Une méthode générique pour la conception de moteurs de reconnaissance de symboles manuscrits en ligne
Résumé
Dans ce papier, nous présentons une approche générique pour le développement de moteurs de reconnaissance de symboles manuscrits en ligne. Cette approche permet de concevoir des systèmes de reconnaissance de types très variés correspondant à différents contextes des interfaces stylo, pouvant notamment fonctionner sur diverses classes de caractères ou symboles. Nous présentons en détail notre approche et faisons le lien avec d’une part les modèles de Markov hiérarchiques et d’autre part les réseaux bayésiens dynamiques. Nous évaluons ensuite les propriétés fondamentales de notre approche qui lui confèrent une grande flexibilité. Puis nous montrons que l’on peut, avec cette approche générique, concevoir aussi bien des systèmes omni-scripteur rivalisant avec les meilleurs systèmes actuels sur des caractères alphanumériques usuels, que des systèmes mono-scripteur pour des symboles graphiques quelconques, nécessitant très peu d’exemples d’apprentissage et peu gourmands en ressources machine.