ECG Beats Recognition Using Normalized Ellipsoidal Basis - Archive ouverte HAL
Article Dans Une Revue Asian Journal of Information Technology Année : 2006

ECG Beats Recognition Using Normalized Ellipsoidal Basis

Djamil Messadeg
  • Fonction : Auteur
Mohammed Ramdani
  • Fonction : Auteur
Mouldi Bedda
  • Fonction : Auteur
Herman Akdag
  • Fonction : Auteur
  • PersonId : 903641

Résumé

In this study, we propose a neural network model for the electrocardiogram (ECG) beat recognition. The description of the ECG signals consists of a multi-domain features which contain a set of meaningful and non redundant parameters. The construction of the system is accomplished by a data-driven learning scheme based on a clustering process to find an initial or coarse neuronal structure and a fine tuning hybrid learning algorithm, including gradient descent nonlinear optimization procedure and a least squares optimization step. The salient features of the system are an effective mechanism for variable learning rates and an adaptive metric norm for the distance. The results of experiments show the good efficiency of the proposed solution.
Fichier non déposé

Dates et versions

hal-01172271 , version 1 (07-07-2015)

Identifiants

  • HAL Id : hal-01172271 , version 1

Citer

Djamil Messadeg, Mohammed Ramdani, Mouldi Bedda, Herman Akdag. ECG Beats Recognition Using Normalized Ellipsoidal Basis. Asian Journal of Information Technology, 2006, 5 (6), pp.584-590. ⟨hal-01172271⟩
73 Consultations
0 Téléchargements

Partager

More