. He showed that the results were in 

better agreement with the experimental data for cases with higher viscosities.  

 

 

 

 



Therefore, we developed a new expression. The new formulation is based on Equation (11) and used 

the Ishii’s definition of τ [e.g., Ishii 1975]: 

 

 
1

τ
=  

3𝜌𝑙𝐶𝑑

4𝜌𝑔𝑑𝑝
| 𝒖𝒍 − 𝒖𝒈 | (12) 

 

The drag coefficient 𝐶𝑑  is then defined by the Schiller and Nauman equation [e.g., Schiller and 

Nauman 1935]. Finally, the following drag force expression is obtained: 

 

𝜀𝑔
∗  < 0.3 ∶ 𝐅𝐛𝐮𝐛𝐛𝐥𝐞 =  𝜀𝑙

∗𝜀𝑔
∗

𝜇𝑙

𝜇𝑔

18𝜇𝑙

𝜀𝑙
∗𝑑𝑝

2
(𝒖𝒍 − 𝒖𝒈)  

 

𝜀𝑔
∗  > 0.7 ∶ 𝐅𝐝𝐫𝐨𝐩𝐥𝐞𝐭 =  𝜀𝑙

∗𝜀𝑔
∗

𝜇𝑙

𝜇𝑔

18𝜇𝑔

𝜀𝑙
∗𝑑𝑝

2
(𝒖𝒍 − 𝒖𝒈) (13) 

 

0.3 ≤ 𝜀𝑔
∗ ≤ 0.7 ∶ 𝐅𝐦𝐢𝐱 =  

0.7 − 𝜀𝑔
∗

0.7 − 0.3
𝐅𝐛𝐮𝐛𝐛𝐥𝐞 +  

𝜀𝑔
∗ − 0.3

0.7 − 0.3
𝐅𝐝𝐫𝐨𝐩𝐥𝐞𝐭  

 

The peculiarity of this new definition is that the viscosity becomes a parameter of the drag force 

intensity. Moreover, the new drag force anticipates the concept of the multifield approach, recently 

developed for the simulation of complex flows [e.g., Lahey and Drew 2001]. In fact, the expression is 

adapted to deal with a continuous and a dispersed field for each phase, in the same flow with possible 

mass exchanges between them. Smooth transitions between these fields are ensured by the definition of 

Fmix .  

 

The multifield model is also taken into account in the definition of the characteristic distance 𝑑𝑝 . The 

large interfaces and the small spherical bubbles, which belongs to a dispersed field are distinguished 

according to the value of 𝜀𝑙
∗𝜀𝑔

∗ . Thus, in the region of large interfaces, 𝜀𝑙
∗ ~ 𝜀𝑔

∗  ~ 0.5, which means that 

𝜀𝑙
∗𝜀𝑔

∗ ~ 0.25. In this domain, 𝑑𝑝  is taken equal to 
𝜀𝑘

∗

||∇𝜀𝑘
∗ ||

 . On the contrary, in cells with dispersed gas for 

example,  𝜀𝑔
∗ < 𝜀𝑙

∗ with 𝜀𝑙
∗ >  0.95. Therefore, for 𝜀𝑙

∗𝜀𝑔
∗ <  0.05,  𝑑𝑝  is chosen equal to the diameter of 

the dispersed bubbles/droplets. Between these two regions,  𝑑𝑝  is evaluated by interpolation of its two 

extreme values : 

                      

  𝑑𝑝  =  
𝜀𝑙

∗𝜀𝑔
∗ − 𝑏

𝑎 − 𝑏
 𝑑𝑝𝑑𝑖𝑠𝑝 +  

𝜀𝑙
∗𝜀𝑔

∗ − 𝑎

𝑏 − 𝑎

𝜀𝑘
∗

||∇𝜀𝑘
∗||

 (14) 

 

with a = 0.05 and b = 0.25. An illustration of the method chosen to define 𝑑𝑝  is proposed in Figure 1.  

This distribution of the characteristic distance 𝑑𝑝  ensures a smooth transition between this drag force, 

applied to the interfaces separated two continuous fields, and the drag force between a dispersed and a 

continuous field.  

 

Finally, in the new drag force expression, we can notice the adding factor  
𝜇 𝑙

𝜇𝑔
, which is not obtained 

theoretically. In fact, simulation results showed that this factor was necessary to reach an intensity of 

the drag force, which is able to cancel the velocity differences between the two continuous fields at the 

interface. 

 

 

 



 
 

Figure 2.  Sensitivity to the sharpening method. 

 

 

 
 

Figure 1.  Repartition of  𝑑𝑝  along the domain, large interfaces are located at high 

values of 𝜀𝑙
∗𝜀𝑔

∗. 

Interface sharpening  In the code NEPTUNE_CFD, the interface is located using a color function. 

Nevertheless, in the two-fluid model, the natural diffusion of this interface does not allow an accurate 

calculation of the interface properties such as the local curvature and the interface normal vector. 

Therefore, we locally solve the artificial compression equation proposed by Olsson and Kreiss [2005]:  

 

 𝜕𝜏𝜀𝑘
∗ + ∇ 𝜀𝑘

∗ 1 − 𝜀𝑘
∗ 𝑛 =  𝜖∆𝜀𝑘

∗ (15) 

 

The viscosity term 𝜖∆𝜀𝑘
∗  was added by Olsson and Kreiss [2005] to prevent discontinuities at the 

interface. The value of the parameters ∆𝜏 and 𝜖 is chosen to obtain a final interface width always 

equal to 5 cells whatever the initial interface diffusion, as shown in Figure 2. Strubelj [2009] proposed: 

 

 ∆𝜏 =
∆𝑥

32
 𝑎𝑛𝑑 𝜖 =

∆𝑥

2
 (16) 

 

Numerical scheme  A Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) solver is used 

in the code NEPTUNE_CFD [e.g., Patankar and Spalding 1972]. This algorithm can be summarized as 

followed: 

 

 Set the boundary conditions, 

 



 Evaluate the gradients of velocity and pressure, 

 Solve the discretized momentum equation to estimate an intermediate velocity field, 

 Compute the intermediate mass fluxes at cell faces, 

 Solve the pressure correction equation, 

 Update the pressure field by taking into account the pressure correction, 

 Solve the interface sharpening equation, 

 Correct the face mass fluxes, 

 Correct the velocity field using the pressure correction, 

 Update the densities. 

 

An iterative coupling of the equations is applied to ensure both mass and energy conservation. The data 

structure is face-based to allow simulations on arbitrary-shaped cells including nonconforming meshes.  

 

SIMULATION RESULTS 
 

In this part, we will validate the approach developed above on three different test cases. Beginning 

with a validation test case including a mesh refinement analysis, we will then compare the effect of the 

modification of the drag force expression with the simulation of the Thorpe’s experiment [e.g., Thorpe 

1969]. Finally, the results of the simulation of the Rayleigh-Taylor instability will be compared with 

other codes.  
 

Static bubble  For this test case, an air bubble is simulated in still water with an initial round shape and 

without gravity forces. Its initial diameter is taken equal to 2 cm. The mesh is a two-dimensional cube, 

with 5-cm sides. Six different mesh refinements are tested: 45 x 45 cells, 64 x 64 cells, 91 x 91 cells, 

128 x 128 cells, 181 x 181 cells and 256 x 256 cells. The time step is constant and equal to 0.1 ms 

except for the more refined mesh, where the time step is equal to 0.05 ms. Therefore, the CFL number 

is kept under 0.9. The simulations are performed for 0.1 s. At this time, we assume that the bubble has 

reached its final radius and pressure. 

The quantities observed are the relative error for the circularity C, evaluated using Equation (17), for 

the pressure, defined by the Laplace in Equation (18), and the average bubble velocity.  

 

 𝐶 =  
2𝜋𝑅0

𝐿
 (17) 

 

where 𝑅0 is the final bubble radius equal to 2 cm and L the bubble perimeter at the end of the 

simulation. 

 

 𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡 =  
𝜍

𝑅0
 (18) 

 

where 𝑝𝑖𝑛  is the pressure in the bubble and 𝑝𝑜𝑢𝑡  out of the bubble, 𝜍 corresponds to the surface tension 

coefficient equal to 0.08 N/m. 

 

All these parameters are plotted in Figure 3. The X axis of the three graphs corresponds to the 

dimensionless quantity obtained by dividing the bubble diameter by the cell length. 

In this figure, we note a convergence at second order for the circularity and at first order for the 

average velocity. Therefore, the intensity of spurious velocities decreases with the mesh refinement and 

remains low even with coarse meshes. Concerning the pressure, it seems that no convergence is 

obtained.   

 

 

 



 
 

Figure 3.  Effect of the mesh refinement on the relative error for the circularity and for 

the pressure and the average bubble velocity. 

 

 
 

Figure 4.  Schematic view of the Thorpe experiment at initial conditions [e.g., 

Thorpe 1969]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kelvin-Helmholtz instability  In this study, the Kelvin-Helmholtz instability is observed in the 

Thorpe’s experiment configuration [e.g., Thorpe 1969]. Two immiscible fluids are contained in a 

rectangular box, which is tilted for a small angle, sin(γ) = 0.072, as displayed in Figure 4. The Kelvin-

Helmholtz instability is observed when the relative velocity between the two fluids exceeds a critical 

velocity.  

 

In this test case, the velocity difference between the two fluids can be high in the bulk. Therefore, the 

two-fluid model can predict high relative velocities at the sheared interface. Thus, in this context, the 

drag force plays a crucial role. In fact, if the intensity of the drag force is inadequate, the simulated 

flow behavior can be dramatically affected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Theory.  We consider here an inviscid fluid flow with: 

 

 𝜌 =  
𝜌2    for 0 < 𝑧 < 𝑕
𝜌1   𝑓𝑜𝑟 𝑕 < 𝑧 < 𝐻

  (19) 

 

with 𝑕 = 𝑕1 = 𝑕2 =  
𝐻

2
 .   

 

The steady velocity distribution along the rectangular tube is: 

                                        

 𝑢 =  
−

∆𝑢

2
  𝑓𝑜𝑟 0 < 𝑧 < 𝑕

∆𝑢

2
     𝑓𝑜𝑟 𝑕 < 𝑧 < 𝐻

  (20) 

 

This parallel flow is assumed to be a solution of Euler equations upon which is superposed a small 

perturbation proportional to exp(𝑖 𝑘𝑥 + 𝜔𝑡 ). The linearization of the Euler equations gives the 

following dispersion relation: 

 

 𝜔 = 𝑘
∆𝑢(𝜌2 − 𝜌1)

2(𝜌1 + 𝜌2)
±  

𝜍𝑘3 + 𝑔𝑘(𝜌2 − 𝜌1)

(𝜌1 + 𝜌2)
th 𝑘𝑕 −

𝑘2∆𝑢2𝜌1𝜌2

(𝜌1 + 𝜌2)2
  (21) 

 

The system becomes unstable when the complex part of ω is non-zero, which provides the condition 

for the minimum critical velocity difference: 

 

 ∆𝑢2 >
(𝜌1 + 𝜌2)

𝜌1𝜌2
 𝜍𝑘 +

𝑔(𝜌2 − 𝜌1)

𝑘
  th 𝑘𝑕  (22) 

 

The critical wavenumber is then obtained by calculating the minimum of the right-hand side of 

Equation (22): 

  

 𝑘𝑐 =  
𝑔(𝜌2 − 𝜌1)

𝜍
 (23) 

                                                  

This corresponds to a theoretical value of 232 m
−1

. Experimentally, the measured values were equal to 

𝑘𝑐  = 197 ± 58 m
−1

. 

Moreover, if viscosity and closed-end effects are neglected, the velocity distribution at the beginning of 

the simulation is: 

    

 

 
 
 

 
 𝑢2 = −

(𝜌2 − 𝜌1)𝑕1𝑔sin(𝛾)

(𝜌1𝑕2 + 𝜌2𝑕1)
𝑡    𝑓𝑜𝑟 0 < 𝑧 < 𝑕

𝑢1 =
(𝜌2 − 𝜌1)𝑕2𝑔sin(𝛾)

(𝜌1𝑕2 + 𝜌2𝑕1)
𝑡    𝑓𝑜𝑟 𝑕 < 𝑧 < 𝐻

  (24) 

                         

From this equation, Thorpe [1969] predicted the time of the instability onset between 1.5 s and 1.7 s 

and observed experimentally tonset = 1.88 ± 0.07 s. Finally, he evaluated the wave velocity at  

uwaves = 2.38 cm/s and observed uwaves = 2.6 cm/s. 

 

 



 

 

Simulation results. Both fluid layers have the same initial height h1 = h2 =1.5 cm. The properties of the 

two fluids are: ρ1 = 780 kg/m
3
, μ1 = 1.5.10

-3
 Pa.s, ρ2 = 1000 kg/m

3 
and μ2 = 1.10

-3
 Pa.s.  

Surface tension is equal to σ = 0.04 N/m. 

     

The dimensions of the computational domain are L = 1.83 m and H = 3 cm (see Figure 4). The mesh 

contains 80 x 4880 cells. A wall boundary condition is imposed everywhere except in front and behind, 

where symmetry boundary planes are defined. The simulation is performed with an adaptive time step 

with an initial value equal to 1 ms and a maximum CFL number of 0.9. 

 

With this test case, we observe the effect of the modification of the drag force. The results are 

compared in terms of  interface shape, critical wavenumber, wave velocity, time of the instability onset 

and evolution of the maximum value of the average interface velocity at the beginning of the 

simulation. The following expression is used to evaluate U: 

 

 U =  
𝜀1

∗𝜌1𝑢1 + 𝜀2
∗𝜌2𝑢2

𝜀1
∗𝜌1 + 𝜀2

∗𝜌2
 (25) 

 

 

In Figure 5, an example of the Kelvin Helmholtz instability over time is displayed for the two drag 

forces. A FFT analysis of the interface is performed to obtain the critical wavenumber. The results are 

displayed in Figure 6. The critical wavenumber obtained with the previous drag force with τ = 1.10
−7

 s 

is equal to 174 m
−1 

and to 195 m
−1

 with the new drag force given by Equation (13). These results are in 

good agreement with the experimental and theoretical data. As a comparison, Bartosiewicz et al. 

[2008] found 143 m
−1

 and Štrubelj [2009] 157 m
−1

. 

 

The interface is also examined in terms of amplitude growth in order to evaluate the time of the 

instability onset. For this purpose, the standard deviation of the interface is evaluated every 0.2 s until 

3.2 s. The results are presented in Figure 7.  With the previous drag force with τ = 1.10
−7

 s, tonset is 

found equal to 1.7 s and 1.6 s with the new drag force given by Equation (13). These results agree well  

with the simulations of Bartosiewicz et al. [2008] with tonset = 1.9 s, Štrubelj [2009] with tonset = 2 s and 

the theoretical and experimental data.      

 

 

 

 

 

 

 
 

Figure 5.  Influence of the drag force expression in terms of interface shape, left: previous drag 

force with τ = 1.10
−7

 s, right: new drag force given by Equation (15), only the middle 0.6 meters 

long section of the channel is shown. 



 
 

Figure 7.  Amplitude growth obtained by evaluating the standard deviation of the interface over 

time. 

 

 

Moreover, Figure 8 presents the maximum value of the average interface velocity U over time. The 

new drag force is in better agreement with the theory. In fact, since the new drag force expression 

considers the physical properties of the flow, the numerical instabilities are reduced.  

In Figure 9, the velocity profiles are displayed for the two drag forces. We can notice that, at the 

interface, the velocities of the two fluids are equal.  

 

Finally, the wave speed uwaves is evaluated by calculating the crest-to-crest distance at different 

positions in the tube. Figure 10 gives an example of the waves used for this calculation. We find  

uwaves = 3.9 cm/s with the previous drag force with τ = 1.10
−7 

s and uwaves = 2.5 cm/s with the new drag 

force given by Equation (13). These results agree well with the simulations of Bartosiewicz et al. 

[2008] with uwaves = 2.5 cm/s and Štrubelj [2009] with uwaves = 3 cm/s. 

 

 

 

 

 

 

 
 

Figure 6.  FFT analysis of the interface, left: previous drag force with τ = 1.10
−7

 s, right: new 

drag force given by Equation (13), only the middle 0.6 meters long section of the channel is used 

for this analysis. 



 
 

Figure 7.  Amplitude growth obtained by evaluating the standard deviation of the interface over 

time. 

 

 
 

Figure 9.  Variation of the average interface velocity U along the tube width, left: previous drag 

force with τ = 1.10
−7

 s, right: new drag force given by Equation (15). 

 
 

Figure 10.  Physical location of the interface at different times, left: previous drag force with  

τ = 1.10
−7

 s, right: new drag force given by Equation (13). 

 
 

Figure 8.  Average interface velocity U over time, U is defined in Equation (25), the theory is 

given by Equation (24). 

 

 
 

Figure 9.  Variation of the average interface velocity U along the tube width, left: previous drag 

force with τ = 1.10
−7

 s, right: new drag force given by Equation (13). 

In Table 1, all the parameters evaluated in this simulation are summarized and compared with the 

theoretical and experimental data and other simulation results.  

 

 



Table 1 

Comparison between our simulation, the theoretical and experimental data and the simulations of 

Bartosiewicz et al. [2008] and Štrubelj [2009] 

 

Thus, we see that the flow behavior is well predicted in our simulation. Moreover, this test case 

highlights that the new drag force improves significantly the results.  

 

Rayleigh-Taylor instability  The Rayleigh-Taylor instability occurs in a system with two immiscible 

fluids of different densities in the presence of a gravity field, perpendicular to the interface. The fluid 

with higher density (ρ1 = 3 kg/m
3
, μ1 = 0.03 Pa.s) is initially located above the fluid with lower density 

(ρ2 = 1 780 kg/m
3
, μ2 = 0.01 Pa.s). 

 

The aim of this test case is to compare our results to other codes. 

     

Theory.  We define the Atwood number At , which is equal to 0.5 in our case: 

 

  

 At =  
𝜌1 − 𝜌2

𝜌1 + 𝜌2
  (26) 

 

As long as the flow can be analyzed with linearized Navier-Stokes’ equations, the amplitude of the 

interface deformation can be expressed as followed: 

   

 a(t) = 𝛿0exp(𝜔𝑡) (27) 

 

with 𝛿0 the initial amplitude of the interface equal to 1 mm. 

The pulsation ω is given by: 

 

 𝜔2 = 𝑔𝑘At +
𝑘2𝜍

𝜌1 + 𝜌2
 (28) 

 

with g = 10 m/s
2
, 𝑘 =

𝜋

𝐿
 at first order and σ = 0.075 N/m. 

 

Simulation results. The simulation is performed in a closed box (H = 5 m, L = 1 m). The mesh 

contains 96 x 480 cells. A wall boundary condition is imposed at the top and the bottom of the mesh 

and symmetry boundary planes everywhere else. A variable time step is chosen for the simulation. Its 

initial value is taken equal to 1 ms and the maximum CFL number is fixed at 0.9.  

 

 

 

 

 

 

Results 𝑘𝑐  (m
−1

) tonset (s) uwaves (cm/s) 

Previous drag force, τ = 1.10
−7

 s 174 1.7 3.9 

New drag force, Equation (13) 195 1.6 2.5 

Theory 232 1.5 – 1.7 2.38 

Experiments 197 ± 58 1.88 ± 0.07 2.6 

Bartosiewicz et al. [2008] 143 1.9 2.5 

Štrubelj [2009] 157 2 3 



 
 

Figure 11.  Interface location simulated with the code NEPTUNE_CFD using the new drag force 

expression compared with Štrubelj’s simulation results [e.g., Strubelj 2009]. 

 

 

The interface between the two fluids is initialized as a small cosine wave with an amplitude equal to 1 

mm. Because the cell length is greater than 1 mm, we use the following expression for the 

initialization: 

 

with 0 < x < L. 

The simulations are performed without surface tension. 

 

The results in terms of interface position are compared with the theory using the analytical expression 

(27) and the results obtained by Štrubelj [2009]. Figure 11 shows that our simulation predicts well the 

interface position for short times. The difference observed at the very beginning is due to the interface 

initialization. 

 

Figure 12 proposed a comparison of our results with other codes. We can notice that the smearing of 

the interface is well controlled by the use of interface sharpening or the geometrical interface 

reconstruction in the code FLUENT. Moreover, the shape of the mushroom obtained with the 

different codes remains the same except with the code FLUENT, where the mushroom is more lately 

extended. A major difference can be observed with the Štrubelj’s in-house code [e.g., Strubelj 2009]. 

In fact, some particles of the above fluid are early created by the mushroom extension.  

 

CONCLUSION 
 

A two-fluid model coupled with a conservative level set method has been implemented in the CMFD 

code NEPTUNE_CFD to simulate separated flows. This approach includes an artificial compression 

step to control the natural interface diffusion induced by the two-fluid approach. This adding equation 

allows a more accurate evaluation of the local parameters such as the interface normal vector or the 

curvature. Moreover, because the two-fluid model can predict non zero relative velocities at large 

interfaces, the drag force plays an important role in the simulation of free surfaces to cancel the 

velocity difference between the two continuous fields. Thus, in this paper, a new expression of this 

force has been developed, which takes into account the physical properties of the flow.  

 

 𝛿 = 𝛿0   cos  
2πx

L
− π + 1  (29) 



 
 

Figure 12.  Evolution of the Rayleigh Taylor instability obtained with various models, (a) VOF 

with geometrical interface reconstruction in FLUENT [e.g., Strubelj 2009], (b) VOF with 

interface sharpening in CFX [e.g., Strubelj 2009], (c) single-fluid model with interface sharpening 

with Štrubelj’s in-house code [e.g., Strubelj 2009], (d) two-fluid model with interface sharpening 

with Štrubelj’s in-house code [e.g., Strubelj 2009], (e) two-fluid model with interface sharpening 

in the NEPTUNE_CFD code,  left to right: t = 2s, t = 2.5 s and t = 3 s. 

  

To validate this method, a mesh refinement test has been first performed on a static bubble. The 

simulations showed a reasonable mesh convergence especially for the intensity of the spurious 

velocities, which remains low even with coarse meshes. Then, the Thorpe’s experiment [e.g., Thorpe 

1969] has been simulated. In this test case, the sheared interface highlights the role of the drag force to 

predict the flow behavior with a high level of accuracy. Our results were in good agreement with the 

experimental and theoretical data and the other code simulation results. Moreover, we noticed that 

numerical instabilities on the interface velocity prediction were produced by choosing a non physical 

drag force. Finally, we compared the code NEPTUNE_CFD with three other codes by simulating the 

Rayleigh-Taylor instability. Our results gave reasonable agreements with the other simulations. 

The recent developments of the multifield approach have been included in the definition of the new 

drag force. Nevertheless, work is still in progress to validate the method on complex flows with two 

continuous fields, liquid and gas, and a gaseous dispersed field. Moreover, no turbulence models have 

been implemented yet with this approach. However, we can point out the work of some research 

groups [e.g., Larocque et al. 2010, Liovic and Lakehal 2007, Vincent et al. 2008] on the LES 

modeling of two-phase turbulence terms.  
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