
HAL Id: hal-01172103
https://hal.science/hal-01172103

Submitted on 11 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TBES: Template-Based Exploration and Synthesis of
Heterogeneous Multiprocessor Architectures on FPGA
Youenn Corre, Jean-Philippe Diguet, Dominique Heller, Dominique Blouin,

Loïc Lagadec

To cite this version:
Youenn Corre, Jean-Philippe Diguet, Dominique Heller, Dominique Blouin, Loïc Lagadec. TBES:
Template-Based Exploration and Synthesis of Heterogeneous Multiprocessor Architectures on FPGA.
ACM Transactions on Embedded Computing Systems (TECS), 2016, 15 (1), pp.9. �hal-01172103�

https://hal.science/hal-01172103
https://hal.archives-ouvertes.fr

TBES: Template-Based Exploration and Synthesis of Heterogeneous

Multiprocessor Architectures on FPGA

Final submission to TECS, published as:

Y. Corre, J-Ph. Diguet, D. Heller, D. Blouin, L. Lagadec, TBES: Template-Based Exploration
and Synthesis of Heterogeneous Multiprocessor Architectures on FPGA, ACM Trans. on
Embedded Computing Systems (TECS), Vol. 15 Issue 1, Article. No. 9, Jan. 2016.

Abstract

This paper describes TBES, a software end-to-end environment for synthesizing multi-task applications on FPGAs. The

implementation follows a template-based approach for creating heterogeneous multiprocessor architectures. Heterogene-

ity stems from the use of general-purpose processors along with custom accelerators. Experimental results demonstrate

substantial speedup for several classes of applications. Furthermore, this work allows to reduce development costs and

save development time, both for the software architect, the domain expert, and the optimization expert. This work

provides a framework to bring together various existing tools and optimisation algorithms. The advantages are manifold:

modularity and flexibility, easy customization for best fit algorithm selection, durability and evolution over time, and

legacy preservation including domain expert’s know-how. In addition to the use of architecture templates for the overall

system, a second contribution lies upon using high-level synthesis for promoting exploration of hardware IPs. The do-

main expert, who best knows which tasks are good candidates for hardware implementation, selects parts of the initial

application, to be potentially synthesized as dedicated accelerators. As a consequence, HLS general problem turns into a

constrained and more tractable issue, and automation capabilities eliminate the need for tedious and error prone manual

processes during domain space exploration. The automation only takes place once the application has been broken down

into concurrent tasks by the designer, who can then drive the synthesis process with a set of parameters provided by

TBES to balance tradeoffs between optimization efforts and quality of results. The approach is demonstrated step by

step up to FPGA implementations and executions with an MJPEG benchmark and a complex Viola-Jones face detection

application. We show that TBES allows to achieve results with up to 10X speedup, to reduce development times and to

widen design space exploration.

Keywords: Electronic System Level, High-Level Synthesis, Multiprocessor, System-on-Chip.

1 Introduction

In the domain of embedded systems like in high performance computing, Field-Programmable Gate Arrays
(FPGA) and hybrid devices provide configurable resources for hardware (HW) specialization as well as the
opportunity to take advantage of available parallelism. Both of these aspects improve the energy efficiency
compared to applications running on Graphics Processing Units (GPU) and General-Purpose Processors (GPP).
Application domains such as smart cameras [1], advanced acoustics [2] and cognitive radio [3] are typical
examples that benefit from FPGAs including reconfiguration capabilities. Moreover embedded systems may
soon take further advantage of new FPGA architectures, based on non-volatile memories with power gating
capabilities [4], that will bring impressive gains in terms of power consumption.

However, embedded systems also have stringent productivity and small-market constraints. This means that
designers might prefer standard architectures and easy to use design tools. Their designs also significantly rely
on intensive code and IP reuse strategies. Such practices do not fit with the current complexity of program-
ming heterogeneous hardware/software architectures on FPGAs. This programming and debugging complexity
hinders their widespread adoption, despite recent progress in hardware/software interfacing in the domain of
embedded systems (e.g. ARM/FPGA Accelerator Coherency Port on the Xilinx Zynq platform [5]) and HPC
(IBM/Altera Coherent Accelerator Processor Interface [6]). The main reasons for these shortcomings are a lack
of underlying processor architectures and a limited design reuse.

To cope with these issues, we rely on templates for Heterogeneous Multiprocessor SoC (HMPSoC) that
introduce a conceptual layer, which makes the technology accessible for designers and CAD tools. The design
space is constrained by these templates, and captured within flexible architecture models (specific to a given
application domain), following a well-defined model of computation. This approach is based on the observation
that exhaustive exploration of architecture models is useless since in practice, predefined models are well iden-
tified for given application domains. For instance, the authors of [7] propose architecture skeletons for image

processing, which can be mapped to different FPGA family targets, and updated when new targets become
available. Such an approach allows to improve resource and performance estimations, and the use of fast High-
Level Synthesis (HLS) tools within the Design Space Exploration (DSE) loop. Memory mapping is another
tedious task for embedded system designers, and template-based methods enable the development of efficient
heuristics to automate this task. Finally, code and scripts generation is simplified and allows the elimination of
time-consuming low level tasks. In addition to system synthesis, the formalization and constraint of the design
space through models provide a better control of the exploration of design properties such as the number and
type of processors, the number, type and size of memories, the tasks and data mappings, and the coprocessors
choices.

FPGAs offer more power-efficient solutions than GPPs, and support spatial parallelism leading to higher
performance. However, programming for such devices remains less tractable than writing code for software
functions. As a consequence, it makes sense to keep portions of an application as code running on a GPP. The
main benefits are: an improved adaptability, a wide reuse of legacy code, and a good readability. On the other
hand, when considering race conditions, FPGAs implementation is needed to achieve spatial execution (trading
extra hardware resources for execution time). This observation advocates the use of heterogeneous systems [8],
which best combine the sought characteristics of both solutions: flexibility and performances.

Fig. 1 illustrates the positioning of heterogeneous MPSoC designs in terms of flexibility, energy efficiency
and design cost for various implementation platforms (GPP, Application-Specific Integrated Circuit (ASIC),
MPSoC on FPGA, etc.). Systems implemented on GPPs are very flexible but suffer from low energy efficiency.
On the opposite, ASICs are quite efficient but expensive to design. MPSoCs on FPGAs are a good compromise,
but they remain complex to develop. Hence, the objective of the Template-Based Synthesis (TBES) approach
and tool, presented in this paper, is to reduce the effort inherent to the development of FPGA-based systems, in
order to benefit from efficiency gains provided by heterogeneity (i.e. coprocessors). We first start by presenting
related work in Section 2 to compare our solution with the state of the art and to introduce our contributions.
Section 3 presents the definition of the template-based architecture approach, and Section 4 describes the
different steps of our design flow and TBES framework. In Section 5, we show how TBES is efficiently applied:
first, on a classical Motion JPEG (MJPEG) application and second, on a complex Viola-Jones application for
face detection. Finally, we conclude and present perspectives.

Figure 1: Positioning of heterogeneous MPSoC designs in terms of flexibility, energy efficiency and design cost
for various execution platforms.

2 Related work and contributions

2.1 Related work

Over the years, numerous Electronic System-Level (ESL) design tools have been proposed for HMPSoC design,
and a selection of these tools is presented in Table 1. We take as reference a hypothetical ideal ESL tool,
regardless of its feasibility, and compare it with existing tools including TBES in order to state our contributions.

Table 1: Comparison of existing ESL frameworks.

F
r
a
m

e
w

o
r
k
s

In
p
u
t
s

D
e
s
ig

n
S
p
a
c
e

E
x
p
lo

r
a
t
io

n
O

u
t
p
u
t
s

A
p
p
li

c
a
t
io

n
S
p

e
c
ifi

c
a
-

t
io

n
s

H
a
r
d
w

a
r
e

C
o
n
s
t
r
a
in

t
s

A
u
t
o
m

a
t
e
d

E
x
-

p
lo

-
r
a
t
io

n

S
c
a
la

b
le

E
x
p
lo

r
e
d

d
im

e
n
-

s
io

n
s

E
s
t
im

a
t
io

n
s

C
o
d
e

g
e
n
-

e
r
a
-

t
io

n

H
a
r
d
w

a
r
e

S
o
ft

w
a
r
e

S
W

& A
r
c
h

H
W

IP

Id
ea

l
F
ra

m
e
w
o
r
k

W
id

e
sp

re
a
d
,

w
e
ll
-k

n
o
w

n
in

-
p
u
t

la
n
g
u
a
g
e
s

/
fo

rm
a
li
sm

s
w

it
h

n
o

re
-

st
ri

c
ti

o
n

A
rc

h
it

e
c
tu

re
te

m
p
la

te
sp

e
c
-

ifi
e
d

w
it

h
h
ig

h
-l

e
v
e
l

fo
rm

a
li
sm

s

P
ro

v
id

e
d

b
y

th
e

d
e
si

g
n
e
r

th
ro

u
g
h

a
G

U
I

Y
e
s

Y
e
s

Y
e
s

A
rc

h
.

M
o
d
e
l,

T
a
sk

&
D

a
ta

M
a
p
p
in

g
,

T
a
sk

&
D

a
ta

P
a
ra

ll
e
li
sm

,
H

W
/
S
W

p
a
rt

it
io

n
in

g
,

T
a
sk

g
ra

n
u
la

ri
ty

a
n
d

sc
h
e
d
u
li
n
g
.

M
e
tr

ic
s:

P
e
rf

o
rm

a
n
c
e
,

a
re

a
,

p
o
w

e
r

F
a
st

a
n
d

a
c
-

c
u
ra

te
Y

e
s

S
y
n
th

e
si

z
a
b
le

a
rc

h
it

e
c
-

tu
re

A
d
a
p
te

d
S
W

c
o
d
e

T
B
E
S

(o
u
r
to
o
l)

C
/
C

+
+

c
o
d
e

in
S
A

N
L

P
A

rc
h
it

e
c
tu

re
te

m
p
la

te
in

A
A

D
L

P
ro

v
id

e
d

a
s

p
a
rt

o
f

th
e

a
r-

ch
it

e
c
tu

re
te

m
p
la

te

Y
e
s

Y
e
s

(w
it

h
H

L
S
)

Y
e
s

(p
ru

n
in

g
+

c
o
n
-

st
ra

in
ts

)

T
a
sk

&
D

a
ta

M
a
p
-

p
in

g
,

T
a
sk

P
a
ra

ll
e
li
sm

,
H

W
/
S
W

p
a
rt

it
io

n
in

g
.

M
e
tr

ic
s:

P
e
rf

o
rm

a
n
c
e
,

a
re

a

T
ra

c
e
-b

a
se

d
S
im

u
la

ti
o
n
;

M
o
d
e
l-

b
a
se

d
c
o
st

e
st

im
a
ti

o
n

Y
e
s

S
y
n
th

e
si

z
a
b
le

a
rc

h
.

+
b
a
ck

e
n
d

to
o
ls

fi
le

s

A
d
a
p
te

d
c
o
d
e

D
a
ed

a
lu
s
[9
]

C
/
C

+
+

c
o
d
e

in
S
A

N
L

P
C

o
m

p
o
n
e
n
t

d
e
fi
n
it

io
n
s

in
P

e
a
rl

d
e
sc

ri
p
-

ti
o
n

la
n
g
u
a
g
e

/
X

M
L

fo
r

th
e

a
rc

h
it

e
c
tu

re

X
M

L
fi
le

s
/

G
U

I
Y

e
s

N
o

Y
e
s

T
a
sk

M
a
p
p
in

g
,

H
W

/
S
W

p
a
rt

it
io

n
in

g
,

S
ch

e
d
u
l-

in
g
.

M
e
tr

ic
s:

P
e
rf

o
r-

m
a
n
c
e
,

a
re

a

T
ra

c
e
-b

a
se

d
si

m
u
la

ti
o
n

Y
e
s

S
y
n
th

e
si

z
a
b
le

a
rc

h
.

+
b
a
ck

e
n
d

to
o
ls

fi
le

s

A
d
a
p
te

d
C

+
+

S
y
st
e
m
-

C
o
D
e
si
g
n
e
r

[1
0
]

A
c
to

r-
o
ri

e
n
te

d
M

o
d
e
l

in
S
y
st

e
m

C

G
ra

p
h

o
f

a
ll

p
o
ss

ib
le

c
o
m

-
p

o
n
e
n
ts

M
a
p
p
in

g
c
o
n
-

st
ra

in
ts

in
u
n
-

sp
e
c
ifi

e
d

fo
rm

a
li
sm

Y
e
s

N
o

Y
e
s

H
W

/
S
W

p
a
rt

it
io

n
in

g
,

T
a
sk

M
a
p
p
in

g
.

M
e
tr

ic
s:

P
e
rf

o
rm

a
n
c
e
,

a
re

a

P
e
rf

.
w

it
h

V
P

C
Y

e
s

B
it

st
re

a
m

A
d
a
p
te

d
C

+
+

A
d
v
a
n
ce
d

S
y
st
e
m
b
u
il
d
e
r

[1
1
]

F
u
n
c
ti

o
n
a
l

d
e
-

sc
ri

p
ti

o
n

(p
ro

-
c
e
ss

+
ch

a
n
-

n
e
l)

H
W

c
o
m

-
p

o
n
e
n
ts

+
to

p
o
lo

g
y

M
a
p
p
in

g
c
o
n
-

st
ra

in
ts

N
o

N
o

N
/
A

N
/
A

F
P

G
A

p
ro

to
ty

p
-

in
g
:

H
W

p
ro

fi
le

r
/

C
A

B
A

fi
le

s
g
e
n
e
ra

ti
o
n

Y
e
s

H
L

S
o
f

H
W

c
o
m

-
p

o
n
e
n
ts

C
c
o
d
e

+
A

P
I

fo
r

c
o
m

m
u
-

n
ic

a
ti

o
n

h
A
r
te
s
[1
2
]

C
c
o
d
e

/
S
c
il
a
b

la
n
-

g
u
a
g
e

/
N

u
-T

e
ch

fo
rm

a
li
sm

A
rc

h
it

e
c
tu

re
te

m
p
la

te
in

X
M

L

P
ra

g
m

a
a
n
n
o
ta

-
ti

o
n
s

Y
e
s

N
o

N
o

T
a
sk

M
a
p
p
in

g
,

T
a
sk

P
a
ra

ll
e
li
sm

,
H

W
/
S
W

p
a
rt

it
io

n
in

g
.

M
e
tr

ic
s:

P
e
rf

o
rm

a
n
c
e
,

a
re

a

S
o
c
L

ib
p

e
r-

fo
rm

a
n
c
e

e
st

im
a
ti

o
n

Y
e
s

H
L

S
o
f

H
W

c
o
m

p
o
-

n
e
n
ts

w
it

h
D

w
a
rv

[1
3
]

C
o
m

p
il
e
d

b
in

a
ry

P
ea

C
E

[1
4
]

S
P

D
F

/
fF

S
M

/
T

a
sk

le
v
e
l

m
o
d
e
ls

o
f
c
o
m

-
p
u
ta

ti
o
n

S
e
t

o
f

a
v
a
il
-

a
b
le

H
W

c
o
m

-
p

o
n
e
n
ts

S
p

e
c
ifi

e
d

th
ro

u
g
h

a
G

U
I

Y
e
s

N
o

N
o

T
a
sk

M
a
p
p
in

g
,

H
W

/
S
W

p
a
rt

it
io

n
in

g
,

S
ch

e
d
u
l-

in
g
.

M
e
tr

ic
s:

p
e
rf

o
r-

m
a
n
c
e
,

a
re

a
,

p
o
w

e
r

C
o
si

m
u
la

ti
o
n

/
F

P
G

A
p
ro

to
ty

p
in

g

Y
e
s,

si
m

u
-

la
ti

o
n

+ im
p
le

-
m

e
n
-

ta
ti

o
n

S
y
n
th

e
si

z
a
b
le

a
rc

h
it

e
c
-

tu
re

C
c
o
d
e

+ c
o
m

m

S
p
a
ce

C
o
d
e
-

si
g
n

[1
5
]

C
/
C

+
+

c
o
d
e

sp
li
t

in
to

ta
sk

s
X

M
L

S
p

e
c
ifi

-
c
a
ti

o
n

S
p

e
c
ifi

e
d

th
ro

u
g
h

a
G

U
I

N
o

N
o

N
/
A

N
/
A

P
e
rf

o
rm

a
n
c
e

(T
L

M
S
im

u
l.
),

C
o
st

,
p

o
w

e
r

Y
e
s

(w
it

h
e
x
tr

a
to

o
ls

)

W
it

h
e
x
-

tr
a

to
o
l

(S
p
a
c
e
S
tu

-
d
io

G
e
n
X

)

C
/
C

+
+

a
d
a
p
te

d
c
o
d
e

S
Y
L
V
A

[1
6
]

S
D

F
g
ra

p
h
s

S
e
t

o
f
P

re
ch

a
r-

a
c
te

ri
z
e
d

H
W

c
o
m

p
o
n
e
n
ts

(F
IM

P
)

S
a
m

p
li
n
g

R
a
te

,
L

a
te

n
c
y

N
o

N
o

Y
e
s

T
a
sk

P
a
ra

ll
e
li
sm

,
S
ch

e
d
u
li
n
g
,

H
W

c
o
n
-

fi
g
u
ra

ti
o
n
.

M
e
tr

ic
s:

P
e
rf

o
rm

a
n
c
e
,

a
re

a
,

p
o
w

e
r

A
re

a
,

E
n
-

e
rg

y
,

T
im

e
Y

e
s

R
T

L
H

D
L

N
/
A

H
e
ra

c
le
s
[1
7
]

S
in

g
le

o
r

m
u
lt

i-
th

re
a
d
e
d

C
/
C

+
+

c
o
d
e

S
e
t

o
f

P
a
ra

m
-

e
te

ri
z
e
d

H
W

c
o
m

p
o
n
e
n
ts

G
iv

e
n

th
ro

u
g
h

a
G

U
I

N
o

N
o

N
/
A

N
/
A

A
re

a
,

P
e
r-

fo
rm

a
n
c
e

Y
e
s

R
T

L
H

D
L

C
o
m

p
il
e
d

b
in

a
ri

e
s

2.1.1 Inputs

We consider three types of inputs: the specification of the application, the hardware description, and constraints
on the system (available resources, targeted performances, etc.). Ideally, the application should be specified
with any available formalism or language that designers are familiar with. As shown in Table 1, in many ESL
frameworks these functional descriptions are expressed with a Domain Specific Language, or as software (SW)
code. This code must comply with some constraints, and usually must follow a model of computation — such
as Kahn Process Network (KPN, [18])[9] or Synchronous DataFlow (SDF) [16]. These restrictions are necessary
in order to enable the analysis and transformations (e.g. synthesis, optimization, etc.) required to produce the
final system.

Most ESL tools also rely on architecture specifications. For instance, Space Codesign [15] uses XML de-
scriptions of components that specify the inputs. Heracles [17] is another system that provides parameterized
component templates that can be configured through a GUI. However, unlike our approach, both Space Code-
sign and Heracles do not perform automated DSE and consequently, designers have to fully specify the entire
system before its performance can be evaluated. For TBES, the level of details of the specifications is chosen
by designers through selected templates, and unspecified characteristics are automatically explored by our tool.

2.1.2 Design Space Exploration

The DSE should be fast even for large design spaces, by using efficient strategies to provide results satisfying the
designers’ constraints. To achieve this goal, the DSE process must rely on fast and accurate estimation techniques
that will evaluate designs according to their performances, logic resource costs, and power consumption. ESL
frameworks such as Advanced Systembuilder [11] and Space Codesign [15] do not perform a fully automated DSE.
They rely on the designer for specifying the complete hardware architecture in order to produce synthesizable
results. System Codesigner [10] uses a sophisticated but slow and non-deterministic multi-objective evolutionary
algorithm for DSE. HLS is used but only in a first step to provide a hardware implementation for each actor
selected by the designer. In SYLVA [16], an interesting automated DSE is proposed, starting from a SDF
graph and a library of various functions implemented in hardware. It includes task level parallelism, hardware
selection and pipelining. However, the architecture model is implicit and exclusively hardware-oriented.

In addition to the template-based strategy, another contribution of TBES is the integration of hardware
accelerators exploration in the DSE loop. This is performed by generating series of accelerators by means of a
fast HLS with different constraints. This estimation of IP candidates, before logic synthesis, allows to further
improve the tradeoff between performance and logic resources utilization (cf. section 4.3.1). Automatic memory
exploration and mapping is another important contribution of our work. This tedious task is not automated in
most of the existing ESL tools

Finally, DSE must be scalable, i.e. designers should be able to balance the speed of the exploration — how
long it will take to get a result satisfying the constraints — with the optimality of the results. To do so, our
framework provides parameters that can be set by designers to define the DSE effort according to the desired
tradeoff between optimality and solving time (cf. Section 4.4.1).

2.1.3 Outputs

The expected output of an ESL framework should be the complete system implementation artifacts: a synthe-
sizable version of the hardware architecture code, along with a version of the software code adapted to the target
architecture. In addition, our framework generates the project files and scripts for backend tools correspond-
ing to the selected target (e.g. Xilinx FPGA). Several tools exist that generate a complete implementation of
HMPSoC from the designer’s specifications: [19] also generates an implementation ready for backend tools along
with the adapted software tasks using a thread-based operating system to hide processor heterogeneity to the
designer. LegUp [20] generates an implementation of the software and hardware architecture, and in addition
performs an HLS of the tasks that the designer wants to accelerate, but without performing any exploration
unlike our approach.

The solution introduced in our framework is based on Model-Driven Engineering (MDE, [21]). We use
MDE, which advocates the specification of the system with a set of models to support analysis such that system
capabilities and quality attributes (performance, reliability, etc.) can be predicted to discover problems before
system integration and testing, to avoid costly rework later in the development process. Furthermore, the
models provide essential support for design space exploration and code generation. We use the Architecture
Analysis and Design Language (AADL, [22]) as main specification language, coupled with our architecture
template strategy, to generate the final design. This abstraction level provides the flexibility to use different
templates or modify existing templates to meet application specific needs.

2.1.4 Conclusion

Existing tools for HMPSoC design are all missing at least one of the features we think are essential for an
industry-ready ESL framework. Either they do not perform automated DSE, like Advanced Systembuilder and

b)

DDR

PLB Bus

Processor
Template

Processor
Template

Processor
Template

Flash
Memory

SRAM
PLB Bus

PLB Bus
Framebuffer Display

Controller

Processor
Template

a)

Processor
Co-Proc

External
Memory

External
Memory

Shared
Memory

PLB Bus

PLB Bus

FSL
Local

Memory

LMB

LMB

Local
Memory

Figure 2: A graphical representation of an architecture template and a detailed view of the processor template.
Solid lines indicate fixed parts (level 1) of the architecture while dotted lines represent potential instantiations
(levels 2 and 3) that are decided during DSE.

Space Codesign, or their DSE process is too time-consuming — such as the SystemCoDesigner’s CABA-based
performance estimation, or the exhaustive exploration of Daedalus [9]. The hArtes framework [12] is too specific
as it targets only a specific model of architecture: the MOLEN paradigm [23]. Consequently, there is a need
for a new approach to tackle these issues, by providing designers with a way to express their specifications at
the appropriate level of details, while automating the tedious tasks of the design flow.

2.2 Contributions

The contributions of this work are:

• An approach based on architecture templates that:

− uses multi-level specifications providing flexibility, and usable by designers with different levels of
expertise;

− formalizes and bounds the search space, allowing to develop fast and accurate algorithms for power,
performance and cost estimations and design space exploration;

− automates code and script generation, simplifies testbed generation, which is a key aspect of the
design process, and allows to extract, from DSE, solutions specified with a format which is compliant
with backend implementation tools;

− provides a solution to the lack of underlying platform architecture on FPGA, with a predefined but
flexible architecture. This model, along with the encompassing standard Application Programming
Interfaces (API) and Inputs/Outputs (I/O) information, and furthermore, libraries of software and
hardware functions that can be easily updated, are of utmost importance, since they foster reuse.

− simplifies, through the use of MDE, the adaptation of developed tools to new FPGA devices and
vendor tools.

• The integration of the hardware IP exploration in the DSE through the use of HLS and fast and accurate
model-based estimations.

• A DSE strategy that automatically explores relevant dimensions: processor allocation, hardware acceler-
ator choice, task mapping, memory selection and data mapping, HW/SW partitioning and the degree of
parallelism. The exploration relies on a highly scalable strategy that allows for a wide range of tradeoffs
between the exploration time and the optimality of the solutions.

3 Template-based architecture specification

3.1 Template definition

Our model-driven approach relies on templates that provide pre-parameterized designs. The choice of templates
is made by the designer in accordance with the application domain (DSP, video, etc.). Since for a specific
domain, it is typical that different designs often have similar parameters, capturing these common parameters
in a template favors reusability and reliability.

Since HMPSoC design is a complex process and requires a lot of competences, it is usually the case that
different persons are responsible for developing the system: hence there are domain experts, that are responsible
for developing the application aspects (code and task graph) and optimization experts that are responsible for

the implementation aspects (task mapping and data mapping). Our objective is to make our tool satisfactory
for both purposes. To this end and in order to let designers focus their expertise on high added value tasks, we
have divided our templates into three levels of specification. The first (static) level represents domain-specific
elements that are fixed and cannot be modified during DSE. This is what is represented in solid lines in Fig.
2. The goal is to make the tool accessible to people with limited experience in design (e.g. domain experts).
This is achieved by providing a library of templates — that could have been written by optimization experts —
for specific application domains and device targets (e.g. Altera or Xilinx soft or hardcores). For the purpose of
this study, we have targeted Xilinx and MicroBlaze (MB) architectures, but we used MDE methods to ease the
management of libraries that can evolve through the integration of new templates and hardware targets.

The second level (DSE bounds) provides a place for designers to specify the DSE constraints that will bound
the design space such as:

− a choice of architecture templates;

− minimum and maximum number of processors as well as the available types;

− available memories including their maximum sizes and available interconnects;

− a mapping of the application input and output data;

− a mapping of specific task(s) (input, output tasks typically);

− specification of application tasks that are candidates for hardware acceleration and/or duplication for data
parallelism exploitation.

The selection of a subset of tasks candidates for hardware implementation and for duplication also relies on
designer’s experience. Just like for architecture templates, application designers can base this selection on their
own knowledge of the algorithms and on profiling results. This information is used to constrain Cost/Delay
exploration, which is based on HLS iterations and task nodes duplications. Moreover, to further simplify this
step, some bounds directly related to the target platform are pre-defined. These are for instance, the number
and types of logic resources (e.g. number of flip-flops, registers, memories, etc.) of a FPGA board.

The third level (expert) of specification targets all the decisions that can be taken by the framework during
DSE. This level of specification is optional and can be used by experienced designers (e.g. optimization experts)
to enforce the value of some attributes of the specifications that should not be changed during DSE. These
attributes include:

− task and memory mappings;

− number and types of processors;

− hardware accelerators exploration, synthesis and integration with software calls;

− tasks duplication for data-parallelism exploitation;

− scheduling.

Templates must be created by first specifying the fixed parts of the system, corresponding to the first level of
specification. It is possible to use templates of components such as processors, memories or external peripherals
of the system. An example of a processor template is given in Fig.2-b. These templates can be stored in a
library for future reuse, and to further reduce the design workload. Ideally, a public database could be provided
where designers could release templates (or component templates) under a reusable licence, in a similar fashion
to what is done for hardware IPs released with OpenCores [24]. Once the designer has specified the parts of
the template that need to be completed (level two and possibly level three), the template can be used as input
for DSE. Providing these levels of system specification can greatly simplify the design phase. Designers having
at their disposal a template database only have to deal with the level 2 of the template specifications, and rely
on automated DSE to optimize the details of level 3.

A graphical representation of an architecture template for a video-decoder is presented in Fig.2-a. In this
example, the input (e.g. read a video file on a flash drive) and the output (e.g. write to the frame buffer) will
most likely be the same from one design of the decoder to another. Hence the template pre-instantiates, in
the architecture, the components that are necessary for the input and output operations. In addition, a video-
decoder must be able to write the decoded output video in real-time. Since the data is in a raw uncompressed
format, a large bandwidth is required and it is thus required to instantiate a dedicated bus to the frame buffer.

Package xilinx_components
public with microBlazeProperties;

processor microblaze
features

reset: in event port;
interrupt: in data port;
data_plb: requires bus access;
inst_plb: requires bus access;
data_lmb: requires bus access;
inst_lmb: requires bus access;
debug: requires bus access;
master_fsl: requires bus access;
slave_fsl: requires bus access;

properties
--default values

microblazeProperties :: FSL_links => 0;
end microblaze;
end xilinx_components;

Figure 3: Excerpt of the AADL model of the MicroBlaze.

3.2 AADL Specification

To model the system architecture, AADL [22] is used. It is a domain-specific language for embedded systems
including modeling capabilities for both software and hardware parts of a system. AADL provides base com-
ponent categories for representing processors, buses, memories, devices, systems, processes, threads, thread
groups, data and subprograms. In TBES however, the software part is currently specified using KPN-compliant
C code, and only the hardware platform is specified in AADL.

A component in AADL is described using two distinct types of declaration: i) a type declaration specifies the
external interface of a component through which it can be connected to other components (I/O ports, data/bus
access, etc.); ii) an implementation declaration specifies the internal composition of a component in terms of
one or several subcomponents. Both type and implementation declarations can specify component properties.
A set of properties predefined in the AADL standard is available to specify various configuration parameters of
components. For example, for a generic memory component, the predefined properties are the size, the access
rights, the word size, read and write times, etc. AADL can be extended by the addition of other properties for
representing attributes of more specific components such as a MB processor. This is illustrated in Fig.3, where
an excerpt of the AADL representation of a MB processor is presented.

AADL components and property sets declarations can constitute a library of components to be instantiated
in FPGA-based designs. Declarations for Xilinx-specific components such as MB processors, buses, controllers,
etc. have been added to a library. This is necessary to specify the values for parameters specific to Xilinx IPs.

From AADL models, we are able to generate all the implementation files for the found architecture solution
needed by synthesis and implementation tools such as Xilinx XPS or Altera’s Quartus. The Xilinx tools have
been selected to demonstrate the proposed approach, so the generated files are the .mhs and .mss files [25].
The first file describes the synthesized hardware platform with its components, their parameters and their
connections. The second file describes the driver specifications in order to call the hardware components from
the software code.

The architecture selected from DSE is represented by an AADL model, which contains the instantiated
components, their associated parameters represented as properties, and the components’ inter-connections.
This representation is automatically transformed, into the corresponding project files for the targeted FPGA
design tools for an immediate implementation on the FPGA. Using this MDE technique, only the grammar and
the model transformations used for code generation need to be changed to target a different FPGA synthesis
tool.

4 Design Flow

4.1 Tool Philosophy

While it is now clear that efficient and easy-to-use tools are a key success-maker for embedded systems de-
velopment, the impact of ESL tools has been underestimated for years. A layered approach has emerged as
a divide-and-conquer strategy to cope with the increasing complexity of programming such platforms. Tools
are critical in the design process – as the tools serve as the user’s entry point, and directly impact the final
system’s performances –, it is thus essential to identify the characteristics that make a tool efficient, usable, and
acceptable to users. The first challenge that tool makers must face is to offer an environment that matches the
designer’s habits, thus reducing the learning curve in order to lower the rejection rate from experienced – hence
highly valuable – users. The tools do not aim at replacing the user’s knowledge. However, a significant gain in
development time is expected by having the tools handle the tedious tasks, while designers concentrate their
efforts on specialized tasks requiring expertise. As a consequence, the tools must preserve the legacy artifacts

(process, IPs, etc.), since this provides continuity to the users, flattens the learning curve, and reduces the
time-to-market.

From an internal point of view – being relative to tool designers – new techniques must be applied to cut
off the development and testing costs of software (MDE, code generation, etc.). This is enabled by frameworks
that capture the intent of existing tools as well as their API. A direct benefit lies in the ability to tailor the
execution of these tools, through scripting, function invocation, etc. This is a critical issue: it leads to gaining
a short term solution by implementing tailored or customized flows controlling the execution of external tools,
which can be used as a comparison point to evaluate every potential future evolutions of the flow. Candidate
tools to be integrated in the flow require no more than one useful functionality (transcoding, etc.) to be kept
in the flow. Because their internal flow is exposed as atomic steps, elementary functions drive the selection
process. Making the right choice, though, requires an educated guess coming from a deep knowledge of the
domain. While being based on existing tool integration, such approaches also favor evolution.

4.2 The TBES Tool

Following the presented tool philosophy, TBES was constructed by assembling different tools — already existing
tools and custom-made processes — into a flow depicted in Fig.7. The next subsections present each step of
the flow with their associated tools.

4.2.1 Input Specifications

The required inputs for our framework are the C code of the application and a template describing a generic
architecture that will be used as a basis for DSE.

For the C code input, designers must split their application into tasks, in order to express the application
parallelism. This must be done manually as task splitting is application-specific and will also determine the
granularity of the communication. Deciding the task granularity using automated methods is very challenging,
whereas it is natural for a designer who has the knowledge of the application. To help the designer, our
framework includes an automated profiling process based on the gprof standard tool[26].

Once the task splitting is done, the C code of the application is automatically transformed to comply with the
Kahn Process Network (KPN, [18]) model of computation. Each node of the resulting KPN graph represents one
task of the application, and the edges represent the communication channels. The transformation is performed
by a tool called KPNGen [27], which requires that the input application satisfies a number of constraints: the
program must be coded in the form of one or more nested loops or conditional statements, wherein functions
are called sequentially, as illustrated by Fig.4. In the loop(s), each function call corresponds to a single task,

for (i = 0; i < 1138; i++) {
for (j = 0; j < 42; j++) {

fetchTask (& iqzz_d);
iqzzTask (&iqzz_d , &block_YCbCr);
idctTask (& block_YCbCr , &Idct_YCbC);
yuvTask (&Idct_YCbC , &pix);
dispatchTask (&pix);

}
}

Figure 4: Example of the main loop of a program compliant with the constraints imposed by the KPNGen tool.

and communications are expressed through the call parameters, i.e. a variable used by two functions means
that this variable is sent by one function to another. Other restrictions that apply on the program are that
the indices of the loops must evolve following affine functions, and the control of these indices must be static,
i.e. they must be determined at design time and cannot be modified during execution. The advantage of using
KPN is that it makes the execution of the program deterministic, and the task synchronization is performed
through blocking reads, thus allowing to easily exploit data parallelism.

For the architecture input, it is specified through the use of templates expressed in the AADL language as
introduced in subsection 3.2.

4.3 Performance and Cost Estimations

Two properties are estimated during our DSE targeting FPGAs: resource usage and performance. The efficiency
of DSE must rely on accurate estimations. In this section, we describe these estimations performed at several
stages of our design flow.

4.3.1 HLS-based Coprocessor Exploration and Estimation

We use HLS to perform an exploration of different coprocessor solutions inside the loop of the heterogeneous
multiprocessor DSE. This exploration is used to find the best compromise between performance and logic

HLS$based*resource*es/ma/on*for*IDCT*

0*

2*

4*

6*

8*

10*

12*

1* 10* 19* 28* 37* 46* 55* 64* 73* 82* 91* 100*

LUT*Error*
Register*Error*

0*

50*

100*

150*

200*

250*

300*

1* 10* 19* 28* 37* 46* 55* 64* 73* 82* 91* 100*

SpeedUp&=&Logic&Synthesis&Time/HLS&Synthesis&Time&%&Error&Rate&

Latency&

Latency&
Latency&

Slice&

0*

5000*

10000*

15000*

20000*

25000*

1* 10* 19* 28* 37* 46* 55* 64* 73* 82* 91* 100*

Lower*Bound*Slice*

Upper*Bound*Slice*

Slice*XST*

Figure 5: Exploration of an IDCT coprocessor in order to compare our HLS-based estimation with logic syn-
thesis. Comparisons of slice estimations are shown on the top curve and the bottom ones show the accuracy of
the estimation and the speedup over logic synthesis.

resource consumption. This is made possible by coupling HLS with accurate resource consumption estimators,
instead of performing a costly logic synthesis of the coprocessors.

HLS is the transformation of a functional description — provided as C code in our framework — into a
Register Transfer Level (RTL) description. The generated architecture described at the RTL level is compliant
with an architecture model that depends on the HLS tool. The HLS tool currently used in our framework is
GAUT [28], which is linear in complexity. It is a free HLS tool based on a Data Flow Graph model and therefore
dedicated to data-dominated algorithms. From a C/C++ specification and a set of design constraints, GAUT
automatically generates a potentially pipelined RTL architecture in two formalisms: in VHDL for synthesis,
and in SystemC for virtual prototyping. In our flow, the set of design constraints is provided by the HLS/DSE
controller (cf. Fig.7), in order to generate and evaluate a set of coprocessors with several performance/resource
tradeoffs. The HLS constraints we consider for automated exploration are the latency and the communication
model (FIFO or shared memory). The generated architecture is composed of i) a processing unit composed
of the data-path (logic/arithmetic operators + storage elements + steering logic) and an FSM controller; ii) a
memory unit composed of memory banks and associated controllers and iii) a communication interface which
can be implemented as a FIFO, a shared memory (optionally with ping pong mode), or a 4-phase handshake.
Given that the underlying model of architecture of GAUT is clearly defined, it is possible to perform a resource
usage estimation. So after behavioral synthesis, the following features are known exactly:

− allocated data-path logic/arithmetic operators: numbers of DSP blocks or LUTs;

− number of registers;

− width and height of the FSM controller: slices number (Distributed RAM) or BRAMs;

− number and size of multiplexers;

− width and size of memories: slices number (Distributed RAM) or BRAMs.

From these features, we can estimate the usage of FPGA resources: LUTs, registers, DSP blocks, block RAM,
etc. Fig.5 presents the results of resource estimation on an IDCT algorithm from the MJPEG benchmark.
For this experiment, we generated a series of IDCT coprocessors with varying latency, and then from the HLS
results computed an estimation. We then performed a logic synthesis with the Xilinx XST synthesis tool to
measure the accuracy of our estimation. For slices (which is the basic logic block in Xilinx FPGAs, gathering
LUTs + registers + dedicated multiplexer), the tool computes a lower (100% use of slices resources) and an
upper bound (80% use of slices resources). The upper bound rate has been set (80%) from HLS benchmarks
in the domain of signal and image processing: FFT, IDCT, Sobel, Gaussian filter, Walsh-Hadamard transform,
FIR, IIR, Cordic, AES, etc. The results of these benchmarks and more details on our estimation method can
be found in [29]. The bottom left graph of Fig.5 shows, for the same IDCT series, the error percentage between
the number of LUTs and registers obtained with our estimation and the real cost obtained after logic synthesis.
We can see that the estimation error of LUTs is usually under 5% and the estimation error of registers is higher
(up to 10%) in some cases, probably due to fan-out sizing reasons (register duplication). The bottom right
graph shows that we obtain speedups of two orders of magnitude over logic synthesis. Moreover, the speedup
increases with application complexity and allows to quickly explore the design space of solutions.

Modified ESPAM

Application
Code

Application
Code

Application
adapted for
on-target
profiling

Application
adapted for
on-target
profiling

T
1

T
2

T
3

T
4

T
5

Task splitting

Code
Generation

0

5000

10000

15000

20000

25000

Profiling Results

Mono-
processor

design
+Timer

Mono-
processor

design
+Timer

FPGA implementation

Threaded
app. + timer

API
insertion

Threaded
app. + timer

API
insertion

Figure 6: Flow of the on-target profiling step.

In conclusion, HLS offers a fast implementation solution and a possibility to explore the design space of
hardware IP in an efficient way. A quick and accurate estimation of results is useful because designers can
quickly measure the effects of code transformation and resource and timings constraints.

4.3.2 Application Profiling

The exploration starts with an automated and non-intrusive on-target profiling, which is performed to obtain,
for each task, accurate performance measurements for the targeted processor. These measurements are then
used during DSE for mapping performance estimation. They also provide a way to determine a set of task
candidates for hardware acceleration.

In our framework, this profiling is automated through code transformation and the use of a pre-designed
FPGA system that contains the target processor (e.g. MB) with hardware timers to measure execution time.
That step is illustrated by Fig.6. During the code transformation, which is performed by a modified version of
the ESPAM tool [30], each task becomes a thread and calls to the timers are inserted. Inter-task communication
times are not measured during profiling as they depend on design decisions such as task and data mapping,
which have not yet been taken at this stage. During this profiling, it is the responsibility of the designer to
provide a dataset representative of the final system execution.

4.3.3 Multiprocessor without Interconnect and Dependencies

During early stages of the DSE process, when only the number and the type of processors have been decided, a
first estimation is performed. We first check that the design does not consume more logic resources than what
has been specified. If this is the case, the design is discarded and not further explored. Otherwise, we perform
a performance estimation. At this stage, such estimation is obviously very rough. However, it is only used to
establish if acceleration is needed. The estimation is given by the following formula:

CT

nP
+ nW × nWC + nR × CC (1)

where CT is the computing time, nP the number of processors, nW the number of write operations, nWC
the cost in cycles of a write operation, nR the number of read operations, and CC the cost in cycles of a cache
miss. In this equation, we divide the total execution time of the application — computed using the profiling
described in the above section — by the number of processors, which yields the maximum possible acceleration.
While this is overly optimistic, it is counterbalanced by the communication cost for which we assume that a
cache miss occurs at each read.

4.3.4 Communication

Since dataflow applications are usually data-intensive, design choices for communication such as data mappings,
memory types and sizes, bus types are as equally important as computation design choices. So in order to detect
possible contentions on a bus or a memory, we first compute the number of cycles necessary to read — or write
since the formula is the same — the quantity of data for one iteration of the program from a given memory. It
is computed from the following formula:

nRC = RLmem × dataSize

Bmem
+ dataSize (2)

where nRC is the total number of cycles used for read operations in one iteration of the program, RLmem

the latency value in cycles for a read operation in the memory mem, and Bmem the number of bytes transferred

in one burst. With this information, we can estimate the risk of congestion as:

CRmem =
Fmem

nI × (nRC + nWC)
(3)

where CRmem is the congestion ratio of the given memory mem, Fmem the frequency of the memory, nI the
number of iterations of the program in one second, and nRC and nWC the number of cycles for the read
operations — write operations respectively — given by the previous equation (2). The result is a ratio, which
when higher than one means that the memory is overloaded. When lower than one, then no congestion should
occur. A similar formula can be used for communication channels:

CRcomm =
F

Lcomm × (dataSize/Bcomm)
(4)

where CRcomm is the congestion ratio of the given communication channel comm, F the frequency of the system,
Lcomm the latency of the communication channel, and Bcomm the bandwidth of the channel in bytes per second.
Both of these metrics are used during our data mapping exploration in order to estimate the degree of congestion
of a memory or a channel.

4.3.5 Simulation

Once the full system has been specified, a final performance estimation is performed with the Sesame simulation
tool [31]. This simulation is trace-based and takes into account three kinds of events: execute, read and write.
Using the trace of these events and a description of the architecture and its components, Sesame provides a fast
estimation of the system performances. While being significantly faster than a Cycle Accurate-Bit Accurate
simulation, it is still the most time-consuming operation of our DSE flow. The total simulation time depends
on the size of the trace and the number of designs to evaluate. It is thus important on one hand to limit the
size of the trace by finding the smallest execution time that still produces results representative of the final
performance, and on the other hand to perform a selection of the designs to be simulated. The version of Sesame
implemented in the Daedalus framework is used to generate exhaustively the task mappings. We thus modified
it in order to take into account only the mappings selected by our tool, leading to shorter exploration times as
shown in the results section.

4.4 Design Space Exploration

The DSE flow is shown in Fig.7, and a more detailed description of the DSE algorithm can be found in [29]. We
focus here on the task and data mapping, as well as on the pruning strategies used to provide designers with
the possibility to balance exploration time and solution optimality.

4.4.1 Pruning Strategy

Our goal is to offer to designers a highly scalable exploration strategy, which ranges from a greedy algorithm that
will return the first solution that satisfies the constraints, to an exhaustive exploration, and includes in between a
very large number of intermediary solutions that offer a tradeoff between the exploration time and the optimality
of the resulting solution. To this end, designers can specify through variables (the N1, N2, N3 in Fig.7), the
maximal number of solutions they want to keep at the end of each step of the design flow. Consequently, one
can decide to keep a larger number of solutions on the steps that would need more exploration. This selection
process is shown in Fig.7 and in Algorithm 1. The selection relies on metrics used to evaluate the performance
or the cost of the system such as the ones described in Section 4.3.

4.4.2 Task and Data Mapping Heuristics

The algorithm for data and task mapping is described in Algorithm 1. A few definitions must be introduced to
understand the algorithm:

− TaskClusters: set of tasks to be mapped, gathered as clusters of independent tasks.

− ProcSet: set of processors in the architecture.

− DataSet: set of data representing communications between two tasks sorted in decreasing size.

− MemorySet: set of memories sorted in decreasing order of speed.

The data mapping consists of assigning the data communicated between the tasks onto the memories of
the architecture. In our framework, the implemented data-mapping strategy follows a best-fit allocation, which
consists in assigning data to the fastest memory that has sufficient space to store the currently assigned data.
Since we want to maximize the size of the explored design space, we generate several different data mappings
in order to introduce diversity. To achieve this goal, we combine three strategies that produce interesting
variations:

Algorithm 1 Data and Task Mapping Algorithm.
1: Initialization:
2: All hardware accelerated Tasks T are mapped on the corresponding Acceleratori
3:
4: for all N1 architecture solutions do
5: //Data Mapping
6: //Consider several sizes for synthesized memories (e.g. BRAM)
7: //Randomize memories latencies
8: //Map biggest data on fastest memories first
9: for all Data D in DataSet do

10: for all Memory M in MemorySet do
11: while M has enough space for D do
12: mapDataOnMem(D, M)
13: end while
14: end for
15: end for
16: //Map smallest data on fastest memories first
17: for all Data D in ReverseDataSet do
18: for all Memory M in MemorySet do
19: while M has enough space for D do
20: mapDataOnMem(D, M)
21: end while
22: end for
23: end for
24: //Selection of the N2 best data-mappings
25:
26: //Task Mapping
27: for all N2 selected mapping solutions do
28: //Make first task mapping with less loaded processors
29: for all Task T in TC1, the first element of TaskClusters do
30: for all Processor P in ProcSet do
31: if P is the less loaded proc then
32: mapTaskOnProc(T, P)
33: end if
34: end for
35: end for
36: //Hungarian Algorithm
37: for all Task cluster TCi of TaskClusters do
38: for all Task T in TCi do
39: for all Processor P in ProcSet do
40: for all Memory M in MemorySet do
41: costMatrix = computeCostMatrix(α× execT ime(T,P), β × comm(T,M), γ × procLoad(P), δ ×memLoad(M))
42: end for
43: end for
44: end for
45: applyHungarianAlgorithm(TCi, costMatrix)
46: checkForCongestion()
47: end for
48: end for
49: //Selection of the N3 best task-mappings
50: end for

Hardware Architecture Exploration

Data Parallelism
Exploration

Data Mapping

Selection

Inputs

Hardware
platform
template

Hardware
platform
template

Software
execution

times

Software
execution

times

App.
Task

Graph

App.
Task

Graph

Hardware
implem.

candidates

Hardware
implem.

candidates

Task
Duplication

Task
Duplication

Objectives
&

Constraints

Objectives
&

Constraints

Task Mapping

N 3

HLS-based hardware IP DSE

HLSHLS

HLS/DSE
controller

HLS/DSE
controller IP

cores
library

IP
cores
library

Estimation &
Pareto selection

Estimation &
Pareto selection

IP not in
library

Processors
Template

library

Processors
Template

library

solutions
kept

N 2 solutions
kept

N 1 solutions
kept

E
va

lu
at

io
ns

 &
 P

ru
ni

ng
s

Best Fit
Algorithm
Best Fit

Algorithm

Hungarian
Algorithm

Hungarian
Algorithm

Set of
Pareto-
optimal

Solutions

Set of
Pareto-
optimal

Solutions

Cost Estimation

Scheduling & Perf. Simulation

 Performance Estimation

Figure 7: Flow of the Design Space Exploration.

− The read and write latencies of the different memory types are modified with a random coefficient that
introduces in the DSE variations representing bus access conflicts and cache misses.

− Memories that are synthesized, such as BRAM, do not have a fixed size. So another dimension explored
during data mapping is memory size. The allowed sizes must be provided by the designer.

− Last, two ways for the order in which data are mapped are considered: biggest data size mapped first and
smallest data size mapped first.

Following these strategies and using the performance estimation techniques described in 4.3.4, several data
mappings are generated. Potential duplicate mappings are removed from the set of data mappings generated
following these rules. The pseudo-code of the algorithm can be seen in the upper part of Algorithm 1.

To perform the task mapping, we used a method based on the Hungarian algorithm [32], which provides
an optimal solution to the assignment problem in polynomial time. The pseudo-code of the task mapping is
described in the lower part of Algorithm 1.

In our implementation, the cost matrix for the Hungarian algorithm represents the cost of assigning a task of
the current task cluster to one of the available processors. Each cost ω is computed using the following formula:

ω = (α× ETT,P + β × CT,M)(γ × PLP)(δ ×MLM) (5)

where α, β, γ and δ are coefficients that can be set by designers to give more weight to the parameter(s) they
wish to favor. Execution and communication times are used to determine the performance of a task mapped
on that unit. ETT,P is the number of cycles needed by the processor P to compute one iteration of the task
T . CT,M is the number of cycles necessary to transfer the data between the task T and the memory M . The
other two parameters are used to prevent the apparition of behaviors that would result in bad performances:
the processor load is used to keep the mapping balanced between the processing units; the memory load is used
to avoid memory congestions and contentions. PLP is thus the load of the processor P , i.e. the percentage of
the total computation time of the application taken by the processor P . MLM is the load of the memory based
on its data transfer capacity, its frequency and the amount of data it should transfer in one second.

Once the task mapping is determined, the ”synthesizable” memories, i.e. memories which are synthesized
and for which the size is not static (e.g. BRAM), must be assigned to a processor. For each piece of data that was
mapped on such memories during the prior data mapping step, we check if it corresponds to a communication
between two tasks that are mapped on the same processor. In such case, the memory is implemented as a
local memory of the processor (as seen in Fig.2-b). Otherwise the memory is implemented as a shared memory
associated with the processor that produces the data. Once all those steps are done, a check is performed that
computes the load of the buses and other interconnects in order to detect possible congestions.

4.5 SoC Production

Code generation is performed following a model-based paradigm, i.e. as a chain of transformations of models
representing every specification involved in the design flow. Model transformations have been developed using
the ATL language [33]. From a set of AADL specifications, models are generated to be taken as input by the
synthesis tools for the specific FPGA platform (e.g. the .mhs and .mss files for Xilinx). We use the Xtext tool
[34], which is an Eclipse-based tool to simplify the support of Domain Specific Languages (DSL) by generating
several tools (parsers, serializers, code generators, etc.) from the specifications (grammar, properties, etc.) of
a DSL. So, grammars have been developed for the .mhs and .mss formats, and the Xtext tool has been used
to automatically generate parsers and serializers allowing to convert these files into models. It ensures that
the generated code is correct through conformance to the grammar/meta-models. These models can also be
handled by the numerous model-driven development tools, which greatly help in the development of the tool
chain.

4.6 Limits of the Current Target Architecture

With the current version of TBES, the architecture must contain at least one microprocessor, which can be linked
to one or several peripherals (memory, I/O, sensor, etc.) through one or several links (shared or dedicated).
Each processor can also have one or several coprocessors. However, those coprocessors cannot yet be cascaded.
The number of processors is limited by the bus-based communication. Templates based on Network-on-Chips
are a solution to these problems. However, we may need to import a different analytical model from the
literature since the current DSE algorithm is based on a bus communication model. In this work, we specifically
targeted FPGAs that were used to validate our approach. However there is no theoretical obstacle to target
ASICs provided that models of specification and scripts for the backend tools can be developed.

5 Results

Various benchmarks have been performed during the development of our DSE algorithms and tools. In this
section, we present two applications that demonstrate the efficiency of our solution. First, a standard MJPEG
decoder [35] is used as a well-known benchmark. Then, a complex Viola-Jones face detection application [36] is
presented to better demonstrate the capabilities of the framework.

5.1 MJPEG

After the on-target profiling (as described in Section 4.3.2), the MJPEG decoder was split into five sequential
tasks: Decode, IQZZ, IDCT, YUV and Display. The movie used as example has a resolution of 256 × 144 pixels.
The template used for the exploration is shown in Fig.2-a. Since the target board is a Xilinx XUPV5 FPGA
board [37], components specific to Xilinx are instantiated in the template. In this figure, elements specific to
this application are drawn with solid lines, so the architecture contains a Flash memory that will be used to
provide the input video file, a SRAM memory — both memories are linked to the processor through a PLB
bus — and a framebuffer implemented in the DDR memory that is linked through a dedicated PLB bus to the
display controller. The dotted line elements represent components that can be instantiated — e.g. there can
be up to four processors instantiated in the design. Fig.2-b illustrates the details of the processor template.
It shows that a processor can be linked to a local memory or a shared memory through a LMB bus. It can
be linked to one or more external memories through a PLB bus and can also be linked through an FSL to a
coprocessor, which can itself have a dedicated local memory. These architectural elements represent the static
part of the template. The rest of the settings for the DSE-bound level are:

− the number of processors, which is between one and four with all of them being of MB type;

− the available memories, which are the DDR, BRAM and SRAM;

− the hardware accelerators for IDCT and YUV;

− the IDCT can be duplicated to exploit data-parallelism;

− the performance objective, which is set to 24 frames per second (FPS);

M
B

M
B

 M
B

M
B

 Y
U

V

M
B

 M
B

 M
B

M
B

 M
B

 Y
U

V

M
B

 M
B

 M
B

 M
B

M
B

 M
B

 M
B

 Y
U

V

M
B

 I
D

C
T

_5

M
B

 I
D

C
T

_4

M
B

 I
D

C
T

_3

M
B

 I
D

C
T

_2

M
B

 I
D

C
T

_1

M
B

 I
D

C
T

_0

M
B

 M
B

 I
D

C
T

_5

M
B

 M
B

 I
D

C
T

_0
 Y

U
V

M
B

 M
B

 I
D

C
T

_1
 Y

U
V

M
B

 M
B

 I
D

C
T

_2
 Y

U
V

M
B

 I
D

C
T

_3
 Y

U
V

M
B

 I
D

C
T

_4
 Y

U
V

M
B

 M
B

 M
B

 I
D

C
T

_5

M
B

 M
B

 M
B

 I
D

C
T

_4

M
B

 M
B

 I
D

C
T

_4

M
B

 M
B

 M
B

 I
D

C
T

_3

M
B

 M
B

 I
D

C
T

_3

M
B

 M
B

 M
B

 I
D

C
T

_2

M
B

 M
B

 I
D

C
T

_2

M
B

 M
B

 M
B

 I
D

C
T

_1

M
B

 M
B

 I
D

C
T

_1

M
B

 M
B

 M
B

 I
D

C
T

_0

M
B

 M
B

 I
D

C
T

_0

M
B

 M
B

 I
D

C
T

_5
 Y

U
V

M
B

 I
D

C
T

_5
 Y

U
V

M
B

 M
B

 I
D

C
T

_4
 Y

U
V

M
B

 M
B

 I
D

C
T

_3
 Y

U
V

M
B

 I
D

C
T

_2
 Y

U
V

M
B

 I
D

C
T

_1
 Y

U
V

M
B

 I
D

C
T

_0
 Y

U
V

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

5

10

15

20

25

 Slices BRAM DSP FPS

Architectures

S
lic

e
s

B
R

A
M

, D
S

P,
 F

P
S

Figure 8: Results of the exploration for the MJPEG by our framework sorted by increasing FPS.

− the Ni variables that set the scalability of the DSE (see Fig.7), which were set to -1, so that no pruning
was performed.

Fig.8 shows a selection of results for the DSE. In these results, IDCTX designates a MB with an accelerator
for the IDCT task; the X shows the different versions of the accelerator — the smaller the X, the faster the IP
(i.e. the IP has a lower latency). The same holds for YUV. If we exclude the time for the hardware accelerators
exploration (about 5 minutes) — by assuming for instance that the IPs were already present in the database
—, the total time taken to produce these 37 results was of 21 seconds, about 13 of which were taken by the
Sesame trace-based performance simulation. We can see that seven architectures were found that reached our
objective of 24 FPS.

In order to evaluate the efficiency of the Hungarian algorithm-based method, we compared the best mappings
found with the Hungarian method with the optimal mappings found with an exhaustive mapping exploration,
as it is performed in the Daedalus framework [9]. The results are given in Table 2, where they are sorted in
increasing order of performance according to the Sesame estimation of the exhaustive mappings. The mapping
columns specify the task mapping onto the processors: there as many numbers as there are tasks — 5 in this
case —, and each number represents a processing unit, in the same order as they are described in the first
column. For instance, for the architecture MB IDCT 5 YUV, MB is the processor 0, IDCT 5 is the processor
1 and YUV is the processor 2. Thus the mapping 0 1 1 2 2, means that the first task (Decode) is mapped on
MB, the second and third tasks (IQZZ and IDCT) are mapped on IDCT 5 and that the last two tasks (YUV
and Display) are mapped on YUV. The columns Sesame Est. are the numbers of cycles estimated by Sesame
for the execution of the application.

We can see that in 11 cases out of 37, there are no or little differences in performances, meaning that
our Hungarian method has found the optimal solution or a near-optimal one. On average, the difference in
performances is 12%. This difference is relatively small considering the speedups obtained with the coprocessors
in this case study. The important point is also the pruning ratio obtained with the Hungarian algorithm for
this example. If the mapping generation was exhaustive, then over 200 000 architectures and mappings would
have been generated. It means that with a relatively small MJPEG example, it would have taken over a day
to evaluate all the solutions with the Sesame tool. This is to be put against the 37 architectures and mappings
generated with the Hungarian method, which were evaluated in about 13 seconds. This corresponds to a speedup
over 6600, with an average ratio of 550 for speedup per percent loss.

The next steps of the design process are the synthesis of the whole architecture and the execution on the
target FPGA. Considering synthesis times of complex architectures and execution, electing the most relevant
ones out of many is of major importance. Table 3 shows the comparison between our estimates and the
implementation on FPGA over six architectures. We can see that our estimates are pretty accurate with an
average error of 7.3%. It is also important to keep in mind that the estimation process is compliant with the
tool approach targeting fast design so that multiple solutions can be seamlessly generated and tested.

5.2 Viola-Jones based Face Detection

Application and Template As an example of a complex application, we used a face detection software
based on the Viola-Jones object detection method. This application was split into eleven tasks as illustrated in
Fig.9. After loading the necessary data (tasks 1 and 2), the application performs a series of transformation on
the picture (tasks 3 through 9) in order to increase the efficiency of the actual detection of faces (tasks 10 and
11). The generic architecture used for the exploration is similar to the one for the MJPEG (cf. Fig.2-a), except
for the SRAM memory, which is removed since it is absent from the ML605 FPGA board [38] targeted for this
application. The processor template, shown in Fig.2-b, is also similar to the MJPEG one. The DSE-bound
settings given as parameters for the exploration were:

Table 2: Comparison between Hungarian-algorithm based method and exhaustive-search mapping exploration.
Architecture Hungarian-Algo. Exhaustive Search Difference Diff %

Mapping Sesame Est. Mapping Sesame Est.
MB 0 0 0 0 0 718915412 0 0 0 0 0 718915412 0 0
MB MB 0 1 1 0 0 422931756 0 0 1 0 1 402288504 20643252 4,88
MB YUV 0 0 1 1 0 393331640 1 1 0 1 0 347565402 45766238 11,64
MB MB MB MB 3 0 2 1 1 333798895 0 1 2 3 0 333798893 2 0
MB MB MB 2 2 1 0 0 334121151 0 1 2 0 0 333798887 322264 0,1
MB MB MB YUV 1 0 2 3 0 333650802 3 0 1 3 2 333649734 1068 0
MB MB YUV 1 1 0 2 2 333971982 2 0 1 2 0 333649726 322256 0,1
MB IDCT 5 1 1 1 0 0 276949605 1 0 1 0 1 229034147 47915458 17,3
MB IDCT 4 1 1 1 0 0 273862245 1 0 1 0 1 229026467 44835778 16,37
MB IDCT 3 1 1 1 0 0 272704485 1 0 1 0 1 229023587 43680898 16,02
MB IDCT 2 1 1 1 0 0 270388965 1 0 1 0 1 229017827 41371138 15,3
MB IDCT 1 1 1 1 0 0 269231205 1 0 1 0 1 229014947 40216258 14,94
MB IDCT 0 1 1 1 0 0 268459365 1 0 1 0 1 229013027 39446338 14,69
MB MB IDCT 5 2 1 2 0 0 209843700 0 2 2 1 2 144263085 65580615 31,25
MB MB IDCT 4 1 0 2 2 0 172226236 0 2 2 1 2 144255405 27970831 16,24
MB MB IDCT 3 1 0 2 2 0 170676796 0 2 2 1 2 144252525 26424271 15,48
MB MB IDCT 2 1 0 2 2 0 167577916 0 2 2 1 2 144246765 23331151 13,92
MB MB IDCT 1 1 0 2 2 0 166028476 0 2 2 1 2 144243885 21784591 13,12
MB MB IDCT 0 1 0 2 2 0 164995516 0 2 2 1 2 144241965 20753551 12,58
MB MB MB IDCT 5 1 2 3 3 2 176360236 0 1 3 2 1 144238499 32121737 18,21
MB MB MB IDCT 4 1 2 3 3 2 172228403 0 1 3 2 1 144230819 27997584 16,26
MB MB MB IDCT 3 1 2 3 3 2 170678956 0 1 3 2 1 144227939 26451017 15,5
MB MB MB IDCT 2 1 2 3 3 2 167580076 0 1 3 2 1 144222179 23357897 13,94
MB MB MB IDCT 1 1 2 3 3 2 166030636 0 1 3 2 1 144219299 21811337 13,14
MB MB MB IDCT 0 1 2 3 3 2 164997676 0 1 3 2 1 144217379 20780297 12,59
MB MB IDCT 5 YUV 0 2 2 3 1 144090410 0 2 2 3 1 144090410 0 0
MB IDCT 5 YUV 0 1 1 2 2 144090406 0 1 1 2 2 144090406 0 0
MB MB IDCT 4 YUV 1 2 2 3 0 144083804 0 2 2 3 1 144082730 1074 0
MB IDCT 4 YUV 1 0 1 2 0 183189421 0 1 1 2 2 144082726 39106695 21,35
MB MB IDCT 3 YUV 0 2 2 3 1 144079850 0 2 2 3 1 144079850 0 0
MB IDCT 3 YUV 2 1 1 2 0 203274183 0 1 1 2 2 144079846 59194337 29,12
MB MB IDCT 2 YUV 3 0 2 3 0 203276335 0 2 2 3 1 144074090 59202245 29,12
MB IDCT 2 YUV 0 1 1 2 2 144074086 0 1 1 2 2 144074086 0 0
MB MB IDCT 1 YUV 3 0 2 3 0 203276335 0 2 2 3 1 144071210 59205125 29,13
MB IDCT 1 YUV 0 1 1 2 2 144071206 0 1 1 2 2 144071206 0 0
MB MB IDCT 0 YUV 3 0 2 3 0 203276335 0 2 2 3 1 144069290 59207045 29,13
MB IDCT 0 YUV 0 1 1 2 2 144069286 0 1 1 2 2 144069286 0 0

Table 3: Comparison of FPGA implementations of MJPEG architectures and performance evaluations with
TBES

Architecture FPS Est. FPS Cycles count Est. Cycles count % Error Frequency (MHz)
MB 5.32 5 681059750 718915412 5.56 125
YUV 5.71 5 634948450 639242454 0.7 125
IDCT 0 9.48 8 382378299 412204302 7.8 125
MB MB 9.95 8 364346144 422931756 16.08 125
MB YUV 10.43 9 347540716 393331640 13.18 125
MB IDCT 0 13.42 13 270104971 268459365 0.61 125

Table 4: List of the communication channels between tasks with the types and sizes of exchanged data.
Linked tasks Type Size (bytes)
1-3 IMG COLOR 921600
2-10 CLASSIFIER 1 3504
2-10 CLASSIFIER 2 6220
2-10 CLASSIFIER 3 10848
2-10 CLASSIFIER 4 13328
2-10 CLASSIFIER 5 12 261012
2-10 CLASSIFIER 13 25 935892
3-4 IMG GRAY 311964
4-5,5-6,6-7,7-8,8-9 IMG RESIZE GRAY 65416
9-10,9-10 IMG INTEGRAL 279056
9-10 SQUAREIMG INTEGRAL 558080
10-11 RESULTS 2400

Acquisition Grayscale Resize Constrast
Enhancement Gaussian

SobelCanny
Integral
Image

Computation

Face
detection

Multiple
detection
removal

PicturePicture

Set of
trained

classifiers

Set of
trained

classifiers
Detected

faces

Detected
faces

1 3 4 5 6

7891011

2

Classifier
loading

2

Figure 9: Face detection application split into 11 tasks with links between communicating tasks.

Table 5: Results of the automated mapping exploration.
Architecture Task Mapping Sesame Est. Memories Memory Mapping Speedup
MB 0 0 0 0 0 0 0 0 0 0 0 23892860176 DDR BRAM 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
MB MB 1 1 1 0 0 1 0 1 1 0 1 19957798877 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1,2
MB MB MB 0 0 2 2 2 0 1 0 1 1 0 14503782376 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,65
MB MB MB MB 1 3 2 2 3 2 0 1 0 0 3 14129193167 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1,69
HEQ 0 0 0 0 0 0 0 0 0 0 0 17770105070 DDR BRAM 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1,34
MB HEQ 1 1 1 0 1 1 0 0 1 0 1 14684103028 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1,63
MB MB HEQ 1 1 2 0 2 2 2 1 2 0 1 13708065693 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,74
MB MB MB HEQ 0 2 1 1 3 3 2 0 3 2 2 14955415396 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,6
DET 0 0 0 0 0 0 0 0 0 0 0 13197892720 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,81
MB DET 0 0 0 1 0 0 1 1 0 1 0 10711195459 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2,23
MB MB DET 0 0 1 1 0 1 2 1 2 2 0 10191504361 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2,34
MB MB MB DET 1 3 0 0 2 0 2 1 2 3 3 8661824052 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2,76
DET HEQ 1 1 1 0 1 1 0 0 1 0 1 9482325330 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 2,52
MB DET HEQ 2 2 0 1 2 0 0 0 0 1 2 8916949321 DDR BRAM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2,68
MB MB DET HEQ 3 0 1 1 3 0 2 0 2 2 0 12554660131 DDR BRAM 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1,9

− there can be between one to four MBs;

− there are two memory types available: DDR and BRAM;

− the Face detection task can be duplicated to exploit data-parallelism;

− the tasks Contrast enhancement and Face detection, respectively noted HEQ and DET in the results are
specified by the designer as accelerable through hardware;

− the Ni variables that set the scalability of the DSE were all set to -1, meaning that no pruning was
performed.

First results In order to evaluate the efficiency of our algorithm, we have launched an exploration with fully-
automated memory mapping decisions and with hardware acceleration allowed. Instances of target accelerators
were already present in the database and thus no HLS-based exploration was performed. Their characteristics
are specified in Table 6. In this experiment, we consider applying face recognition on a video stream as a
smartcam application. So we consider several iterations of the program by executing face recognition on a set of
subsequent video frames coming from a camera. A consequence of having multiple iterations is that it reduces
the impact of classifiers loading (the Classifier loading task), since this operation has to be performed only once
for all the images. Moreover it also offers interesting inter-frame parallelism opportunities.

Table 5 shows the best results based on performances for the given hardware architecture. The first column
shows the description of the architecture: MB DET HEQ means an architecture with three MB processors,
DET is a MB with one DET hardware accelerator and HEQ is a MB with one HEQ hardware accelerator. The
second column specifies the task mapping: they are described in a similar fashion as what was done for Table
2. Thus the mapping 2 2 0 1 2 0 0 0 0 1 2, means that the first two tasks — tasks are in the same order as in
Fig.9 — are mapped on HEQ, the third task is mapped on MB and so on. The memory mapping is specified as

Table 6: Hardware accelerators characteristics.
Accelerator Type HEQ DET
Speedup over SW 90 53
Number of Slices 9308 471
Number of DSP blocks 256 0

D
E

T

D
E

T
 D

E
T

D
E

T
 D

E
T

 D
E

T

D
E

T
 D

E
T

 D
E

T
 D

E
T

D
E

T
 D

E
T

 D
E

T
 H

E
Q

D
E

T
 D

E
T

 D
E

T
 H

E
Q

D
E

T

D
E

T
 D

E
T

 H
E

Q

D
E

T
 D

E
T

 H
E

Q
D

E
T

D
E

T
 H

E
Q

D
E

T
 H

E
Q

D
E

T

H
E

Q

H
E

Q
D

E
T

M
B

M
B

 D
E

T

M
B

 D
E

T
 D

E
T

M
B

 D
E

T
D

E
T

D
E

T

M
B

 D
E

T
 D

E
T

 H
E

Q

M
B

 D
E

T
H

E
Q

M
B

 H
E

Q

M
B

 M
B

M
B

 M
B

 D
E

T

M
B

 M
B

 D
E

T
 D

E
T

M
B

 M
B

 D
E

T
 H

E
Q

M
B

 M
B

 H
E

Q

M
B

 M
B

 M
B

M
B

 M
B

 M
B

 D
E

T

M
B

 M
B

 M
B

 H
E

Q

M
B

 M
B

 M
B

 M
B

0

200000000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1

2

3

4

5

6

7

8

9

10

11

No duplication, no iteration Task face detection duplicated, no iteration No duplication, 100 iterations

Task face detection duplicated, 100 iterations Best speedup achieved

Architectures

N
u

m
b

e
r

o
f C

yc
le

s

S
p

e
e

d
u

p

Figure 10: Viola-Jones face detection: DSE and results of parallelism exploration.

follows: there are as many numbers as there are communication channels in the application — the order is the
same as that of Table 4 — and their value specifies the memory, in the same order as specified in the previous
column, i.e. in this case 0 means DDR and 1 means BRAM. The speedup is computed from the worst case
found in these given selected results, which is the full software monoprocessor solution.

We can see in Table 5 that results with good performances are obtained and that our data-mapping algorithm
makes decisions that minimize the communication cost. During this exploration, we generated 122 architectures
in about 4 seconds, which were then evaluated through the Sesame simulator in 230 seconds, resulting in a total
exploration time of 234 seconds. This example shows the issue of scalability for large applications, for which
exhaustive mapping exploration is no longer possible: for two processors, the task mapping would result in
2048 solutions, and with two memories and 18 communication channels, there would be 262 144 possible data
mappings, resulting in a total of over 536 million solutions to evaluate, if the explorations for both data and
task mappings were exhaustive.

Task Duplication & Pipelining Our environment aims at offering to designers the ability to explore data
and task parallelism without spending time working on low level and error prone implementation details of the
system. So another series of four experiments were performed in order to study the impact of parallelism at
the application level. The first experiment is used as reference since no parallelism is exploited. In the second
experiment, only data-parallelism is explored, while in the third, only task-parallelism is explored and in the
fourth, both types of parallelism are explored. The exploration of data-parallelism was achieved by duplicating
the Face detection task three times, since it is the most resource-consuming task. To explore the pipelining, we
performed several iterations of the program, in a similar fashion to the previous experiment. The accelerators
are the same as for the previous exploration. In these results, some architectures have a processor that has two
coprocessors, one for the Face detection task and one for the Contrast enhancement. These processors are noted
HEQDET in the results. In this exploration, we assumed that all communications would fit on the BRAM
memories, which have a latency of one cycle.

A selection of results is presented in Fig.10. For architectures having more than one processor, we can
observe that the duplication of the Face detection task provides better performances. However in some cases,
the version with duplicated tasks is slower than the version with no duplicated task. This happens when the
architecture contains at least one processor that does not have a coprocessor for the Face detection task. This
is because our tool favors the mapping of duplicated tasks on different processors instead of the most efficient
ones. Otherwise, the benefits of duplication would disappear. These results were kept only for this exploration
experiment. Otherwise, our tool has a built-in rule that checks that there are enough coprocessors given the
number of times a task was duplicated, and that discards results that do not verify this assumption. If we
remove these cases, the speedups obtained over similar architectures with no duplication is between 1.42 and
2.85, which is satisfying since these speedups were obtained at no additional resource costs.

Overall, the best architecture yields a speedup of 10.15 over the worst case, which is the full software
monoprocessor solution. This best solution corresponds to the architecture with the maximum number of
processors and where there is an accelerator for the Contrast enhancement task and one accelerator for each
of the duplicated Face detection tasks. Given a frequency of 100 MHz for the target architecture, that would
correspond to the processing of 0.79 image per second.

Those results were obtained in four runs of the tool, one for each different configuration. In total, there
were 112 architectures (4 × 28) generated and evaluated in 742 seconds. The generation times were similar for
each of the four runs, only the simulation times differ — the implementations with iterations taking more time,
since their execution traces were bigger and consequently took longer to simulate.

6 Conclusion

This paper presented a complete system level tool for the design of heterogeneous multiprocessor architectures.
The design flow has been demonstrated using Xilinx FPGAs. Our solution relies on three strong points.
Whereas designers of reconfigurable architectures traditionally spend a great deal of time and design effort for
each design as reusability is missing, our template-based approach promotes reuse and cuts off design effort.
Secondly, it provides a framework for estimation, DSE and code/script generation. Designers benefit from years
of legacy and irreplaceable know-how. Not only does our solution automate tedious and error-prone design
tasks, but it unleashes the productivity of application designers by putting their skills at the heart of the
process (e.g. template selection, tasks identification for duplication, etc.). However, designer experience may
not be sufficient to identify the proper design options. Our solution thus thirdly offers a fast and automatic
DSE method, that includes HLS in the exploration loop, hardware accelerator selection, task and data mapping.
It allows a significant reduction of the set of solutions to be simulated, and brings a significant speed-up with
minor impact on the overall solution quality. Real cases including a complex face-detection application served
as from-specification-to-implementation demonstrators.

New FPGA generations, such as the Altera Stratix 10 family [39], offer more logic resources and embed
hardcore CPUs, and thus they further increase the design space and justify the need for scalability. We believe
that our template-based approach, allowing our flow to adapt to new architectures, along with the adaptable
scalabilty made possible with our approach, is a relevant solution to face the challenges of designing HMPSoC
for these new platforms.

This work opens promising perspectives. At the application’s capture level, we are working on extensions
encompassing new models of computation beyond KPN. At a lower level, to complete the automation, MDE is
considered as a smart way to generate codes and scripts for third party tools and devices such as Altera.

References

[1] Miriam Leeser, Shawn Miller, and Haiqian Yu. Smart camera based on reconfigurable hardware enables
diverse real-time applications. In Field-Programmable Custom Computing Machines, 2004. FCCM 2004.
12th Annual IEEE Symposium on, pages 147–155. IEEE, 2004.

[2] Umar Alqasemi, Hai Li, Andres Aguirre, and Quing Zhu. Fpga-based reconfigurable processor for ultrafast
interlaced ultrasound and photoacoustic imaging. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE
Transactions on, 59(7):1344–1353, 2012.

[3] Przemyslaw Pawelczak, Keith Nolan, Linda Doyle, Ser Wah Oh, and Danijela Cabric. Cognitive radio:
Ten years of experimentation and development. Communications Magazine, IEEE, 49(3):90–100, 2011.

[4] D. Suzuki, N Natsui, A Mochizuki, S Miura, H. Honjo, K. Kinoshita, H. Sato, S. Ikeda, T. Endoh, H. Ohno,
and T. Hanyu. Fabrication of a magnetic tunnel junction-based 240-tile nonvolatile field-programmable gate
array chip skipping wasted write operations for greedy power-reduced logic applications. IEICE Electronics
Express, 10(23), 2013.

[5] M. Sadri, C. Weis, N. Wehn, and L. Benini. Energy and performance exploration of accelerator coherency
port using xilinx zynq. In Proceedings of the 10th FPGAworld Conference, page 5. ACM, 2013.

[6] Altera. Altera and IBM Unveil FPGA-accelerated POWER Systems with Coherent Shared Memory.
http://newsroom.altera.com/press-releases/nr-ibm-capi.htm, 2015. Last accessed: 14/04/2015.

[7] K. Benkrid, D. Crookes, and A. Benkrid. Towards a general framework for FPGA based image processing
using hardware skeletons. Parallel Computing, 28(7–8), 2002.

[8] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer, (7):33–38, 2008.

[9] M. Thompson, H. Nikolov, T. Stefanov, A.D. Pimentel, C. Erbas, S. Polstra, and E.F. Deprettere. A
framework for rapid system-level exploration, synthesis, and programming of multimedia mp-socs. In
Proceedings of the 5th IEEE/ACM international conference on Hardware/software codesign and system
synthesis, pages 9–14. ACM, 2007.

[10] J. Keinert, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, M. Meredith, et al. SystemCoDesigner—
an automatic ESL synthesis approach by design space exploration and behavioral synthesis for streaming
applications. ACM Trans. on Design Automation of Electronic Systems (TODAES), 14(1):1–23, 2009.

[11] S. Shibata, S. Honda, H. Tomiyama, and H. Takada. Advanced SystemBuilder: A tool set for multiprocessor
design space exploration. SoC Design Conference (ISOCC), 2010 International, 2010.

[12] M. Rashid, F. Ferrandi, and K. Bertels. hArtes design flow for heterogeneous platforms. In Quality of
Electronic Design, 2009. ISQED 2009. Quality Electronic Design, pages 330–338. IEEE, 2009.

[13] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S. Vassiliadis. DWARV: Delftworkbench
Automated Reconfigurable VHDL Generator. In Field Programmable Logic and Applications, 2007. FPL
2007. Int. Conf. on, pages 697–701. IEEE, 2007.

[14] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y. Joo. Peace: A hardware-software codesign environment for
multimedia embedded systems. ACM Trans. on Design Automation of Elec. Sys., 12(3), 2007.

[15] L. Moss, H. Guérard, G. Dare, and G. Bois. Rapid Design Exploration on an ESL Framework featuring
Hardware-Software Codesign for ARM Processor-based FPGA’s. Space, 1, 2012.

[16] S. Li, N. Farahini, A. Hemani, K. Rosvall, and I. Sander. System level synthesis of hardware for dsp appli-
cations using pre-characterized function implementations. In ACM/IEEE Int. Conf. on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2013.

[17] M.A. Kinsy and S. Devadas. Heracles 2.0: A tool for design space exploration of multi/many-core processors.
In Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL), june 2012.

[18] G. Kahn. The semantics of a simple language for parallel programming. Information processing, 74:471–475,
1974.

[19] Eugene Cartwright, Azad Fahkari, Sen Ma, Christina Smith, Miaoqing Huang, D Andrews, and Jason
Agron. Automating the design of mlut mpsopc fpgas in the cloud. In Field Programmable Logic and
Applications (FPL), 2012 22nd International Conference on, pages 231–236. IEEE, 2012.

[20] Blair Fort, Andrew Canis, Jongsok Choi, Nazanin Calagar, Ruolong Lian, Stefan Hadjis, Yu Ting Chen,
Mathew Hall, Bain Syrowik, Tomasz Czajkowski, et al. Automating the design of processor/accelerator
embedded systems with legup high-level synthesis. In Embedded and Ubiquitous Computing (EUC), 2014
12th IEEE International Conference on, pages 120–129. IEEE, 2014.

[21] MDE. Model-Based Engineering descritption. http://modelbasedengineering.com, 2015. Last accessed:
14/04/2015.

[22] Peter Feiler and David Gluch. Model-Based Engineering with AADL: An Introduction to the SAE Archi-
tecture Analysis & Design Language. Addison-Wesley Professional, 2012.

[23] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E.M. Panainte. The MOLEN
Polymorphic Processor. Computers, IEEE Transactions on, 53(11):1363–1375, 2004.

[24] Opencores. Online OpenCores library. http://opencores.org/, 2014.

[25] Xilinx. Platform Format Specification Reference Manual - Xilinx (UG 642). http://www.xilinx.com/

support/documentation/sw_manuals/xilinx13_2/psf_rm.pdf, 2011.

[26] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph execution profiler. ACM Sigplan
Notices, 17(6):120–126, 1982.

[27] S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: A tool for improved derivation of process networks.
EURASIP Journal on Embedded Systems, 2007(1):19–19, 2007.

[28] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin. High-Level Synthesis: From Algorithm
to Digital Circuit, chapter GAUT: A High-Level Synthesis Tool for DSP applications, pages 147–169.
Springer, 2008.

[29] Y. Corre, J.P. Diguet, D. Heller, and L. Lagadec. A framework for high-level synthesis of heterogeneous
mp-soc. In Proceedings of the great lakes symposium on VLSI, pages 283–286. ACM, 2012.

[30] H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor system design with ESPAM. In CODES+
ISSS’06, pages 211–216, 2006.

[31] A.D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded system architectures
at multiple abstraction levels. Computers, IEEE Transactions on, 55(2):99–112, 2006.

[32] H.W. Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-
2):83–97, 1955.

[33] ATL. The Atlas Transformation Language (ATL). http://www.eclipse.org/atl/, 2014.

[34] Xtext. Xtext website. https://eclipse.org/Xtext/index.html, 2015. Last accessed: 10/04/2015.

[35] I. Augé, F. Pétrot, F. Donnet, and P. Gomez. Platform-based design from parallel C specifications.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans. on, 24(12), 2005.

[36] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Com-
puter Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I–511. IEEE, 2001.

[37] Xilinx. Xilinx XUPV5-LX110T FPGA Board Documentation. http://www.xilinx.com/univ/

xupv5-lx110t.htm, 2011.

[38] Xilinx. Xilinx ML605 FPGA Board Documentation. http://www.xilinx.com/products/boards/ml605/
reference_designs.htm, 2012.

[39] Altera. Stratix 10 - overview. https://www.altera.com/products/fpga/stratix-series/stratix-10/
overview.html, 2015. Last accessed: 16/07/2015.

